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Abstract— Caching at the wireless edge is a promising
approach to dealing with massive content delivery in heteroge-
neous wireless networks, which have high demands on backhaul.
In this paper, a typical cache-enabled small cell network under
heterogeneous file and network settings is considered using max-
imum distance separable (MDS) codes for content restructuring.
Unlike those in the literature considering online settings with
the assumption of perfect user request information, we estimate
the joint user requests using the file popularity information
and aim to minimize the long-term average backhaul load for
fetching content from external storage subject to the overall cache
capacity constraint by optimizing the content placement in all
the cells jointly. Both multicast-aware caching and cooperative
caching schemes with optimal content placement are proposed.
In order to combine the advantages of multicast content delivery
and cooperative content sharing, a compound caching technique,
which is referred to as multicast-aware cooperative caching,
is then developed. For this technique, a greedy approach and a
multicast-aware in-cluster cooperative approach are proposed for
the small-scale networks and large-scale networks, respectively.
Mathematical analysis and simulation results are presented to
illustrate the advantages of MDS codes, multicast, and coopera-
tion in terms of reducing the backhaul requirements for cache-
enabled small cell networks.

Index Terms— Caching, cooperation, heterogeneous networks.

I. INTRODUCTION

THE concept of caching has recently been introduced

to the physical layer for wireless content delivery net-

works (CDNs) to reduce peak-time traffic, latency as well as
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the requirement for expensive high capacity backhaul links [1].

The main idea of caching is to pre-fetch popular content at

the network edge, either at the base stations (BSs) or/and user

terminals (UTs) to bring the content much closer to the users.

For cache enabled networks, one needs to address, e.g., where

to cache, how to cache, the corresponding transmission policy,

and so on.

Regarding the first question, caching can take place at the

BSs or UTs. By caching at the BSs, we can reduce the traffic

in backhaul and improve the energy and spectral efficiencies,

while caching at the UTs adds cooperation gain and improves

network scalability, facilitating device-to-device (D2D) links.

Also, cache content placement addresses what to cache.

As far as content updating is concerned, caching schemes can

be divided into adaptive caching and proactive caching. Adap-

tive caching, a.k.a. pull-based caching, works in a reactive

manner by storing content in the caches on demand. In this

scheme, caching decision is performed only after users have

made their requests so that online algorithms, such as the

least frequently used (LFU) and least recently used (LRU),

can be used. As a result, the cached content in each cell is

updated every time a new round of requests are made by the

users. By contrast, proactive caching is a push-based approach

which proactively estimates user demand patterns and per-

forms content placement before the users make requests. Some

popular schemes include common uniform placement, popu-

larity based placement, probabilistic placement [2], partition-

based placement [3] and other offline schemes. When caching

contents, we can either store the entire files or fragments of

the files based on file splitting to ensure diversity of the cached

contents in the case that the cache capacity is relatively limited

compared to the average file size. For this reason, network

codes, such as maximum distance separable (MDS) codes have

been utilized to construct file pieces. In optimizing content

placement, the objective is usually on one of the followings:

the hit ratio [2], latency [4], backhaul load [5], service cost,

and so on.

Recently, considerable research has been done on physical

layer caching. An information-theoretic study was first given

in [5] for a homogeneous system with a single content server

and several users served with a shared link. Subsequently in,

e.g., [6]–[13], more complex network topologies with hetero-

geneous network settings have been studied for, respectively,

nonuniform file popularity, file sizes and cache sizes, random

requests, secure delivery, interference channel, D2D networks,

and recently fog random access networks (F-RANs).

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Another hot topic for cache-enabled networks is the beam-

forming design. In [14], instantaneous beamforming and

BS activation for the cloud RAN (C-RAN) were addressed,

while [15] considered the joint design of data assignment

and beamforming for a cooperative multicell network both

assuming a given cache content placement in a short-term

time scale. In [16], beamforming and cache content placement

were jointly optimized utilizing a mixed time-scale stochastic

optimization scheme. In addition, performance analysis of

cache-enabled wireless networks has also been extensively

conducted in the literature, e.g., [17]–[20]. To summarize,

those results largely analyzed cache-enabled small-cell net-

works using stochastic geometry to model the stochastic prop-

erties of channel fading and interference. However, the results

either ignored the spatial diversity of the cached content

and disabled the coordination and cooperation aspect among

different cells [17], [18] or even ignored the file popularity

information altogether [19], [20].

Apart from the above, emerging topics in physical layer

caching also include hierarchical caching [21], mobility-aware

caching [22], multicast-aware caching, cooperative caching,

and caching architecture design in fog-RAN.

In this paper, our aim is to reduce the backhaul requirements

by considering multicast-aware content delivery and cooper-

ative caching as well as the service cost using MDS codes.

In the following, we discuss the related work, emphasizing

their many differences compared to our work.

A. Related Work

Of relevance to our work are [23]–[34] where they focused

on the optimization of content placement for cache-enabled

small-cell networks. Firstly, [23] studied the optimal caching

and user association strategy for a small cell network with a

macro cell and multiple cache-enabled small-cell BSs (SBSs)

which was similar to ours. However, multicast transmis-

sion and collaboration at the BSs were not considered with

also the limits of storing entire files and homogenous file

popularity.

By using file partitioning and network coding, storing sub-

files in the caches instead of storing entire files has been well

recognized as an effective way to improve content diversity.

The optimal uncoded and coded data allocation strategies with

the minimum expected costs were studied in [24], where only

one single file was considered ignoring the diversity of the

required file library in practice. In [25], both the analysis and

optimization were extended to the multiple files scenario with

two partition-based caching designs studied for a large scale

successive interference cancellation (SIC)-enabled wireless

network. In [26], MDS coded caching was considered with

homogeneous network settings, i.e., same file sizes, cache sizes

and file popularity for all the cells, which gave rise to identical

content placement in all cells. Any cache miss was dealt with

by separate costly unicast transmissions via the backhaul.

In addition to the studies on caching strategies using mul-

tiple unicast transmissions to serve the requests mentioned

above, multicasting transmission at BSs to serve the requests

for the same file simultaneously has been explored to support

massive content delivery over wireless networks. In [27], joint

throughput-optimal caching and scheduling algorithms were

developed to maximize the service rates with both elastic and

inelastic requests. For inelastic services, optimal mutlicasting

scheduling was discussed while unicast communication was

assumed for elastic requests. In another work [28], the authors

studied uncoded multicast-aware caching in delay tolerant

networks, with the assumption that consecutive requests for

the same file within a multicast period can be served by a

single multicast transmission. Although heterogeneous settings

were assumed, no extra challenges were brought in this case

since the discrete optimization problem was solved in a rather

heuristic and exhaustive manner with all the possible joint

user request profiles fully listed and calculated which limits

its usage in large scale networks and coded caching scenar-

ios. In our previous work [29], although coded multicast-

aware caching was proposed, the research was limited to

the partly heterogeneous settings of distinct cache and file

sizes but homogeneous file popularity and numbers of users

in all the cells. Beisdes caching design, [30], [31] offer

performance analysis towards caching and multicasting for

single-tier and multi-tier heterogenous networks (HetNets),

respectively. Although they provide some content diversity,

the assumptions made in [30] and [31] greatly limit the full

usage of this diversity. For instance, the file library for the

BSs in the same tier to cache from is actually the same

while those for BSs in different tiers are mutually exclusive.

The identical caching in the macro-tier, the random caching

design with the same probability distribution in the pico-tier

as well as the uncoded caching limitation of storing entire files

altogether lead to this issue. Another main difference is that

they focused more on multicast transmission between caches

and users while we also exploit the multicast opportunities for

delivering the uncached content.

While the works mentioned above are offline schemes with

limited cache sizes, an online cooperative caching scheme with

infinite cache capacity was presented in [32]. In this case,

the energy consumption for content updating in the caches

was considered which can be ignored in offline schemes in a

long-term time scale. Due to the fact that the previous content

placement and the current user demands were given and the

caching policies for different files were mutually independent,

the formulated problem was actually linear and therefore could

be easily solved. Subsequently in [33], the study was extended

to the joint design of caching, routing and interference man-

agement with perfect user request information.
Finally in [34], an in-network cooperative caching scheme

was proposed assuming that the cooperative SBSs were con-

nected to the same service gateway to share cached content.

