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Abstract

We consider the question of interactive communication, in which two remote parties perform

a computation while their communication channel is (adversarially) noisy. We extend here the

discussion into a more general and stronger class of noise, namely, we allow the channel to perform

insertions and deletions of symbols. These types of errors may bring the parties “out of sync”,

so that there is no consensus regarding the current round of the protocol.

In this more general noise model, we obtain the first interactive coding scheme that has a

constant rate and tolerates noise rates of up to 1/18−ε. To this end we develop a novel primitive

we name edit distance tree code. The edit distance tree code is designed to replace the Hamming

distance constraints in Schulman’s tree codes (STOC 93), with a stronger edit distance require-

ment. However, the straightforward generalization of tree codes to edit distance does not seem

to yield a primitive that suffices for communication in the presence of synchronization problems.

Giving the “right” definition of edit distance tree codes is a main conceptual contribution of this

work.
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1 Introduction

In the setting of interactive communication two remote parties, Alice and Bob, wish to run a

distributed protocol utilizing a noisy communication channel. The study of this problem

was initiated by the seminal work of Schulman [22, 23, 24] who showed a coding scheme

for interactive protocols in which the communication complexity of the resilient protocol is

larger than the communication of the input (noiseless) protocol by only a constant factor.

Schulman’s coding schemes tolerates random noise where each bit is flipped with a small

probability, as well as some adversarial noise where the only restriction on the noise is the

amount of bits being flipped by the adversary. Subsequently, many works considered the

question of interactive communication, obtaining coding schemes reaching optimality in terms

of their computational efficiency [13, 14, 2, 4, 3, 15], communication efficiency [19, 17, 12],

and noise resilience, both in the standard setting [7, 8, 6, 15], and in various other noise

models and settings [21, 10, 11, 16, 15, 1, 5, 9].

The recent successes in developing the theory of interactive error-correcting codes brought

the study of two-way interactive coding to nearly match what we know about good codes

against adversarial noise in the one-way setting.

So far, all works focused on either substitutions (where Eve can substitute a sent symbol

with a different symbol from the alphabet) or erasures (where Eve can substitute a sent symbol

with a ⊥). In this work we extend the question of coding for interactive communication

over noisy channels to a more general type of noise. Namely, we consider channels with

insertions and deletions (indels). In the one-way setting, this corresponds to the insertion

and deletion model, where Eve is allowed to completely remove transmitted symbols, or

inject new symbols. Note that this model is stronger than the substitution model, since a

substitution can always be implemented as a deletion followed by an insertion. Even in the

one-way regime, this model is more difficult to analyze than the model with substitution

errors. As an example, Schulman and Zuckerman [25] gave a polynomial-time encodable and

decodable codes for insertion/deletion errors. Their code can tolerate around 1
100 fraction

of insertion/deletion errors. This should be contrasted with efficient codes in the standard

noise setting, e.g., [18], tolerating about 1
4 fraction of bit flips.

The major additional challenge in dealing with indels in the interactive setting compared

to the non-interactive indel model and the interactive substitutions model, is that we can no

longer assume that Alice and Bob are synchronized: at a given time they may be at different

stages of their sides of the protocol! Indeed, if Eve deletes Alice’s transmission to Bob and

additionally injects a ‘spoofed’ reply from Bob back to Alice, then while Bob has received

no message and assumes the protocol hasn’t advanced yet, Alice has received a spoofed

reply, and proceeds to the next step of her protocol. From this point and on, unless the

insertion/deletion is detected, the parties are unsynchronized, as they run different steps of

the protocol. The challenge in dealing with this model is to design a protocol that manages

to succeed even without knowing whether the two parties are synchronized.

1.1 Modeling insertions and deletions

Some care is required when dealing with insertion and deletion noise patterns, as certain

choices make the model too strong or too weak. For example, consider the case where Alice

and Bob send each other symbols in an alternating way. Then, even if a single deletion of

a symbol is allowed the noise can cause the protocol to “hang”: Bob will be waiting for a

symbol from Alice, while Alice will be waiting for Bob’s response. Clearly, such a model is
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too strong for our purpose, and we should restrict the allowed noise patterns to preserve the

protocol’s liveliness.

There are two main paradigms for distributed protocol in which parties are not fully-

synchronized. The first is a message-driven paradigm, in which each party “sleeps” until

the arrival of a new message that triggers it into performing some computation and sending

a message to the other party. The second is clock-driven, where each party holds a clock:

each clock tick, the party wakes up, checks the incoming messages queue, performs some

computation, and sends a message to the other side. The issue here is that different parties

may have mismatching or skewed clocks. Then, instead of acting in an alternating manner,

one party may wake up several times while the other party is still asleep.

