Coding the Lehmer Pseudo-

random Number Generator

W. H. Pavng, J. R. Rasung, ano T. P. Bogyo
Washington State University, Pullman, Washington

An algorithm and coding technique is presented for quick
evaluation of the Lehmer pseudo-random number generator
modulo 2 %+ 31 — 1, a prime Mersenne number which pro-
duces 2 *x 31 — 2 numbers, on a p-bit {greater than 31}
computer. The computation method is extendible to limited
problems in modular arithmetic. Prime factorization for
2 *x 61 — 2 and a primitive root for 2 *x 61 — 1, the next
largest prime Mersenne number, are given for possible con-
struction of a pseudo-random number generator of increased
cycle length.

KEY WORDS AND PHRASES: pseudo-random number, random number,
modular arithmetic, uniform probability density, uniform frequency function,
simulation, prime factorization, primitive roots

CR CATEGORIES:

Most pseudo-random number generators are of the type
suggested by Lehmer,

Xp = KX,(mod m) 1)

where the modulus m is chosen as 27! for a p-bit-word
binary machine. Selection of this particular modulus avoids
the division necessary for general modular arithmetie,
thus speeding actual computation. Such a composite
modulus is unsatisfying from a number theory point of
view, however. The cycle length, which depends on the
starting point, cannot be greater than 27-%. Most of these
generators produce only odd numbers [1]. For example,
the multiplier K = 2% 4 3, m = 277! and X, odd, pro-
duces only half the odd digits. The particular half pro-
duced is determined by X, .

If m is of the type ¢" or 2¢", ¢ an odd prime, then K can
be selected to be a primitive root for the modulus. Lehmer
[2, 3] suggested K = 14%®, m = 2% — 1 (a prime Mersenne
number), and 0 < X, < 2% — 1. Fourteen was chosen be-

Volume 12 / Number 2 / February, 1969

R. M. McCLURE, Editor

cause it is a primitive root modulo 2% — 1; a multiplicative
group of order

28— 2 =2X3 X 7X11 X 31 X151 X 331
= 2,147,483,646 (cycle length)

was generated. Raising 14 to the vth power where v is rela-
tively prime to the cycle length gives another primitive
root modulo 2! — 1. Choosing v = 29 introduces ‘‘random-
ness’”’ into the number sequence.

We present an algorithm and coding technique for more
rapid evaluation of the Lehmer pseudo-random number
generator with limited extensions to modular arithmetic
problems. Begin with

Xop = KX,.(mod 2771) 2)
or, by definition,
Xp1 = KX, — r2et 3)
for some 7. Adding 7 to both sides of eq. (3) yields
Xnt1 = Xna + 7 = KXo(mod 271 — 1) (4)

provided that X,., + r < 271 — 1 (no overflow). If
Xpi1 + r > 2771 — 1 (overflow), then

Xyt = Xop + 7 + 1(mod 200, (5)
which leads directly to
X1 = KX,(mod 271 — 1). (6)

This method is extendible to any modulus m = 27! 4 d,

Xo+i = KX,

2(p — 1) bits

I

Shift to isolate

I = X4 (high-order p — | bits)

= X, (low-order p — | bits) + I

overflow

Xl = Xpg + Hmod 2P-')J

Fi1ac. 1

Communications of the ACM 85



but is efficient only if d is a power of two. A modified ver-
sion of this method was suggested by Lehmer for use on
ENIAC. However, it did not use the overflow feature

Unpp = 23U, (mod 108 4 1 = 17 X 5,882,353),
U; = 8 decimal digits.

The flowchart in Figure 1 illustrates the algorithm.

Evaluation of eq. (1) with m = 2% takes 8.65 usec; for
m = 2% — 1, 12.40 usec (average) using this algorithm,
and 14.70 wsec performing the division (IBM 360/67
instruction times). Additional time savings for the algo-
rithm can be realized on a computer developing 2(p — 1)
product digits (even though p > 31) rather than the
2p — 1 product digits developed on an IBM 360.

In coding this algorithm care must be taken when con-
verting the fixed-point results to floating-point No low
order zeros should be introduced, thereby biasing small
values when normalizing the result. A section of possible
coding for the floating-point pseudo-random number on an
IBM 360 is given in Figure 2.

a#xadenkes EXECUT{ON TIME USEC = MICROSECCNDS. IBM 360/67.