It was assumed that the costs for fetching content from any of

the cooperative SBSs were identical and so did the costs for

fetching content from the content provider to the SBSs. In that

effort, a cooperative caching utility maximization problem

was decomposed into a number of sub-problems in different

network domains and addressed by a decentralized heuristic

scheme with the strong assumption of knowing the actual file

demands of each user. Furthermore, the scheme is suboptimal,

and the heterogeneity of the locations of the SBSs and file

popularity in different cells were not well addressed.
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B. Contributions

Considering the heterogeneity of cache-enabled small-cell

networks, such as distinct file popularity, file sizes, cache sizes,

coverages and locations of different SBSs, not only requires

redesign of content placement but also cache size allocation

amongst the SBSs, as mentioned in [35] and [36]. In this setup,

cache size allocation and content placement in different cells

will generally not be the same. Considering also the fact that

file sizes may be large compared to the limited cache size in

practice, files are usually split into fragments. Nevertheless,

note that all of the above-mentioned works considered whole

file caching except [26], [29], [33]. When the fragments are

randomly selected and stored in the caches without coding,

both the number of fragments in each cell and which fragments

that are stored (i.e., the degree of content duplication amongst

the cells), determine the backhaul load. As a result, it would be

very difficult for the macro base station (MBS) to deliver the

uncached content via a shared link to all the cells and unicast

content delivery is therefore commonly used between the

MBS and SBSs at the expense of high backhaul cost [23]–[27],

[32]–[34]. On the other hand, cache content overlap among

different cells would restrain cooperative caching from being

effective.

In this paper, our aim is to unleash the potential of multicast-

aware caching and cooperative caching by taking advantages

of the inherent independence amongst the MDS coded packets

for minimizing the average bakchaul rate. In summary, this

paper has made the following major contributions:

• We develop offline caching schemes optimizing the long-

term average performance of the cache-enabled network

by estimating all possible joint user requests in differ-

ent cells simultaneously without the knowledge of the

actual user requests assumed in [32]–[34]. Furthermore,

unlike [28], we classify the large number of possible

user request profiles into several types according to

their values of the associated backhual load and there-

fore reduce the computational complexity in terms of

user request uncertainty in the analysis of multicast-

aware caching. Moreover, a multicast-aware in-cluster

cooperative approach is proposed suitable for large-scale

networks.

• Unlike the homogenous settings considered in [26], [29],

and [34], the heterogeneity of the parameters that affects

the design of cache management and cooperative policy

is all considered with the coordination among different

SBSs and files. Also, cache size allocation is optimized

subject to an overall cache capacity budget rather than

uniform or an arbitrarily given heterogeneous allocation

in literature.

• Furthermore, we derive the performance gains of storing

coded packets over uncoded fragments in the caches and

quantify the advantages of multicast-aware and coopera-

tive caching over common caching schemes via mathe-

matical analysis or/and simulation results. Benefited from

the independence of the MDS coded packets, we combine

the merits of multicast-aware caching and cooperative

caching to greatly reduce the backhaul load.

Fig. 1. Cache-enabled heterogeneous small-cell networks.

II. OUR MODEL

A. Network Model

A small cell network is considered which comprises a

single MBS, and K non-overlapping small cells each con-

sisting of a single SBS and Ik users, for the kth cell. Let

K � {1, . . . , K } denote the set of SBSs which operate

in disjoint subchannels with the MBS in order to remove

the impact of interference. Besides, any interference among

neighboring SBSs is assumed eliminated by techniques such

as enhanced inter-cell interference coordination (eICIC) or/and

orthogonal multiple access [37], [38]. We assume that the

MBS has access to all files in the set F � { f1, f2, . . . , fN }

with respective file sizes s � [s1, s2, . . . , sN ] while the SBSs

have limited cache capacities that are subject to a network-

wide total cache capacity budget M . We let Mk denote the

cache capacity for SBS k, with Mk ≤
∑N

j=1 s j . SBSs can

push the cached packets to the users when requested while the

uncached parts have to be delivered to the SBSs via backhaul

from the MBS (or cooperative SBSs in the case of cooperative

caching). Note that the users located outside of any small cells

can only be served by the MBS and hence are ignored when

considering the backhaul requirements.

1) Multicast-Aware Caching: If this approach is used,

SBSs will fetch the uncached content from the MBS via

backhaul using multicast, see Fig. 1a. Based on the file pop-

ularity information, we obtain the optimal content placement

to minimize the average backhaul load for all possible user

request profiles with the overall cache capacity budget.

2) Cooperative Caching: As shown in Fig. 1b, neighboring

SBSs can be connected to each other via high-capacity links

to share their cached content in different cells collaboratively.
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In this scheme, the uncached content can be fetched from not

only the MBS via backhaul but also the cooperative SBSs via

the fronthaul links. Considering the different costs for fetching

content from the MBS and the neighboring SBSs, we adopt

the concept of user attrition (UA) cost introduced in [32] to

evaluate the performance of the cooperative caching scheme.1

Cache content placement and the policy for SBS cooperation

are to be jointly optimized to minimize the UA cost. Unless

stated otherwise, this scheme uses unicast for content delivery.

3) Multicast-Aware Cooperative Caching: In this approach,

multicast-based content delivery and content sharing amongst

neighboring SBSs are combined with the aid of MDS codes.

In contrast to conventional cooperative caching, multicasting is

applied by the MBS to deliver content to the SBSs requesting

the same file simultaneously, see Case II of Fig. 1b.

B. MDS Coding

MDS codes are employed to construct pieces of a file that

can be put back together to recover the file. They are particu-

larly suitable for our settings of multicast-aware caching and

cooperative caching in which the cached content in different

cells needs to be coordinated. Compared to the case of storing

uncoded fragments, MDS codes bring a unique benefit that the

coded packets are all independent from each other so that a

certain number of randomly drawn packets will be sufficient

to recover the file. This allows us to use only the number of

packets stored in each cell, instead of the details of the packets,

to derive the backhaul load, simplifying the analysis.

We parametrize MDS codes by (l j , n j ) such that file j is cut

into n j fragments and then coded into l j independent packets

by MDS. Any n j packets can rebuild the entire file.

Considering that the kth SBS caches mk, j coded packets of

file j , we let m j � [m1, j , m2, j , . . . , mK , j ] be the content

placement vector for file j . For multicast-aware caching,

to ensure that the uncached packets delivered from the MBS

are totally different from the ones cached in local servers, file j

should be coded into at least

l j =

K∑

k=1

mk, j

︸ ︷︷ ︸
unique packets cached in SBSs

+ n j − min
k∈{1,...,K }

mk, j

︸ ︷︷ ︸
unique packets delivered via backhual

packets.

For unicast and multicast-aware cooperative caching scenarios,

the total number of packets has to be at least

l j =

K∑

k=1

mk, j

︸ ︷︷ ︸
unique packets cached in SBSs

+ n j − min
k∈{1,...,K }

K∑

t=1

x t
k, j

︸ ︷︷ ︸
unique packets delivered via backhual

,

where x t
k, j denotes the number of packets delivered from

SBS t to SBS k to serve the requests for file j so that there

is no content overlap in both content sharing process amongst

the cooperative SBSs and content delivery phase at the MBS.

1UA cost is the overall cost for fetching content from an external storage.

C. File Popularity Profile

Note that users in different cells may have different prefer-

ences towards the files. The most popular file in one cell may

receive least attentions from another cell. It is thus better to

consider local file popularity in each cell rather than the global

popularity in the entire network which is often the case in the

literature. Without loss of generality, here we assume that the

file popularity in each cell obeys Zipf’s distribution but with

unique skewness parameter and popularity rank. According to

the Zipf’s law, the frequency for file j to be requested by each

user in cell k can then be written as [39]

pk, j =

(
1/λ

γk

k, j

)

∑N
i=1 (1/ iγk )

, ∀k, j, (1)

where γk is the skewness in cell k reflecting the concentration

of the popularity distribution and λk, j denotes the rank of the

popularity of file j in cell k. For instance, λk, j = 1 means

file j is the most popular file in cell k. Hence, the probability

of file j not being requested by the users in cell k is

αk, j = (1 − pk, j )
Ik , ∀k, j. (2)

Thus, the probability for file j being requested by at least one

of the users in cell k will be 1 − αk, j .

III. MULTICAST-AWARE CACHING

The aim is to minimize the average backhaul load for all

possible user request profiles, meaning that content placement

should be done to satisfy different requests for all the cells

simultaneously with a single multicast transmission instead of

multiple unicast transmissions to each SBS separately.

A. Problem Formulation

Different from the literature where the knowledge of the

actual requests from the cells was usually assumed, we analyze

all possible request profiles and their probabilities using the

learned file popularity. Here, the joint user request profile in

all the cells is focused rather than the user request profiles

in individual cells. We let � j denote the collection of all

the possible user request profiles and π j ∈ � j denote a

particular user request profile for file j in all cells. Given

any user request profile π j , Kπ j
is used to denote the set

of the cells where file j is required by the served users.