We emphasize that if the parties have matching clocks, then no insertions and deletions

are possible – channel corruption in this case has either the effect of changing one symbol to

another (as in a standard noisy channel), or causing a detectible corruption, i.e., an erasure.

Both these types of noise are substantially weaker than insertions and deletions, and were

already analyzed in previous work (e.g., [24, 8, 11, 9]).

Our noise model, which we describe shortly, makes sense for both the above paradigms:

it guarantees liveliness in a message-driven setting; for the clock-driven model, we can show

that any such settings reduces to our model, that is, any resilient protocol in our model

can be used to obtain a resilient protocol in the clock-driven setting. The skewness of the

clocks in that case, is related to the noise-resilience of the protocol in our model. See the full

version for the complete details.

In this work we assume a message-driven setting, where the parties normally speak in

alternating manner. Any corruption in our model must be a deletion which is followed by an

insertion. We name each such tampering as an edit corruption.

◮ Definition 1 (Edit Corruption). An edit-corruption is a single deletion followed by a single

insertion (whether the inserted symbol is aimed at the same or the opposite party as the

deleted message).

This gives rise to two types of attacks Eve can perform: (i) delete a symbol and replace

it with a different symbol (insert a symbol at the same direction as the deleted symbol; a

substitution attack); (ii) delete a symbol, and insert a spoofed reply from the other side

(insert a symbol at the opposite direction of the deleted symbol). The second type of

corruption has an effect of making the parties ‘out-of-sync’: one party advances one step in

the protocol, while the other does not; see Figure 1. Note that a substitution has a cost a

single corruption, i.e., it is counted as a single deletion followed by a single insertion. Also

note that although an outside viewer can split Eve’s attack into pairs of deletion-and-insertion,

the string that a certain party receives, from that party’s own view, suffers an arbitrary

pattern of insertions/deletions.

1.2 Our Results and Techniques

Tree codes with edit distance. When only a single message is to be transmitted (i.e., in

the one-way setting), codes that withstand insertions and deletions were first considered by

Levenshtein [20]. In such codes, each two codewords must be far away in their edit distance,

a notion of distance that captures the amount of insertions/deletions it takes to convert one

codeword to another. The edit distance replaces the Hamming distance, which essentially

counts the amount of bit flips required to turn one codeword to another.

A key ingredient in interactive-communication schemes is the tree code [24], a labeled

tree such that the labels on each descending path in the tree can be seen as a codeword. The
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Figure 1 An illustration of the two insertion/deletion attacks: (i) a deletion followed by an

insertion in the same direction (a substitution); (ii) a deletion followed by an insertion to the opposite

direction (an out-of-sync attack). The deleted transmission is marked with a cross, and the inserted

transmission is marked with a bold arrow. The dashed arrow denotes a possible (non-interrupted)

reply.

tree code is parametrized by a distance parameter α, and it holds that any two codewords

whose paths diverge from the same node, are at least α-apart in their Hamming distance.

Encoding a message via a tree code allows a party to eventually obtain the message sent by

the other side, as long as not too many errors have happened. This in turn allows the parties

to correct errors that previously occurred in the simulation, and revert the simulation back

into a correct state [24, 8]. In order to keep the communication overhead a constant factor

when tree code encoding is used in interactive schemes, it is required that each label of the

tree comes from an alphabet of constant size (that is, the size of the alphabet is independent

of the tree’s depth and thus independent of the length of protocol to simulate).

It is only natural to believe that we could obtain interactive-communication schemes

that withstand insertions/deletions by replacing tree codes with a stronger notion of codes,

namely, edit distance tree codes. In edit distance tree codes, each two codewords (possibly of

different lengths) which diverge at a certain point, are required to be far apart in their edit

distance rather than their Hamming distance. Yet, since the parties are not synchronized,

new difficulties arise. To give a simple example, assume Alice sends one of the two following

encodings s1 = ABCAAABBB and s2 = ABCABCAAA, and assume Bob has receives the

string ABCBBB. If Bob knew that Alice thinks she is in round 6 of the protocol, he would

decode to s2; if he knew that Alice thinks she is in round 9, he would decode to s1. Alas, he

does not know which is the case!

To mitigate situations in which not being synchronized may hurt us, we require an

even stronger property, namely, we wish that the suffixes (of arbitrary lengths) of any two

overlapping codewords will have appropriately large edit distance (see Definitions 14 and 15

for the precise condition). This stronger property guarantees that two “branches” in the tree

are far apart in their edit distance, even when they are shifted with respect to each other

due to lack of synchronization possibly caused by previous indels. We can then show that as

long as not too many indels occurred in the suffix of the received codeword, the tree-code

succeeds to recover the entire sent message. Crucial in this approach is a notion of distance

we call suffix distance (Definition 21), that measures the amount of noise in a codewords’

suffix. This generalizes a distance measure by Franklin et al. [10, 11] (see also Braverman

and Efremenko [6]) to the case where the received word may be misaligned with respect to

the sent word, due to indels.

