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inary Independent 
Piecewise-Identically-Distributed Source 

Frans M. J. Willerris, Member, IEEE 

Abstruct- Two weighting procedures are presented for compaction 
of output sequences generated by binary independent sources whose 
unknown parameter may occasionally change. The resulting codes nccd 
no knowledge of the sequence length T ,  Le., they are strongly sequential, 
and also the number of parameter changes is unrestricted. The additional- 
transition redundancy of the first method was shown to achieve the 
Merhav lower bound, Le., log T bits per transition. For the second 
method we could prove that additional-transition redundancy is not more 
than $ log T bits per transition, which is more than the Merhav bound; 
however, the storage and computational complexity of this method are 
also more interesting than those of thc first method. Simulations show 
that the difference in redundancy performance between the two methods 
is negligible. 

Index Terms- Universal noiseless source coding, independent 
piecewise-identically-distributed source, nsnct-'' ary source, transition 
pattern, weighting, arithmetic coding, reduc. .cy bounds. 

I. INTRODUCTION 
The Elias Algorithm (described in, e.g., Jelinek [ 11) produces for 

any coding distribution P,(zy) over all binary sequences xy = 
z1z2 . . . ZT E ( 0 ,  a binary prefix code with codeword lengths 
L(zT)  such that' 

L(zT) < log ~ +2 ,for a11 possible z ~ .  (1) 
P c ( X T )  

Possible sequences are sequences that Can actually occur, i.e., se- 
quences xy with actual probability Pa(zy)  > 0. It is required that 
the coding distribution P, (.) satisfies 

PC(4) = 1, 
Pc(z.",-') = Pc(z; - l ,X t  = 0 )  + Pc(zt,-l,xt = l ) ,  

-for aIlzi-' E { O , l } t - l , t =  l , . . . , T ,  and 

P,(ZT) > o for all possible zy E (0, l j T .  (2) 

Note that q!~ stands for the empty sequence (zy). If the marginals 
Pc(z4), t = 1, . . . , T are sequentially available the arithmetic code 
can be implemented sequentially. After having accepted a coding 
redundancy of at most 2 bits, we are left with the problem of finding 
good coding distributions Pc(.) for the cases we are interested in. 

For binary independent and identically distributed (i.i.d.) sources 
with unknown parameter 6' (i.e., the probability of generating a l ) ,  
we can assign the block probability Pc(zT) = P,(a, b )  to a sequence 
xT containing a zeros and b ones where 
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I We use the notation of [lo] It IS assumed that the base of the log ( ) is 

2 Codeword lengths and information quantihes are both expressed in bits 

This distribution allows sequential updating, i.e., P, (0,O) = 1, and 
for a 2 0 and b 2 0 

and 
b + 112 

a + b + l  
P,(a, b + 1) = ~ . P,(a, b ) .  (4) 

It was suggested by Krichevsky and Trofimov [2] and satisfies (see 
[lo]), for a + b 2 1, the inequality 

Using this inequality we can easily upper-bound the parameter 
redundancy resulting from this estimator. If z y  is a (nonempty) 
sequence containing a zeros and b ones, with actual probability 
Pa(zT18), we obtain for the parameter redundancy relative to the 
actual source that 

(6) 
1 = IogT + 1, for all 8 E [O, 11. 

In other words, the parameter redundancy is uniformly bounded. 
The inequality in (6) follows from applying the lower bound in (5 )  
for the denominator and observing that the maximum value of the 
enumerator is achieved for 6' = b / ( a  + b ) .  In a more general setting 
the memoryless source is not identically distributed. We assume in 
this correspondence that the source parameter 0 changes occasionally. 

