
R. M . M c C L U R E , Editor

Coding the Lehmer Pseudo-
random Number Generator

W. H. PAYNE, J. 1~. RABUNG, AND T. P. BOGYO
Washington State University, Pullman, Washington

An algorithm and coding technique is presented for quick
evaluation of the Lehmer pseudo-random number generator
modulo 2 * * 31 - - 1, a prime Mersenne number which pro-
duces 2 * * 31 - - 2 numbers, on a p-bit (greater than 31)
computer. The computation method is extendible to limited
problems in modular arithmetic. Prime factorization for
2 * * 61 - - 2 and a primitive root for 2 * * 61 - - 1, the next
largest prime Mersenne number, are given for possible con-
struction of a pseudo-random number generator of increased
cycle length.

KEY WORDS AND PHRASES: pseudo-random number, random number,
modular arithmetic, uniform probability density, uniform frequency function,
simulation, prime factorizatlon, primitive roots

CR CATEGORIES:

Most pseudo-random number generators are of the type
suggested by Lehmer,

X,÷i --- KX~(mod m) (1)

where the modulus m is chosen as 2 p-~ for a p-bit-word
binary machine. Selection of this particular modulus avoids
the division necessary for general modular arithmetic,
thus speeding actual computation. Such a composite
modulus is unsatisfying from a number theory point of
view, however. The cycle length, which depends on the
starting point, cannot be greater than 2 p-3. Most of these
generators produce only odd numbers [1]. For example,
the multiplier K = 218 " t - 3, m = 2 p-1 and X0 odd, pro-
duces only half the odd digits. The particular half pro-
duced is determined by X0 •

If m is of the type q" or 2q ~, q nil odd prime, then K can
be selected to be a primitive root for the modulus. Lehmer
[2, 3] suggested K = 14 =9, m = 2 n -- 1 (a prime Mersenne
number), and 0 < Xo < 2 s~ -- 1. Fourteen was chosen be-

cause it is a primitive root modulo 231 - - 1 ; a multiplicative
group of order

231 - - 2 = 2 X 3 ~ X 7 X II X 31 X 151 X 331
= 2,147,483,646 (cycle length)

was generated. Raising 14 to the vth power where v is rela-
tively prime to the cycle length gives another primitive
root modulo 231 - 1. Choosing v = 29 introduces "random-
ness" into the number sequence.

We present an algorithm and coding technique for more
rapid evaluation of the Lehmer pseudo-random number
generator with limited extensions to modular arithmetic
problems. Begin with

or, by definition,

X . , ÷ i ~ K X , (m o d 2 p-l) (2)

X,+i = K X , - r2 p-1 (3)

for some r. Adding r to both sides of eq. (3) yields
!

X,+I = X,+I -'b r =- KX, (mod 2 p-1 -- 1) (4)

provided that X,+I "-b r < 2 p-1 - 1 (no overflow). If
X,+i q- r > 2 p-1 - 1 (overflow), then

!
X,+i --- X,+i "-b r "-b l (mod2"- l) , (5)

which leads directly to

X',+i ~ K X , (m o d 2 p-1 - 1). (6)

This method is extendible to any modulus m = 2 p-1 --t- d,

Xn+ i = KX n

2(p -- I) bits

I
Shift to isolate

r = Xn+l (high-order p -- I bits)

~ l o w

. E x i t ~ X:÷ ~ X'n+ , + ,(mad 2P-') l

FIG. I

V o l u m e 12 / N u m b e r 2 / F e b r u a r y , 1969 C o m m u n i c a t i o n s o f t h e ACM 85

but is efficient only if d is a power of two. A modified ver-
sion of this method was suggested by Lehmer for use on
ENIAC. However, it did not use the overflow feature

U~el -~ 23U,(mod 108 ~ 1 = 17 X 5,882,353),
Ui = 8 decimal digits.

The flowchart in Figure 1 illustrates the algorithm.
Evaluat ion of eq. (1) with m = 28z takes 8.65 usec; for

m = 23I -- 1, 12.40 ~sec (average) using this algorithm,
and 14.70 usee performing the division (IBM 360/67
instruction times). Additional time savings for the algo-
r i thm can be realized on a computer developing 2(p - 1)
product digits (even though p > 31) rather than the
2p -- 1 product digits developed on an IBM 360.

In coding this algorithm care must be taken when con-
verting the fixed-point results to floating-point No low
order zeros should be introduced, thereby biasing small
values when normalizing the result. A section of possible
coding for the floating-point pseudo-random number on an
IBM 360 is given in Figure 2.