Alas, while (Hamming distance) tree codes over a constant alphabet were shown to exist

by Schulman [24], it is not clear if such trees exist for edit distance, and if so, for which

distance parameter α, as Schulman’s proof doesn’t carry over to the edit distance case.
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Our first result (Section 3) shows the existence of edit distance tree codes, for any distance

parameter α,

◮ Theorem 2 (Informal). For any α < 1 and any d, n ∈ N there exists a d-ary edit distance

tree code of depth n over a constant-size alphabet.

As in the case of standard tree codes, finding an efficient construction for such trees

remains an important open question. Building on the techniques of Gelles, Moitra and

Sahai [13, 14] we give in the full version an efficient randomized construction of a relaxed

notion for edit-distance tree codes, we call a potent edit distance tree codes. These trees

satisfy the edit-distance guarantee almost everywhere, and are good enough to replace the

tree-code notion of Theorem 2 in most applications.

◮ Theorem 3 (Informal). For any α < 1 and any d, n ∈ N there exists a randomized

construction of a d-ary potent edit distance tree code of length n over a constant-size alphabet.

The construction is efficient and succeeds with overwhelming probability (in n).

While in the rest of the paper (namely, for our coding scheme) we assume the edit-distance

notion of Theorem 2, all our schemes work the same when the tree is replaced with a potent

one; see the full version for further details.

Interactive-communication schemes tolerating insertions/deletions. Equipped with edit

distance tree codes, we show a protocol that solves the pointer jumping problem over a

noisy channel with insertions and deletions and exhibits linear communication complexity in

the noiseless communication. Since the pointer jumping problem is complete for two-party

interactive communication, this implies a coding scheme that can simulate any protocol

over a channel that may introduce insertion/deletions. Specifically, in Sections 4 and 5 we

show that for any ε > 0 and any noiseless protocol π and inputs x, y, there is a scheme that

correctly simulates π (that is, produces the transcript π(x, y) at both parties), withstands

1/18− ε fraction of edit-corruptions, and has a linear communication complexity with respect

to the communication of the protocol π.

◮ Theorem 4. For any ε > 0, and for any binary (noiseless) protocol π with communication

CC(π), there exists a noise-resilient coding scheme with communication Oε(CC(π)) that

succeeds in simulating π as long as the adversarial edit-corruption rate is at most 1/18− ε.

Our coding scheme and analysis follows ideas by Braverman and Rao [8] and by Braverman

and Efremenko [6] – first focusing on channels with polynomial-size alphabet and then

generalizing to channels with constant-size alphabet – however, the analysis in the light of

insertions and deletions is more complicated and subtle. In particular, similar to [6], our

analysis uses the notion of suffix distance for relating the effect of the noise to the progress

of the simulation.

We note again that due to out-of-sync attacks, it is possible that the parties’ belief of the

“current” round of the protocol is different. In the worst case, while Alice reaches the end of

the coding protocol (say, round N), it is possible that Bob has only reached round (1− 2ρ)N ,

e.g., due to 2ρN deletions in his received communication (ρ is the fraction of edit-corruptions

in that instance). Therefore, if we wish to tolerate a ρ-fraction of edit-corruptions, it is

imperative that the parties output the correct answer already at round (1 − 2ρ)N . Our

coding scheme (Theorem 4) satisfies even this more strict requirement.

Finally, we show that for a family of rigid protocols, in which we require both parties

to output the correct value at round (1 − 2ρ)N , then ρ = 1/6 is an upper bound on the

admissible edit-corruption rate. Details can be found in the full version.

ICALP 2016
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◮ Theorem 5 (Informal). If both parties are required to give output at round (1− 2ρ)N , then

no coding scheme of length N can tolerate an edit-corruption rate of ρ = 1/6.

Closing the gap between the upper bound of 1/6, and the resilience 1/18 achieved by the

scheme of Theorem 4 is left for future work.

2 Preliminaries

For any finite set S, we denote by x←
U

S the case that x is uniformly distributed over S.

All logarithms are taken to base 2. We denote the set {1, 2, . . . , n} by [n]. For a set Σ we

denote Σ≤n = ∪0≤i≤nΣi, and Σ∗ = ∪i≥0Σi. Let s ∈ Σl be a string of length |s| = l. For

1 ≤ i ≤ j ≤ l, we use s[i] to denote the i-th symbol of s and s[i..j] to denote the string

s[i] ◦ s[i + 1] ◦ · · · ◦ s[j].