DeJinition I :  An independent piecewise-identically-distributed 
(i.p.i.d.) binary source generates a sequence 5: E (0, l}T of 
independent symbols. During this generation process, the source 
parameter 8 makes, say C ,  transitions and assumes C+ 1 values. The 
transition pattem I = ( t l ,  t 2 , .  . . , tc)  for sequence XT inhcates 
that the symbols xt , ,  xt,+l,.  . . , zt,+l--l are generated according 
to parameter 8,, for c = 0,C. We assume here that t o  = 1 and 
tc+l = T + 1. Note that t,+l > tc for c = 0, C and, consequently, 
C 5 T - 1. We can now write for the actual probability 

n 
A 

T T  
&(z1 = 2 1  IT, 0) = 

Pa(Xt = 1) = 1 - P,(Xt = 0 )  = O C ,  

t=1,T 

where 

if t ,  5 t < t,+l for c = 0 , 1 , .  . . , C. (7) 

The vector consisting of the parameters @0,6'1, . . . , 0, is denoted by 
0 and called the parameter vector. We write G(I) for the number 

0 
Example: Our source generates 1000 binary digits. The starting 

value of the parameter of our example source is 0.9. This parameter 
changes into 0.0 at t = 301. At t = 401 the parameter value becomes 
0.5. Finally, at (before) t = 601 there is a transition again and 

of transitions C in pattern 7.  

0018-9448/96$05.00 0 1996 IEEE 
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value becomes 0.2. The parameter now remains constant 
end of the sequence. This parameter behavior is plotted in 
he number of transitions is three, the transition pattern is 
I, 601 ), the parameter vector (0.9,0.0,0.5,0.2). 

know the actual transition pattern 7, we can partition the 
TT into C ( 7 )  + I memoryless subsequences and use 

ing distribution, where a(.:) (resp., b(xi)) is the number 
(resp., ones) that occur in x;' = x2z,+1 . . . x3. Again this 
istribution allows sequential updating. For any sequence 
0, l}' , using (6) and the convexity of the log (.), the 
r redundancy with respect to the actual transition pattern 
e actual parameter vector 0, can be upper bounded as 

+ C ( I )  + 1, 
TIT, 0)  C(7) + 1 T 
XT 17) 2 l o g c ( 7 ) + 1  

we do not need a function y(*) as in [lo] here since always 
for c = O , C ( I ) .  

transition pattern is unknown we can weight the coding 
ons corresponding to all transition patterns 7 of sequences 
T and obtain the weighted coding distribution 

7 

[I) is the a priori probability that is assigned to transition 
-. Of course 

P t r (7 )  = 1. 
T 

sequence zT E { O , l } T  the transition redundancy with 
) pattern 7 can be upper-bounded as 

q noting that P,(zT) 2 Ptr(l)P,(xT17).  
tal cumulative redundancy relative to the actual pattern 7 
1 vector O is equal to the sum of the (cumulative) transition, 
r and coding redundancies. Using (l), (9), and (10) we 

2211 

can upper-bound this total redundancy for any sequence xy in the 
following way: 

+ C ( 7 )  + 3. (11) 
1 + C ( I ) +  llog T 

C ( 7 )  + 1 
< log ~ 

pt, 2 

This holds for all transition patterns 7 of xT and parameters 
0 E [0, l ]C(T)+l. Rewriting this bound, and taking the minimum 
over all transition patterns 7 of xf and all parameter vectors 0, we 
obtain for all zT E (0,1}* (not necessarily being generated by the 
source with transition pattern 7 and parameter vector 0)  that 

+ C ( 7 )  + 3}. (12) 
T CtT) + 1 log 

$ 2  C ( 7 )  + 1. 
From this, we may conclude that weighting methods try to min- 

imize the total description length of a sequence. In the following 
sections we will describe certain a priori distributions over the 
transition patterns, and investigate the coding methods that are based 
on these distributions. 

There is a vast amount of publications in the image, audio, and 
speech processing literature on segmentation problems. Although at 
first sight the problem treated here is similar to all these segmentation 
problems, the approach taken here is entirely different. Our objectivc 
is not to determine the boundary points of the (stationary) segments 
hut simply to compress the entire sequence. It is a bit surprising to 
realize that also in the image, audio, and speech processing literature 
compression is often the primary goal. However, it seems advan- 
tageous to replace this primary objective by a secondary objective, 
namely, to determine segments of constant statistics. 

11. A QUADRATICAL-COMPLEXITY CODING METHOD 
We will first define a coding distribution over source sequences 

and transition patterns that have infinite length in principle. We will 
see later that the storage complexity resulting from this distribution 
increases quadratically with the sequence length T.  Therefore, we 
refer to this method as the quadratical-complexity coding method. 

