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Abstract 

A common way to represent a time series is to divide it into short
duration blocks, each of which is then represented by a set of basis 
functions. A limitation of this approach, however, is that the tem
poral alignment of the basis functions with the underlying structure 
in the time series is arbitrary. We present an algorithm for encoding 
a time series that does not require blocking the data. The algorithm 
finds an efficient representation by inferring the best temporal po
sitions for functions in a kernel basis. These can have arbitrary 
temporal extent and are not constrained to be orthogonal. This 
allows the model to capture structure in the signal that may occur 
at arbitrary temporal positions and preserves the relative temporal 
structure of underlying events. The model is shown to be equivalent 
to a very sparse and highly over complete basis. Under this model, 
the mapping from the data to the representation is nonlinear, but 
can be computed efficiently. This form also allows the use of ex
isting methods for adapting the basis itself to data. This approach 
is applied to speech data and results in a shift invariant, spike-like 
representation that resembles coding in the cochlear nerve. 

1 Introduction 

Time series are often encoded by first dividing the signal into a sequence of blocks. 
The data within each block is then fit with a standard basis such as a Fourier or 
wavelet. This has a limitation that the components of the bases are arbitrarily 
aligned with respect to structure in the time series. Figure 1 shows a short segment 
of speech data and the boundaries of the blocks. Although the structure in the signal 
is largely periodic, each large oscillation appears in a different position within the 
blocks and is sometimes split across blocks. This problem is particularly present 
for acoustic events with sharp onset, such as plosives in speech. It also presents 
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difficulties for encoding the signal efficiently, because any basis that is adapted to 
the underlying structure must represent all possible phases. This can be somewhat 
circumvented by techniques such as windowing or averaging sliding blocks, but it 
would be more desirable if the representation were shift invariant. 

time 

Figure 1: Blocking results in arbitrary phase alignment the underlying structure. 

2 The Model 

Our goal is to model a signal by using a small set of kernel functions that can be 
placed at arbitrary time points. Ultimately, we want to find the minimal set of 
functions and time points that fit the signal within a given noise level. We expect 
this type of model to work well for signals composed of events whose onset can occur 
at arbitrary temporal positions. Examples of these include, musical instruments 
sounds with sharp attack or plosive sounds in speech. 

We assume time series x(t) is modeled by 

(1) 

where Ti indicates the temporal position of the ith kernel function, <Pm [i) , which is 

scaled by Si. The notation m[i] represents an index function that specifies which of 
the M kernel functions is present at time Ti. A single kernel function can occur at 
multiple times during the time series. Additive noise at time t is given by E(t). 

A more general way to express (1) is to assume that the kernel functions exist 
at all time points during the signal, and let the non-zero coefficients determine 
the positions of the kernel functions. In this case, the model can be expressed in 
convolutional form 

x(t) L / Sm(T)<Pm(t - T)dT + E(t) 
m 

(2) 

L sm(t) * <Pm(t) + E(t) , (3) 
m 

where Sm(T) is the coefficient at time T for kernel function <Pm. 

It is also helpful to express the model in matrix form using a discrete sampling of 
the continuous time series: 

x = As + E. (4) 
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The basis matrix, A, is defined by 

(5) 

where C(a) is an N-by-N circulant matrix parameterized by the vector a. This 
matrix is constructed by replicating the kernel functions at each sample position 

[ ~ aN-I a2 

al 1 al an a3 a2 

C(a) = 

aN-2 aN-3 ao aN-l 

aN-l aN-2 al ao 

(6) 

The kernels are zero padded to be of length N . The length of each kernel is typically 
much less than the length of the signal, making A very sparse. This can be viewed as 
a special case of a Toeplitz matrix. Note that the size of A is M N-by-N, and is thus 
an example of an overcomplete basis, i.e. a basis with more basis functions than 
dimensions in the data space (Simoncelli et al., 1992; Coifman and Wickerhauser, 
1992; Mallat and Zhang, 1993; Lewicki and Sejnowski, 1998) . 

3 A probabilistic formulation 

The optimal coefficient values for a signal are found by maximizing the posterior 
distribution 

s = argmaxP(slx,A) = argmaxP(xIA,s)P(s) 
8 8 

(7) 

where s is the most probable representation of the signal. Note that omission of the 
normalizing constant P(xIA) does not change the location of the maximum. This 
formulation of the problem offers the advantage that the model can fit more general 
types of distributions and naturally "denoises" the signal. Note that the mapping 
from x to s is nonlinear with non-zero additive noise and an overcomplete basis 
(Chen et al., 1996; Lewicki and Sejnowski, 1998). Optimizing (7) essentially selects 
out the subset of basis functions that best account for the data. 

To define a probabilistic model, we follow previous conventions for linear genera
tive models with additive noise (Cardoso, 1997; Lewicki and Sejnowski, 1998). We 
assume the noise, to, to have a Gaussian distribution which yields a data likelihood 
for a given representation of 

1 
logP(xIA,s) ex - 2u2(x - As)2. (8) 

The function P(s) describes the a priori distribution of the coefficients. Under the 
assumption that P(s) is sparse (highly -peaked around zero), maximizing (7) results 
in very few nonzero coefficients. A compact representation of s is to describe the 
values of the non-zero coefficients and their temporal positions 

M n", 

P(s) = II P(Um,Tm) = II II P(Um,i)P(Tm,i), (9) 
m m=l i=l 

where the prior for the non-zero coefficient values, Um,i, is assumed to be Laplacian, 
and the prior for the temporal positions (or intervals), Tm,i, is assumed to be a 
gamma distribution. 
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4 Finding the best encoding 