◮ Definition 6 (Pointer Jumping Problem). Any communication protocol of T rounds where

the parties alternately exchange bits can be reduced to the following pointer jumping

problem PJP(T ): Let T be a binary tree of depth T . Alice’s input X is a set of consistent

edges leaving vertices at even depths. Bob’s input Y is a set of consistent edges leaving

odd-level vertices. A set of edges is consistent on a specified set of vertices, if it contains

exactly one edge leaving every vertex in that specified set. Due to being consistent on all

the nodes, X ∪ Y defines a unique root-to-leaf path. The parties’ goal is to output this

unique path. Note that T alternating rounds of communication suffice to compute this path,

assuming noiseless channels.

◮ Definition 7 (Protocols). An interactive protocol π for a function f(x, y) is a distributed

algorithm that dictates for each party, at every round, the next message (symbol) to send

given the party’s input and the messages received so far. Each transmitted symbol is assumed

to be out of a fixed alphabet Σ. The protocol runs for N rounds (also called the length of

the protocol), after which the parties give output. An instance of the protocol, on inputs

x, y is said to be correct if both parties output f(x, y) at the end of the protocol.

In this work we focus on alternating protocols, where as long as there is no noise, the

protocol runs for 2N rounds in which Alice and Bob send symbols alternately. In the presence

of ρ-fraction of edit corruptions (i.e., at most 2ρN insertion/deletion errors), it is possible

that some party receives only N(1− 2ρ) symbols throughout the protocol. We say that the

protocol is correct in presence of ρ-fraction of edit corruption if both parties output f(x, y)

by round N(1− 2ρ) (according to their own round counting, which may differ from the count

of the other party).

◮ Definition 8 (String Matching). We say that τ = (τ1, τ2) is a string matching between a sent

message sm and a received message rm (denoted τ : sm→ rm), if |τ1| = |τ2|, del(τ1) = sm,

del(τ2) = rm, and τ1[i] ≈ τ2[i] for all i = 1, . . . , |τ1|. Here del is a function that deletes all

the ∗’s in the string and two characters a and b satisfy a ≈ b if a = b or one of a and b is ∗.

We assume that ∗ is a special symbol that does not appear in sm and rm.

◮ Definition 9 (Edit Distance). The edit distance of between sm ∈ Σ∗ and rm ∈ Σ∗ is

defined as ED(sm, rm) = minτ :sm→rm sc(τ1) + sc(τ2). Here sc(τ1) is the number of ∗’s in τ1.

◮ Fact 10 (Triangle Inequality). For any three strings x, y, z, ED(x, y) ≤ ED(x, z)+ED(y, z).

◮ Fact 11. For any two strings x, y, ED(x, y) = |x|+ |y| − 2 · LCS(x, y). Here LCS(x, y)

is the longest common substring of x and y.
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E
D

B
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Figure 2 An illustration of lambda structure.

◮ Lemma 12. Let x ∈ Σm be some given string, m ≥ n and |Σ| ≥ 4. For any constant

α ∈ [0, 1], Pry←
U

Σn [ED(x, y) ≤ α ·m] ≤ |Σ|−
(1−α)m

2 .

The proof of the above Lemma, along with other missing proofs, are deferred to the full

version of this work.

3 Edit-distance tree code

In this section we recall the notion of tree-codes [24] and provide a novel primitive, namely,

the edit-distance tree-code.

◮ Definition 13 (Prefix Code). A prefix code C : Σn
in
→ Σn

out
is a code such that C(x)[i]

only depends on x[1..i]. C can be also considered as a |Σin|-ary tree of depth n with symbols

written on edges of the tree using an alphabet size |Σout |. On this tree, each tree path from

the root of length l corresponds to a string x ∈ Σl
in

and the symbol written on the deepest

edge of this path corresponds to C(x)[l].

◮ Definition 14 (α-bad Lambda). We say that a prefix code C contains an α-bad lambda

if when you consider this prefix code as a tree, there exist four tree nodes A,B,D,E such

that B 6= D, B 6= E, B is D and E’s common ancestor, A is B’s ancestor or B itself, and

ED(AD, BE) ≤ α ·max(|AD|, |BE|). Here AD and BE are strings of symbols along the

tree path from A to D and the tree path from B to E. See Figure 2.

◮ Definition 15 (Edit-distance Tree Code). We say that a prefix code C: Σn
in
→ Σn

out
is a

α-edit-distance tree code if C does not contain an α-bad lambda.

Our main theorem in this section is the existence of edit-distance tree codes,

◮ Theorem 16. For any d ≥ 2, n > 0 and 0 < α < 1, there exists an α-edit-distance tree

code of depth n with alphabet size |Σin| = d and |Σout | = (176 · d)4/(1−α).

Proof. We prove this theorem by induction on n. To this end we define a slightly stronger

notion than α-bad lambda free, which we call “excellent". Intuitively, if a tree-code C is

excellent, then with a good probability, C will not cause a bad lambda in a tree-code that

contains C as a subtree. This would allow us to construct lambda-free trees of length n

building on lambda-free trees with a smaller depth as subtrees.