In case that file j is requested in all the cells except cell K ,

we have π j = [1, 1, . . . , 1, 0]1×K where 1 means that file j

is requested by users in the considered cell while 0 states

that none of the users in the cell requests the file. Therefore,

it follows that Kπ j = {1, 2, . . . , K − 1} for the mentioned π j .

The joint user request profile for all the files simultaneously

can be written as {π1, . . . ,π N }. For each file j , if there

are t (≤ K ) cells where the served users request file j ,

the corresponding file request profile π j and the cell set Kπ j

may have
(

K
t

)
possible combinations. In this way, we evaluate

that the total number of different π j and Kπ j will be as high

as 2K .

The average backhaul load is defined as the average volume

of the file packets requiring to be fetched from the MBS via
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backhaul with a single multicast transmission in terms of all

possible user request profiles. Our objective is to minimize the

average backhaul load subject to the overall cache capacity

constraint. Mathematically, that is,

min
{mk, j }

∑

{π1,...,π N }

N∑

j=1

(
1 − min

k∈Kπ j

mk, j

n j

)
s j Pr ({π1, . . . ,π N })

(3a)

s.t.

K∑

k=1

N∑

j=1

mk, j

n j

s j ≤ M, (3b)

0 ≤ mk, j ≤ n j , ∀k, j, (3c)

where Pr ({π1, . . . ,π N }) denotes the joint probability that a

certain user request profile for all the files, i.e., {π1, . . . ,π N }

appears. Since there are multiple cells, users and also requested

files, the required analysis and calculation of the joint prob-

abilities would be rather complex. To this end, the following

lemma is used to simplify the objective function in (3a).

Lemma 1: Based on the fact that the backhaul load for

a particular file j only relies on π j regardless of {π i }i �= j ,

the average backhaul rate in (3a) can be rewritten as

RMDS
multicast =

N∑

j=1

∑

π j ∈� j

(
1 − min

k∈Kπ j

mk, j

n j

)
s j Pr (π j ). (4)

where Pr (π j ) is the probability that π j appears.

Proof: See [29, Appendix A].

The following lemma exploits the relationships among the

elements in m j to express RMDS
multicast in closed form. Let rk, j be

the rank of the value of mk, j among those of all the elements

in m j . For instance, rk, j = 1 means mk, j is the smallest in m j

while rk, j = K states that mk, j is the largest.

Lemma 2: The backhaul load in (3a) can be rewritten as

RMDS
multicast =

N∑

j=1

K∑

k=1

(
1 −

mk, j

n j

)
s j (1 − αk, j )

∏

t∈Tk, j

αt, j , (5)

in which Tk, j denotes the collection of cells storing no more

packets of file j than cell k, i.e., Tk, j = {t|rt, j < rk, j }.

Proof: See Appendix A.

B. Comparison

As a comparison, in the typical unicast case, the backhaul

rate for storing uncoded fragments directly or the MDS coded

packets would have been given by

Runicast =

N∑

j=1

K∑

k=1

(
1 −

mk, j

n j

)
s j (1 − αk, j ). (6)

It can be observed in (5) and (6) that additional multipliers

0 <
∏

t∈Tk, j
αt, j ≤ 1,∀k,∀ j appear after using multicast

transmission at the MBS in the content delivery phase, and

hence bring a global gain, i.e., RMDS
multicast < Runicast [5]. On the

other hand, it is worth pointing out that storing MDS coded

packets has advantages over uncoded segments in the case of

multicast-aware caching for minimizing the average backhaul

rate. We assume that cell k stores mk, j different fragments

randomly drawn from the n j fragments equiprobably, and all

fragments except the ones stored in all the cells requesting the

particular file have to be sent from the MBS. Therefore,

Runcoded
multicast =

N∑

j=1

∑

π j ∈� j

(
1 − ρπ j

)
s j Pr (π j ), (7)

where ρπ j
denotes the probability of a certain fragment of

file j being stored in all the cells requesting the file given by

ρπ j =
∏

k∈Kπ j

( n j −1

mk, j −1

)
(

n j

mk, j

) =
∏

k∈Kπ j

mk, j

n j

. (8)

Since
mk, j

n j
≤ 1,∀k, it holds true that ρπ j

≤ mink∈Kπ j

mk, j

n j
.

Thus, we derive that RMDS
multicast ≤ RUncoded

multicast. A rigorous proof

has been provided in our previous work [39].

C. Optimization

Defining qk, j �
mk, j

n j
and using (5), (3) can be recast into

min
{qk, j }

N∑

j=1

K∑

k=1

(
1 − qk, j

)
s j (1 − αk, j )

∏

t∈Tk, j

αt, j (9a)

s.t.

K∑

k=1

N∑

j=1

qk, j s j ≤ M, (9b)

0 ≤ qk, j ≤ 1, ∀k, j. (9c)

Unfortunately, before {qk, j } are obtained, it is impossible

to know the ranks {rk, j }, or Tk, j . To tackle this, we sort

the elements of q j ,∀ j in an ascending order and define

the sorted variables as g j � [g1, j , . . . , gK , j ],∀ j . To illus-

trate the relationships between q j and g j , a new matrix

Y � [yk
t, j ]K×N×K with yk

t, j ∈ {0, 1} is defined such that

qk, j =

K∑

t=1

gt, j yk
t, j . (10)

If qk, j is the tth lowest in q j , i.e., rk, j = t , we let yk
t, j = 1

and yk
t, j

= 0,∀t �= t . Note that the ranks are assumed to be

unique integers even if there are several elements of q j equal

to each other. The characteristics of {yk
t, j } are concluded in

the following constraints (11e)–(11g). Now, (9) becomes

min
{gt, j },{yk

t, j }

N∑

j=1

K∑

t=1

(
1 − gt, j

)
s j ϕt, j (11a)

s.t.

K∑

k=1

N∑

j=1

K∑

t=1

gt, j yk
t, j s j ≤ M, (11b)

gt, j ≤ gt+1, j , ∀t < K , and ∀ j, (11c)

0 ≤ gt, j ≤ 1, ∀t, j, (11d)
K∑

t=1

yk
t, j = 1, ∀k, j, (11e)

K∑

k=1

yk
t, j = 1, ∀t, j, (11f)

yk
t, j ∈ {0, 1}, ∀t, j, k, (11g)
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where ϕt, j is the probability that 100gt, j% of file j requires

delivery from the MBS via backhaul. Define a new group of

variables {σt } satisfying qσt , j = gt, j as the indices mapping

gt, j to qσt , j . For instance, σt = 1 states that q1, j ranks the tth

in q j , i.e., q1, j = gt, j . And we can then obtain the expression

of ϕt, j given by ϕt, j = (1 − ασt , j )
∏t−1

ν=1 ασν , j based on (9a)

and the definition of g j . Utilizing (10), it holds true that

y
σt

t, j = 1. Hence, ϕt, j can be further rewritten as

ϕt, j =

[
K∑

k=1

(
1 − αk, j

)
yk

t, j

]
t−1∏

ν=1

[
K∑

k=1

(αk, j yk
ν, j )

]
, ∀t > 1

(12)

with ϕ1, j =
∑K

k=1

(
1 − αk, j

)
yk

1, j .

Due to the coupling among the variables in the constraints as

well as the objective function, (11) is a mixed integer nonlinear

program (MINLP) and is difficult to deal with. The expression

of ϕt, j also makes it too complex to be linearized. As such,

reformulation is done here to simplify the constraints.

Lemma 3: Based on the characteristics of {yk
t, j }, the overall

cache capacity constraint in (11b) can be re-expressed as∑K
t=1

∑N
j=1 gt, j s j ≤ M . Hence, (11) can be rewritten as

min
{gk, j },{yk

t, j }

N∑

j=1

K∑

t=1

(
1 − gt, j

)
s j ϕt, j (13a)

s.t.

K∑

t=1

N∑

j=1

gt, j s j ≤ M, (13b)

(11c)–(11g), (13c)

with the optimal allocated cache sizes given by

Mk =

N∑

j=1

K∑

t=1

gt, j yk
t, j s j , ∀k. (14)

Proof: According to (10), it can be easily proved that (14)

holds. Then utilizing the constraint (11f), we obtain

K∑

k=1

Mk =

K∑

k=1

N∑

j=1

K∑

t=1

gt, j yk
t, j s j ,

=

N∑

j=1

K∑

t=1

gt, j

(
K∑

k=1

yk
t, j

)
s j =

N∑

j=1

K∑

t=1

gt, j s j . (15)

Hence, we get (13b), which completes the proof.

