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Abstract: A sunflower is a family of sets that have the same pairwise intersections. We simplify
a recent result of Alweiss, Lovett, Wu and Zhang that gives an upper bound on the size of every
family of sets of size k that does not contain a sunflower. We show how to use the converse of
Shannon’s noiseless coding theorem to give a cleaner proof of a similar bound.
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1 Introduction

A p-sunflower is a family of p sets whose pairwise intersections are identical. How large can a family of
sets of size k be if the family does not contain a p-sunflower? Erdős and Rado [2] were the first to pose
and answer this question. They showed that any family with more than (p− 1)k · k! sets of size k must
contain a p-sunflower. This fundamental fact has many applications in mathematics and computer science
[3, 12, 4, 6, 7, 13, 11, 10, 9].

After nearly 60 years, the correct answer to this question is still not known. There is a family of (p−1)k

sets of size k that does not contain a p-sunflower, and Erdős and Rado conjectured that their lemma could be
improved to show that this is essentially the extremal example. Recently, Alweiss, Lovett, Wu and Zhang [1]
made substantial progress towards resolving the conjecture. They showed that (logk)k · (p log logk)O(k) sets
ensure the presence of a p-sunflower. Subsequently, Frankston, Kahn, Narayanan and Park [5] improved the
counting methods developed in [1] to prove a conjecture of Talagrand [15] regarding monotone set systems.

In this work, we give simpler proofs for these results. Our proofs rely on an encoding argument inspired
by a similar encoding argument used in [1, 5]. The main novelty is our use of Shannon’s noiseless coding
theorem [14, 8] to reason about the efficiency of the encoding, which turns out to avoid complications that
show up when using vanilla counting. We show:

Theorem 1. There is a universal constant α > 1 such that every family of more than (α p log(pk))k sets of
size k must contain a p-sunflower.
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Let r(p,k) denote the quantity α p log(pk). We say1 that a sequence2 of sets S1, . . . ,S` ⊂ [n] of size k is
r-spread if for every non-empty set Z ⊂ [n], the number of elements of the sequence that contain Z is at most
rk−|Z|. We prove that for an appropriate choice of α , the following lemma holds:

Lemma 2. If a sequence of more than r(p,k)k sets of size k is r(p,k)-spread, then the sequence must contain
p disjoint sets.

As far as we know, it is possible that Lemma 2 holds even when r(p,k) = O(p). Such a strengthening of
Lemma 2 would imply the sunflower conjecture of Erdős and Rado. Lemma 2 easily implies Theorem 1: we
proceed by induction on k. When k = 1, the theorem holds, since the family contains p distinct sets of size 1.
For k > 1, if the sets are not r-spread, then there is a non-empty set Z such that more than rk−|Z| of the sets
contain Z. By induction, and since r(p,k) can only increase with k, the family of sets contains a p-sunflower.
Otherwise, if the sets are r-spread, Lemma 2 guarantees the presence of a p-sunflower.

It only remains to prove Lemma 2. In fact, we prove something much stronger: a small random set is
very likely to contain some set of an r-spread family of sets.

2 Random sets and r-spread families

To prove Lemma 2, we need to understand the extent to which a small random set W ⊆ [n] contains some set
of a large family of sets of size k. To that end, it is convenient to use the following definition:

Definition 3. Given S1, . . . ,S` ⊆ [n], for x ∈ [`] and W ⊆ [n], let χ(x,W ) be equal to Sy \W, where y ∈ [`]
is chosen to minimize |Sy \W | among all choices with Sy ⊆ Sx∪W. If there are multiple choices for y that
minimize |Sy \W |, let y be the smallest one.

Observe that the definition makes sense even if S1, . . . ,S` are not all distinct. When U ⊆W , we have
|χ(x,U)| ≥ |χ(x,W )|. We always have χ(x,W )⊆ Sx. Moreover, χ(x,W ) = /0 if and only if there is an index
y for which Sy ⊆W . Our main technical lemma shows that if a long sequence of sets is r-spread, then
|χ(X ,W )| is likely to be small for a random X and a random small set W :

Lemma 4. There is a universal constant β > 1 such that the following holds. Let 0 < γ,ε < 1/2. If
r = r(k,γ,ε) = β · (1/γ) · log(k/ε), and S1, . . . ,S` ⊆ [n] is an r-spread sequence of at least rk sets of size k,
X ∈ [`] is uniformly random, and W ⊆ [n] is a uniformly random set of size at least γn independent of X, then
E [|χ(X ,W )|]< ε. In particular, PrW [∃y,Sy ⊆W ]> 1− ε .