◮ Definition 17 (Potential Probability). For any prefix code C : Σn
in
→ Σn

out
, and any i ≥ 0,

consider C as a tree and define a new (non-regular) tree C ′ by connecting a simple path of

length i to the root of C, making the other end of this path the root of C ′. Label each edge

along the new path with a symbol from Σout chosen uniformly and independently.

The potential probability Pi(C) is defined as the probability that the new tree C ′ has a

α-bad lambda with A = the root of C ′ and B = the root of C.

ICALP 2016
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◮ Definition 18 (Excellent). For a constant c1 > 1, which we will fix shortly, we say that a

prefix code C is excellent if ∀i ≥ 0, Pi(C) · (d · c1)i < 1 and C is α-bad-lambda-free.

In the proof, we are going to construct a set called Sn which would contain only excellent

d-ary prefix codes of depth n with alphabet size dOα(1). Since excellent is a stronger notion

than α-bad lambda-free, if we can construct Sn and show that for any n > 0 it is non-empty,

then we are done. In each Sn, all codes use the same Σin and Σout . We have |Σin| = d and

|Σout | = s where the conditions we put on s thorough the following proof are given by:

s = max

{

αd

(1− α)
· (d · c1)

α

1−α + 1, d2, (
4d

c2
)

4
1−α , (c1 · d · 4)

4
1−α

}

.

Here c1 = 44, and c2 = 1
11 . Therefore, taking s ≥ (176d)4/(1−α) satisfies all the above

conditions.

Let us now inductively construct Sn. For notation convenience, let S0 = {a single node}.

For n > 0, let

S̃n =























T =

T1 T2 Td

· · ·

σ1

σ2

σd

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T1, T2, ..., Td ∈ Sn−1 and

σ1, σ2, ..., σd ∈ Σout























.

and define Sn = {C ∈ S̃n| C is excellet}. From this definition, we directly have that every

C ∈ Sn is excellent, and we are only left to show that Sn is non-empty. Actually, we are

going to prove the following claim by induction.

◮ Claim 19. For all n, |Sn|

|S̃n|
≥ c2 = 1

11 .

Base case (n = 1): Consider the following set.

S′1 = {C | C is a d-ary prefix code of depth 1 and d different codewords}

We want to show that S′1 ⊆ S1. For any C ∈ S′1, it is clear that C does not have any

α-bad lambda. Because in this depth 1 tree, one can only pick A = B to be the root,

and D, E to be some different leaves. Then ED(AD, BE) = 2 and |AD| = |BE| = 1. So

ED(AD, BE) > α ·max(|AD|, |BE|). Now let’s consider the potential probability Pi(C).

Suppose there exists an α-bad lambda in the tree after adding a path of length i. Then in

this α-bad lambda, B is the original root, AB is the path added to the root and D and E

are two different leaves of the tree. There are two cases to consider:

1. i = |AB| > α/(1−α): In this case, since |BE| = 1, (|AD|−|BE|)/|AD| = 1− 1
1+|AB| > α.

So it is not possible that ED(AD, BE) < α · |AD|. Thus Pi(C) = 0.

2. i = |AB| ≤ α/(1− α): In this case, let W be the event that one of the labels along the

path AB equals to one of the d codewords of C. Clearly, when W does not happen,

ED(AD, BE) = |AD| + |BE| > α · |AD|. It is also immediate that Pr[W ] ≤ i · d
s .

We require s > αd
(1−α) · (d · c1)

α

1−α , and get that Pi(C) · (d · c1)i ≤ Pr[W ] · (d · c1)i ≤
αd

(1−α)s · (d · c1)
α

1−α < 1.

Therefore, we have proved that all the prefix codes in S′1 are excellent and therefore in S1.

Then because s ≥ d2, we get |S1|

|S̃1|
≥
|S′

1|

|S̃1|
= s(s−1)×···×(s−d+1)

sd ≥ (1− 1/d)d > 1/11 = c2.
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Inductive step: Suppose we already know that for 1 ≤ i < n, |Si|

|S̃i|
≥ c2, and let us prove

that |Sn|

|S̃n|
≥ c2. We will use the following lemma, whose proof is quite straightforward.

◮ Lemma 20. If for all 1 ≤ i < n, |Si|

|S̃i|
≥ c2. Then for any x ∈ Σj

out
where 0 < j ≤ n and

y ∈ Σn
in

, it holds that PrC←
U

S̃n
[C(y)[1..j] = x] ≤ c1−j

2 s−j .

