
2552 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

It remains to analyze the complexity of the coding scheme. By
Theorem 3.1, the time needed for the encoding of eachBi is O(d3)
and for the decoding isO(d2). Thus the overall encoding time on
q = ((1��)n�l)=d segments isO(d2((1��)n�l)) and the overall
decoding time isO(d((1� �)n � l)). Similarly, we can show that
the time needed for the encoding of segmentI is O(l2n) and for the
decoding isO(ln). Thus the overall encoding time at this recursive
level (excluding the time needed for the recursion on segmentR)
is O(d2((1 � �)n � l) + l2n) and the overall decoding time is
O(d((1 � �)n � l) + ln).

Now let us denoteTE(n) (resp.,TD(n)) to be the overall time
needed for the encoding (resp., decoding) of a segment of lengthn.
Then we have the following recurrent equations:

TE(n) =TE(�n) +O(d2((1� �)n� l) + l2n)

TD(n) =TD(�n) +O(d((1� �)n� l) + ln):

Solving the recurrences, we have thatTE(n) = O(d2n) and
TD(n) = O(dn). Indeed, for instance, for the first equation, we
have

TE(n) =O(d2�n) +O(d2((1� �)n� l) + l2n)

=O(d2n+ l2n� ld2) = O(d2n)

since by (8)

l < log
2

�
< d:

This completes the proof.

IV. CONCLUDING REMARKS

This correspondence introduces binary codes correctingt localized
erasures. The redundancy of codes ist(1 + �) and is thus very close
to the minimal possible. The complexity of the simplest construction
is linear in n and inversely proportional to�2. The number� can
take almost any value in(0; 1), contrary to some other recursive
constructions in which it has to be small, which results in high
encoding/decoding complexity. We note that it is possible to construct
almost optimal low-complexity binary codes that correct localized
errors and erasures at the same time. This could be the subject of a
future work. Another interesting problem would be to construct low-
complexity codes correctingt localized erasures with redundancy
t + o(n) as for codes correcting defects [7].

REFERENCES

[1] R. Ahlswede, L. A. Bassalygo, and M. S. Pinsker, “Asymptotically
optimal binary codes of polynomial complexity correcting localized
errors,” Probl. Pered. Inform., vol. 31, no. 2, pp. 76–83, in Russian,
andProbl. Inform. Transm., pp. 162–168, 1995, English translation.

[2] N. Alon and M. Luby, “A linear time erasure resilient code with nearly
optimal recovery,”IEEE Trans. Inform. Theory, vol. 42, pp. 1732–1736,
Nov. 1996.

[3] C. A. Asmuth and G. R. Blakley, “Pooling, splitting and restituting
information to overcome total failure of some channels of communi-
cation,” in Proc. 1992 Symp. Security and Privacy(IEEE, New York,
1982), pp. 156–169.

[4] A. Barg, “Complexity issues in coding theory,” inHandbook of Coding
Theory, V. Pless and W. C. Huffman, Eds. Amsterdam, The Nether-
lands: Elsevier, 1998, pp. 649–754.

[5] L. A. Bassalygo, S. I. Gelfand, and M. S. Pinsker, “Codes for channels
with localized errors,” inProc. 4th Swedish–Soviet Workshop Informa-
tion Theory, 1989, pp. 95–99.

[6] I. I. Dumer, “Asymptotically optimal codes correcting memory defects
of fixed multiplicity,” Probl. Pered. Inform., vol. 25, no. 4, pp. 3–10,
in Russian, andProbl. Inform. Transm., pp. 259–264, 1989, English
translation.

[7] , “Asymptotically optimal linear codes correcting defects of lin-
early increasing multiplicity,”Probl. Pered. Inform.vol. 26, no. 2, pp.
3–17, in Russian, andProbl. Inform. Transm., pp. 93–104, 1990, English
translation.

[8] G. A. Kabatianskii and E. A. Krouk, “Coding decreases delay of
messages in networks,” inProc. IEEE Int. Symp. Inform. Theory(San
Antonio, TX, 1993), p. 255.

[9] A. V. Kuznetsov and B. S. Tsybakov, “Coding for memory with
defective cells,” Probl. Pered. Inform., vol. 10, no. 2, pp. 52–60,
in Russian, andProbl. Inform. Transm., pp. 132–138, 1974, English
translation.

[10] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and
V. Stemann, “Practical loss-resilient codes,” inProc. 29th ACM Annual
Symp. Theory of Computing (STOC’97), ACM, 1997, pp. 150–159.

[11] F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

[12] A. J. McAuley, “Reliable broadband communication using a burst
erasure correcting code,” inProc. SIGCOMM’90. Philadelphia, PA:
ACM, 1990, pp. 287–306.

[13] M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,”J. Assoc. Comput. Mach., vol. 36, no.
2, 1989, pp. 335–348.