After utilizing Lemma 3, {gt, j } and Y are now decoupled

in the constraints of (13). To proceed, we firstly fix {gt, j } and

optimize Y. The problem of interest is given by

P({gt, j }) : min
{yk

t, j }

N∑

j=1

K∑

t=1

(
1 − gt, j

)
s jϕt, j (16a)

s.t. (11e)–(11g), (16b)

with {gt, j } satisfying (11c)–(11d) and (13b). Obviously,

{yk
t, j } are independent with each other in different files in

problem (16). As a result, we can separate the problem into a

number of sub-problems with regard to different file j , e.g.,

P j ({gt, j }) : min
{yk

t, j }

K∑

t=1

(
1 − gt, j

)
ϕt, j (17a)

s.t.

K∑

t=1

yk
t, j = 1, ∀k, (17b)

K∑

k=1

yk
t, j = 1, ∀t, (17c)

yk
t, j ∈ {0, 1}, ∀t, k. (17d)

The coupling and complexity of ϕt, j makes it intractable to

find the optimal {yk
t, j } even when {gt, j} are given. To tackle

this problem, we analyze the impact of {yk
t, j } on the objective

function based on the characteristics of {gt, j} and {yk
t, j }, and

infer the relations among {yk
t, j } and the probabilities {α j }.

For illustrative purposes, we let α j � [α1, j , α2, j , . . . , αK , j ],

rearrange the elements in α j in a descending order and define

the new vector as β j � [β1, j , β2, j , . . . , βK , j ]. Let {θk} reflect

the one-to-one correspondence between the elements of β j

and α j satisfying βk, j = αθk , j ,∀k. Meanwhile, α j , β j , and

{θk} are all known. The result is given in the following lemma.

Lemma 4: The optimal probability ϕ∗
t, j would be ϕ∗

t, j =(
1 − βt, j

)∏t−1
ν=1 βν, j . Accordingly, the optimal {yk

t, j} to

problem (17) are given by

yk
t, j =

{
1, if k = θt ,

0, otherwise.
(18)

Proof: See Appendix B.

Since Lemma 4 holds true for all the files, (13) becomes

min
{gt, j }

N∑

j=1

K∑

t=1

(
1 − gt, j

)
s j

(
1 − βt, j

) t−1∏

ν=1

βν, j (19a)

s.t. (13b)–(13c), (19b)

which is convex and hence can be easily solved by well known

solvers, e.g., CVX [40]. Then substituting (18) into (14),

the optimal cache capacities in each cell can be rewritten as

Mk =

N∑

j=1

gt, j s j |θ(t)=k, ∀k, (20)

with the optimal content placement given by

qk, j = gt, j |θ(t)=k, ∀k, j. (21)

In the proposed multicast-aware caching scheme, we clas-

sify the large number of possible user request profiles into sev-

eral types according to the values of the associated backhual

load. By doing so, we reduce the computational complexity

in terms of user request uncertainty massively from O(N K ) to

O(K N) to obtain the optimal solution.

IV. COOPERATIVE CACHING

In this section, we consider that the SBSs can fetch content

from the neighboring SBSs via some high capacity links and

study the optimal cooperative caching policy among the SBSs.
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Note that the independence amongst the MDS coded packets

cached in all the cells almost surely guarantees that the shared

contents are always non-overlapping.

A. Problem Formulation

Cooperative caching consists of three phases:

(i) the content placement phase,

(ii) the content sharing phase among the SBSs, and

(iii) the content delivery phase from the MBS via backhaul.

Note that in the content delivery phase, we assume that unicast

is used by the MBS to sent uncached content to the SBSs.

Since backhual load is unable to provide sufficient insight

about the impact of cooperative content sharing on reducing

the backhual requirements, here we utilize user attrition (UA)

cost, i.e., the overall cost for fetching content from an external

storage, to evaluate the performance of the cooperative caching

schemes. To further eliminate the redundancy, we assume that

the SBSs can selectively deliver part of the packets from their

own caches to the requested SBS rather than the whole of

the cached packets. The amounts of shared content among the

cooperative SBSs are defined as X = {x t
k, j }K×N×K where

x t
k, j denotes the number of packets delivered from SBS t to

SBS k for file j . Thus, we let f t
k be the associated unit cost

when SBS k fetches unit data (e.g., per MB) from SBS t and

f M
k be the cost for delivering unit data to SBS k from MBS.

The UA costs are modeled as the products of the data loads

of the BSs and the associated unit costs [32]. Furthermore,

it is assumed that the unit costs are proportional to the square

of the minimum distances between the associated BSs with

the unit cost coefficients defined as f0 and f M
0 , respectively,

according to [24], [28], and [32]. Note that { f t
k } must satisfy

the triangle inequality, i.e., f t
k ≤ f t

l + f l
k , and the cost

for fetching content from local storage can be ignored, i.e.,

f k
k = 0,∀k. Moreover, the UA costs for fetching content from

the MBS via backhaul are usually higher than those caused

by the cooperation between the SBSs due to proximity.

Instead of focusing on the backhaul load, our objective here

is to minimize the average UA cost, i.e., the cost of fetching

content from external storage, subject to a given overall cache

capacity constraint by optimizing the cache content placement

and cooperation policy jointly. In this case, the expected

UA cost defined as CMDS
coop can be written as

CMDS
coop =

N∑

j=1

K∑

k=1

[(
1 − min

(
1,

K∑

t=1

x t
k, j

n j

))
f M
k

+

K∑

t=1

x t
k, j

n j

f t
k

]
s j (1 − αk, j ). (22)

Hence, the problem of interest is given by

min
{mk, j },{x t

k, j }
CMDS

coop (23a)

s.t.

K∑

k=1

N∑

j=1

mk, j

n j

s j ≤ M, (23b)

0 ≤ mk, j ≤ n j , ∀k, j, (23c)

0 ≤ x t
k, j ≤ mt, j , ∀k, j, t, (23d)

where the cache size allocation problem is merged into

the optimization of the content placement as mentioned in

Lemma 3. Apparently, xk
k, j = mk, j ,∀k, j holds true in (23).

B. Comparison

The significance of adopting MDS codes is to avoid content

overlap among the fragments stored in different caches, hence

reducing the average UA cost. Suppose that SBS k stores mk, j

different fragments randomly drawn among the n j fragments

and xk
t, j of the mk, j fragments are randomly selected to be

sent to SBS t . It is difficult to ensure that the fragments

from the neighboring cells are always mutually exclusive.

Thus, both the number of fragments stored in local cache

and sent to other cells and which fragments being cached and

shared contribute in deciding the backhaul rate and the average

UA cost.

Lemma 5: Given any cooperative caching policy satisfying

constraints (23b)–(23d), the UA cost in the coded scenario is

always lower than the associated cost in the uncoded scenario

defined as Cuncoded
coop , i.e., CMDS

coop ≤ Cuncoded
coop .

Proof: See Appendix C.

C. Optimization

We can tackle (23) by proving that the optimal cooper-

ative caching policy always satisfies
∑K

t=1

x t
k, j

n j
≤ 1,∀k, j .

Letting ({x̃ t
k, j }, {m̃k, j }) be the optimal solution to (23) with

at least a group of (k∗, j∗) satisfying
∑K

t=1

x̃ t
k∗ , j∗

n j
> 1,

we can always find some ({x t
k, j }, {m̃k, j }) with x t

k, j =

x̃ t
k, j ,∀ (k, j, t) �= (k∗, j∗, t) and

∑K
t=1

x̃ t
k∗ , j∗

n j
= 1 which sat-

isfy all the constraints in (23) while demanding the same cost

from backhaul but a lower cost from content sharing among

the cooperative SBSs. Consequently, the average UA cost is

given by

CMDS
coop =

N∑

j=1

K∑

k=1

[(
1 −

K∑

t=1

zt
k, j

)
f M
k +

K∑

t=1

zt
k, j f t

k

]

× s j (1 − αk, j ), (24)

where we let qk, j =
mk, j

n j
and zt

k, j =
x t

k, j

n j
. Problem (23) can

then be rewritten as

min
{qk, j },{z

t
k, j }

(24) (25a)

s.t.