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:35:20 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. 
denoted as tct,. 

Quadratical transition diagram for t = I ,  2 , 3 , 4 .  State (t. c, t.) is 

We can define the distribution after assuming that the source follows 
a path in a quadratical transition diagram (see Fig. 2). 

Definition 2: The source starts in state (1,0,1) of the quadratical 
transition diagram. It generates the first output 2 1  according to 
parameter 00.  When the source produces output zt ,  it is in a 
state ( t ,  c, tc) ,  which indicates that the number of parameterchanges 
encountered so far is e,  that the current parameter is BC, and that 
the last time index before which a change occurred is t,. To obtain 
Krichevsky-Trofimov estimators we assign, in state ( t ,  e,  tc) ,  the 
following probabilities to the values 0 and 1 that can be generated: 

Again, a(.;) (resp., /(xi)) is the number of zeros (resp., ones) 
that occurs in xi = x,x,+I ".x3. After having generated xt, the 
parameter can change and the source will go to state (t+ 1, e+ l , t+ 
1). If the parameter remains the same, the next state of the source 
will be ( t  + 1, e,  t r ) .  We assign the following probabilities to these 
two alternatives to obtain Krichevsky-Trofimov estimators: 

(14) 
c +  112 

PLr ( ( t  + 1, c + 1, t + l ) l ( t ,  e ,  t,)) = -. t 
We should note that state ( t , c , t c )  only exists if 0 5 c 5 t - 1 and 
if c + 1 5 t ,  5 t for c # 0 and t o  = 1. The source output zt and 
thenextstate ( t+ l ,p ,q) ,where  ( p , q )  = ( c , t c )  or ( e + l , t + l )  are 
independent of each other given the current state ( t ,  c, tc) .  Note that 
the conditional coding probabilities in (13) do not depend on c while 
the conditional transition probabilities in (14) do not depend on t,.O 

We can now specify the quadratical-complexity coding distribution 
over all source sequences. , ' 

Definition 3: For the quadratical method, for each sequence xT E 
(0, l}T we compute for all zi t (0, l } t ,  t = 1, T, the probabilities 
Pc(z4, ( t ,  c , t c ) )  recursively, i.e., 

P c ( z " l , t , p , q ) )  a CPc(z" l - l , ( t -  L T > S ) )  

T +  

.Ptr((t,p,q)I(t - l,.,.))Pc(ztl(t,p,q)) (15) 

for t >  1, and Pc(zl ,  ( l , O , l ) )  = l / 2  for both z1 = 0 and 1. The 
summation is only over T ,  s such that ( t  - 1, T ,  s) is an existing state 
in the diagram (connected to state ( t ,  p ,  4)). 

The coding probabilities P,(zi), 5; E (0, l}t, t = 1, T, are now 
defined as follows: 

P 4 d )  e C E ( z t l , ( t , P , d ) .  (16) 
P > q  

The summation is only over p ,  q such that (t ,  p ,  q )  is an existing state 
0 

It is easy to show that the coding probabilities P,(z;), t = O,T, 
satisfy the restrictions (2). After having discussed the implementation 
of this method it will be clear that this coding distribution i s  
sequentially available. 

It is possible to demonstrate that this coding distribution performs 
a weighting of all coding distributions Pc(zT17) over all transition 
patterns I over T source symbols, i.e., 

in the transition diagram. Of course, Pc(q5) = 1. 

where 

c 
T - ( T , p , q )  

means a summation over all I that lead to state ( T , p , q ) .  Further- 
more, for a transition pattern 7 such that 7 + ( T , p ,  q ) ,  i .e .  a 
pattern 7 that leads to ( T , p , q )  

PtI(7) 1 Pe(T - 1 - P,P). (18) 

Probability P,(zTII) is as defined in (8). This result IS a direct 
consequence of the following lemma. 