[14] D. Spielman, “Linear-time encodable and decodable error-correcting
codes,”IEEE Trans. Inform. Theory, vol. 42, pp. 1723–1731, Nov. 1996.

[15] R. Urbanke and A. Wyner, “Packetizing for the erasure broadcast
channel with an Internet application,” 1997, preprint.

Asymptotically Good Codes Correcting
Insertions, Deletions, and Transpositions

Leonard J. Schulman and David Zuckerman

Abstract—We present simple, polynomial-time encodable and decodable
codes which are asymptotically good for channels allowing insertions,
deletions, and transpositions. As a corollary, they achieve exponential
error probability in a stochastic model of insertion–deletion.

Index Terms— Asymptotically good, asynchronous communication,
deletion, edit distance, error-correcting codes, insertion, transposition.

I. INTRODUCTION

In an asynchronous noisy channel, characters of the received mes-
sage are not definitively identified with antecedents in the transmitted
message. We describe a code which allows for correction of data
modified in the following ways:

A Insertion and deletion of characters. (Note that this implies also
alteration of characters.)

Manuscript received April 13, 1997; revised October 16, 1998. This work
was supported in part by NSF NYI under Grant CCR-9457799, a David and
Lucile Packard Fellowship for Science and Engineering, and an Alfred P.
Sloan Research Fellowship.

L. J. Schulman is with the College of Computing, Georgia Institute of Tech-
nology, Atlanta, GA 30332-0280 USA (e-mail: schulman@cc.gatech.edu).

D. Zuckerman is with the Computer Science Division, University of Cali-
fornia at Berkeley, Berkeley, CA 94720 USA, on leave from the University
of Texas at Austin (e-mail: diz@cs.utexas.edu).

Communicated by A. Vardy, Associate Editor for Coding Theory.
Publisher Item Identifier S 0018-9448(99)07308-3.

0018–9448/99$10.00 1999 IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999 2553

B Transpositions of blocks of data: a message of the formABC

is transformed intoACB. (Note that this implies also general
transpositions, i.e.,ABCDE transforming toADCBE.)

Our code encodesn bits of information in codewords of length
n=r, for some positive constantr called therateof the code. The code
corrects up toeAn errors of typeA andeBn= logn errors of typeB,
for certain positive constantseA; eB . This result is, up to the values of
the constants, best possible; thus we refer to it as an “asymptotically
good” code for this error model. This is the first constructive code of
this type. The code can be encoded and decoded in polynomial time
up to its designed distance. Reversals of segments of the codeword
can also be accommodated using the methods described.

This is a generalization of the constructive, asymptotically good
codes for the Hamming distance given by Justesen [9]. Those codes
could correct only alterations of characters, whereas here we allow
more general errors.

Channels with insertions and deletions occur in various situations,
for example:

• Insertion and deletion errors occur in reading magnetic and op-
tical media (in addition to the more familiar character-alteration
errors). This was the motivation for considering insertions and
deletions in [17] and [4].

• If the error-correcting code employed in a digital communication
system is designed for a synchronous model (i.e., one without
insertions or deletions) then occasional synchronization pulses
must be transmitted over the channel. It is likely that the best
rate for such a channel is instead achieved by directly designing
a code that allows for timing uncertainties in the statistics of the
channel. This was the motivation for considering insertions and
deletions in [7].

• In a medium with only occasional transmissions (e.g., radio)
it may not be apparent whether a noise burst has obscured
transmissions.

• Genetic material undergoes just such transformations between
generations. It is possible that some of the complex mechanisms
of, say, protein production serve to protect the functionality
(the phenotype) from such changes in the genotype. Here the
possibility of transpositions is also significant.

• In Internet protocols, long messages are commonly split into
small packets, each of which is routed separately, and some of
which may be lost, on the way to the Internet recipient. The end
client, however, may be linked to the Internet recipient via an
unreliable channel such as a telephone line. Currently, coding
for these two stages is handled separately (and the first stage is
usually not coded at all, but interest in such coding appears to
be growing, especially for real-time applications [1], [2]); the
channel as a whole, however, is of the type considered in this
correspondence, and it may be possible to improve transmission
rates by coding for the entire process. The ability to handle
transpositions is essential in this example, since the order of
transmission of the packets is lost due to their separate routing.

For a discussion of these and other application areas, along with
related algorithms, see the survey by Kruskal [10].

Codes for insertion and deletion errors were first considered in 1965
by Levenshtein [12]. He obtained bounds on the number of codewords
possible for correcting any constant number (not fraction) of errors
in a block, and suggested the use of buffers between codewords in
an extended transmission. These and later bounds [13] on the volume
of metric balls imply the existence of exponentially large families of
codewords, and therefore that asymptotically good codes for insertion

and deletion errors exist. A series of papers has followed, developing
codes for such channels, especially on account of their occurrence
in magnetic and optical media. These codes, as with other codes for
such media, employ “run-length limited” codes, in which the length
of any maximal run of0’s is bounded below by somed and above
by somek. As is most relevant for the media considered, these codes
correct insertions and deletions only of0’s.