K∑

k=1

N∑

j=1

qk, j s j ≤ M, (25b)

0 ≤ qk, j ≤ 1, ∀k, j, (25c)

K∑

t=1

zt
k, j ≤ 1, ∀k, j, (25d)

0 ≤ zt
k, j ≤ qt, j , ∀k, j, t, (25e)

which is linear and can easily be solved using, e.g., CVX.
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For comparison, the average UA cost in the unicast based

non-cooperative caching scenario is given by

Cunicast
noncoop =

N∑

j=1

K∑

k=1

(
1 − qk, j

)
f M
k s j (1 − αk, j ). (26)

As f t
k ≤ f M

k and zk
k, j = qk, j ,∀k, t, j , we have

CMDS
coop ≤

N∑

j=1

K∑

k=1

⎛
⎝1 −

K∑

t=1

zt
k, j +

∑

t �=k

zt
k, j

⎞
⎠

× f M
k s j (1 − αk, j ) ≤ Cunicast

noncoop. (27)

V. MULTICAST-AWARE COOPERATIVE CACHING

In this section, a compound caching policy named multicast-

aware cooperative caching is proposed to take the advan-

tages of both multicasting at the MBS and collaboration

among the SBSs. Global optimal caching scheme is proposed

for small scale networks followed by the multicast-aware

in-cluster cooperative caching scheme developed particularly

for the large scale networks.

A. Small Scale Networks

Lemma 6: In case of multicast-aware cooperative caching,

the UA cost can be written as

CMDS
mult,coop =

N∑

j=1

⎡
⎣ ∑

π j ∈� j

(
1 − min

k∈Kπ j

K∑

t=1

zt
k, j

)
max

k∈Kπ j

f M
k

×Pr (π j ) +

K∑

k=1

K∑

t=1

zt
k, j f t

k (1 − αk, j )

]
s j .

(28)

Proof: See Appendix D.

The average UA cost minimization problem is

min
{qk, j },{z

t
k, j }

CMDS
mult,coop s.t. (25b)–(25e). (29)

We recognize that similar content in different cells is preferred

for multicast-aware caching while for cooperative caching

the cached content in different cells should be mutually

exclusive. The use of MDS codes strikes a balance in the

combination. It is worth pointing out that multicast-aware

cooperative caching brings additional multicast gain in most

cases in terms of minimizing the long term average UA cost

considering the large numbers of BSs, files, and user request

profiles while unicast content delivery might only be preferred

in rare extreme cases, e.g., when only a few cells with steeply

graded unit costs require the same file. To eliminate the impact

of these special cases, a new group of binary variable can

be introduced to identify which content delivery strategy is

preferred for each user request profile in the case of small

scale networks.

Lemma 7: Given any mutlicast-aware cooperative caching

policy ({qk, j }, {z
t
k, j }) satisfying the constraints in (29), the UA

cost in the coded scenario is always much lower than that in

the uncoded case, i.e., CMDS
mult,coop ≤ Cuncoded

mult,coop.

Proof: See Appendix E.

To solve (29), we resort to a greedy algorithm by listing

all possible user request profiles for each file. Furthermore,

a number of new variables and constraints need to be added

to linearize the function min(·). That is, for any user request

profile π j , we introduce a new variable ξπ j subject to the

constraints, i.e., (0 ≤ ξπ j ≤
∑K

t=1 zt
k, j , ∀k ∈ Kπ j ), to replace

mink∈Kπ j

∑K
t=1 zt

k, j in (28). Since (29) can be linearized,

general solvers can be employed to solve it for small-scale

networks. However, in practical scenarios with dozens of BSs

and thousands of files, the greedy approach is not viable.

B. Large Scale Networks

In order to reduce the complexity in large scale networks,

we propose a multicast-aware in-cluster cooperative caching

scheme by decomposing a macro cell into a series of annular

regions {C u,∀u ∈ [1, U ]} with their radii between Ru ±


Ru (
Ru ≪ Ru). In each annulus, the neighboring SBSs

form a number of disjoint clusters defined as {Su
1 , Su

2 , . . . , Su
Lu

}

where Lu is the number of clusters in the uth annulus.

Let |Su
l | denote the number of SBSs in cluster Su

l . It is

assumed that the SBSs in the same cluster Su
l can share

content over high capacity links with a cost f u
l = f0d

u

l where

d
u

l is the average of the squares of the distances among the

cooperative SBSs. The cost for retrieving content from the

MBS is f M
u = f M

0 R2
u where Ru is the radius for the uth

annulus. The UA cost in cluster Su
l is given by

Cu
l =

N∑

j=1

⎡
⎢⎣

∑

πu
l, j ∈�u

l, j

⎛
⎝1 − min

k∈Kπu
l, j

∑

t∈Su
l

zt
k, j

⎞
⎠ f M

u Pr (π
u
l, j )

+
∑

k∈Su
l

∑

t∈Su
l \k

zt
k, j f u

l (1 − αk, j )

⎤
⎦ s j . (30)

Therefore, this scheme solves

min
{qk, j },{z

k
t, j }

∑

u

∑

l

Cu
l (31a)

s.t.
∑

t∈Su
l

zt
k, j ≤ 1, ∀k ∈ S

u
l ,∀ j, ∀l, ∀u, (31b)

0 ≤ zt
k, j ≤ qt, j , ∀t, k ∈ S

u
l , ∀ j, ∀l, ∀u, (31c)

0 ≤ qk, j ≤ 1, ∀k ∈ S
u
l , ∀ j, ∀l, ∀u, (31d)∑

u

∑

l

∑

j

∑

k∈Su
l

qk, j s j ≤ M. (31e)

For the sake of mathematical tractability, we decompose the

problem into a number of sub-problems each minimizing the

UA cost for a cluster. In this case, we let qk, j = qu
l, j ,∀k ∈

Su
l ,∀ j, l, u and the sub-problem for cluster Su

l is given by

P({qu
l, j }) : min

{zk
t, j }

Cu
l (32a)

s.t.
∑

t∈Su
l

zt
k, j ≤ 1, ∀k ∈ S

u
l , ∀ j, (32b)

0 ≤ zt
k, j ≤ qu

l, j , ∀t, k ∈ S
u
l , ∀ j. (32c)

Because the cost for fetching content from local cache can be

ignored, it holds true that zk
k, j = qu

l, j ,∀k ∈ Su
l . For any given
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cache composition satisfying the constraints (31b)–(31e),

we find it important to understand the volume of content that

is needed to be fetched from the MBS via backhaul. Let Du
l =∑N

j=1

∑
k∈Su

l
qu

l, j s j (1 − αk, j ). Given cache composition,

Du
l is always constant and hence can be ignored. The objective

function can then be further reformulated into

C̃u
l = Cu

l + Du
l =

N∑

j=1

⎡
⎢⎣

∑

πu
l, j ∈�u

l, j

⎛
⎝1 − min

k∈Kπu
l, j

λk, j

⎞
⎠

× f M
u Pr (π

u
l, j ) +

∑

k∈Su
l

λk, j f u
l (1 − αk, j )

⎤
⎦ s j . (33)

where λk, j =
∑

t∈Su
l

zt
k, j denotes the percentage of file j

accessible to SBS k within the cluster and is subject to

0 ≤ λk, j ≤ 1, ∀k ∈ S
u
l , ∀ j, (34)

qu
l, j ≤ λk, j ≤ |Su

l |qu
l, j , ∀t, k ∈ S

u
l , ∀ j. (35)

Note that with the assumption of homogeneous content place-

ment in the SBSs in the same cluster, this gives the overall

percentage of a certain file j SBS k gets access to, i.e., λk, j .

In the following, we focus on obtaining the optimal values

of {λk, j }. Similar to the multicast-aware caching scenario,

the objective function can be rewritten as

C̃u
l =

N∑

j=1

∑

k∈Su
l

⎡
⎣(1 − λk, j

)
f M
u (1 − αk, j )

∏

t∈Tk, j

αt, j

+λk, j f u
l (1 − αk, j )

⎤
⎦ s j , (36)

where Tk, j is the set of cells satisfying Tk, j = {t|rt, j <

rk, j } as in Lemma 5. In this case, we manage to obtain

the actual relation amongst λk, j ,∀k ∈ Su
l in the following

lemma.

Lemma 8: Given any homogeneous cache decomposition

in cluster Su
l , it holds true that the optimal percentages for

file j accessible to the SBSs within the cluster either at

local cache or from the cooperative SBSs are always the

same regardless of the distinct probabilities for file j being

requested by users in different cells, i.e., λk, j = λt, j ,∀k,

t ∈ Su
l .

Proof: See Appendix F.

According to Lemma 8, we let λk, j = λu
l, j ,∀k ∈ Su

l . The

associated UA cost in (30) can be rewritten as

Cu
l =

∑

j

(
1 − λu

l, j

)
f M
u ωu

l, j s j +
∑

j=1

∑

k∈Su
l

(
λk, j − qu

l, j

)

× f u
l (1 − αk, j )s j , (37)

where ωu
l, j is the probability for file j being requested by

any of the users served by the SBSs in the cluster Su
l

given by

ωu
l, j = 1 −

∏

k∈Su
l

αk, j , ∀ j, l, u. (38)

Therefore, (31) can then be recast into

min
{qu

l, j },{λ
u
l, j }

∑

u

∑

l

Cu
l (39a)

s.t. 0 ≤ λu
l, j ≤ 1, ∀ j, ∀l, ∀u, (39b)

qu
l, j ≤ λu

l, j ≤ |Su
l |qu

l, j , ∀ j, ∀l, ∀u. (39c)

0 ≤ qu
l, j ≤ 1, ∀ j, ∀l, ∀u, (39d)

∑

u

∑

l

∑

j

qu
l, j s j ≤ M. (39e)

The problem is now linear with smaller sets of variables and

constraints and can be solved by well-known solvers.

