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Coding of focused plenoptic contents by
displacement intra prediction

Yun Li, Mårten Sjöström, Member, IEEE, Roger Olsson, Member, IEEE, and Ulf Jennehag

Abstract—A light field is commonly described by a two-
plane representation with four dimensions. Refocused three-
dimensional contents can be rendered from light field images.
A method for capturing these images is by using cameras with
microlens arrays. A dense sampling of the light field results
in large amounts of redundant data. Therefore, an efficient
compression is vital for a practical use of these data. In this
paper, we propose a displacement intra prediction scheme with
a maximum of two hypotheses for the compression of plenoptic
contents from focused plenoptic cameras. The proposed scheme
is further implemented into HEVC. The work is aiming at coding
plenoptic captured contents efficiently without knowing underly-
ing camera geometries. In addition, the theoretical analysis of the
displacement intra prediction for plenoptic images is explained;
the relationship between the compressed captured images and
their rendered quality is also analyzed. Evaluation results show
that plenoptic contents can be efficiently compressed by the
proposed scheme. Bit rate reduction up to 60 percent over HEVC
is obtained for plenoptic images, and more than 30 percent is
achieved for the tested video sequences.

Index Terms—Plenoptic images, Plenoptic videos, light field,
HEVC, compression.

I. INTRODUCTION

A light field represents the intensity and the direction of the

outgoing radiance from a scene and can be sub-sampled by

capturing the scene with plenoptic cameras. Arbitrary views

and views at different focused planes can be generated by

combining the pixels from the captured microlens images, also

called Elementary Images (EI). However, a dense sampling of

the light field results in highly correlated EIs. Conventional

intra prediction in HEVC is inefficient for exploiting this

correlation [1] [2]. The question is how much the compression

efficiency can be achieved by using spatial displacement intra

prediction with more than one hypothesis (reference signal)

for the coding of these plenoptic contents.

The plenoptic function I = P (x, y, z, θ, φ, λ, t) [3] has

seven dimensions and captures the intensities I of light rays

at any of the viewing positions x, y, z, directions θ, φ, wave-

lengths λ, and time t. For a static scene and to represent

the color in RGB, the plenoptic function is reduced to five

dimensions without λ and t. The parameter of wavelengths is

removed due to the integration over wavelengths for the color

intensity I = [IR, IG, IB ]
T . Further assuming regions are free

of occluders, the plenoptic function can be simplified into four

dimensions as a light field [4] [5], which is represented by a

two-plane representation. The four dimensions, (p, q, r, t), lo-

cate the coordinates of a light passing through from one plane

(p, q) to another (r, t). A conventional camera averages the

intensities of radiances described by the higher dimensional

plenoptic function into the two-dimensional image sensor of

the camera. A light field capturing is, however, a sampling

of the light field in its four dimensions, because acquisition

of a full light field is practically infeasible. There are four

techniques commonly used for capturing a light field image:

with camera arrays [6], with a moving camera [7], with coded

apertures [8], and with microlens arrays in a camera. From

the capturing with microlens arrays, two different capturing

approaches are further derived: standard plenoptic capturing

and plenoptic 2.0. Cameras with plenoptic 2.0 techniques are

also referred to as focused plenoptic cameras. For clarity, in

the context of this paper, we refer to cameras with microlenses

as plenoptic cameras.

The first plenoptic camera was introduced by Gabriel Lipp-

mann in 1908 [9]. But the commercially available plenoptic

camera was firstly produced by Lytro, Inc., founded by Ng

et al. [10] [11] in 2006. The Lytro camera captures the

distribution of light rays as described by the light field. This

capability is achieved by putting a microlens array in front of

the image sensor. Because the focal plane of the microlens

is on the image sensor, only angular information is captured

in each EI. This camera set-up is the standard plenoptic

capturing system, which results in a low spatial resolution

of rendered views. To overcome this drawback and trade-

off the spatial resolution with the angular resolution, focused

plenoptic cameras [12] have been devised. In images captured

by focused plenoptic cameras, each EI is essentially a small

cropped multi-view image from a specific viewing angle. The

focused plenoptic cameras are described in detail in section

III.

We define plenoptic images as the images captured by

plenoptic cameras. A plenoptic image [13] with rectangular

EIs from focused plenoptic cameras is shown in Fig. 1.

Fig. 1. Images from focused plenoptic cameras [13].
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A. Motivation

Multi-view rendering and refocusing from plenoptic con-

tents only involve re-sampling of the captured dataset. The

rendering is also fairly simple compared to traditional photo-

realistic graphic rendering techniques that require scene ge-

ometry and surface shading models [14]. There are numerous

applications benefited from light field rendering techniques,

ranging from medical applications to 3D videos and computer

games, etc.

The EIs in a plenoptic image resemble multi-view video

contents, but, with a small image size. The total amount of

pixels in each direction of an EI are usually in the mag-

nitude of tens of pixels to hundreds of pixels [15] [12]. A

straightforward approach to encode these images would be to

apply standard image or video encoders, e.g., JPEG and H.264,

on the captured images. However, the redundancy between

EIs is not exploited by these encoders. Alternatively, multi-

view encoders, such as MV-HEVC [2], can be applied on EIs

for decorrelation. But, it is problematic to separate each EI

from the plenoptic images if the geometries of the camera are

unknown. The geometries, e.g., modulation images, are related

to the camera settings when the image is captured [15]. The

modulation images are obtained during camera calibration,

depending on the focus of the main lens, the focal length of

the main lens, and the opening of the camera aperture. The

calibration process leads to different images captured by the

same camera can have different geometries.