Ours is the first construction of asymptotically good codes for
deletion/insertion channels. Our purpose is to present these codes and
accompanying encoding/decoding algorithms as simply as possible,
without optimization of rate or computational overhead for particular
applications or ranges of parameters.

It is not difficult to use Justesen codes to construct(d; k)-
constrained codes with constant rate correcting a small enough con-
stant fraction of insertions and deletions of0’s. Namely, associate the
Justesen codeword(�1; �2; � � � ; �l) over an alphabet of sizek�d+
1 with the (d; k)-constrained codeword10� +d10� +d � � � 10� +d.
Let k = O(1) (otherwise the constrained code cannot have constant
rate). If the original codeword has a small enough constant fraction of
errors, then a small enough constant fraction of the�i are modified,
so the Justesen code can be used to recover the original word.

Bours [4], following on Roth and Siegel [17], improved the
constants above by constructing fixed-length(d; k)-constrained codes
using the more appropriate Lee metric. In the Lee metric, the distance
between digitsi and j modulo q is

min ((j � i) mod q; (i� j) mod q)

(where it is understood that the modular representatives are in the
range0; � � � ; q � 1), as compared to1 if i 6= j in the Hamming
metric.

Some other works giving constructions, or bounds, for codes
for insertions and deletions are those of Ullman [21], Calabi and
Hartnett [5], Okuda, Tanaka, and Kasai [15], Tanaka and Kasai
[19], Tenengolts [20] (single error), Levenshtein [13], and Kløve
[11] (single error which may be either a transposition of adjacent
characters or an insertion or deletion of a0).

Along different lines, there are also essentially optimal codes for
lossy packet-based channels such as the Internet [1], [2]. Those codes
handle only deletion of complete packets (a packet is a character from
a very large alphabet, e.g., of order250, and decoding cannot rely
on order of packet arrival).

Gallager [7] and Dobrushin [6] discussed stochastic models of
insertion and deletion errors. Gallager showed how the random
convolutional coding method of Wozencraft and Reiffen [23], [16]
could be adapted to this situation. (Note that this method is not a
code but a probability distribution over codes; successful transmission
requires that the transmitter and receiver share a random seed
identifying the code to be used.) Dobrushin proved existence of a
channel capacity for a fairly broad class of memoryless stochastic
channels with insertions and deletions. A slightly different model,
allowing a restricted kind of channel memory, will be described in
Section IV; our codes provide for block coding with exponential error
probabilities, for channels in this class (subject to limits on the error
probabilities).

We emphasize that our codes allow arbitrary insertions, deletions,
and transpositions, subject only to numerical limits; the errors do not
have to be of restricted types, or distributed randomly.

II. THE CODE

Our code, like a Justesen code [9], is a two-level code. The outer
level can be given by polynomial evaluation, i.e., a Reed–Solomon
code [14] (and decoded using the Welch–Berlekamp algorithm [22],
see also [8] and [3]); or by any asymptotically good, efficiently

2554 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

encodable and decodable code. The inner level is given by a code
which we find by brute force (e.g., by a “greedy” construction). Since
we will only use this code on words of lengthlogn, its construction,
as well as encoding and decoding, will require only polynomial time.
We first describe these ingredients, and then describe the encoding
and decoding procedures of our code.

We describe two variants of our code, a “buffered” form in Section
II-D and an “unbuffered” form in Section II-E.

A. Integrality Constraints and Notation

Throughout the exposition we ignore round-off errors, assuming
when needed that a number is an integer. It is not hard to see that
this does not affect our analysis. We also assume, when needed, that
n is sufficiently large, so that, e.g.,lgn is bigger than some fixed
constant; and thatn is a power of a prime. Thus there is a finite
field on n elements, which can be constructed in time polynomial
in n, and whose arithmetic operations may be performed in time
polynomial in logn.

We use[m] to denote the set of integersf1; 2; � � � ; mg, andlg to
denote the logarithm to the base2. By an interval of a stringy we
mean a contiguous subsequence of the string,yiyi+1 � � � yj .

B. The Outer Code

The outer codeT : f0; 1gn ! (f0; 1g2 lgn)c n=lg; n outputs a
sequence of blocks inf0; 1g2 lgn (actually, the blocks will be of
length slightly smaller than2 lgn; this is not important, and one
could always pad). We sometimes think ofT in the equivalent form
T : f0; 1gn � [c0n= lgn] ! f0; 1g2 lgn. WhenT (x) is transmitted,
the order of the blocks is scrambled, and errors may occur. By an
error, we mean either a received block that is not a block ofT (x),
or a block ofT (x) that was not received. The decoder of the outer
code thus receives a set of blocks inf0; 1g2 lgn, in no particular
order. The decoder has the property that, if there are at mostn= lgn
errors, thenx can be efficiently determined. We mention two means
of accomplishing this.