VI. SIMULATION RESULTS

Here, we evaluate the performances of the proposed coded

caching schemes in terms of the average backhaul load as

well as the UA cost via computer simulations. A typical

small cell network with K = 10 cells and N = 100 files

is considered for the evaluation of multicast-aware caching

scheme and the overall cooperative caching schemes while a

large scale network with K = 28, N = 1000 is considered for

in-cluster cooperative caching schemes. The MBS is located at

the center of the macro cell with radius R = 400km while the

SBSs are randomly deployed uniformly within the cell without

coverage overlapping. To show clearly the capabilities for the

SBSs to accommodate the files, the overall cache capacity

budget is presented as the average cache size for each SBS

scaled by the overall file size given by ρ = M/K/
∑

j s j .

Unless otherwise specified, we set ρ = 0.25 for multicast-

aware caching and in-cluster caching schemes while ρ = 0.05

is assumed for overall cooperative caching schemes to ensure

the participation of backhual in content delivery. The file

sizes are randomly chosen uniformly within [0, 500]MB. The

skewness parameters {γk} are selected randomly within [0, 2]

while the popularity ranks of the files in each cell are generated

randomly. Also, the number of users in each cell is set to be

ranged within [0, 10], respectively. For cooperative caching,

the neighboring SBSs are linked when the distances between

them are less than a given threshold. Here, we consider that

two SBSs can share content in their caches when the cost for

retrieving content from the other SBS is lower than that of

fetching content from the MBS. The unit cost coefficients for

the two routes for fetching content from external storage are

set as f M
0 = 2 and f0 = 1.

Below describes all the considered schemes.

• Unicast-Based Caching (Non-Cooperative Caching):

This is the unicast-based non-cooperative caching scheme

with optimal cache management in [26].

• Multicast-Aware Caching (Uniform): This scheme per-

forms multicast-aware caching with uniform cache size

allocation and content placement.

• Multicast-Aware Caching (Popularity): This is same as

above except with popularity based content placement.

• Multicast-Aware Caching: This refers to our proposed

multicast-aware caching scheme with optimal cache con-

tent placement.

• Multicast-Aware Caching (Low Bound): This refers to

the method with optimal cache size allocation and content
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Fig. 2. The average backhaul rate of the proposed multicast-aware caching scheme versus the unicast based caching scheme and the multicast-aware caching
schemes.

placement of the linear relaxed multicast aware uncoded

caching problem in [28]. Notice that this is practically

impossible and only serves as a lower bound.

• Cooperative Caching: This corresponds to our proposed

unicast-based cooperative caching scheme with optimal

cache management and cooperation policy.

• Multicast-Aware Cooperative Caching (Uniform):

This is the multicast-aware cooperative caching scheme

that uses uniform cache size allocation and content

placement.

• Multicast-Aware Cooperative Caching (Popular-

ity): Same as above except with popularity content

placement.

• Multicast-Aware Cooperative Caching: This refers

to our proposed multicast-aware cooperative caching

with optimal cache management and cooperation

policy.

• In-Cluster Cooperative Caching: This scheme is similar

to cooperative caching except that cooperation is enabled

among the SBSs in the same clusters.

• Multicast-Aware In-Cluster Cooperative Caching:

This scheme is similar to multicast-aware cooperative

caching except that multicasting and cooperation are

enabled among the SBSs in the same clusters.

1) Multicast-Aware Caching: Results in Fig. 2 are provided

for the proposed multicast-aware caching scheme, with differ-

ent content placements, and compared with the uniform based

caching scheme. Moreover, the impacts of different parameters

and file profile are investigated. As can be seen in Fig. 2a,

the increase of overall cache size budget leads to a decrease

in backhaul rates in all the cases. Also, the proposed multicast-

aware caching scheme with optimal content placement, which

reaches the low bound of the multicast aware uncoded caching

scheme in [28] using linear relaxation and optimal cache

management at much lower commuting complexity, shows

apparent advantages over the unicast based scheme as expected

while the multicast-aware caching schemes with uniform and

popularity based content placement show worse performances

due to the naive cache management, confirming the signifi-

cance of multicast transmission in content delivery as well as

the centralized cache management in heterogeneous small cell

networks. Similar results can be observed in Fig. 2b against the

skewness parameter of the Zipf’s distribution, with γ = γk,∀k

and distinct popularity ranks for the files in different cells.

The impact of the number of BSs on the backhaul rate is

shown in Fig. 2c where the gain improves in denser networks.

Again, the multicast-aware scheme outperforms other caching

schemes.

2) Cooperative Caching (Unicast and Multicast): Results

in Fig. 3 compare the performance of the proposed cooperative

caching schemes with that of the non-cooperative scheme in

terms of the average UA cost. As can be observed, the pro-

posed multicast-aware cooperative caching scheme shows the

best performances followed by the unicast based cooperative

caching scheme while the non-cooperative caching scheme

yields the worst performance in all the cases. In addition,

the multicast-aware cooperative caching schemes using com-

mon content placement demand higher UA costs compared

with the proposed optimal multicast-aware caching scheme as

expected. As we see in Fig. 3a, the UA costs decrease with

the overall cache size in all cases. Apparently, the utility of

cooperation in caching and multicast-aware caching reduce the

average UA cost in the network dramatically. For compari-

son, we also present the results of multicast-aware in-cluster

cooperative caching scheme with the maximum cluster size,

i.e., the maximum number of SBSs in the clusters defined as η,

equal to 2 and 3, respectively. Though the in-cluster caching

scheme causes certain performance loss compared with the

overall cooperative caching schemes, it largely reduces the

computational complexity which makes it suitable for large-

scale networks where overall cooperative caching schemes

are unviable. Moreover, we can see in the figure that the

performance gap can be narrowed by increasing the maximum

cluster size η. Fig. 3b presents the cache size allocation among

the SBSs using different caching schemes when ρ = 0.05.

Results show that the optimal cache sizes for different cells

are always heterogeneous as opposed to the assumption of

uniform cache size allocation in many caching networks.

Similar conclusions on the impacts of the skewness and the

number of users to the non-cooperative case mentioned above

can be drawn from Figs. 3c and 3d. Next, Figs. 3e and 3f

investigate the impacts of the number of files and the cost

coefficient f M
0 . As we can see in Fig. 3e, the UA cost

reduction of the proposed multicast-aware cooperative caching

scheme decreases with the number of files when ρ = 0.05 and

s j = 250MB,∀ j to unicast based cooperative scheme. Finally,

the impact of the ratio between the unit cost coefficients is

studied in Fig. 3f where f0 = 1 but f M
0 varies. Apparently,

the UA cost of the non-cooperative caching scheme is propor-

tional to f M
0 while the cooperative schemes have much better
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Fig. 3. The average UA cost of the proposed cooperative caching schemes versus the non-cooperative scheme.

Fig. 4. The average UA cost of the proposed multicast-aware in-cluster cooperative caching scheme versus in-cluster cooperative caching scheme and
non-cooperative caching scheme.

tolerance towards the increase of f M
0 for fetching content via

backhaul.

3) Multicast-Aware and in-Cluster Cooperative Caching:

Now, a large-scale small cell network with K = 28 cells and

N = 1000 files is considered where the greedy algorithm

for multicast-aware cooperative caching scenario is no longer

efficient due to high computational complexity and hence

in-cluster cooperative caching schemes are considered. Here

we assume typical grid deployment of the SBSs as depicted

in Fig. 4a. The MBS is located at the center of the macro

cell with radius R = 400km and the distance between

any two of the neighboring SBSs is fixed at d = R/3.

The SBSs are divided into 4 annuli based on the distances

and then the neighboring SBSs in each annulus are allocated

into a number of disjoint clusters where the SBSs in the same

color form a cluster. Unless stated otherwise, same parameters

as before are used.

Results for the multicast-aware in-cluster caching scheme

are provided in Fig. 4. We see that the multicast-aware in-

cluster cooperative caching scheme achieves the best UA cost

performance followed by the in-cluster cooperative caching

scheme while the non-cooperative caching scheme gives the

highest UA cost. Compared with that in small scale networks,

the UA cost reduction becomes more obvious. The reason may
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be that the network topologies are different and denser which

gives rise to larger number of clusters and the average cluster

size than those in the previous scenarios.

