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An algorithm and coding technique is presented for quick 
evaluation of the Lehmer pseudo-random number generator 
modulo 2 * *  31 - -  1, a prime Mersenne number which pro- 
duces 2 * *  31 - -  2 numbers, on a p-bit (greater than 31) 
computer. The computation method is extendible to limited 
problems in modular arithmetic. Prime factorization for 
2 * *  61 - -  2 and a primitive root for 2 * *  61 - -  1, the next 
largest prime Mersenne number, are given for possible con- 
struction of a pseudo-random number generator of increased 
cycle length. 
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Most pseudo-random number generators are of the type 
suggested by Lehmer, 

X,÷i --- KX~(mod m) (1) 

where the modulus m is chosen as 2 p-~ for a p-bit-word 
binary machine. Selection of this particular modulus avoids 
the division necessary for general modular arithmetic, 
thus speeding actual computation. Such a composite 
modulus is unsatisfying from a number theory point of 
view, however. The cycle length, which depends on the 
starting point, cannot be greater than 2 p-3. Most of these 
generators produce only odd numbers [1]. For  example, 
the multiplier K = 218 " t -  3, m = 2 p-1 and X0 odd, pro- 
duces only half the odd digits. The  particular half pro- 
duced is determined by  X0 • 

If m is of the type q" or 2q ~, q nil odd prime, then K can 
be selected to be a primitive root for the modulus. Lehmer 
[2, 3] suggested K = 14 =9, m = 2 n -- 1 (a prime Mersenne 
number), and 0 < Xo < 2 s~ -- 1. Fourteen was chosen be- 

cause it is a primitive root modulo 231 - -  1 ; a multiplicative 
group of order 

231 - -  2 = 2 X 3 ~ X 7 X II X 31 X 151 X 331 
= 2,147,483,646 (cycle length) 

was generated. Raising 14 to the vth power where v is rela- 
tively prime to the cycle length gives another primitive 
root modulo 231 - 1. Choosing v = 29 introduces "random- 
ness" into the number sequence. 

We present an algorithm and coding technique for more 
rapid evaluation of the Lehmer pseudo-random number 
generator with limited extensions to modular arithmetic 
problems. Begin with 

or, by definition, 

X . , ÷ i  ~ K X , (m o d  2 p-l) (2) 

X,+i = K X ,  - r2 p-1 (3) 

for some r. Adding r to both sides of eq. (3) yields 
! 

X,+I = X,+I -'b r =- KX, (mod  2 p-1 -- 1) (4) 

provided that  X,+I "-b r < 2 p-1 - 1 (no overflow). If 
X,+i q- r > 2 p-1 - 1 (overflow), then 

! 
X,+i  --- X,+i "-b r "-b l (mod2"- l ) ,  (5) 

which leads directly to 

X',+i ~ K X , (m o d  2 p-1 - 1). (6) 

This method is extendible to any modulus m = 2 p-1 --t- d, 

Xn+ i = KX n 

2(p -- I) bits 

I 
Shift to isolate 

r = Xn+l (high-order p -- I bits) 

~ l o w  

. . . . . .  E x i t ~  X:÷ ~ X'n+ , + ,(mad 2P-') l 
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but  is efficient only if d is a power of two. A modified ver- 
sion of this method was suggested by Lehmer for use on 
ENIAC.  However, it did not use the overflow feature 

U~el -~ 23U,(mod 108 ~ 1 = 17 X 5,882,353), 
Ui = 8 decimal digits. 

The  flowchart in Figure 1 illustrates the algorithm. 
Evaluat ion of eq. (1) with m = 28z takes 8.65 usec; for 

m = 23I --  1, 12.40 ~sec (average) using this algorithm, 
and 14.70 usee performing the division ( IBM 360/67 
instruction times). Additional time savings for the algo- 
r i thm can be realized on a computer developing 2(p - 1) 
product digits (even though p > 31) rather than the 
2p -- 1 product  digits developed on an IBM 360. 

In coding this algorithm care must be taken when con- 
verting the fixed-point results to floating-point No low 
order zeros should be introduced, thereby biasing small 
values when normalizing the result. A section of possible 
coding for the floating-point pseudo-random number on an 
IBM 360 is given in Figure 2. 
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Since it is possible to generate approximately 2,000,000 
fixed-point pseudo-random numbers per minute on a 
moderately fast (e.g. IBM 360/67) computer, a known 
long cycle length is important.  All numbers excluding 0 
modulo 231 -- 1 appear in this sequence. Thus no obvious 
degradation in the low order digits occurs, as when using 
a generator with a composite modulus. Thus in choosing a 
random integer, I ,  1 < I < N, a standard in-line modu- 
lar arithmetic subroutine can be entered with a fixed- 
point pseudo-random number argument and one added to 
the output.  Faster yet  the high order bits may be used by 

multiplying the fixed-point value by N and adding one to 
the high order 31 bits. Of course the problem of acciden- 
tally choosing a starting value which leads to a short 
sequence is entirely avoided. 

The sequence of pseudo-random numbers modulo 
23z - 1 passed a number of statistical tests. The uniformity 
of the distribution was tested by dividing the interval 0 
to 1 into 1024 subintervals and calculating a x 2 value with 
1023 d.f. In  the serial test the interval was subdivided into 
32 subintervals and a 32 X 32 matrix was formed. The 
cells represented the number of numbers in the i th  interval 
followed by a number in the j t h  interval. Again a x 2 value 
was used to test the uniformity of this distribution. The 
frequency of length of runs was tested by the occurrence 
of k -t- 1 consecutive numbers forming a monotonic in- 
creasing (or decreasing) sequence which was broken by the 
(k -Jr 2)-th number and was called a run of length k. Com- 
paring the observed frequencies of lengths of run with ex- 
pected values tha t  can be calculated lends itself to a x 2 
statistic to be used as a test of randomness. Besides these 
tests, several million uniformly distributed pseudo-random 
numbers were generated, and it was found that  the mean 
of these numbers was 1/2 and the variance was .0833, as 
was expected. 

The time required to evaluate this algorithm, the time 
spent each year generating pseudo-random numbers at a 
computer installation, and the advance knowledge of the 
output  of the Lehmer generator make this particular 
method attractive. 

The anticipated increase in computer speed and the fact 
tha t  the next prime Mersenne number is 261 -- 1 combine 
to present an intriguing design and coding problem for a 
pseudo-random number of cycle length 

261 - -  2 = 2 X 32 X 52 X 7 X 11 X 13 
X 31 X 4 1 X  61 X 1 5 1 X  331 X 1321 

= 2,305,843,009,213,693,950. 

This generator must, of course, be tested for "randomness" 
using the primitive root of 37, some powers of which pro- 
vide candidates for K (mod 28z -- 1). 
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