Lemma I :  For t = 1, T and any existing state ( t , p , q )  in the 
quadratical transition diagram and all zc", E {0, l}t 

Pc(xt,, ( t , p , q ) )  = Ptr (7)Pc(z t , lT  (19) 
T-- t (L ,Pd  

with 

%(I) = Pe(t - 1 - P , P )  (20) 

and 

and that 

Pc(x"l-'IS)P,(zt/(t,p,q)) = Pc(Ztl-l,ztlS, ( t , p , q ) )  = Pc(xt,II) 

for 

7 = (S, ( t , p , q ) )  and S -+ (t - l , ~ ,  s).  

To see that Ptr(T)  = P,(t - 1 - p , p )  as stated in (20), note that 
from the induction hypothesis we know that P, (S) = P, (t - 2 - T ;  T ) .  

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:35:20 UTC from IEEE Xplore.  Restrictions apply. 
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= T then no new parameter change occurred going from 
s) to ( t , p ,  q )  and Pt,(S) is multiplied by (t - 1 - r - 
- I) and we obtain 

Altei 
catic 

FL 
indul 

We I 

If P 
(t - 

and 

On tl 
We I 

The 
find 

tr(7) = P,(t - 2 - T ,  T )  . ( t  - 1 - T - 1/2)/(t - 1) 

= Pe(t - 1 - T ,  T )  I. = Pe(t - 1 - p , p ) .  

itively, if p = T + 1 then a transition occurred. The multipli- 
factor is now (T + 1/2)/(t - 1) and we get 

Pt,(7-) = P,(t - 2 - T ,  T )  . ( T  + 1/2)/(t - 1) 

= P,(t - 2 - T , T  + 1) 

= P,(t - 1 - p , p ) .  

hermore, (21) can be understood by noting first that by the 
on hypothesis 

"c(zt,-1IS) = ( c=g-l pe(a(Xi:+1-1), b(xiz+1-1))) 

. Pe(a(~;;'), b(z;;')). 

sume that xt = 0, but similar remarks apply for zt = 1. 
: T then no new parameter transition occurred going from 
r , s )  to ( t , p , q )  and Pc(z;-'1S) is multiplied by 

: obtain 

. Pe(a(z:J, b(&) ) .  

other hand, when a transition occurred p = T+ 1 and t,+l = t. 
vrite 

Pc(x;-lls) = fl P , ( a ( z : y 1  ), b ( x : y ) ) .  
c=O,?- 

Theorem 1: Let T 2 2. If we use the quadratical-complexity 
coding distribution defined in (16), the transition redundancy for any 
z: with respect to transition pattern 7 satisfies the upper bound 

(23) 

for all transition patterns 7 over T symbols. The bound holds also 
for C ( 7 )  = 0 if we follow the convention z log z = 0 for 2 = 0. 

Proofi From (1 8) we know that 

P t r (7)  = Pe(T - 1 - C ( I ) , C ( I ) )  (24) 

if 7 is a transition pattern when the source generates T symbols. 
In order to find a useful bound for logPt r (7)  observe first that for 
nonnegative integers U and v with U + 2 1 by the bound in (5)  
we get 

U 
log P, ( U ,  v) 2 U log - + v log 

U + U  u + v  

(25) 
- - l o g ( u + v ) - 1 .  1 

2 

For the first term on the right-hand side of this inequality, we can 
write, using the basic inequality Inz 5 z - 1, that 

-U U + V  -U v 
u + v  ln2 U - 1 n 2  U 

ulog- U -  ----ln- > - . -  

(26) 

Assuming that U log U = 0 for U = 0, we can see that this inequality 
also holds for U = 0. Combining all this leads to 

-W - - - = -w log e.  
In 2 

( U  + w)e 1 
l O g P , ( ~ , v )  2 - ~ l ~ g - - - l o g ( ~ + ~ ) - l .  (27) 

U 2 

For any sequence xT E (0, 1}' the transition redundancy can now 
be upper-bounded as in (lo), i.e., 

Substitution of U = T - 1 - C ( 7 )  and v = C ( 7 )  in (27) yields the 
0 

The theorem says that the transition redundancy is bounded by a 
bias term which is roughly f logT bits and then for each transition 
roughly logT additional bits. The bias term can be considered a 
consequence of not knowing in advance the number of transitions in 
the sequence. The additional terms seem to be necessary since the 
decoder needs (approximations of) the coordinates of the transitions. 