Even if the geometrical problem is overcome and the EIs

can be separated from the plenoptic images, another problem

arises: how to arrange them into a two-dimensional grid of

image and feed them into multi-view encoders. This is because

the arrangement of EI changes with the camera, EI is fairly

small, and there are usually hundreds by hundreds of EIs in

a plenoptic image. It is possible to rearrange the EIs into

other formats, e.g., to rendered views. However, to produce

a good rendered view, additional information is required [12]

[16], e.g., disparity maps between EIs. In the case of video

sequences, disparity maps have to be estimated for every

frames.

As mentioned above, the difficulties of coding separated

EIs motivate us to devise a general coding scheme that can

1) be applied to plenoptic images and videos from all focused

plenoptic cameras without knowing camera geometries and 2)

decorrelate EIs in the compression.

B. Proposed method

In this paper, we introduce a three-dimensional displace-

ment intra and inter prediction scheme for the coding of

plenoptic images and videos. The scheme is implemented into

HEVC. The prediction is able to perform both in the spatial

domain (x, y) and the temporal domain (previous and future)

with a maximum of two hypotheses.

The novelties of this paper are 1) we develop a multi-

hypothesis prediction scheme for the coding of plenoptic

contents; 2) the scheme is integrated into HEVC framework;

3) the displacement intra prediction is explained theoretically

with the proposed plenoptic signal model; 4) the coding

performance is analyzed empirically for plenoptic contents

with different input image properties; 5) we also investigate

the efficiency of the Test Zone (TZ) search [17] compared

to the full search for the proposed scheme; 6) the impacts

of coding in the captured image to the rendering quality are

theoretically analyzed and visually inspected.

The overall aim of the work is to improve the compression

efficiency for light field contents. The work is limited to the

compression of plenoptic images and videos from focused

plenoptic cameras, and the maximum number of hypotheses

for the proposed coding scheme is limited to two. The goal

is to investigate the rate-distortion ratio objectively for the

proposed method and to relate the PSNR of compressed

plenoptic images to the visual quality of rendered views.

C. Outline

The sequence of the paper is organized as follows. Section

II describes previous work, and the focused plenoptic camera

is presented in Section III. We illustrate the displacement

intra prediction with multi-hypothesis for plenoptics in Section

IV, the coding block and the intra prediction in HEVC in

Section V, and the proposed methods in Section VI. Test

arrangements and evaluation criteria are presented in Section

VII, and Section VIII shows the results and analysis. Section

IX concludes this paper.

II. PREVIOUS WORK

Previous works on light field compression can be catego-

rized into three different groups [18]: vector quantization, pro-

gressive coding and predictive coding. The vector quantization
approach [4] exploits data redundancies by representing an

entire vector space with a subset of vectors. In progressive
coding, Discrete Wavelet Transform (DWT) is commonly used

in light field compression for a finer granularity of progressive

scalability [14] [18] [19]. A typical example is the disparity-

compensated lifting and shape adaptation scheme [14] that

employs a Shape Adaptive Discrete Wavelet Transform (SA-

DWT) to better preserve object boundaries. 4-D wavelets [20]

have also been applied to 4-D light field contents. An early

work in predictive coding is presented in [21], which arranges

light field contents into a grid of images. An image is predicted

with different modes from a few intra-coded images within

the grid. This work is further improved by using homography

[22]. In addition, there are also other approaches that do not

distinctively lie in a group mentioned above for the coding

of light field contents. Principle Component Analysis (PCA)

was utilized in [23] [24]. Paper [25] presents an approach that

separates objects in ray space and applies wavelets to code

each part separately. The model-based approach that represents

objects by voxels and uses geometries for prediction has been

investigated in [20]. The performance of distributed video

coding for light field contents was analyzed in [26] [27]. An

approach based on compressive sensing [28] has recently been

proposed to capture and encode light field images.

In order to apply the above approaches for an efficient

coding of plenoptic images, EIs must be separated from the
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plenoptic image. To avoid the separation process, the Self-

Similarity (SS) mode [1] has then been introduced into HEVC

for the coding of plenoptic images [29] [1] and videos [30].

The SS mode is to predict the current block from reconstructed

signals, and the SS mode uses only one hypothesis (reference)

block for the prediction. However, the previous theoretical

and empirical studies [31] [32] [33] illustrate that inter-frame

prediction using multi-hypotheses is more effective at reducing

prediction errors. The displacement intra prediction is similar

to the inter-frame prediction. Therefore, for the coding of

plenoptic images, we have deployed multi-hypothesis spatial

displacement intra prediction into the HEVC framework by

using a maximum of two hypotheses. The results from our

previous work [34] demonstrates a significant improvement

compared to original HEVC intra and the single hypothesis

displacement intra for plenoptic images in a fast search mode.

With a rapid development, HEVC range extensions have

recently introduced the Block Copying (BC) [35] mode with

spatial intra prediction for coding of screen contents. However,

this mode has a restriction on search areas and performs

only one hypothesis prediction. A thorough assessment of the

coding with more hypotheses is of interest. In addition, for

our previous work in [34], different mode assignments, search

methods for displacement vectors, the influences of input

signals from various plenoptic cameras, and coding complexity

etc. have not been investigated, and it is essential to develop a

coding scheme for plenoptic videos with multi-hypothesis and

analyze its coding performance as well.