1) Reed–Solomon Codes:The first method (which we will adhere
to in the rest of the correspondence) uses Reed–Solomon codes and
Welch–Berlekamp decoding. First partitionx 2 f0; 1gn into blocks
g1; � � � ; gd; each of lengthlgn, whered = n

lgn
. Regard these as the

coefficients of a degreed� 1 polynomialg over GF(n). Set

T (x; i) = i � g(i) (here� denotes concatenation),

for 1 � i � c0n= lgn:

We call these indexed Reed–Solomon codes.
Decoding relies on the following lemma, which is the essence of

the Welch–Berlekamp decoder [3], [8], [22]:

Lemma 1: Let F be a field with efficiently implementable arith-
metic operations, and assumet; d; and � are nonnegative integers
such that2t + d < �. Given � points (xi; yi) 2 F 2, there is an
algorithm which finds a degreed polynomialg such thatg(xi) = yi
for all but t values ofi, if such ag exists (in which case it is unique).
The running time of the algorithm is polynomial in�, dominated by
the time to invert a� � � matrix overF .

It follows that with c0 = 3, for example, the codeT can tolerate
a constant fraction of incorrectly received pairsi � g(i).

2) Linear-Time Codes:We can improve the running time of our
decoder, at the expense of worse rate constants, by using Spielman’s
linear-time codes [18].

In fact, we can base our work on any asymptotically good and
computationally efficient codeC: f0; 1gn ! f0; 1gc n. To do this,
we divide the output ofC into c0n= lgn blocks of lengthlgn, i.e.,

we convertC to a functionC: f0; 1gn � [c0n= lgn] ! f0; 1glgn.
Then we can setT (x; i) = i�C(x; i). It is straightforward to verify
that this satisfies the required decoding condition for a sufficiently
large constantc0.

C. Greedily Constructed Codes

We will use the following metric in this correspondence:dA, the
insertion–deletion distance, is the minimum number of insertions or
deletions (i.e., typeA errors) required to transform one string into
another. (For strings of the same length this is equivalent to the
minimum total number of deletions, or the minimum total number of
insertions, to convert the two strings into a common string [12].)

We will use two slightly different greedily constructed codesS1
(used in the buffered codes) andS2 (used in the unbuffered codes).S1
is a function fromf0; 1gt=2 ! f0; 1g2t (wheret will be �(lgn)).
We will guarantee a somewhat lower rate forS2: for some constant
c it is a function fromf0; 1gct ! f0; 1gt.

CodeS1 satisfies “condition 1:” thedA distance between any two
codewords is
(t). Furthermore, every interval (of even length) has
at least half1’s.

CodeS2 satisfies the stronger “condition 2:” for any two codewords
u 6= v, the dA distance between any two intervals inu andv, each
of length at leastt=5, is more thant=30.

There is a greedy algorithm to construct a code of type 1: pick a
codewordw1, then pick a codewordw2 that is far fromw1, then a
w3 that is far from bothw1 andw2, etc. This algorithm runs in time
2O(t). A code of type 2 can be constructed similarly, ensuring that
each sufficiently long interval is far from all intervals in previously
selected codewords.

Lemma 2: The greedy algorithm can construct codes of types 1
and 2.

Proof:
Type 1: The number of words inf0; 1gt that are withindA-

distance2d of a particular wordw in f0; 1gt is at most t
d

2
2d. To

see this, note that to go fromw to sayv 2 f0; 1gt using distance2d
entailsd deletions andd insertions. There aret

d
possible characters

in w to delete. Then there are t
t�d

ways to place the remaining
characters in proper positions inv, and2d possibilities for the inserted
characters inv.

We now choosed to be a small enough constant timest, which
makes t

d

2
2d � 2t=2.

We ensure that every interval has half1’s by inserting1’s into
every other position. That is, ifG is the code we have constructed
greedily, and if we define

N(x1x2 � � � xn) = 1x11x2 � � � 1xn

then the small code we use isS(x) = N(G(x)). Note that

dA(N(x); N(y)) � dA(x; y):

Type 2: For any intervalz of length at leastt=5, we upper-bound
the number of wordsw in f0; 1gt that possess an intervalz0 closer
than dA-distance2d to z. By multiplying our upper bound byt2,
we can fix the starting positions of the intervalsz andz0. Let D(x)
denotex with the first character deleted. Since

dA(z; w) � dA(D(z); D(w))

by deleting initial characters we may assume thatz has length exactly
t=5.