This lemma is of independent interest — it is relevant to several applications in theoretical computer
science [13, 9]. Before we prove Lemma 4, let us see how to use it to prove Lemma 2.

Proof of Lemma 2. Set γ = 1/(2p), ε = 1/p. Then r = r(k,γ,ε) = r(p,k). Let W1, . . . ,Wp be a uniformly
random partition of [n] into sets of size at least bn/pc. So, each set Wi is of size at least bn/pc ≥ γn. By
symmetry and linearity of expectation, we can apply Lemma 4 to conclude that

E
X ,W1,...,Wp

[|χ(X ,W1)|+ · · ·+ |χ(X ,Wp)|] = E
X ,W1

[|χ(X ,W1)|]+ · · ·+ E
X ,Wp

[|χ(X ,Wp)|]< ε p = 1.

1A similar concept was first used by Talagrand [15].
2Here we state the results for sequences of sets because some applications require the ability to reason about sequences that may

repeat sets.
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Since |χ(X ,W1)|+· · ·+|χ(X ,Wp)| is a non-negative integer, there must be some fixed partition W1, . . . ,Wp

for which
E
X
[|χ(X ,W1)|+ · · ·+ |χ(X ,Wp)|] = 0.

This can happen only if the sequence contains p disjoint sets.

Next, we briefly describe a technical tool from information theory, before turning to prove Lemma 4.

3 Prefix-free encodings

A prefix-free encoding is a map E : [t]→{0,1}∗ into the set of all binary strings, such that if i 6= j, E(i) is
not a prefix of E( j). Another way to view such an encoding is as a map from the set [t] to the vertices of the
infinite binary tree. The encoding is prefix-free if E(i) is never an ancestor of E( j) in the tree.

Shannon [14] proved that one can always find a prefix-free encoding such that the expected length of the
encoding of a random variable X ∈ [t] exceeds the entropy of X by at most 1. Conversely, every encoding
must have average length that is at least as large as the entropy. For our purposes, we only need the converse
under the uniform distribution. The proof is short, so we include it here. All logarithms are taken base 2.

Lemma 5. Let E : [t]→{0,1}∗ be any prefix-free encoding, and `i be the length of E(i). Then (1/t) ·∑t
i=1 `i≥

log t.

Proof. We have

log t− (1/t) ·
t

∑
i=1

`i = (1/t) ·
t

∑
i=1

log(t ·2−`i)≤ log
( t

∑
i=1

2−`i
)
,

where the inequality follows from the concavity of the logarithm function. The fact that this last quantity is at
most 0 is known as Kraft’s inequality [8]. Consider picking a uniformly random binary string longer than all
the encodings. Because the encodings are prefix-free, the probability that this random string contains the
encoding of some element of [t] as a prefix is exactly ∑

t
i=t 2−`i . So, this number is at most 1, and the above

expression is at most 0.

4 Proof of Lemma 4

Removing sets from the sequence can only increase E [|χ(X ,W )|], so without loss of generality, suppose
`= drke. We shall prove that there is a constant κ > 1 such that the following holds. For each integer m with
0 ≤ m ≤ rγ/κ , if W is a uniformly random set of size at least κmn/r, then E [|χ(X ,W )|] ≤ k · (2/3)m. By
the choice of r(k,γ,ε), setting m = brγ/κc, we get that when W is a set of size at least γn, E [|χ(X ,W )|]≤
k · (2/3)bα log(k/ε)/κc < ε for α > 1 chosen large enough.

We prove that E [|χ(X ,W )|] ≤ k · (2/3)m by induction on m. When m = 0, the bound holds trivially.
When m > 0, sample W =U ∪V , where U,V are uniformly random disjoint sets, |U |= u = dκ(m−1)n/re,
and |V |= v≥ κn/r−1≥ κn/(2r). Note that we always have κ/2≤ (rv/n). Moreover, for α large enough,
the sequence being r-spread implies that we must have n/k > 6. Indeed, otherwise there would be at least
rk · (k/n)≥ rk/6 > rk−1 sets that share some common element. In particular, we must have n−u− k ≥ n/3,
a bound that we use later.
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V
!(X,U)

!(j,U) ≥|!(X,W)|A

Figure 1: In the first case, given A and V ∪χ(X ,U), the number of candidates for χ(X ,U) is at most φ(X ,V ).