RAND CSECT
L
ST

USING
L
M
SLGA
SRL
AR
BO

CONT ST
L. ,

ST
SR
SRDA

EXECUTION TIME USEC = NICRCSECCNDS. IBM 360167~
+ = TIME APPROXIMATE. US~C

CONTROL SECTION FOR FLOATING-POINT NUMBER.
1 , 0 [, l l GET ADDRESS OF NO (FORTRAN) IN REGISTPR I . 1.20
t ,241,13) STORE ADDRESS OF NO (FORTRAN) IN .93 X
SAVE AREA.
RANO~I5 ESTABLISH BASE REGISTER FOR NEW SECTION.
1,=F1630360016 I K=I4*~Zg=b303600Z6 M O D (2 * ~ 3 [- 1) . 1 . 2 0
O,XO K~X(N) 4 . 8 0
O,l ISOLATE HIGH ORDE R 31 BITS [R). 1.50
I,l ISOLATE LOW ORDER 31 BITS. SIGN + . l . l O
0,I X'IN÷L) = KSXiN) + R [LOW ORDER 3Z BITS). .65
OVF X' IN+I) OVERFLOW. *gO÷
O,XO Xm(N+L| REPLACES X(N). . 9 3
L~24(,13) GET AOORESS CF NO [FORTRAN) FPOM SAVE 1.20 X
AREA.
O ,O(, l I Xt(N+II IN NO [FORTRAN PROGRAM). .gO
1 ,1 ZERO LCW ORDER DOUBLEWORD. ~65
0,7 RAKE ROOM FOR MASK. 2.10

A
STM
SOR
AD

8R
OVF SLL

SRL
A
B"

XO UC
TEMP DS

LTORG

O,=X*400OOOO0' MASK IN FLOATING-POINT EXPONENT. 1 , 4 0
O t l t T E H p STORE UNNORMALIZFC ODUBLEHORP TEMPORARILY.1 .3~
O,O CLEAR LOW-CODER DqUBLF FLOATING-POINT REG. 1 . 7 2
OsTEMP PLACE N~RMALIZE9 DOURLEWORO FLOATING-POINT 2 . 4 5 X
NUMBER IN FLOATING-POINT REGISTER O.
L4 RFTURN TO FORTRAN. I . l O
0 , Z SIGN BIT +. .90
O~l SIGN BIT +. I . I O
O,=F ' I ' hqO L TO GET x t (N~I) + I . 1.40
CENT RETURN TO MAIN CODING TO FINISH. (.TO
F ' 5 2 4 2 8 7 ' STANDARD ,STARTING VALUE.
D TEMPORARY STORAGE CN ODUBLEWORD BOUNDARY FOR SPFEO,
FORCE LITERAL ASSEMBLY INTO THIS CONTBOL SECTION.
=~'630360016'
=X*4COOO00O'
=F,I*
AVERAGE EXECUTION TIME FOR RAND IS 28.34 USED, * * * * * * *

FiG. 2

Since it is possible to generate approximately 2,000,000
fixed-point pseudo-random numbers per minute on a
moderately fast (e.g. IBM 360/67) computer, a known
long cycle length is important. All numbers excluding 0
modulo 231 -- 1 appear in this sequence. Thus no obvious
degradation in the low order digits occurs, as when using
a generator with a composite modulus. Thus in choosing a
random integer, I , 1 < I < N, a standard in-line modu-
lar arithmetic subroutine can be entered with a fixed-
point pseudo-random number argument and one added to
the output. Faster yet the high order bits may be used by

multiplying the fixed-point value by N and adding one to
the high order 31 bits. Of course the problem of acciden-
tally choosing a starting value which leads to a short
sequence is entirely avoided.

The sequence of pseudo-random numbers modulo
23z - 1 passed a number of statistical tests. The uniformity
of the distribution was tested by dividing the interval 0
to 1 into 1024 subintervals and calculating a x 2 value with
1023 d.f. In the serial test the interval was subdivided into
32 subintervals and a 32 X 32 matrix was formed. The
cells represented the number of numbers in the i th interval
followed by a number in the j t h interval. Again a x 2 value
was used to test the uniformity of this distribution. The
frequency of length of runs was tested by the occurrence
of k -t- 1 consecutive numbers forming a monotonic in-
creasing (or decreasing) sequence which was broken by the
(k -Jr 2)-th number and was called a run of length k. Com-
paring the observed frequencies of lengths of run with ex-
pected values tha t can be calculated lends itself to a x 2
statistic to be used as a test of randomness. Besides these
tests, several million uniformly distributed pseudo-random
numbers were generated, and it was found that the mean
of these numbers was 1/2 and the variance was .0833, as
was expected.

The time required to evaluate this algorithm, the time
spent each year generating pseudo-random numbers at a
computer installation, and the advance knowledge of the
output of the Lehmer generator make this particular
method attractive.

The anticipated increase in computer speed and the fact
tha t the next prime Mersenne number is 261 -- 1 combine
to present an intriguing design and coding problem for a
pseudo-random number of cycle length

261 - - 2 = 2 X 32 X 52 X 7 X 11 X 13
X 31 X 4 1 X 61 X 1 5 1 X 331 X 1321

= 2,305,843,009,213,693,950.

This generator must, of course, be tested for "randomness"
using the primitive root of 37, some powers of which pro-
vide candidates for K (mod 28z -- 1).

Acknowledgment. Appreciation is expressed to D. H.
Lehmer for providing a primitive root for 2 ~I - 1.

RECEIVED AUGUST, 1968

REFERENCES

1. VAN GELDER, A. Some new results in pseudo-random number
generation. J. A C M 1~, 4(Oct. 1967), 785-792.

2. LEHMER, D . H . Random number generation on the BRL high-
speed computing machines, by M. L. Juncosa. Math. Rev. 15
(1954), 559.

3. TOCHER, K. The Ar t of Simulation. English U. Press, London,
1963.

4. Random number generation and testing. Form C20-8011, IBM,
1959.

86 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 12 / Number 2 / February , 1969