III. FOCUSED PLENOPTIC CAMERA

This section briefly describes the focused plenoptic cameras

in terms of capturing and rendering, and the relations between

captured images and rendered views. This is to give an insight

to the properties of focused plenoptic images and how the

rendering is affected by compression.

A. Capturing and EI cross-similarities

A typical focused plenoptic camera set-up [12] is presented

in Fig. 2, with the main lens focusing on the main lens image

plane, and the microlenses focusing on a plane in front of the

image sensor plane. The camera is capable of capturing both

Fig. 2. Focused plenoptic camera [12].

spatial and angular information of a scene in each EI, and

the angular information is also spread over several EIs for

a spatially located point [12]. The trade-off between spatial

and angular ratio is adjusted by the parameters (a and b) of

the camera and the size of the microlenses, etc. The capturing

process results in correlated images in adjacent EIs. The image

correlation depends on a and b, which can be shown by a

simple ray tracing, e.g., an increase of a can lead to more

correlated EIs. But, if a fixed value of a and b is given, the

correlation between EIs is determined by the homogeneity and

the depth of the scene. More specifically, 1) EIs appear similar

if the scene surface is homogeneous; 2) a large number of

adjacent EIs capture the same parts of the scene if the objects

are farther away from the camera (for the set-up with the

main lens image plane in front of the microlenses shown in

Fig. 2). In order to exclude the image properties of the scene

surface, we introduce the term cross-similarity to measure the

repetitiveness of the scene between EIs. High cross-similarity

is referred to as a large number of adjacent EIs capturing the

same parts of the scene. The repetitive patterns of EIs due to

cameras and scene depth are of special interest for our coding

scheme. An example of the captured image with respect to the

cross-similarity can be seen in Fig. 3, which shows parts of

two frames from the PlaneAndToy sequence [36].

Fig. 3. Focused plenoptic image: low cross-similarity (left), high cross-
similarity (right) [36].

B. Rendering

Calibrations are commonly conducted before the actual

rendering to reduce rendering artifacts. This is because noise,

random shift of microlens image, and vignetting etc. are

present in the captured images [15]. The calibration involves

intensity compensation with modulation images, microimage

center determination, etc.

Multi-view of all-in-focus images is rendered by combin-

ing patches from each EI [12]. Fig. 4 shows the rendering

approach. Because objects in a scene can be in different

depth planes, the cross-similarity between EIs changes and

the disparities between EIs vary throughout a plenoptic image.

Furthermore, the patch sizes are determined by the disparities,

which correspond to the depth planes of the scene. For

example, the EIs containing objects farther away from the

camera for the set-up in Fig. 2 have a higher cross-similarity.

Hence, the disparities and the patches from these EIs are

smaller. This implies that the disparities must be estimated for

a possible artifact-free rendering. The patches of different size
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Fig. 4. Captured plenoptic image and rendered view [12].

are then normalized with different magnification factors and

combined to form a rendered image [12]. A simpler approach

to circumvent the disparity estimation is to use a constant

patch size. But, by doing so, artifacts will exhibit on parts of

the rendered image [12], if the objects on those parts are not

in the depth plane corresponding to the fixed patch size being

used.

Image refocusing is conducted by a blending process, which

involves the integration in the angular dimension for a spatial

point. In short, the blending is to overlap EIs with a certain

disparity, and the summation of the intensity of the overlapped

areas must be averaged with the number of overlapping. The

objects at the depth plane that corresponds to the current

disparity are brought into focus and other areas are blurred.

C. Relations between captured images and rendered views

The quality of the in-focus rendered images are of interest.

The out of focus areas, which appear as blurring, are not

intended to attract the attention of the viewer. Let the captured

plenoptic image be C(p, q, r, t), (1 ≤ p < Np, 1 ≤ q < Nq ,

1 ≤ r < Nr, 1 ≤ t < Nt), and Np, Nq, Nr, Nt are the size of

each of the dimensions. The impacts of the distortions induced

by compression on the captured image to the rendered image

are as follows.

Firstly, lowered distortions, e.g., lowered Mean Square Error

(MSE), on the captured image implies lower distortions on

the all-in-focus rendered views if the distortion is distributed

uniformly throughout the decoded captured image. This is

because the all-in-focus rendered views are just a subset of

the captured image.

Secondly, the distortion is likely more visible on the all-

in-focus rendered view than on the refocused image. This

is because the intensity of a pixel in a refocused image

is a result of averaging multiple corresponding pixels from

adjacent EIs for a spatial point. More specifically, assume

that the error of a pixel after coding is a random variable

εi = C(pi, qi, ri, ti) − C ′(pi, qi, ri, ti), where pi, qi, ri, ti are

the indexes in the four dimensions, and C ′(·) is the decoded

captured image. The error εi results from quantization. When

adjacent EIs are overlapped with a disparity and averaged for

the refocusing, the square error of a pixel due to averaging

becomes

E[(
1

W

W∑

i=1

εi)
2] ≈ 1

W 2

W∑

i=1

E[ε2i ] (1)

where W is the total number of averaged EIs, which depends

on the disparity. Eq. 1 holds because the cross term after the

the expansion at the left side of the equation E[εiεj ] ≈ 0
under the assumption that εi and εj are uncorrelated for i �= j
and have a zero mean approximately. It has been pointed out

in [19][37] that it is reasonable to assume that the quantization

errors εi are uncorrelated with each other, which is under the

condition with uniform quantization for smooth density dis-

tribution and in high rate. Because 1
W 2

∑W
i=1 E[ε2i ] < E[ε2i ],

the square error on the refocused image is smaller than on the

all-in-focus rendered view.