axkerarsks + = TIME APPROXIMATE. USEC
RAND CSECT CONTROL SECTION FOR FLOATING-POINT NUMBER.
L 14001} GEY ADDRESS OF NO {FORTRAN} TN REGISTFR 1. 1.20
ST 1,241,13) STORE ADDRESS OF NN (FORTRAN) 1IN «93 X
SAVE AREA.
USING RAND,15 ESTADLISH BASE REGISTER FOR NEW SECTION.
t 1,=F 1630360016 K=14*%%x29=630360016 MOD{2%%31-1), 1.20
M QX0 K#X(N) 4.80
SLCA 0,1 ISOLATE HIGH ORDER 31 BITS (R). 1.50
SRL 1,1 ISCLATE LOW CROER 31 BITS. SIGN +. 1.10
AR 0y1 XT[N+l} = K*X(N) + R (LOW ORDER 31 BITS). «65
jilv] OVF X*(N+1) OVERFLOW. «50+
CONT ST 0,X0 X'{N+1) REPLACES X(N). <93
L. 1,24(,13) GET ADDRESS CF NC (FORTRAN) FPOM SAVE 1,20 X
AREA.
ST 0,0{,1) X*{N+1} IN NO (FORTRAN PR.OGRAMY . «93
SR 1,1 ZERQ LCW ORNDER DOUBLEWORD. 565
SRDA 0,7 MAKE RCOM FOR MASK. 2.10
A 0,=X140000000" MASK 1M FLOATING~POINT EXPONENT. 1,40
STM™ D41, TEMP STORE UNNURMALIZEC OOUBLEWORN TEMPORARILY.1.33
SDR 0,0 CLEAR LNOW-CRDER DOUBLE FLOATIMG-POINT REG. 1.72
AD 0, TEMP PLACE NORMALTZEN NOURLEWORD FLOATING-POINT 2,45 X
NUMSER IN FLOATING-POINT REGISTER 0.
8R 14 RETURN TO FORTRAN. 1,10
OVF SLL 0s1 SIGN BIT +. +90
SRL N,1 SIGN BIT +. 1.10
A Oy=F'1% AND 1 T GET X'(N+1) + 1. 1.40
8’ CONT RETURN TO MAIN CORING 7O FINISH. 1.10
X0 oc F1524287¢ STANDARD STARTING VALUE.
TEMP DS D TEMPORARY STORAGE CN DNUBLEWORD BOUNDARY FOR SPFED,

LTORG FORCE LITERAL ASSEMBLY INTO THIS CONTROL SECTION.
=F1630340016"°
=X14CQ0C000"
=EeLY

LA Lt AVERAGE EXECUTION TIME FOGR RAND IS 28434 USEC, *xksks

Fia. 2

Since it is possible to generate approximately 2,000,000
fixed-point pseudo-random numbers per minute on a
moderately fast (e.g. IBM 360/67) computer, a known
long cycle length is important. All numbers excluding 0
modulo 2% — 1 appear in this sequence. Thus no obvious
degradation in the low order digits occurs, as when using
a generator with a composite modulus. Thus in choosing a
random integer, I, 1 < I < N, a standard in-line modu-
Jar arithmetic subroutine can be entered with a fixed-
point pseudo-random number argument and one added to
the output. Faster yet the high order bits may be used by

86 Communications of the ACM

multiplying the fixed-point value by N and adding one to
the high order 31 bits. Of course the problem of acciden-
tally choosing a starting value which leads to a short
sequence is entirely avoided.

The sequence of pseudo-random numbers modulo
281 — 1 passed a number of statistical tests. The uniformity
of the distribution was tested by dividing the interval 0
to 1 into 1024 subintervals and calculating a x* value with
1023 d.f. In the serial test the interval was subdivided into
32 subintervals and a 32 X 32 matrix was formed. The
cells represented the number of numbers in the 7th interval
followed by a number in the jth interval. Again a x?® value
was used to test the uniformity of this distribution. The
frequency of length of runs was tested by the occurrence
of & + 1 consecutive numbers forming a monotonic in-
creasing (or decreasing) sequence which was broken by the
(k 4+ 2)-th number and was called a run of length k. Com-
paring the observed frequencies of lengths of run with ex-
pected values that can be calculated lends itself to a x*
statistic to be used as a test of randomness. Besides these
tests, several million uniformly distributed pseudo-random
numbers were generated, and it was found that the mean
of these numbers was 1/2 and the variance was 0833, as
was expected.

The time required to evaluate this algorithm, the time
spent each year generating pseudo-random numbers at a
computer installation, and the advance knowledge of the
output of the Lehmer generator make this particular
method attractive.

The anticipated increase in computer speed and the fact
that the next prime Mersenne number is 26! — 1 combine
to present an intriguing design and coding problem for a
pseudo-random number of cycle length

26 — 2 =2 X3 X5 X7XI11X13
X 31 X 41 X 61 X 151 X 331 X 1321
= 2,305,843,009,213,693,950.

This generator must, of course, be tested for “randomness”
using the primitive root of 37, some powers of which pro-
vide candidates for K (mod 26 — 1).

Acknowledgment. Appreciation is expressed to D. H.
Lehmer for providing a primitive root for 2¢ — 1.

RecEIVED August, 1968

REFERENCES
1. Van GELDER, A. Some new results in pseudo-random number
generation. J. ACM 14, 4(Oct. 1967), 785-792.

2. Leamer, D. H. Random number generation on the BRL high-
speed computing machines, by M. L. Juncosa. Math. Rev. 16
(1954), 559.

3. Tocurr, K. The Art of Simulation. English U. Press, London,
1963.

4. Random number generation and testing. Form C20-8011, IBM,
1959.

Yolume 12 / Number 2 / February, 1969