Example (Continued): The transition redundancy for our example 
source generating the sequence x:, with T = 1000 is, according to 
Theorem 1, upper-bounded by 

theorem. Note that U + v = T - 1 2 1. 

1 
3 2  

3 log E + - log 999 + 1 = 35.45 bits. 

For the generated sequence we have also computed the transition 
redundancy 

This redundancy is plotted in Fig. 3. It satisfies the bound 35.45 bits 
as we can see. Moreover, we see that for each transition we get a 
sharp increase of this redundancy. We can explain this by noting 
that the decoder must be informed almost immediately about these 
transitions and this requires roughly log t bits for a transition that 
occurred at time t .  It may not be necessary, however, to transmit the 
exact time to the decoder, especially if the parameter change is small. 

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:35:20 UTC from IEEE Xplore.  Restrictions apply. 
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Implementation: The quadratical-complexity coding distribution 
suggested in Definition 3 leads to the following implementation. Sup- 
pose that in all existing nodes (records) (t - 1, T ,  s )  the probabilities 
P ( S ~ ~ ' ,  ( t -  1, T, s ) )  and the counts u(x:-') and b(z:-l) are stored. 
The probabilities P(x: ,  (t,p, q ) )  can now be determined using (15) 
and stored in nodes ( t , p , q ) .  Summing over all these nodes as in 
(16) gives Pc(x:). The counts a ( x i )  and b(xi) in record (t,p,q) 
are determined using the counts a(z:- l )  and b(z;-l) in record 
(t - l , p ,  4). For example, if xt  = 1 count a(.:) := a(x",-') and 
b ( z : )  := b(z;-l) + 1 for all q < t and a(.:) := 0 and b(z i )  := 1 for 
q = t .  If xt = 0, we increase the a-counts instead of the b-counts. 
After this the records ( t  - 1, T ,  s )  can be deleted. 

Storage Complexity: Since for processing symbol xt there are 
( t2  - t + 2)/2 nodes that need to be stored (while the nodes corre- 

Fig. 4. 
denoted as tt,. 

Linear transition diagram for t = 1 ,2 ,3 ,4 .  State ( t ,  t,) is now 

sponding to xt- 1 are deleted), the instantaneous storage complexity 
grows quadratically in T.  

number of 
computations (multiplications) to process xy , note that there are 
two ways to leave the record (t - ~ , T , s ) .  Each of them involves 

parameter 80 .  When the source produces output xt, it is in a state 
(t, t c ) ,  which indicates that the last time index before which a change 
occurred is tc. The current parameter is 0,. As in (13), we assign the 
following probabilities to the values 0 and 1 that can be generated: 

Computational complexity: To determine the 

a multiplication. If a transition is assumed, the next record is 
( t ,  T + 1, t ) ,  otherwise, the next record is (t, T, s ) .  The number 
of computations related to processing zL for t > 1 is, therefore, 
twice the number of records that are stored for processing xt--l, 
i.e., ( t  - 1)2 - (t - 1 )  + 2 = t2  - 3t + 4. The total number 
of computations for processing xy follows from summing the 
terms corresponding to xt for t = 2,T, which appears to be 
(T3 - 3T2 + 8T - 6) /3 .  Therefore, there is a cubic dependency 
between the total computational complexity and the source sequence 
length T.  

rrr. A LINEAR-COMPLEXITY CODING METHOD 
The quadratical-complexity coding method gives a nice perfor- 

mance as we have seen in the previous section, but the complexity of 
this method is also quite large. Therefore, we will discuss a method 
here that has a storage complexity which is linear in the sequence 
length T.  Although in theory the (transition) redundancy resulting 
froin this method is higher than the redundancy for the quadratical 
method, the differences turn out to be small in practise. We will now 
assume that the source follows a path in a linear transition diagram 
(see Fig. 4). 