The above analysis implies that it is reasonable to perform

a visual inspection of the all-in-focus rendered views to eval-

uate the performance of a compression scheme for plenoptic

images.

IV. DISPLACEMENT INTRA PREDICTION WITH

MULTI-HYPOTHESIS FOR PLENOPTICS

In this section, we propose a signal model for plenoptic

images and incorporate it into the Motion Compensated Pre-

diction (MCP) for multi-hypothesis prediction in [31]. This

is to give an insight into how multi-hypothesis can improve

the coding efficiency for displacement intra prediction with

respect to focused plenoptic images.

Modeling of plenoptic signals: A 3D scene represented by

Fig. 5. Mapping between the captured plenoptic image and the 2D surface.

a light field is modeled by a 2D planar surface v2D in [19],

and the surface v2D is assumed approximately lambertian. We

denote an EI as C(pi, qi, r, t) and model the EI image through

the mapping shown in Fig. 5 as

C(pi, qi, r, t)

= v2D((pi − 1) Nr + r +Δlri , (qi − 1) Nt

+ t+Δlti) + npi,qi(r, t).

(2)

The noise term npi,qi(r, t) includes geometrical errors, Non-

lambertian effects, lens distortions and disocclusions. Δlri and
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Δlti are the offsets that map C(pi, qi, r, t) to the 2D surface

v2D.

We derive a hypothesis texture image from C(pi, qi, r, t) as

ci(r, t) = vi(r+Δlri , t+Δlti)+ni(r, t), where vi(o1, o2) =
v2D((pi−1) Nr+o1, (qi−1) Nt+o2). The current texture im-

age being predicted is s(r, t) = v0(r+Δlr0 , t+Δlt0)+n0(r, t).
The multi-hypothesis signals ci are assumed to be found from

Fig. 6. Signal model for the displacement intra with respect to focused
plenoptic images; s: current EI being predicted, and ci: neighboring EIs.

different neighboring EIs, i.e., ci is a shifted version of v0 plus

noise ni (ci and s are cross-similar). This assumption leads

to the same signal model as described in [31] and shown in

Fig. 6. The displacements between s and ci are related by

two-dimensional shift displacement vectors.

It is assumed that s and ci are produced by a jointly wide-

sense stationary Gaussian random process as in [31]; s is

predicted by a linear prediction from ci. If W number of

hypotheses are used for prediction, in the simple averaging

case, s is predicted from
∑W

i=1 ci
W . We further assume the

same signal statistics for ni, v0, and shift displacement errors

as in [31]. The multi-hypothesis MCP analysis [31] can be

applied to the plenoptic signal model between cross-similar

EIs. HEVC has also inherited the basic structure of hybrid

video encoders [38] with such a MCP scheme.

The important theoretical analysis results [31] of the multi-

hypothesis MCP over an optimal intra coding for Gaussian

wide sense stationary sources are the following: 1) increasing

the number of hypotheses reduces the coded bit rate, especially

when the motion prediction is accurate, (e.g., a quarter pixel

prediction); 2) the spectral noise on the signal influences the

prediction, i.e., the bit rate reduction with multi-hypothesis

becomes smaller with an increasing level of noise; 3) when

the power of residue noise increases, doubling the number of

hypotheses is more effective than doubling the accuracy of

the prediction; 4) averaging several good quality hypotheses

always reduces the coded bit rate. Additionally, in the sim-

ple averaging case when more than one hypothesis is used,

the analysis also shows the largest coding gain is obtained

when the number of hypothesis increases from one to two,

which assumed a realistic level of noise, ni, on the images.

Following the multi-hypothesis MCP analysis, a later study

[32] concludes that using more than two hypotheses is less

effective in reducing prediction error variance in theory and

provides insignificant coding gains in experimental results.

The above analyses suggest it is appropriate to increase the

number of hypothesis to achieve a more efficient compression

for focused plenoptic images. Within the scope of this paper,

we only consider the compression efficiency related to the

number of hypothesis increased to the maximum of two in

our experiment.

V. THE CODING BLOCK AND THE INTRA PREDICTION IN

HEVC

A Coding Unit (CU) in HEVC consists of one luma

Coding Block (CB), two chroma CBs and its associated syntax

[38][2][39]. The Coding Tree Unit (CTU) is a basic processing

unit and the largest block allowed in HEVC. A CU can be split

recursively until it reaches a maximum predefined depth. In

each splitting level, the CU is further split into Prediction Units

(PUs) of different sizes, which are the smallest blocks upon

which a prediction is conducted. An exception is when the

Transform Unit (TU) is utilized for intra prediction. The TU

is also split recursively from the CU, and transform coding

is performed on each TU. For an efficient compression, the

Rate-Distortion Optimization (RDO) criterion, min(D+λR),
is employed to determine the best CU splitting depth, PU

fragmentation, TU size, and PU prediction modes, etc. D is

the distortion introduced by coding, λ the Lagrange multiplier,

and R the coded bit rate. Based on the RDO, a set of prediction

modes, both intra and inter, are tested. The RDO minimizes

the distortion D given a bit rate constraint R. In relation to

our proposed scheme, we briefly illustrate the intra prediction

for HEVC here. A detailed description is found in [2].

The intra prediction of a PU in HEVC is based on its top and

left boundary samples from neighboring reconstructed PUs.