Let t0 be the length ofz0, which is within 2d of t=5. We will
fix t0 and multiply our upper bound by another factor oft. If the
dA distance fromz to z0 consists ofu insertions andd deletions,
then u + v = 2d and u � v = t=5 � t0. To bound the number of

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999 2555

possibilities forw, note that there are at mostt=5
u

ways to deleteu

characters fromz, then there are at mostt
v

ways to add a particular
set ofv characters to form the intervalz0. We still have to multiply
by the number of possible sets ofv characters; instead we multiply
by the number of ways to fill in characters to get to the full word
w, namely,2v+t�t = 2u+t�t=5. Therefore, the desired upper bound
is the maximum of

t3
t=5

u

t0

v
2u+4t=5

over all feasible choices oft0 (which determinesu andv).
To get the best constants, we would note that increasingt0 by 2

increasesv by 1 and decreasesu by 1, which would show that
u=(t=5) should be roughly twicev=t0. Since we have not optimized
constants in this correspondence, we can get a quicker upper bound
by noting thatu � 2d; t0 � t=5 + 2d, and t=5

u
t
v

is maximized

for 5u=t = v=t0 and hence is at mostt=5+2d
d

2
. For d = t=100 this

gives the upper bound

t32(41=50+(11=25)�H(1=22))t � 2:94t

for large enought, whereH denotes the binary entropy function.

D. Buffered Code

1) Encoding: In order to encode messages inf0; 1gn against
errors of typesA andB, we begin with the (greedily constructed)
code of type 1,S1: f0; 1g2 lgn ! f0; 1g8 lgn. The minimum
insertion–deletion distance between codewords is at least� lgn for
some� > 0. Such a code can be constructed in polynomial time in
n. Encoding of codewords, and decoding up to the designed distance,
can also be performed in polynomial time.

Our codeR1: f0; 1g
n ! f0; 1gcn is defined as follows:

R1(x) = S1(T (x; 1))0
lgnS1(T (x; 2))0

lgn � � � 0lgnS1(T (x; k))

where0lgn denotes0 repeatedlgn times, andk is 3n= lgn. Note
also thatc = jR1(x)j=jxj = 27 if an outer indexed Reed–Solomon
code is used.

2) Decoding:

Theorem 1: Let eA = �=96 andeB = 1=8. Let y be the received
string. Suppose the number of errors of typeA is at mosteAn, and
the number of errors of typeB is at mosteBn= lgn. Then x is
determined byy, and can be computed in time polynomial inn.

(Note: For Hamming distance the number of errors is always
entirely defined fromx and y, but here that is not the case. What
we use is that there exists some sequence of at mosteAn errors of
typeA andeBn= lg n errors of typeB convertingx to y.)

Proof: We begin the decoding process by attempting to deter-
mine the original buffers of0’s. To this end, we search intervals of
length lgn from left to right until we first find one that contains at
most�=24 fraction of1’s. We assume this is the buffer: we mark the
left and right endpoints, and continue searching intervals of length
lg n, starting with the left endpoint of the first new interval at the
right endpoint of the presumed buffer.

We then look at all the words in between the presumed buffers, and
collect those within insertion–deletion distance� lgn of a codeword
of S1. We then obtain these close codewordsz1; � � � ; z`, and invert
S1 on eachzi. Thus we have a collectionC of blocks, and we use
the decoder for the outer code to determine the original word.

Correctness:First, an intuitive description. CallS1(T (x; i)) block
i, and the buffer after it bufferi. Note that if not too manyA errors,
and noB errors, occur in both blocki and bufferi, then bufferi will

be located approximately correctly. Thus if not too many errors occur
in blocks and buffersi�1 andi, then the buffers surrounding blocki
are determined approximately correctly, and blocki will appear close
to a codeword, and will be decoded properly.

To make this rigorous, we give precise meanings to the above
terms. By not too manyA errors in a block or buffer, we mean at
most� lgn=24 errors. By located approximately correctly, we mean
within � lgn=6 places. By determined approximately correctly, we
mean to within less than� lgn=2 errors.

Note that more than� lg n=24 errors can corrupt one block or
buffer, which can mean that two blocks are improperly decoded.
Hence, eAn errors can lead to fewer than2eAn=(� lgn=24) =
n=(2 lg n) errors in the collection of blocksC. We also must take
into account that totally new blocks and buffers can be created with
enough insertions. But such insertions are less efficient at corrupting
the code:lgn insertions are required to create a new buffer, which
is more than the� lgn=24 needed above.

Note that a transposition error affects up to two blocks or buffers.
Each block or buffer corrupted can mean that two blocks are decoded
improperly. Thus each transposition error can cause at most four
blocks to be improperly decoded. Hence the transposition errors
contribute to at most4eBn= lgn = n=(2 lgn) errors inC.

Hence fewer thann= lgn errors are made inC. Of these, say that
� introduce a pairT (x; i) = i � g(i) wherei appears only once in
the decoded list; while the remaining at mostn= lgn� � � 1 values
of i coincide with some other (possibly correct) pair. Such duplicate,
inconsistent pairs are discarded before applying Lemma 1. In the
notation of that Lemma,� � 3n= lgn � 2(n= lgn � � � 1); t = �;
andd = n= lgn. Now ��(2t+d) � 1. So by the decoding property
of the outer code, i.e., Lemma 1,x can be determined.