Definition 4: The source now starts in state (1,1) of the linear 
transition diagram and generates the first output ZI according to 

a(z:; l )  + 112 P d X ,  = Ol(t, t ,)) = t - t , + l  

After having generated x L ,  the parameter can change and the source 
will go to state ( t  + l , t  + 1). If the parameter remains the same, 
the next state of the source will be ( t  + l , t c ) .  We now assign 
the following probabilities to these two alternatives to obtain the 
Krichevsky-Trofimov estimators: 

where we should note that always 1 5 t ,  5 t .  The sourGe output xt 
and the next state ( t  + 1, q )  where q = t ,  or t + 1 are independent 
of each other given the current state ( t , t c ) .  Note that now the 
conditional coding probabilities in (29) and the conditional transition 
probabilities in (30) depend solely on tc and not on e. 

We will now specify the linear-complexity coding distribution over 
the source sequences. 

Definition 5: For each sequence xT E (0, l}' we compute for all 
Z; E (0, l} t , t  = 1,T, the probabilities P,(zi, ( t , tc))  recursively, 

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:35:20 UTC from IEEE Xplore.  Restrictions apply. 
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s 

1, and P c ( z l , ( l , l ) )  = 1/2 for both z1 = 0 and 1. The 
on is only over s such that 1 5 s 5 t - 1. 
oding probabilities 

Pc(z;),zi E { O , l } t ,  t = 1,T 

defined as follows: 

2 assume that the summation is only over q such that 
0 

ke for the quadratical method, we can demonstrate that also 
+-complexity coding distribution is a weighting of all coding 
ions Pc(zy17) over all transition patterns 7 over T source 
, i.e., 

t .  Of course, Pc(g5) = 1. 

P&) = Ptr(7)Pc(zT17) (33) 
4 T-(T,q) 

3 summation over all 7 that lead to state (T,q). The 
ity Pc(zy17)  is as defined in (8). 
:more, for a transition pattern 7 such that 7 + (T,  q )  for 
it follows from inspection that 

(34) 

le t ,  for c = 1 , C ( 7 )  are the transition times in 7.  This 
ity is composed out of C(7) + 1 Krichevsky-Trofimov 
rs, the first C ( 7 )  of them “end” after a transition occurs, 
one “continues” until the end of the sequence. 
iext theorem gives an upper bound on the transition redun- 
ir the linear method. 
.em 2: Let T 2 2. If we use the linear coding distribution 
in (32), the transition redundancy for any XT with respect to 
I satisfies the upper bound 

+ C(7) log (2e) + 1 (35) 

ransition patterns 7 over T symbols. The bound holds also 
-) = 0 if we follow the convention z log z = 0 for z = 0. 
08 The probability Ptr(7) assigned to pattern 7 is given 

By the lower bound in (5) and by the basic inequality 
5 - 1 we obtain that 

U - 1  1 1  
U U 2  

>,(U - 1 , l )  2 ( U  - 1) log - + l O g - - - l o g U - l  

U - 1  U 3 
ln2 U - 1  2 

-- ln- - -1ogu-  1 - - 

U - 1  1 3 
- ln2 U - 1  2 
> - - . . -  - logu - 1 

3 =-loge - - logu - 1 
2 

(36) 
=- - logu- log(2e)  3 

2 

for integers U 2 1. For integers v 2 1 the lower bound in (5)  yields 

(37) 
1 
2 

logP,(v,O) 2 --logv - 1 

while for w = 0 we obtain logP,(w,O) = 0. Substituting these 
bounds in log( l /P t r (7) ) ,  where Ptr(7) is as in (34), yields two 
terms. The first term corresponds to the C ( 7 )  transitions. Assuming 
that C ( 7 )  > 0 and using (36) we get for this first term 

c log (tc+l - t.) + ~ ( 7 )  log ( 2 e )  
c=o , C ( T )  - 1 

+ C ( 7 )  log (2e) 

+ C ( 7 )  log (2-5) 5 ~ log ~ 

2 C ( 7 )  
3 C ( 7 )  T - 1  

where we used the fl-convexity of the log in the first inequality and 
the fact that t C ( q  5 T in the second. It is important to note that 
t,+l > t ,  for c = 0, C ( 7 )  - 1. Note also that since z log z = 0 for 
z = 0, the bound on the first term holds for C ( 7 )  = 0. 