When a CU is split into multiple TUs, the intra prediction is

conducted on each TU based on neighboring reconstructed TU

samples. Fig. 7 illustrates the prediction that a PU is predicted

diagonally from its top reconstructed boundary samples. The

PU can be predicted with 33 directional modes plus a planar

and a DC mode, and these modes are also applied when

TU is used for prediction. The prediction modes are encoded

predictively by using the most probable modes, which are

derived from the previously coded neighboring PUs.

Fig. 7. Intra-prediction: the current PU is predicted from the boundary of its
neighboring reconstructed PUs.

VI. PROPOSED METHODS

The intra prediction scheme in HEVC is unable to explore

the repetitive patterns of plenoptic images, because only
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boundary samples are used for the prediction. We apply the

displacement intra prediction into HEVC as an intra prediction

scheme to solve this problem. However, the prediction is with

a maximum of two hypotheses, which are also limited by the

HEVC framework. In addition, the encoding time complex-

ity will increase substantially if more hypotheses are used.

Furthermore, the analyses of displacement intra prediction

for plenoptic images illustrated in Section IV suggest that

increasing the number of hypotheses from one to two is

effective in reducing coding bit rates.

A. Coding of plenoptic images (intra mode)

In video coding, the bit rates for intra-coded frames are

much higher than for inter-coded frames. Therefore, the bit

rate produced by intra prediction can account for a large

portion of the total bit rates if video frames are intra-coded

frequently, either by configuration or because of drastic scene

changes between frames. Hence, the intra image compression

efficiency is of paramount importance.

Fig. 8 presents the concept of the proposed displacement

intra prediction coding scheme. It can be seen as a derivation

from the inter-prediction scheme of HEVC. The proposed

scheme takes the adjacent reconstructed region in the same

plenoptic image as reference pictures in HEVC for the pre-

diction. The region is limited by a predefined search range

parameter within the reconstructed CU blocks. An example is

shown in Fig. 9, in which the reconstructed region is marked

with color light gray and dark gray and is neighboring the

current PU, block B. In order to perform the bi-directional

prediction with two references, the reconstructed region is

separated into two parts colored light gray and dark gray,

respectively. These two parts are assumed to be two reference

pictures in each of the two picture reference lists L0 and L1.

The picture reference lists are utilized to accommodate the

reference pictures for the prediction. For the uni-directional

prediction with a single reference, the entire reconstructed

region (light gray and dark gray) is assumed to be a reference

picture in the list L0. We call the intra mode with bi-prediction

as image B-coder and the one with uni-prediction as image P-
coder.

Fig. 8. Displacement intra-prediction derived from inter-prediction for plenop-
tic image compression.

Image B-coder (intra mode): the prediction for the B-coder
is similar to the prediction for the B frame coding in HEVC.

There are three candidates for the prediction of a current PU,

(a) (b)

Fig. 9. Bi-prediction within an image. (a) Two parts in color light gray and
dark gray are assumed as two reference pictures and available in the reference
list L0 and L1; (b) an illustration of the prediction on a plenoptic image.

block B in Fig. 9. As to the first two candidates, they are

the best matching blocks from each of the reference lists L0

and L1. These two blocks are, however, not shown in Fig. 9.

The third candidate is obtained by P0+P1

2 , where P0 and P1

are two blocks from the lists L0 and L1, respectively. More

specifically, block P0 is found by a refinement search in the

neighborhood of the best matching block from L0, and block

P1 is obtained from L1 in the same way. This refinement

search is designed to find the best matching signal P0+P1

2 to

the current PU within the refinement search range. As a result,

the best of the three is chosen to predict the current PU block.

Image P-coder (intra mode): the proposed P-coder is es-

sentially performing a single reference prediction. The best

matching block is obtained from a search process from the

entire reconstructed region (i.e. with light gray and dark gray

regions in Fig. 9). Consequently, the best block is selected

from the region to predict the current PU block.

The Advanced Motion Vector Prediction (AMVP) [2] tech-

nique in HEVC is also applied in the proposed scheme.

The displacement vector obtained from the search is not

encoded directly. Instead, the AMVP encodes the difference

between the current displacement vector and its predictor.

The predictors are found from the spatially neighboring and

temporally collocated reconstructed PUs of the current PU. In

the merge mode of AMVP, the displacement vectors of the

current PU can also be derived from its spatially neighboring

and temporally collocated reconstructed PUs, where the latter

is only available in the case of video coding. We describe the

plenoptic video coding in the next section.

The proposed displacement intra prediction is tested using

the RDO criterion along with the traditional intra during

encoding. The best of them is selected as the final intra

prediction mode for the current PU. The B-coder is expected

to improve the compression efficiency over the P-coder. The

reason for such an improvement is demonstrated in Section

IV. The proposed intra mode P-coder and the B-coder use the

same syntax as the P slice and the B slice [2] in HEVC.

B. Coding of plenoptic videos

The coding of videos aims to extend the prediction within an

image into the temporal domain. Fig. 10 illustrates the process

of plenoptic video coding. Up to 16 reference pictures can be
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loaded into each of the lists, L0 and L1. We call the proposed

video encoder with two hypotheses as video B-coder.