In order to show that |Sn|

|S̃n|
≥ c2, we can choose C randomly from S̃n, and show that

Pr[C is excellent] ≥ c2. To this end, consider the conditions of being excellent in turn:

1. Let’s first consider Pr[Pi(C) · (d · c1)i ≥ 1]. By Lemma 20 and Lemma 12, we get

EC←
U

S̃n
[Pi(C)]

≤
∑

1≤n1,n2≤n

∑

x∈Σ
n1
in

,y∈Σ
n2
in

,

x[1] 6=y[1]

Pr
z←

U

Σi

out

C←
U

S̃n

[ED(z ◦ C(x), C(y)) ≤ α ·max(i + n1, n2)]

≤
∑

1≤n1,n2≤n

dn1+n2 · c2−n1−n2
2 Pr

x←
U

Σ
n1
out

, y←
U

Σ
n2
out

, z←
U

Σi

out

[ED(z ◦ x, y) ≤ α ·max(i + n1, n2)]

≤
∑

1≤n1,n2≤n

(

d

c2

)n1+n2

s−
1−α

2 ·
n1+n2+i

2 ≤
∑

1≤n1,n2≤n

(

d

c2
· s−

1−α

4

)n1+n2

s−
(1−α)i

4

≤
∑

1≤n1,n2≤n

(

1

4

)n1+n2

(c1 · d · 4)−i ≤

∞
∑

j=2

j

4j
· (c1 · d · 4)−i =

7

36
(c1 · d · 4)−i

By Markov’s inequality, Pr[Pi(C) · (d · c1)i ≥ 1] ≤ 7
36 ·

1
4i . Then

∑∞
i=0 Pr[Pi(C) · (d ·c1)i ≥

1] ≤ 7
36

∑∞
i=0

1
4i = 7

27 < 5
11 = 1−c2

2 .

2. Now let’s consider the event that C has an α-bad lambda with A = B = root. It is easy

to see that this event is equivalent to P0(C) ≥ 1. Therefore it is covered by the previous

case.

3. Now let’s consider the event that C has an α-bad lambda with A = root and B 6= root.

By Lemma 20 and Definition 18, we have

Pr[C has an α-bad lambda with A = root, B 6= root]

≤
∑

n1≤n

dn1 · c1−n1
2 · (d · c1)−n1 ≤

∞
∑

n1=1

(
1

c1c2
)n1 =

∞
∑

n1=1

(
1

4
)n1 =

1

3
<

5

11
=

1− c2

2
.

4. Finally let’s consider the case that C has an α-bad lambda with A 6= root. It is easy to

see that this event never happens because C’s subtrees rooted at depth 1 in C are all

excellent.

Therefore by union bound, Pr[C is excellent] is at least

≥1−
∞

∑

i=0

Pr[Pi(C) · (d · c1)i ≥ 1]− Pr[C has an α-bad lambda with A = root, B 6= root]

≥1−
1− c2

2
−

1− c2

2
= c2. ◭

3.1 Decoding of edit-distance tree codes

The decoding of a codeword rm ∈ Σj
out

via an edit-distance tree-code C amounts to

finding a message whose encoding minimizes the suffix distance to rm, i.e., DEC(rm) =

arg min
m∈Σ

≤n

in

SD(rm, C(m)), where the suffix distance SD(·, ·) is defined as follows.
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◮ Definition 21 (Suffix Distance). Given any two strings sm, rm ∈ Σ∗, the suffix distance

between sm and rm is SD(sm, rm) = minτ :sm→rm max
|τ1|
i=1

sc(τ1[i..|τ1|])+sc(τ2[i..|τ2|])
|τ1|−i+1−sc(τ1[i..|τ1|])

.

The following lemma, which plays an important role in the analysis of the simulation

protocols that we present in the next sections, shows that if a message sm is encoded by

some α-edit-distance tree code and the received message rm satisfies SD(sm, rm) ≤ α
2 , then

the receiver can recover the entire sent message correctly.

◮ Lemma 22. Let C: Σn
in
→ Σn

out
be an α-edit-distance tree code, and let rm ∈ Σm

out

(m can be different from n). There exists at most one sm ∈ ∪n
i=1C(Σn

in
)[1..i] such that

SD(sm, rm) ≤ α
2 .

4 A coding scheme with a polynomial alphabet size

In this section, we show a protocol π that solves PJP(T ) in O(T ) rounds over channels with

alphabet size poly(T ), and is resilient to (a constant fraction of) insertion/deletion errors.

Since the PJP(T ) is complete for interactive communication, this implies that any binary

protocol with T rounds can be simulated in O(T ) rounds over a channel with polynomially-

large alphabet that corrupts at most a fraction 1/18 − ε of the transmissions. While this

protocol does not exhibit a constant rate, it contains all the main ideas for the constant-rate

protocol of Theorem 4, and thus we focus on this simple variant first. Then, in Section 5 we

discuss how to reduce the alphabet size and achieve a protocol with O(T ) communication

complexity with the same resilience guarantees.