For the second term in &e bound for log (1/Ptr(7)) we get using 
(37) for T > tc(T) that 

(39) 
1 1 - log (T - t c ( ~ ) )  + 1 5 2 log ( T  - I )  + 1 2 

since t ~ ( 7 )  2 t o  = 1. If T = t q q ,  the second term is zero, which 
is upper-bounded by log (T - 1) + 1. 

Combining all this we can conclude that 

1 3 C ( 7 )  T - 1  1 
P t r ( 7 )  - 2 C ( 7 )  2 

log ~ < - log - + - l o g ( T -  1) 

+ C ( 7 )  log (2e)  + 1 (40) 

which yields the theorem. 0 
The theorem says that the transition redundancy is now bounded by 

a bias term which is roughly log T bits and then for each transition 
roughly $ logT additional bits. We see that each transition costs 
roughly 50% more than for the quadratical method. 

Example (Continued): The transition redundancy for the linear 
method for our example source is upper-bounded by 

9 999 1 
- log - + - log999 + 3 log (2e) + 1 = 51.02 
2 3 2  

bits. 

This transition redundancy is plotted in Fig. 5. As we can observe the 
bound 51.02 bist is satisfied. Moreover, it appears that the measured 
transition redundancy is not as close to the upper bound as for the 
quadratical method. 

Implementation: The coding distribution suggested in Definition 
5 leads to an implementation in which in all existing nodes (records) 
( t -  1, s) the probabilities P(z;-l, ( t -  1, s)) and the counts a(z;-’) 
and b(z;-’) are stored. The probabilities P(z t , ( t ,q ) )  are now 
determined using (31) and stored in nodes (t ,  q ) .  Summing over all 
these nodes as in (32) gives Pc(zi). The counts a ( r i )  and b(zi)  in 
record (t ,  q )  are determined using the counts U(.;-’) and b(zS1) 
in record (t - 1, q )  just as in the quadratical method. After updating, 
the records (t - 1, s) can be deleted. 
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Fig. 5. Redundancy for the linear method as a function of t for t = 1,2,. . . , 1000. 

Storage Complexity: Since for symbol xt there are t nodes that 
need to be stored (while the nodes corresponding to xt-l are deleted), 
the instantaneous storage complexity grows linearly in T.  

Computational Complexity: To compute the total number of com- 
putations (multiplications) to process z:, note that there are again 
two ways to leave the record (t - 1,s). Each of them involves a 
multiplication. If a transition is assumed, the next record is ( t ,  t ) ,  
otherwise, the next record is ( t ,  s ) .  The ’ number of computations 
related to processing zt for t > 1 is, therefore, twice the number of 
records that are stored for processing zt--1, i.e., 2 ( t  - 1). The total 
number of computations for processing xy follows from summing 
the terms corresponding to xt for t = 2,T, which appears to be 
T 2  - T.  Therefore, there is a quadratic dependency between the 
total computational complexity and the source sequence length T for 
the linear-complexity coding method. 

IV. CONCLUSION 
Merhav [3] investigated compression techniques for sources whose 

parameters can change abruptly at unknown points. He showed that 
for any uniquely decodable code the redundancy is lower-bounded 
by logT bits for each parameter (parameter redundancy) plus 
log T bits for cach transition (transition redundancy). Moreover, it is 
outlined by Merhav how to achieve this lower bound with a strongly 
sequential universal code, i.e., a code that does not need knowledge 
of T.  

Actually, Merhav treated the achievability case where there is only 
one transition. The extension to more transitions is straightforward, 
he claims. However, if the number of transitions is not known in 
advance, the Merhav procedure can become quite complex since it 
involves weighting over the coding distributions P,(zT 17) corre- 
sponding to all transition patterns 7 o f  sequence zT . Note that there 
are 2T-1 such patterns, hence this would lead to a complexity which 
is exponential in T.  

