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Coding Theorems for Individual Sequences
JACOB ZIV, FELLOW, IEEE

Abstract—A quantity called the finite-state complexity is assigned to
every infinite sequence of elements drawn from a finite set. This quantity
characterizes the largest compression ratio that can be achieved in accurate
transmission of the sequence by any finite-state encoder (and decoder).
Coding theorems and converses are derived for an individual sequence
without any probabilistic characterization, and universal data compression
algorithms are introduced that are asymptotically optimal for all sequences
over a given alphabet. The finite-state complexity of a sequence plays a
role similar to that of entropy in classical information theory (which deals
with probabilistic ensembles of sequences rather than an individual
sequence). For a probabilistic source, the expectation of the finite state
complexity of its sequences is equal to the source's entropy. The finite
state complexity is of particular interest when the source statistics are
unspecified.
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