Assume π has 2N alternating rounds, that is, Alice and Bob send N symbols each, assum-

ing there are no errors. We would like the protocol to resist a fraction of ρ edit-corruptions,

that is, the protocol should succeed as long as there are at most 2ρN insertion/deletion

errors. Due our assumption that the adversary never causes the protocol to “get stuck”, this

amounts to at most 2ρN deletions, where each deletion is followed by an insertion.

We assume that Alice and Bob share some fixed α-edit-distance tree code C : ΣN
in
→ ΣN

out

given by Theorem 16. We will set the values of N , α, and Σin later. Currently we only need

to know N = poly(T ).

Let us begin with a high-level outline of the protocol π. The protocol basically progresses

by sending edges in the tree T of the underlying PJP(T ), interactively constructing the

joint path (similar to [8]). To communicate an edge e, the parties encode it as a pair of

numbers (n, s), where 0 ≤ n ≤ N and s ∈ {1, 2, 3, 4}. The value n indicates the number of

some previous round in which some edge e′ was sent, and the value s determines e as the

s-grandchild of e′. That is, we always send an edge e by linking it to an edge e′ that was

previously sent, such that e′ is located two levels above in unique path leading from the root

to e. If e does not have a grandparent (e.g., it is the at the first or second level in T ), we

will set n = 0. Sometimes the parties have no edge to send, in which case they set n = N

and say that e is an empty edge. We take Σin to be all the possible encodings (n, s). As

0 ≤ n ≤ N and 1 ≤ s ≤ 4, we have |Σin| = poly(N) = poly(T ). As |Σout | is polynomial in

|Σin| (Theorem 16), we also have |Σout | = poly(N) = poly(T ).

The protocol π is described in Protocol 1. The description is for Alice side; Bob’s part is

symmetric. Here we explain more than the pseudocode on how to get E(dA). Basically dA is

a string of symbols in Σin and those symbols are in the form (n, s). E(dA) will be the set of

edges these symbols in dA represent. To get the edge each symbol (n, s) represents, we will

first find the edge sent in n-th round and get its proper grandchild according to s. If n is not

in the correct range then we consider dA as not valid.
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Protocol 1 The protocol π

Let T be given by PJP(T ). Recall that Alice’s input is X. Assume the parties share some fixed

α-edit-distance tree code C : ΣN

in → ΣN

out .

Initially we set the counter i = 0. For any leaf node v in T we initialize a counter s(v) = 0. Run the

following for N times.

1. i← i + 1.

2. Receive a symbol rA[i] from the other party. (For Alice, if i = 1, skip this step)

3. Find dA ∈ Σ∗

in which minimizes SD(dA, rA[1 . . . i]).

4. If E(dA) ∪X has a unique path from the root in T , do the following. Here E(dA) is the set of

edges indicated by dA, if dA is not a valid string of symbols, E(dA) = ∅.

a. If this path reaches a leaf node v, then s(v)← s(v) + 1.

b. Let e be the deepest edge on the the unique path from root. If e ∈ X , and e is either an edge

in the first or second level of T or e’s grandparent has been sent, set sA[i] to be encoding

of e, otherwise set sA[i] to be encoding of an empty edge.
5. If E(dA) ∪X does not have a unique path from the root in T , set sA[i] to be encoding of an

empty edge.

6. If i = N(1− 2ρ), output the leaf node v with the largest s(v).

7. Send C(sA[1 . . . i])[i] to Bob.

We now analyze Protocol 1 and prove it resists up to (1/18−ε)-fraction of edit corruptions.

Let NA and NB be the counter i of Alice and Bob respectively, when one of them reaches

the end of the protocol π. Let τA = (τ1, τ2) be the string matching between sB [1..NB ] and

rA[1..NA] that is consistent with the protocol. Let τB = (τ3, τ4) be the string matching

between sA[1..NA] and rB[1..NB]. Recall that we use sc(τ) to denote the number of ∗’s in

the string. By definition, sc(τ1) + sc(τ3) ≤ 2ρN and sc(τ2) + sc(τ4) ≤ 2ρN .

In the analysis we count the number of rounds in which Alice correctly decodes the entire

(current) set of edges sent by Bob. We call each such round a good decoding.

◮ Definition 23 (Good Decoding). When a party decodes a message, we say it is a good

decoding if the decoded messages is exactly the one sent by the other side (i.e., dA = sB [1..i]

or dB = sA[1..i], assuming the other side is at round i), and the symbol just received is not

an adversarial insertion. If a decoding is not good, we call it a bad decoding.

In the following lemma show that as long as noise is small enough, there will be many rounds

with good decodings. The proof can be found in the full version.

◮ Lemma 24. Alice has at least NA + (1 − 2
α )sc(τ2) − (1 + 2

α )sc(τ1) good decodings. Bob

has at least NB + (1− 2
α )sc(τ4)− (1 + 2

α )sc(τ3) good decodings.