It is enough to prove that for all fixed choices of U ,

E
V,X

[|χ(X ,W )|]≤ (2/3) ·E
X
[|χ(X ,U)|] .

So, fix U . If χ(x,U) is empty for any x, then we have EV,X [|χ(X ,W )|] = EX [|χ(X ,U)|] = 0, so there is
nothing to prove. Otherwise, we must have EX [|χ(X ,U)|]≥ 1, since |χ(x,U)| ≥ 1 for all x. The number of
possible pairs (V,X) is at least rk ·

(n−u
v

)
. Our bound will follow from using Lemma 5. We give a prefix-free

encoding of (V,X) below. In each step, we bound the length of the encoding in terms of |χ(X ,U)|, |χ(X ,W )|
and log

(
rk ·

(n−u
v

))
. In fact, we shall give a prefix-free encoding of (V,X) where every pair will be encoded

using

log
(

rk ·
(

n−u
v

))
+a · |χ(X ,U)|−b · |χ(X ,W )|

bits, for some a,b > 0, with a/b ≤ 2/3. Applying Lemma 5, we conclude that the expected length of the
encoding must satisfy:

log
(

rk ·
(

n−u
v

))
+a ·E

X
[|χ(X ,U)|]−b · E

X ,V
[|χ(X ,W )|]≥ log

(
rk ·

(
n−u

v

))
,

and so
E

X ,V
[|χ(X ,W )|]≤ (2/3) ·E

X
[|χ(X ,U)|] .

To describe the encoding, for each A⊆ χ(X ,U), with |A|= |χ(X ,W )|, define

τ(A,X ,V ) = {y ∈ [`] : A⊆ χ(y,U)⊆V ∪χ(X ,U), |χ(y,U)|= |χ(X ,U)|},

and for ρ a large constant to be set later, define

φ(X ,V ) = rk · (ρv/n)|χ(X ,U)| · (vr/n)−|χ(X ,W )|.

1. The first case is that for all A as above, |τ(A,X ,V )| ≤ φ(X ,V ). Then the first bit of the encoding is set
to 0, and we proceed to encode (V,X) like this:

(a) Encode |χ(X ,U)|. It suffices to use a trivial encoding of this integer: we encode it with the string
0|χ(X ,U)|1, which has length |χ(X ,U)|+1.
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(b) Encode W ∪χ(X ,U). Since U has been fixed, there are(
n−u

v

)
+ · · ·+

(
n−u

v+ |χ(X ,U)|

)
≤
(

n−u+ |χ(X ,U)|
v+ |χ(X ,U)|

)
≤
(

n−u
v

)
· (n/v)|χ(X ,U)|

choices for this set. So, the encoding has length at most

log
((n−u

v

)
· (n/v)|χ(X ,U)|

)
+1.

(c) Let j be such that χ( j,U) ⊆W ∪ χ(X ,U), and |χ( j,U)| is minimized. If there are multiple
choices for j that achieve the minimum, let j be the smallest one. X is a potential candidate for j,
so we must have |χ( j,U)| ≤ |χ(X ,U)|. Encode χ(X ,U)∩ χ( j,U). Since j is determined, this
takes at most |χ(X ,U)| bits.

(d) We have already encoded χ( j,U)∩χ(X ,U)⊆ SX . We claim that this set must have size at least
|χ(X ,W )|. Indeed, χ( j,U) = Sh \U for some set Sh of the r-spread sequence. We have

Sh \U = χ( j,U)⊆ χ(X ,U)∪W,

so
Sh ⊆ χ(X ,U)∪W ⊆ SX ∪W.

By the definition of χ(X ,W ), this implies that

|χ(X ,W )| ≤ |Sh \W |= |Sh \W ∩χ(X ,U)\W | ≤ |χ( j,U)∩χ(X ,U)|,

as claimed. Let A be the lexicographically first subset of χ( j,U)∩ χ(X ,U) of size |χ(X ,W )|.
Now, since |τ(A,X ,V )| ≤ φ(X ,V ) for all A of size |χ(X ,W )|, we can encode X using a binary
string of length at most

log(φ(X ,V ))+1 = log
(

rk · (ρv/n)|χ(X ,U)| · (vr/n)−|χ(X ,W )|
)
+1.