In contrast to Merhav, we concentrated on finding explicit coding 
methods for the case where the number of transitions is unrestricted 
and that do not have exponential complexity behavior. We suggested 
two coding methods, the quadratical-complexity method and the 
linear-complexity method, both based on the concept of weighting 
(see, e.g., Ryabko [7], [6] (but more recently also [lo]) and Wein- 
berger et al. [9]).  Both methods are analyzed and it was shown 
that the quadratical method achieves the Merhav lower bound in the 
sense that each additional transition gives a redundancy increase of 

roughly log T bits. The linear method has a slightly larger transition 
redundancy (g log T bits per additional transition) but also a more 
acceptable complexity. 

Both methods have a bias term contributing to the transition 
redundancy which is roughly $ logT bits. This bias term is the 
result of not knowing the number of transitions in advance. From 
simulations we could see tlpt in practice the redundancies of both 
methods are very close. 

Just like Merhav, we would like to point out that this source coding 
situation should be treated as a Minimum Description Length (MDL) 
problem (see Rissanen [4], [5]) .  What the transmitter has to convey 
to the receiver is a specification (code) of the transition pattern (the 
model in terms of [lo]) plus the code for the source sequence given 
the pattern. The last code contains a term coming from the fact that 
we do not know the parameters (parameter redundancy). The pattern 
is chosen in such a way that the cost oT specifying the pattern plus the 
code length of the source sequence given the pattern, is minimized 
(see also (12)). We are not making a definite choice here, instead 
we are weighting over all transition patterns such that only the best 
pattern survives. 
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Fig. 1. A three-dimensional folded hypercube. 

target graph as a subgraph. Note that this approach guarantees that 
any algorithm designed for the target graph will run with no slowdown 
in the presence of f or fewer edge faults in the fault-tolerant graph, 
regardless of their distribution. Minimizing the cost in this model 
amounts to constructing a fault-tolerant graph with minimum degree. 
(See [4] for constructions that address node faults.) 

The key to our fault-tolerant constructions is a technique based 
on error-correcting codes for adding redundant edges using the so- 
called wildcard dimensions. Our technique is capable of handling 
an arbitrary number of faults over arbitrary alphabets. This is a 
generalization of the construction in [5] that is limited to the case 
of MDS (Maximum Distance Separable) codes. The key to our 
generalization is proving the equivalence between the constructions of 
fault-tolerant cube graphs and constructions of generator matrices of 
error-correcting codes (while in [5] the construction is based on parity 
check matrices of error-correcting codes.) First, we will describe the 
technique for constructing fault-tolerant hypercubes, then we will 
explain how it can be extended to Omega networks, tori, meshes, 
and cube-connected cycles (CCC). 

Let &e denote the !-dimensional hypercube. It consists of 2e nodes, 
where node i, 0 5 i 5 2‘ - 1, is represented by the &-bit binary 
representation of i. Two nodes, say X = (zp-lzp-2 ...zo) and 
Y = (ye-lyt-2...y0), are connected by an edge iff there is a 
single j for which x3 # y3, and this edge is called a dimension- 

edge. Hence, the set of edges in the hypercube can be partitioned 
into I dimensions. 

In [9],  it was suggested to add another set of edges to the hyper- 
cube, called the wildcard dimension, resulting in a folded hypercube. 
The folded hypercube topology was also defined independently in [7],  
but with a different name (the bisectional interconnection network) 
and with a different addressing scheme for the nodes. A formal 
definition of the folded hypercube is given next. 

Dejinition I :  An 1-dimensional folded hypercube, denoted by Fe, 
is an !-dimensional hypercube to which extra links are added con- 
necting every pair of nodes that are bit-wise complements of each 
other. 

A wildcard edge in Fe is an edge that connects node X = 
(zt-lzp-p...~~) and node X = ( % - ~ % - ~ . . . T C J ) .  For example, 
F3 is depicted in Fig. 1; notice that the neighbors of node (000) are 
( O O l ) ,  (010),(100), and (111). The structure of &e and Fg can be 
described using a more general framework, see also [8]. 

Dejinition 2: Let ! be a positive integer and let q be a prime 
number. Let S { O , l , .  . . , q - l}‘. The graph N ( q , l ,  S) is a graph 
with qe nodes and with the edges specified by the set of vectors in 
S. Any two nodes, say X and Y ,  are connected by an edge iff there 
exists a vector V E S such that X + V = Y where addition is vector 
addition performed over GF (y). 

- 
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