Video B-coder: In addition to the reference pictures from the

adjacent reconstructed part of the same image (video frame),

neighboring reconstructed frames in the temporal domain are

also loaded as reference pictures into the reference lists, L0

and L1 as shown in Fig. 10. The exact frames loaded into the

lists depend on the HEVC configurations. For the prediction,

the predictor candidates are the best matching blocks from

each of the lists and the P0+P1

2 . The P0 and P1 are from

the reference pictures in the lists L0 and L1, respectively,

in a similar way as for the proposed intra frame coding by

a refinement search. More specifically, the refinement search

here is performed iteratively for all the combinations of the

reference pictures in the lists L0 and L1, and is around the

proximity of the best matching block from each reference

picture. A detailed description of the iteration process is

referred to [2] and [40]. Furthermore, the search for the best

matching block from the temporal domain is limited to the

reference pictures within a predefined search range. As a

result, the best of the three candidates is used to predict the

current PU.

The prediction for the video coder can be seen as a hybrid of

displacement intra and inter frame prediction. To encode the

current PU, the encoder will find the best prediction modes

with the RDO among the conventional intra, and the hybrid

of displacement intra and inter frame prediction.

Fig. 10. Plenoptic video coding: prediction candidates can be selected from
spatial domains as well as from temporal domains.

C. Encoding complexity of the proposed schemes

The time complexity of HEVC has been analyzed empiri-

cally in [41]. It is shown that the motion prediction in HEVC

takes up a significant portion of time in encoding. For the pro-

posed image P-coder, the coding complexity is equivalent to

HEVC P frame coding with one reference picture, and for the

proposed image B-coder equivalent to HEVC B frame coding

with one reference picture in each of the picture reference lists.

Therefore, the proposed image coders have higher encoding

time complexity than HEVC original intra. In addition, the

video B-coder has a higher encoding time complexity than

HEVC B frame coding given the same prediction structure,

and the complexity increased is equivalent to adding one more

reference picture for the HEVC B frame coding in each of the

picture reference lists. However, the complexity analysis for

the decoding in [41] illustrates that coding with temporal P

and B prediction is faster in a real time implementation than

with all intra frame coding, because less time is spent on the

entropy decoding. This suggests that it can be advantageous

for the proposed image coders in decoding over the original

HEVC intra.

VII. TEST ARRANGEMENT AND EVALUATION CRITERIA

Due to the importance of the intra prediction in reducing

bit rates for a coded intra frame, it is of interest to test the

intra frame coding efficiency. In addition, in order to draw

a more general conclusion, images from different plenoptic

cameras with various image characteristics were considered

for the test. The characteristics include microlens structures,

EI cross-similarity, etc.

Light field images, e.g., Seagulls, Books [13], PlaneAndToy
[36], were used in the test. We also captured an image,

OpticalTable1, by using Raytrix camera [42]. This image is

of size 6576 by 4384 with hexagonal EIs with a width of

approximately 36 pixels.

The video sequence of PlaneAndToy, see Fig. 11, contains

250 frames of plenoptic images with a stationary background.

The cross-similarity between EIs changes over the sequence.

In addition, another video sequence, DemichelisSpark [36],

was also used for the test. The cross-similarity between EIs

does not change throughout the sequence, therefore, only the

first 50 frames were tested. Table I summarizes the tested

plenoptic input data.

TABLE I
PLENOPTIC IMAGES/VIDEOS

Image/Video Resolution EI shape and
size in pixels

Cross-
similarity (EIs)

Seagull 7240×5236 Square(75) High
Books 3913×3913 Circular(50) Low
OpticalTable 6576×4384 Hexagonal(36) Low
PlaneAndToy (high) 1920×1088 Square(27) High
PlaneAndToy (low) 1920×1088 Square(27) Low
PlaneAndToy (video) 1920×1088 Square(27) Change
DemichelisSpark 2880×1620 Circular(38) Low

The HEVC Test Model (HM) reference software version 11

[40] was modified for the proposed scheme. The test was con-

ducted in TZ search unless otherwise mentioned. The search

range was set to 192 for Seagull, Books, and OpticalTable,

and to 128 for PlaneAndToy and DemichelisSpark. The search

range is different because the EI size is larger for Seagull,
Books, and OpticalTable. The search range refinement for bi-

prediction was set to 4 as default.

A. Intra coding

The images were transformed into YUV 4:2:0 format. The

tested Quantization Parameters (QPs) for images were selected

to be 20, 30, 40, and 50 for Seagull, Books, and OpticalTable.

1http://plenoptics.droppages.com/
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(a) (b)

(c) (d)

Fig. 11. Light field images: (a) OpticalTable; (b) Books; (c) PlaneAndToy
(186st frame) with high cross-similarity; (d) PlaneAndToy (1st frame) with
low cross-similarity.

Two images from the PlaneAndToy sequences were extracted

for the intra coding test. They are the first frame of PlaneAnd-
Toy with low EI cross-similarity denoted as PlaneAndToy(low)
and the 186th frame with high cross similarity denoted as

PlaneAndToy(high). The QPs for PlaneAndToy are set to 22,

27, 32, and 37. The bit rate, bits per pixel (bpp), was obtained

from the coded bit stream for all YUV components, whereas

the quality was measured on the luminance component by

using PSNR. The rate-distortion curves of PSNR versus bpp

are presented for the image P-coder, the image B-coder, and

the original HEVC intra coder. Bit rate changes for the P-
coder and the B-coder over the original HEVC have also been

expressed in the BD-PSNR [43], which computes the average

difference between two rate-distortion curves.
The configuration parameters for the proposed image coders

were defined as the ”Low delay-Main” setting in JCTVC-

L1100 [44], and for the original HEVC as the ”All intra-

Main” setting in JCTVC-L1100 [44]. Additionally, the coding

efficiency of JPEG2000 [45] was compared to the HEVC

original intra. We used the OpenJPEG software [46] and the

default setting with one quality layer and one tile. The coding

quality is set to the same as the HEVC original intra coding

for the four bit rate points.
The following aspects are of interest for the analysis: 1)

cross-similarity between EIs; 2) search strategies (the full

search versus the TZ search); 3) intra mode image B-coder
versus image P-coder; 4) the percentage of different modes

used.
The decompressed images were also rendered for a visual

quality investigation. The rendering approach with a constant

patch size was employed to render all-in-focus images. The

calibration step mentioned in Section III-B was skipped be-

cause the camera geometry is unknown. This will not affect the

evaluation, because all-in-focus images are rendered under the

same condition from different compressed images. The part of

the image that is in the depth plane corresponding to a given

patch size is of special interest.