After we have established that Alice and Bob will have many good decodings, we show that

this implies they will have good progress in constructing their joint path in the underlying

PJP(T ). Consider the NA + NB decodings that happen during the protocol, and sort them

in a natural order; we say that these decodings occur at “times” t = 1, 2, . . . , NA + NB . Note

that the decodings need not be alternating – Eve’s insertions and deletions may cause one

party to perform several consecutive decodings while the other party does not receive any

symbol, and performs no decoding. We also assume that for each decoding, the sending of

the next symbol happens at the same “time” as the decoding. Let eA(t) be the set of edges

Alice has sent at time t and eB(t) be the set of edges Bob has sent at time t. Let P be the

correct path of length T of PJP(T ). Define l(t) to be the length of the longest path from

ICALP 2016



61:12 Coding for Interactive Communication Correcting Insertions and Deletions

the root using edges in P ∩ (eA(t) ∪ eB(t)). Basically l(t) measures how much progress Alice

and Bob have made. Let us also define m(i) to be the first time t such that l(t) ≥ i. For

notation convenience, let m(0) = 0.

The following lemma shows that if the parties do not make progress, many bad decodings

(and thus, many errors) must have occurred. The proof can be found in the full version.

◮ Lemma 25. For i = 0, . . . , T − 1, if m(i + 1) 6= m(i) + 1, then during times m(i) +

1, . . . , m(i + 1)− 1, the following is true.

1. If i is odd, then there are no good decodings of Bob. The number of good decodings of

Alice is at most the number of bad decodings of Bob.

2. If i is even, then there are no good decodings of Alice. The number of good decodings of

Bob is at most the number of bad decodings of Alice.

Combining the above lemmas, we get the main theorem for protocols with polynomial

size alphabet.

◮ Theorem 26. For any ε > 0, the protocol π of Protocol 1 with N = ⌈ T
16ε⌉, and a (1−ε)-edit

tree code, solves PJP(T ) and is resilient to a (1/18− ε)-fraction of edit corruptions.

Proof. Set ρ = 1
18 − ε and α = 1 − ε. Let gA be the number of good decodings of Alice,

bA = NA−gA be the number of bad decodings of Alice. Similarly, let gB be the number of good

decodings of Bob, and let bB = NB − gb. Recall that sc(τ1) + sc(τ3) = sc(τ2) + sc(τ4) ≤ 2ρN ,

then by Lemma 24, we have

bA + bB ≤
2

α
(sc(τ1) + sc(τ2)) + sc(τ1)− sc(τ2) +

2

α
(sc(τ3) + sc(τ4)) + sc(τ3)− sc(τ4),

thus bA + bB ≤ 8ρN/α. Then we have,

gA = NA − bA ≥ NA −
8ρN

α
≥ (NA −N(1− 2ρ)) + N(1− 2ρ)−

8ρN

α

≥ bA + bB −
8ρN

α
− (NA −N(1− 2ρ)) + N(1− 2ρ) +

8ρN

α

> bA + bB + (NA −N(1− 2ρ)) + N(1− (1− 18ε)(1 + 2ε))

≥ bA + bB + (NA −N(1− 2ρ)) + 16εN ≥ bA + bB + (NA −N(1− 2ρ)) + T.

Similarly we have gB > bA + bB + (NB −N(1− 2ρ)) + T .

Using Lemma 25 we deduce that by time m(T ) the number of good decodings Alice may

have is bounded by T + bB. From this point and on, every good decoding at Alice’s side

adds one vote for the correct leaf, making at least gA − (T + bB) > bA + (NA −N(1− 2ρ))

votes for that node by the end of the protocol, and at least bA + 1 votes until Alice reaches

round N(1− 2ρ) when she gives her output. On the other hand, any wrong output can get

at most bA votes, thus Alice outputs the correct leaf node at round N(1− 2ρ). By a similar

reasoning, Bob also outputs the correct leaf node when he reaches round N(1− 2ρ). ◭

5 A coding scheme with a constant alphabet size

Based on the protocol in Section 4, with some modifications, we obtain a protocol that has

a constant size alphabet and a constant rate. To this end, we show how to encode each

edge using varying-length encoding over a constant size alphabet. Although substantially

more technically involved, this protocol is quite a straightforward extension of the protocol

presented above. We thus defer the detailed analysis of this protocol to the full version.
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◮ Theorem 27. For any ε > 0, there exists a simulation protocol π′ with N = ⌈ T
ε2 ⌉, and a

(1− ε)-edit distance tree code, solves PJP(T ) and is resilient to a (1/18− ε)-fraction of edit

corruptions.

Since PJP(T ) is complete for interactive communication, the above theorem proves The-

orem 4.
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