VII. CONCLUSIONS

In this paper, we considered the design of content caching

and sharing for cache-enabled heterogeneous small cell net-

works using MDS codes under heterogeneous file and net-

work settings. We first presented two coded caching schemes,

dubbed as the multicast-aware caching and the cooperative

caching schemes, for minimizing the long-term average back-

haul load or the UA cost subject to the overall cache capacity

constraint. In both cases, we have obtained the optimal content

placement by reformulating the original problems into convex

ones. A compound caching scheme, referred to as multicast-

aware cooperative caching, was then proposed exploiting the

independence of MDS coded packets to further reduce the

backhaul requirements. In this case, a greedy algorithm can be

used for small scale networks while for large scale networks a

multicast-aware in-cluster cooperative caching algorithm was

developed. The advantages of storing coded packets over the

uncoded fragments in all the scenarios as well as the benefits of

utilizing multicast-aware caching and/or cooperative caching

over common caching schemes have been analyzed.

APPENDIX A

Firstly, we divide the possible user request profiles for each

file, e.g., π j into K +1 types defined as {π0
j ,π

1
j ,π

2
j , . . . ,π

K
j }

according to the different values of the associated back-

haul load (in percentage) for file j , i.e., {0, 1 −
m1, j

n j
, 1 −

m2, j

n j
, . . . , 1 −

mK , j

n j
}, respectively. Note that π0

j states that

file j is not requested by users in any of the cells, and hence

backhaul is no longer needed in this case. If cell k stores

the least number of packets of file j among all the cells

requesting file j , i.e., mint∈Kπ j

mt, j

n j
=

mk, j

n j
, then the associated

user request profile π k
j will imply that file j is requested

by cell k and that there will not be any cell t satisfying

rt, j < rk, j . Considering the definition of Tk, j , we obtain that

Pr (π
k
j ) = (1 − αk, j )

∏
t∈Tk, j

αt, j . Summing up all types of

user request profiles {πk
j } for all files, the average backhaul

rate can be written as (5) which ends the proof of the lemma.

APPENDIX B

Here pairwise comparison is used to tackle the problem

caused by the uncertain relation of {αϑν , j }. Firstly, we utilize

a simple example to help better clarify this lemma.

Example 1: Let K = 3. Then it follows that α j =

[α1, j , α2, j , α3, j ]. Now, assume that for any given j , the only

three nonzero elements of {yt
k, j } are given by y

θ1

1, j = 1, y
θ2

2, j =

1, y
θ3

3, j = 1. Then we let ϕt, j =
(
1 − αθt , j

)∏t−1
ν=1(αθν , j ),∀t

using (12). As such, the objective function can be rewritten as

RMDS
multicast =

(
1 − g1, j

) (
1 − αθ1, j

)
+
(
1 − g2, j

) (
1 − αθ2, j

)

× αθ1, j +
(
1 − g3, j

) (
1 − αθ3, j

)
αθ1, jαθ2, j . (40)

Now we prove that the optimal {yt
k, j } must ensure that αθ1, j ≥

αθ2, j ≥ αθ3, j by contradiction. Assume αθ2, j < αθ3, j and

calculate RMDS
multicast using (40). Then we exchange the values

of αθ2, j and αθ3, j and recalculate the objective function. The

difference between the former and the later objective function

can be given by


RMDS
multicast =

(
g3, j − g2, j

)
αθ1, j

(
αθ3, j − αθ2, j

)
. (41)

Considering g2, j ≤ g3, j and αθ2, j < αθ3, j , we prove that


RMDS
multicast ≥ 0. That is to say, for any αθ2, j < αθ3, j , we can

always obtain a smaller or at least equal objective function by

exchanging αθ2, j and αθ3, j . Hence, αθ2, j ≥ αθ3, j is essential to

minimize the backhaul load. In the same way, we can prove

that αθ1, j ≥ αθ2, j . Consequently, αθ1, j ≥ αθ2, j ≥ αθ3, j is

proved. The same conclusion can easily be extended to the K

cell scenario which indicates that αθ1, j ≥ αθ2, j ≥ · · · αθK , j .

The rigorous mathematical proof is presented below.

We let φ
j
ν ,∀ν = 2, 3, . . . , K be the summation of the items

in RMDS
multicast that involves αϑν−1, j and αϑν , j , given by

φ j
ν =

ν∑

k=ν−1

(
1 − gk, j

)
(1 − αϑk , j )

k−1∏

t=1

αϑt , j s j . (42)

Since αϑt , j , t = 1, 2, . . . , ν − 2 are interchangeable in φ
j
ν ,

the relation among them will not affect the value of φ
j
ν as

well as the relation between αϑν−1, j and αϑν , j . Consequently,

we consider the derivatives of αϑν−1, j and αϑν , j in φ
j
ν as

follows

∂φ
j
ν

∂αϑν−1, j

=
(
gν−1, j − 1 +

(
1 − gν, j

)
(1 − αϑν , j )

) ν−2∏

t=1

αϑt , j s j ,

(43)

∂φ
j
ν

∂αϑν , j

= −
(
1 − gν, j

) ν−1∏

t=1

αϑt , j s j . (44)

Let 

j
ν =

∂φ
j
ν

∂αϑν , j
−

∂φ
j
ν

∂αϑν−1, j
, and we obtain that


 j
ν =

N∑

j=1

(
1 − gν, j

) (
αϑν , j − αϑν−1, j

) ν−2∏

t=1

αϑt , j s j

+ (gν, j − gν−1, j )

ν−2∏

t=1

αϑt , j s j . (45)

Because 

j
ν = 0 indicates that αϑν−1, j and αϑν , j are inter-

changeable, here we focus on the case when 

j
ν �= 0.

If 

j
ν > 0, it follows that the derivative of αϑν , j in φ

j
ν

is higher than that of αϑν−1, j , which is to say, the weight

for αϑν , j in terms of the weighted summation φ
j
ν is higher.

Hence, we should let αϑν , j ≤ αϑν−1, j in order to minimize the

objective function RMDS
multicast. On the contrary, if 


j
ν < 0, then

it holds true that αϑν , j ≥ αϑν−1, j . Consequently, assuming

that 

j
ν < 0, we obtain αϑν , j ≥ αϑν−1, j and hence the

right side of (45) is always non-negative since gν, j ≤ 1 and

gν−1, j ≤ gν, j , which conflicts with the assumption. Hence,

it holds true that 

j
ν ≥ 0 and αϑν , j ≤ αϑν−1, j and the lemma

is then proved.

Based on the definition of β j and the conclusion drawn

above, we derive that β j = [αθ1, j , αθ2, j , . . . , αθK , j ]. As a
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consequence, the optimal ϕ∗
t, j can be written as ϕ∗

t, j =(
1 − βt, j

)∏t−1
ν=1 βν, j . The corresponding values of {yt

k, j } can

easily be calculated as given in (18).

APPENDIX C

Given some cooperative caching policy ({x t
k, j }, {mk, j }),

the costs for fetching content from neighboring cells are the

same in the coded and uncoded caching scenarios. Therefore,

the difference in the backhaul cost shows up most clearly

in the UA costs. When uncoded fragments are stored, all

the fragments except the ones that are either stored in local

cache or fetched from the neighboring cells are needed from

the MBS via backhual to each cell requesting the particular

file. Considering the possible content overlap amongst those

fragments, the number of unique fragments for file j available

at cell k ∈ Kπ j
would always be less than or equal to∑

t x t
k, j for a certain user request profile π j which leads to a

higher backhaul rate than that in the MDS coded case. If the

fragments are assumed to be randomly selected to be stored in

the cells and then sent to the neighboring cells equiprobably,

the probability of each fragment of file j needing to be sent

to cell k via backhaul, i.e., not being stored locally or sent to

the particular cell k from other SBSs, would be given by

ρ̂k, j =

K∏

t=1

⎛
⎜⎝

(
n j −1
mt, j

)
(

n j

mt, j

) +

( n j −1

mt, j −1

)
(

n j

mt, j

)

(mt, j −1

x t
k, j

)

(mt, j

x t
k, j

)

⎞
⎟⎠ =

K∏

t=1

(
1 −

x t
k, j

n j

)
.

(46)

In this case, the average UA cost can be written as

Cuncoded
coop =

N∑

j=1

K∑

k=1

[
ρ̂k, j f M

k +

K∑

t=1

x t
k, j

n j

f t
k

]
s j (1 − αk, j ).