3) Improving the Computational Efficiency:We can improve the
efficiency of the algorithm, at some cost to the rate of the code, by
recursing. That is, we can use our code in place of the greedy code.
The decoding of the inner (now “middle”) codes will then require
only timen lgO(1) n. By recursingj times, we can reduce the time to
n(log#j n)

O(1), wherelog#j denotes the logarithm iteratedj times.
Using the outer code based on Spielman’s error-correcting code then
gives an overall running time ofn(log#j n)

O(1). In practice, it is
unlikely to be desirable to recurse more than once (i.e., to usej > 1).

E. Unbuffered Code

1) Encoding: In order to encode messages inf0; 1gn against
errors of typesA andB, we begin with a code

S2: f0; 1g
2 lgn ! f0; 1gc lgn

of type 2. As noted, such a code can be constructed in time polynomial
in n. Encoding of codewords, as well as decoding up to the designed
distance, can also be performed in polynomial time. We will take the
outer codeT to be an indexed Reed–Solomon code; by changing the
constants in the definition of the greedy code we can also base it on
Spielman’s linear-time code.

Our codeR2: f0; 1g
n ! f0; 1gcn is as follows:

R2(x) = (S2(T (x; 1)); � � � ; S2(T (x; k)))

wherek is 4n= lgn. Note also thatc = jR2(x)j=jxj = 4c1.
2) Decoding:

Theorem 2: Let R2(x) be the transmitted codeword, and lety
be the received string. ForeA = 0:01 and eB = 0:2, let there be
a sequence of at mosteAn insertions or deletions, andeBn= lg n
transpositions, transformingR2(x) to y. Thenx is determined byy,
and can be computed in time polynomial inn.

2556 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

Proof: Setb = 1=100 anda = (1=5) + (1=100) = 0:21.
We begin the decoding process by determining, for every interval

y0 of length at most(1+ b)c1 lgn, whether there is a codewordz of
S2 such thatdA(z; y0) < bc1 lgn. We call such a codewordclose
to y0.

Note that two intervals which overlap in more thanac1 lgn
characters cannot be close to different codewords. For, this would
imply that the overlap was at distance at mostbc1 lgn to some
interval of length at least(a � b)c1 lgn = (c1=5) lgn in each
codeword, and hence that those intervals were at distance at most
(2bc1) lg n from each other, which violates the distance condition
(c1=50) lg n of the codeS2.

Every codeword that is close to some interval ofy can therefore
be regarded as the sole owner of a segment ofy beginning at
most (ac1=2) lgn after the start of the interval that is close to the
codeword, and ending at least(ac1=2) lgn before the end of that
interval. Hence the segment is of length at least(1� a � b)c1 lgn;
note further that the received stringy is of length at most(c+eA)n. It
follows that the number of codewords that are close to some interval
y0 is at most

(c+ eA)n

(1� a� b)c1 lgn
=

(4c1 + eA)k

4(1� a� b)c1
:

Suppose that some sequence of at mosteAn insertions or deletions,
and eBn= lg n transpositions, transformsR2(x) to y. Then at most
fraction eB=2 codewords ofS2 are ever bisected by a transposition
boundary. Also, at most a fraction

eAn=((c1 lg n=100)(4n= lgn)) = 25eA=c1

codewords can be affected by more thanc1 lgn=100 insertions or
deletions. Hence at least(1 � (1=2)eB � 25eA=c1)k codewords of
S2 are correctly decoded.

Each decoded word yields a pair(i; g(i)). If somei occurs more
than once (which can happen only if all but one are erroneous
decodings) then all such pairs, sayh of them, are discarded; at least
h=2 of these are erroneous decodings. The remaining decoded pairs
are submitted to a decoding algorithm for the Reed–Solomon code.

The Reed–Solomon decoding algorithm is thus provided with at
most� = (4c +e)k

4(1�a�b)c
� h pairs, of which at least

1�
1

2
eB � 25eA=c1 k � h=2

derive from the message, or in other words, of which at most

t =
(4c1 + eA)k

4(1� a� b)c1
� 1�

1

2
eB � 25eA=c1 k � h=2

are erroneous. Recall that the degree of the polynomial in the indexed
Reed–Solomon code isd = n= lgn = k=4.

In order to guarantee success of the Reed–Solomon decoding
procedure we show that the hypothesis of Lemma 1,2t + d < �,
is satisfied

2t+ d � 2
(4c1 + eA)k

4(1� a� b)c1

� 1�
1

2
eB � 25eA=c1 k � h=2 + k=4:

Noting that c1 � 2 gives

2t+ d �
(4c1 + eA)k

4(1� a� b)c1
+

(8 + eA)k

8(1� a� b)

� 2 1�
1

2
eB � 25eA=2 k + h=2 + k=4

=
(4c1 + eA)k

4(1� a� b)c1
� h+

(8 + eA)k

8(1� a� b)

+ k=4� 2k(1� 1
2
eB � 25eA=2)

=�� k
7

4
� 25eA � eB �

(8 + eA)

8 � 0:78

<�� k(0:4679� 25:5eA � eB)

which, for the stated values ofeA andeB , is less than�.