(e) Because X has been encoded, χ(X ,U) is also determined. Encode W ∩χ(X ,U). Together with
W ∪χ(X ,U), this determines W , and so V . This last step takes |χ(X ,U)| bits.

Combining all of the above steps, and using the fact that |χ(X ,U)| ≥ 1, and vr/n ≥ κ/2, the total
length of the encoding in this case is at most

log
(

rk ·
(

n−u
v

))
+(c+ log(ρ)) · |χ(X ,U)|− log(κ/2) · |χ(X ,W )|,

where here c is some constant.

2. In the second case, there is a set A⊆ χ(X ,U) of size |χ(X ,W )| such that |τ(A,X ,V )|> φ(X ,V ). Then
the first bit of the encoding is set to 1, and we proceed like this:

(a) Encode X . This takes at most logrk +1 bits, since `= drke.
(b) Now χ(X ,U) is determined. Encode the set A promised above. This takes at most |χ(X ,U)| bits.

5



!(X,U)

A

V

Figure 2: In the second case, given A and X , the number of candidates for V is small because V must include
an unusually large number of sets of the form χ(y,U)\χ(X ,U).

(c) Now φ(X ,V ) is determined, since A is of size |χ(X ,W )|. We claim that the previous steps have
reduced the number of candidates for V to at most

(n−u
v

)
· (6/ρ)|χ(X ,U)|. Indeed, consider the

following random experiment. Choose a set B uniformly at random from the collection of sets
satisfying A ⊆ B ⊆ χ(X ,U), and then sample V ⊆ [n] \U uniformly at random. Consider the
collection of y ∈ τ(A,X ,V ) for which B = χ(y,U)∩χ(X ,U). Define

N(A,B,X ,V ) = |{y ∈ [`] : B = χ(y,U)∩χ(X ,U),y ∈ τ(A,X ,V )}|.

We have that for the fixed value of A,X specified previously,

E
B,V

[N(A,B,X ,V )]≤ E
B

[
rk−|B| ·

( v
n−u− k

)|χ(X ,U)|−|B|
]
.

This is because the sequence of sets is r-spread, so there are at most rk−|B| sets of the form
χ(y,U) and of size |χ(X ,U)| that intersect χ(X ,U) in B. For each such set, V includes χ(y,U)\
χ(X ,U) = χ(y,U)\B with probability at most (v/(n−u−k))|χ(X ,U)|−|B|. By the choice of u, we
have n−u− k ≥ n/3. So, we continue to bound:

≤ E
B

[
rk−|B| ·

(3v
n

)|χ(X ,U)|−|B|
]
≤ rk · (3v/n)|χ(X ,U)| · (vr/n)−|χ(X ,W )|.

The last inequality holds because |B| ≥ |χ(X ,W )|. On the other hand, we have

Pr
V
[|τ(A,X ,V )|> φ(X ,V )] ·2−|χ(X ,U)| ·φ(X ,V )≤ E

B,V
[N(A,B,X ,V )] ,

since B takes each value with probability at least 2−|χ(X ,U)|. By the definition of φ(X ,V ), this last
inequality can be rewritten as

Pr
V
[|τ(A,X ,V )|> φ(X ,V )]≤ (6/ρ)|χ(X ,U)|.

So, we can encode V at a cost of

log
(

n−u
v

)
+ log(6/ρ) · |χ(X ,U)|+1.
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Thus, for some constant c′, the cost of carrying out the encoding in the second case is at most:

log
(

rk
(

n−u
v

))
+(log(1/ρ)+ c′) · |χ(X ,U)|

≤ log
(

rk
(

n−u
v

))
+(log(ρ)+ c) · |χ(X ,U)|− (2log(ρ)+ c− c′) · |χ(X ,W )|,

where the last inequality was obtained by adding (2logρ + c− c′) · (|χ(X ,U)|− |χ(X ,W )|), which is
non-negative for ρ chosen large enough.

Set ρ to be large enough so that (log(ρ)+ c)/(2logρ + c− c′) ≤ 2/3, and κ to be large enough so that
log(κ/2)≥ (2log(ρ)+ c− c′) to complete the proof.
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