(47)

Compared with the UA cost in (27), if we can prove that

K∏

t=1

(
1 −

x t
k, j

n j

)
≥ 1 − min

(
1,

K∑

t=1

x t
k, j

n j

)
, ∀k, j, (48)

then it holds true that CMDS
coop ≤ Cuncoded

coop . Hence, here we focus

on the proof of the result (48). As can be observed, when
∑K

t=1

x t
k, j

n j
≥ 1, (48) is always true. When

∑K
t=1

x t
k, j

n j
< 1,

the right hand side of (48) equals to

(
1 −

∑K
t=1

x t
k, j

n j

)
. In this

case, we prove (48) using mathematical induction.

To be brief, we mathematically reformulate the problem into

a general problem, which reads

K∏

t=1

(1 − χt ) ≥ 1 −

K∑

t=1

χt , (49)

where χt ∈ [0, 1]. Obviously, when K = 1 or 2, the statement

is always true as expected. Now assuming that (49) holds for

K = κ , we hence have

κ∏

t=1

(1 − χt ) ≥ 1 −

κ∑

t=1

χt . (50)

Then it follows that

κ+1∏

t=1

(1 − χt ) =

κ∏

t=1

(1 − χt ) −

κ∏

t=1

(1 − χt ) χκ+1

≥

(
1 −

κ∑

t=1

χt

)
− χκ+1, (51)

due to the fact that 0 ≤
∏κ

t=1 (1 − χt ) ≤ 1 as well as the

inequality (50). Now we are able to conclude that the statement

is true for all available K via induction. Then going back to

the original problem and letting χt =
x t

k, j

n j
for any given k,

we have proved the statement

K∏

t=1

(
1 −

x t
k, j

n j

)
≥ 1 −

K∑

t=1

x t
k, j

n j

, ∀k, j. (52)

Based on this analysis, CMDS
coop ≤ Cuncoded

coop is then proved.

APPENDIX D

Considering multicast-aware cooperative caching, the UA

cost can be written as

CMul
coop =

N∑

j=1

∑

π j ∈� j

[(
1 − min

k∈Kπ j

K∑

t=1

zt
k, j

)
max

k∈Kπ j

f M
k

+
∑

k∈Kπ j

K∑

t=1

zt
k, j f t

k

⎤
⎥⎦ Pr (π j )s j . (53)

As we can see, the first item denotes the backhaul cost while

the second item presents the cost for content sharing among

the cooperative SBSs. For each given user request profile

for a particular file π j , the cost for fetching content from

the cooperative SBSs at cell k appears only when file j is

requested by the users in cell k which means that π j (k) = 1

regardless of the individual user request profiles in other cells.

It is easy to prove Pr (π j |π j (k)=1) = 1 − αk, j , and so (28).

APPENDIX E

If ({x t
k, j }, {mk, j }) is given, then the costs for fetching

content from neighboring cells will be the same in the coded

and uncoded caching scenarios. As a result, the comparison

is focused on the backhaul costs in the two scenarios. When

uncoded fragments are stored, all the fragments except for

the ones that can be fetched at all of the cells requesting the

file either from local cache or from the neighboring cells are

needed to be sent from the MBS via multicast transmission.

Assuming that the fragments are randomly selected to be

stored in the cells and then sent to the neighboring cells

equiprobably, the probability of each fragment of file j

available at all of the cells requesting the file either from local

cache or from the neighboring cells would be given by

ρ̃π j
=
∏

k∈Kπ j

(1 − ρ̂k, j ), (54)

where ρ̂k, j is the probability of each fragment of file j not

being stored locally or sent to the particular cell k from other
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SBSs given by (46) in Appendix A. Similar to the multicast-

aware case, the average UA cost can be written as

Cuncoded
mult,coop =

N∑

j=1

⎡
⎣ ∑

π j ∈� j

(
1 − ρ̃π j

)
max

k∈Kπ j

f M
k Pr (π j )

+

K∑

k=1

K∑

t=1

zt
k, j f t

k (1 − αk, j )

]
s j . (55)

According to (46) and (52), we obtain

ρ̃π j
≤
∏

k∈Kπ j

(

K∑

t=1

x t
k, j

n j

). (56)

As 0 ≤
∑K

t=1

x t
k, j

n j
≤ 1,∀k ∈ Kπ j

, it holds true that

ρ̃π j
≤ mink∈Kπ j

∑K
t=1 zt

k, j . Compared with the average UA

cost in (28), we derive that CMDS
mult,coop ≤ Cuncoded

mult,coop.

APPENDIX F

To proceed, we sort λ j = {λk, j , k ∈ Su
l } in an ascending

order and define the sorted vector as ψ j with ψk, j = λϑk , j

and ψk, j ≤ ψk+1, j ,∀k ∈ Su
l \ |Su

l |. For instance, if ϑ1 = k,

it means that λk, j equals to ψ1, j and is therefore the lowest.

On the contrary, if ϑ|Su
l | = k, it means that λk, j equals to

ψ|Su
l |, j and is hence the highest. Consequently, the objective

function in (36) can be rewritten as

C̃u
l =

N∑

j=1

∑

k∈Su
l

[
(
1 − ψk, j

)
f M
u (1 − αϑk , j )

k−1∏

ν=1

αϑν , j

+ψk, j f u
l (1 − αϑk , j )

]
s j . (57)

The reformulated problem can then be written as

min
{ψk, j }

C̃u
l (58a)

s.t. ψk, j ≤ ψk+1, j , ∀k ∈ S
u
l \ |Su

l |, ∀ j, (58b)

0 ≤ ψk, j ≤ 1, ∀k ∈ S
u
l , ∀ j, (58c)

qu
l, j ≤ ψk, j ≤ |Su

l |qu
l, j , ∀k ∈ S

u
l , ∀ j. (58d)

Apparently, ψk, j ,∀k ∈ Su
l are treated similarly in the con-

straints (58c)-(58d) regardless of the values of {ϑk}. Given

any {ϑk}, we want to find the actual relation of the optimal

ψk, j ,∀k ∈ Su
l to minimize the objective function in (57).

Furthermore, the objective function and constraints are inde-

pendent towards of different files in (58), and hence the UA

cost minimization problem for each cluster can be further

decomposed into N sub-problems each minimizing the asso-

ciated cost for a particular file defined as C̃u
l, j ,∀ j . Thus,

we consider the derivatives of {ψk, j } in C̃u
l, j given by

∂C̃u
l, j

∂ψk, j

=

(
Qu

l −

k−1∏

ν=1

αϑν , j

)
f M
u (1 − αϑk , j )s j ,∀k ∈ S

u
l \ 1,

(59)

∂C̃u
l, j

∂ψ1, j

= (Qu
l − 1) f M

u (1 − αϑk , j )s j , (60)

where Qu
l = f u

l / f M
u denotes the ratio between the costs of

fetching content via backhaul and from the cluster. Since 0 <

Qu
l < 1, it holds true that

∂C̃u
l, j

∂ψ1, j
< 0. For any ψk, j ,∀k ∈ Su

l \1

satisfying the constraints, C̃u
l, j reaches its lowest when we let

ψ1, j = ψ2, j since a larger ψ1, j contributes to a lower C̃u
l, j .

In the same way, it can be proved that the relation between

ψk, j and ψk+1, j is subject to the value of
(

Qu
l −

∏k−1
ν=1 αϑν , j

)
.

Note that
∏k−1

ν=1 αϑν , j always decreases with the increase of k

which indicates that if
∏k−1

ν=1 αϑν , j ≤ Qu
l , we always have∏t−1

ν=1 αϑν , j < Qu
l ,∀t > k. Hence, we discuss about the

relation among {ψk, j } in two kinds of conditions. In the first

case, we assume that Qu
l ≤

∏|Su
l |−1

ν=1 αϑν , j , and it is easy to

prove that ψ1, j = ψ2, j = · · · = ψ|Su
l |, j by iteratively utilizing

the similar trick for proving ψ1, j = ψ2, j . Otherwise, when

Qu
l ≥

k−1∏

ν=1

αϑν , j =

{
< 0, k ∈ [1, . . . , t],

≥ 0, k ∈ [t + 1, . . . , |Su
l |],

(61)

it is still possible to prove that ψ1, j = ψ2, j = · · · = ψt+1, j

by fixing ψt+1, j . While for k ∈ [t + 1, . . . , |Su
l |] when C̃u

l, j

decreases with the decline of ψk, j , we let ψt+1, j = ψt+2, j =

· · · = ψ|Su
l |, j to get the lowest cost C̃u

l, j for any given ψt+1, j

using (58b). It is then proved that ψ1, j = ψ2, j = · · · =

ψ|Su
l |, j . As a result, we derive that λk, j = λt, j ,∀k, t ∈ Su

l .
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