B. Video coding
For the video sequences planeAndToy and DemichelisSpark,

the ”Random access-Main” setting (hierarchical B frame cod-

ing) in JCTVC-L1100 [44] with a GOP of size 8 was used

for HEVC with temporal prediction and the proposed video
B-coder. The QPs used were 22, 27, 32, and 37. The CTU

size was set to 16 to reduce the coding time complexity. A

bigger CTU, e.g., 32, than the size of an EI will likely cause

more CU splitting and increase side information (e.g., splitting

flags, displacement and motion vectors). The rate-distortion

curves and the BD-PSNR were also acquired for the video

sequence. However, the bit rate is measured in kilo-bits per

second (kbps).

VIII. RESULTS AND ANALYSIS

A. Intra coding

(1) Cross-similarity between EIs: The results in Table II

show that the compression efficiency is related to the cross-

similarity between EIs. A higher cross-similarity between EIs

implies that more hypotheses signals are available for the

prediction. Therefore, larger bit rate saving is achieved. The bit

rate savings for the image B-coder are 56.71 and 26.64 percent

for Seagull and PlaneAndToy(high) compared to the HEVC

intra, respectively, in the TZ fast search case shown in Table

II. For the image P-coder, the improvement compared to the

image B-coder is less. But, substantial bit rate reduction can

still be seen in Table II. The bit rate reductions are 42.89 and

20.18 percent for Seagull and PlaneAndToy(high), respectively.

Although the image Books has low cross-similarity, the

EIs are still highly correlated as a consequence of a more

homogeneous scene surface. By using the proposed image
B-coder, a bit rate reduction of 64.47 percent is gained, as

shown in Table II. For the low cross-similar EIs in image

PlaneAndToy(low), a smaller bit rate saving of 14.52 percent

is obtained, see Table II. The rate-distortion curve is plotted

in Fig. 15. Although the EIs in OpticalTable are less cross-

similar, the bit rate saving is still convincing, which is 45.16

and 32.59 percent for the image B-coder and the image P-
coder shown in Table II.

At a similar bit rate, the proposed scheme outperforms

conventional HEVC intra with a significant improved visual

quality, which is illustrated in Fig. 13 and Fig. 14 for image

Seagull. It is further shown that the blockiness artifact is less

visible for the proposed scheme at the lower bit rate, see Fig.

14. This is not only because the proposed scheme improves

the compression efficiency compared to HEVC intra, but also

due to an EI being well predicted from its neighbors by

the displacement intra prediction. Therefore, with less energy

on the prediction residues, the blockiness distortions from

the quantization of the transform coefficients in HEVC are

reduced.

Table III additionally illustrates that JPEG2000 performs

worse than the original HEVC intra for all the tested images.

The rate-distortion curve for Books is plotted in Fig. 12. In the

figure, the highest bit rate point for JPEG2000 was removed

due to a significant bit rate increase to 4.5 bpp at PSNR of

46.73.

2) Full search vs. TZ search: Given a search area of a fixed

size, it can be observed in Table II that full search outperforms

TZ search in terms of rate-distortion by a large margin,
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TABLE II
BD-PSNR/RATE FOR THE PROPOSED INTRA MODES

Images P-coder B-coder
BD-PSNR

(dB)
BD-rate

(%)
BD-PSNR

(dB)
BD-rate

(%)
Seagull (TZ) +2.67 -42.89 +3.80 -56.71
Books (TZ) +4.46 -56.79 +5.26 -64.47
Optic. (TZ) +2.06 -32.59 +3.01 -45.16
Plane. (high)
(TZ search)

+1.83 -20.18 +2.44 -26.64

Plane.(low)
(TZ search)

+0.73 -10.85 +0.98 -14.52

Plane.(high)
(Full search)

+2.59 -27.59 +2.90 -31.09

Plane.(low)
(Full search)

+0.97 -14.11 +1.09 -15.93

TABLE III
BD-PSNR/RATE FOR JPEG2000 COMPARED TO HEVC ORIGINAL INTRA

Images
BD-PSNR

(dB)
BD-rate

(%)
Seagull (TZ) -2.62 +59.33
Books (TZ) -3.55 +83.10
Optic. (TZ) -2.10 +64.92
Plane. (high) -2.60 +49.14
Plane. (low) -2.61 +35.09

Fig. 12. Rate distortion curve for Books.

especially in the case of image P-coder. The inefficiency of

TZ search for the plenoptic contents compared to the natural

images [17] is partly because TZ search does not consider and

exploit the repetitive patterns.