III. T HE CODE IS ASYMPTOTICALLY GOOD

It has already been shown that the code has positive rate (in both
the buffered and unbuffered cases). It remains to argue that it is
optimal up to constant factors, namely, that no code of positive rate
can tolerate more thanO(n= lgn) transposition errors. We show that
(1+ o(1))n= lg n is an upper bound on the number of transpositions
that can be corrected (heren denotes the length of the codeword).
Suppose that" > 0 and that a code can correctd = n=((1� ") lgn)
transpositions. Consider any stringx 2 f0; 1gn. Parsex into d
blocks, each of length(1 � ") lgn. A sequence ofd transpositions
now suffices to rearrange these blocks in lexicographic order. The
only information retained aboutx is the frequency of occurrence of
each block, so no two codewords can share their frequency list. Since
there are less thannn = 2n lgn possible lists of frequencies,
that is an upper bound on the number of codewords.

IV. STOCHASTIC CHANNEL MODEL

In this section we propose a relatively simple model of a prob-
abilistic asynchronous channel. (We will allow only insertions and
deletions here, not block transpositions.) It appears to be a difficult
problem to analyze the capacity of such a channel even in the case that
only deletions are allowed. Since our codes are “asymptotically good”
they achieve exponentially small error probability on such stochastic
channels, provided the error rates are below certain constants. We do
not know how to code for insertion–deletion channels of arbitrary
nonzero capacity.

The Model:We restrict ourselves to discrete channels, with alpha-
bet 0; 1 (for both input and output). It is not hard to generalize the
model to larger alphabets. For a stringx, let �(x) be the random
variable which is the output of the channel on inputx. For stringy
and forr � 0, let yrn be the string consisting of the firstr characters
of y; similarly let ynr be the string consisting of the lastr characters
of y.

Let p = fpig
1
i=0 and q = fqig

1
i=1 be probability distributions

with finite first and second moments. Let(aij)0�i; j�1 be a stochastic
matrix, with aij = P (output jj input i). Let b = fbjg

1
j=0 be a

probability distribution representing a certain “background noise.”
The noise model is described by the following process. The input

x is written on cells1; � � � ; jxj of an input tape. A “read head” is
initially located at cell0 of the tape. An output tape is provided on
which a “write head” starts at cell0. In each step of the process,
variablesr and w are chosen independently,r from distributionp
andw from distributionq. The read head then shiftsr cells while the
write head shiftsw cells. In the intermediatew�1 cells of the output
tape, independently chosen characters from probability distributionb
are written. Then a characterj is selected with probability distribution

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999 2557

ai

j , wherei is the character under the read head;j is written to the
cell currently under the write head.

Observe that the casep1 = 1 corresponds to a channel with no
deletions; while theq1 = 1 case corresponds to a channel with no
insertions. When bothp1 = 1 and q1 = 1 we have a synchronous
channel. Ifp0 = 0 then there is no “stutter,” i.e., every input symbol
is represented in at most one output symbol.

Gallager [7] has discussed a different stochastic model of a
channel with insertions and deletions. In that model there are four
fixed parameterspe; pd; pi; and pc; summing to1. Each character
of the codeword is independently affected in the following way:
with probability pe the character is flipped; with probabilitypd
the character is deleted; with probabilitypi two random characters
are inserted in place of the character; and with probabilitypc the
character is conveyed correctly. This work was conducted before the
first constructions of asymptotically good codes; however, Gallager
showed that, if transmitter and receiver have a shared random
sequence, the random convolutional coding method of Wozencraft
and Reiffen [23], [16] can be employed to yield computationally
efficient sequential decoding for rates below a cutoff rateRcomp.

Dobrushin [6] studied a fairly general stochastic model; in terms of
the above description, his is obtained by requiring thatp1 = 1 (thus
the read head never skips or repeats) while allowing the outputj to
be a word (rather than character) chosen from a distributionfaijgj on
j 2 f0; 1g� which depends on the input characteri. Thus his model
is both more general than ours (in allowing an arbitrary distribution on
words depending on each input character; we allow only a distribution
on characters, though several such characters may be selected due to
stutter) and more restricted (in being memoryless, which ours is not
due to the distribution on skips and stutters). Of course, a common
generalization is obtained simply by allowingj in our definition to
range overf0; 1g� rather thanf0; 1g (in which case one can restrict
to q1 = 1). Useful error-correcting codes should perhaps be designed
with a less general model in mind, but it would be desirable to know
the existence of a channel capacity in this generality.