The time complexity for encoding is presented in Table

IV for images PlaneAndToy(high). The results show that the

time spent on the image B-coder with full search is 12 times

more than with TZ search. Approximately the same encoding

time ratio is obtained for the image P-coder. The order of the

encoding complexity can be generalized as: image B-coder
with full search > image P-coder with full search >> image
B-coder with TZ search > image P-coder with TZ search,

and the coding efficiency as: image B-coder with full search

> image B-coder with TZ search ≈ image P-coder with full

search > image P-coder with TZ search. Therefore, in our

(a) (b)

Fig. 13. Parts of the rendered views from the decoded plenoptic images at
bit rate around 0.13bpp: (a) the proposed image B-coder (b) original HEVC
intra.

(a) (b)

Fig. 14. Parts of the rendered views from the decoded plenoptic images at
bit rate around 0.048bpp: (a) the proposed image B-coder (b) original HEVC
intra.

opinion, the image B-coder with TZ search is a better trade-

off between quality and time complexity.

TABLE IV
ENCODING TIME

QP P-coder
(TZ) (s)

B-coder
(TZ) (s)

P-coder
(Full) (s)

B-coder
(Full) (s)

22 420 579 5727 7035
27 395 539 5757 7201
32 353 496 5763 7363
37 321 460 5783 7256
Average 372 519 5758 7214

3) Image B-coder vs. image P-coder (intra mode): Re-

sults from Table II portray a similar pattern; the B-coder
is superior to the P-coder. Regardless of the effects of EI

borders, the rate-distortion pattern agrees well with the multi-

hypothesis prediction analysis described in Section IV that

two hypotheses reduce the coded bit rate more than one.

However this improvement diminishes with a decreasing cross-

similarity between EIs, as is shown for PlaneAndToy(low) in

Table II. Only 3.7 and 1.8 percent bit rate savings for B-
coder over P-coder are achieved for the TZ search and the

full search, respectively. Additionally, the difference in bit

rate reduction between B-coder and P-coder becomes smaller

when comparing TZ search to full search for the PlaneAndToy
images. For the PlaneAndToy(high) in Table II, percentage of

bit rate differences between B-coder and P-coder reduces from

6.5 percent with TZ search to 3.5 percent with full search.

This reduction is because the TZ search does not explore all

the possible searching points while the full search provides

the encoder with a higher probability to find a single matched

reference block that achieves the best in terms of RDO.



1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450333, IEEE Transactions on Circuits and Systems for Video Technology

11

Fig. 15. PlaneAndToy with TZ fast search.

(4) Employment of different modes: Table V shows that the

proposed intra modes are used over 50 percent of the image

area for the high cross-similar PlaneAndToy. The results were

obtained by using image B-coder, which includes both the

proposed spatial uni-directional prediction and bi-directional

prediction into the RDO evaluation in HEVC. As expected,

the employment of the proposed modes drops when the cross-

similarity between EIs is low. It is less than 20 percent for the

low cross-similarity PlaneAndToy.

TABLE V
DIFFERENT INTRA MODES USED IN THE image B-coder

Contents-
PlaneAndToy

Uni-
predicted

Bi-
predicted

HEVC
intra

High cross-similarity (full) 22% 33% 45%
High cross-similarity (TZ) 28% 19% 53%
Low cross-similarity (full) 11% 7% 82%
Low cross-similarity (TZ) 8% 6% 86%

B. Video coding

Even for a scene with a stationary background, 13.7 percent

bit rate reduction is obtained with the proposed encoder for

Fig. 16. PlaneAndToy with full search.

the entire PlaneAndToy video sequence as shown in Table VI.

It is further illustrated in Fig. 17 that the bit rate reduction

is more significant at the lower bit rate points. In addition,

a larger bit rate saving of 32.01 percent is achieved for

the DemichelisSpark sequence, see Table VI. Through the

examination of coded bit rates frame by frame, we further

observe that the main contribution to the coding efficiency is

from the intra coded frames.

TABLE VI
BD-PSNR/RATE FOR THE PROPOSED video B-coder

Video BD-PSNR (dB) BD-rate (%)
PlaneAndToy +0.74 -13.70
DemichelisSpark +0.92 -32.01

IX. CONCLUSION

We have proposed a displacement intra prediction scheme

with a maximum of two hypotheses for the compression

of plenoptic contents from focused plenoptic cameras. The

scheme has been implemented into HEVC and is capable of

exploring the inter-microlens redundancy efficiently. Further-

more, we have formulated a signal model for plenoptic images
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Fig. 17. Rate-distortion curve for video B-coder over PlaneAndToy.

and explained the theoretical aspects of the displacement intra

prediction with multiple hypotheses. In order to assess the ren-

dering artifacts, the impacts of distortions on the compressed

captured image to the rendered view were also analyzed.

The results showed that the plenoptic images and videos

were compressed efficiently by using the proposed scheme.

The compression efficiency is related to several parameters.

More cross-similar EIs facilitated the compression for the

proposed schemes over HEVC. The TZ search was less

effective in searching for prediction candidates for plenoptic

contents than for natural images. For the intra modes, although

full search can improve the coding efficiency, the image B-
coder with TZ search is a trade-off between quality and time

complexity. In addition, the image B-coder has a more exten-

sive bit rate reduction and agrees with the multi-hypothesis

analysis. For the tested images, up to 60 percent bit rate

reduction was achieved for the proposed scheme compared to

HEVC intra, and more than 30 percent was obtained compared

to HEVC in temporal mode for the tested video sequences. The

visual quality inspection on the rendered views also showed

that the proposed schemes outperformed HEVC intra with a

better visual quality.

X. FUTURE WORK

The focus of our future research includes utilizing ap-

proximate camera geometries and rendering techniques for

prediction to reduce the energy on prediction residues.
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