V. DISCUSSION

The code can be modified to also account for reversals, i.e., the
modification ofABC into ABrC, whereBr is the reverse ofB.
To do this it suffices to make the inner code resilient against such
transformations.

In general, larger alphabet sizes make things easier. For example,
an alphabet of size3 allows us to simplify our buffered codes, as
one character may be reserved for use as a buffer character, and an
(unmodified) greedily constructed code of type 1 can be used for the
inner code.

As mentioned previously, we have not optimized constants for
rate, error capacity, or computation.

ACKNOWLEDGMENT

The authors wish to thank the anonymous referees for their helpful
comments.

REFERENCES

[1] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority
encoding transmission,” in35th Annu. Symp. Foundations of Computer
Science, 1994, pp. 604–612.

[2] N. Alon, J. Edmonds, and M. Luby, “Linear time erasure codes with
nearly optimal recovery,” in36th Annu. Symp. Foundations of Computer
Science, 1995, pp. 512–519.

[3] E. R. Berlekamp, “Bounded distance+1 soft-decision Reed–Solomon
decoding,”IEEE Trans. Inform. Theory, vol. 42, pp. 704–720, May 1996.

[4] P. A. H. Bours, “Construction of fixed-length insertion/deletion correct-
ing runlength-limited code,”IEEE Trans. Inform. Theory, vol. 40, pp.
1841–1856, Nov. 1994.

[5] L. Calabi and W. E. Hartnett, “A family of codes for the correction of
substitution and synchronization errors,”IEEE Trans. Inform. Theory,
vol. IT-15, pp. 102–106, Jan. 1969.

[6] R. L. Dobrushin, “Shannon’s theorems for channels with synchroniza-
tion errors,”Probl. Inform. Transm., vol. 3, no. 4, pp. 11–26, 1967 (trans.
from Probl. Pered. Inform., vol. 3, no. 4, pp. 18–36, 1967).

[7] R. G. Gallager, “Sequential decoding for binary channels with noise
and synchronization errors,” Lincoln Lab. Group Rep. 2502, Sept.
1966; unclassified document AD266879, Armed Services Technical
Information Agency, Arlington Hall Station, Arlington VA.

[8] P. Gemmell and M. Sudan, “Highly resilient correctors for polynomials,”
Inform. Processing Lett., vol. 43, no. 4, pp. 169–174, 1992.

[9] J. Justesen, “A class of constructive, asymptotically good algebraic
codes,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 652–656, Sept.
1972.

[10] J. B. Kruskal, “An overview of sequence comparison: Time warps, string
edits, and macromolecules,”SIAM Rev., vol. 25, no. 2, pp. 201–237,
Apr. 1983.

[11] T. Kløve, “Codes correcting a single insertion/deletion of a zero or a
single peak-shift,”IEEE Trans. Inform. Theory, vol. 41, pp. 279–283,
Jan. 1995.

[12] V. I. Levenshtein, “Binary codes capable of correcting deletions, in-
sertions, and reversals,”Sov. Phys.–Dokl., vol. 10, no. 8, pp. 707–710,
Feb. 1966 (translated fromDokl. Akad. Nauk SSSR, vol. 163, no. 4, pp.
845–848, Aug. 1965).

[13] , “On perfect codes in deletion and insertion metric,”Discr. Math.
Appl., vol. 2, no. 3, pp. 241–258, 1992.

[14] F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

[15] T. Okuda, E. Tanaka, and T. Kasai, “A method for the correction of
garbled words based on the Levenshtein metric,”IEEE Trans. Comput.,
vol. C-25, no. 2, pp. 172–178, Feb. 1976.

[16] B. Reiffen, “Sequential encoding and decoding for the discrete memo-
ryless channel,” Res. Lab. Electron., MIT, Tech. Rep., vol. 374, 1960.

[17] R. M. Roth and P. H. Siegel, “Lee-metric BCH codes and their
application to constrained and partial-response channels,”IEEE Trans.
Inform. Theory, vol. 40, pp. 1083–1096, July 1994.

[18] D. Spielman, “Linear-time encodable and decodable error-correcting
codes,” in 27th Annu. ACM Symp. Theory of Computing, 1995, pp.
388–397.

[19] E. Tanaka and T. Kasai, “Synchronization and substitution error-
correcting codes for the Levenshtein metric,”IEEE Trans. Inform.
Theory, vol. IT-22, pp. 156–162, Mar. 1976.

[20] G. Tenengolts, “Nonbinary codes, correcting single deletion or inser-
tion,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 766–769, Sept. 1984.

[21] J. D. Ullman, “On the capabilities of codes to correct synchronization
errors,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 95–105, Jan. 1967.

[22] L. Welch and E. R. Berlekamp, “Error Correction of Algebraic Block
Codes,” U.S. Patent 4 633 470, Dec. 1986.

[23] J. M. Wozencraft, “Sequential decoding for reliable communications,”
Res. Lab. Electron., MIT, Tech. Rep., vol. 325, 1957.