A difficult challenge presented by the proposed model is finding a computationally 
tractable method for fitting it to the data. The brute-force approach of generating 
the basis matrix A generates an intractable number basis functions for signals of 
any reasonable length, so we need to look for ways of making the optimization of 
(7) more efficient. The gradient of the log posterior is given by 

a 
as 10gP(sIA,x) oc AT(x - As) + z(s) , (10) 

where z(s) = (logP(s)),. A basic operation required is v = AT u. We saw that 
x = As can be computed efficiently using convolution (2). Because AT is also block 
circulant 

AT = [ C.(~.D 1 
C(¢'u ) 

(11) 

where ¢'(1 : N) = ¢(N : -1 : 1). Thus, terms involving AT can also be computed 
efficiently using convolution 

v = AT U = [ ¢1 (-~~ ~ u(t) 1 
¢M( -t) * u(t) 

(12) 

Obtaining an initial representation 

An alternative approach to optimizing (7) is to make use of the fact that if the 
kernel functions are short enough in length, direct multiplication is faster than 
convolution, and that, for this highly overcomplete basis, most of the coefficients 
will be zero after being fit to the data. The central problem in encoding the signal 
then is to determine which coefficients are non-zero, ideally finding a description of 
the time series with the minimal number of non-zero coefficients. This is equivalent 
to determining the best set of temporal positions for each of the kernel functions 
(1). 

A crucial step in this approach is to obtain a good initial estimate of the coefficients. 
One way to do this is to consider the projection of the signal onto each of the basis 
functions, i.e. AT x. This estimate will be exact (i.e. zero residual error) in the 
case of zero noise and A orthogonal. For the non-orthogonal, overcomplete case the 
solution will be approximate, but for certain choices of the basis matrix, an exact 
representation can still be obtained efficiently (Daubechies, 1990; Simoncelli et aI., 
1992). 

Figure 2 shows examples of convolving two different kernel functions with data. One 
disadvantage with this initial solution is that the coefficient functions s~(t) are not 
sparse. For example, even though the signal in figure 2a is composed of only three 
instances of the kernel function, the convolution is mostly non-zero. 

A simple procedure for obtaining a better initial estimate of the most probable 
coefficients is to select the time locations of the maxima (or extrema) in the convo
lutions. These are positions where the kernel functions capture the greatest amount 
of signal structure and where the optimal coefficients are likely to be non-zero. This 
generates a large number of positions, but their number can be reduced further by 
selecting only those that contribute significantly, i.e. where the average power is 
greater than some fraction of the noise level. From these, a basis for the entire signal 
is constructed by replicating the kernel functions at the appropriate time positions. 
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Figure 2: Convolution using the fast Fourier transform is an efficient way to select an 
initial solution for the temporal positions of the kernel functions. (a) The convolution of 
a sawtooth-shaped kernel function, ¢J(t), with a sawtooth waveform, x(t). (b) A single 
period sine-wave kernel function convolved with a speech segment. 

Once an initial estimate and basis are formed, the most probable coefficient val
ues are estimated using a modified conjugate gradient procedure. The size of the 
generated basis does not pose a problem for optimization, because it is has very 
few non-zero elements (the number of which is roughly constant per unit time). 
This arises because each column is non-zero only around the position of the kernel 
function, which is typically much shorter in duration than the data waveform. This 
structure affords the use of sparse matrix routines for all the key computations in 
the conjugate gradient routine. After the initial fit, there typically are a large num
ber of basis functions that give a very small contribution. These can be pruned 
to yield, after refitting, a more probable representation that has significantly fewer 
coefficients. 

5 Properties of the representation 

Figure 3 shows the results of fitting a segment of speech with a sine wave kernel. 
The 64 kernel functions were constructed using a single period of a sine function 
whose log frequencies were evenly distributed between 0 and Nyquist (4 kHz), which 
yielded kernel functions that were minimally correlated (they are not orthogonal 
because each has only one cycle and is zero elsewhere). The kernel function lengths 
varied between 2 and 64 samples. The plots show the positions of the non-zero 
coefficients superimposed on the waveform. The residual errors curves from the 
fitted waveforms are shown offset, below each waveform. The right axes indicate 
the kernel function number which increase with frequency. The dots show the 
starting position of the kernels with non-zero coefficients, with the dot size scaled 
according to the mean power contribution. This plot is essentially a time/frequency 
analysis, similar to a wavelet decomposition, but on a finer temporal scale. 

Figure 3a shows that the structure in the coefficients repeats for each oscillation in 
the waveform. Adding a delay leaves the relative temporal structure of the non
zero coefficients mostly unchanged (figure 3b). The small variations between the 
two sets of coefficients are due to variations in the fitting of the small-magnitude 
coefficients. Representing the signal in figure 3b with a standard complete basis 
would result in a very different representation. 
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Figure 3: Fitting a shift-invariant model to a segment of speech, x(t). Dots indicate 

positions of kernels (right axis) with size scaled by the mean power contribution. Fitting 

error is plotted below speech signal. 
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6 Discussion 

The model presented here can be viewed as an extension of the shiftable transforms 
of Simoncelli et al. (1992). One difference is that here no constraints are placed on 
the kernel functions. Furthermore, this model accounts for additive noise, which 
yields automatic signal denoising and provides sensible criteria for selecting signif
icant coefficients. An important unresolved issue is how well the algorithm works 
for increasingly non-orthogonal kernels. 

One interesting property of this representation is that it results in a spike-like rep
resentation. In the resulting set of non-zero coefficients, not only is their value im
portant for representing the signal, but also their relative temporal position, which 
indicate when an underlying event has occurred. This shares many properties with 
cochlear models. The model described here also has capacity to have an over com
plete representation at any given timepoint, e.g. a kernel basis with an arbitrarily 
large number of frequencies. These properties make this model potentially useful 
for binaural signal processing applications. 

The effectiveness of this method for efficient coding remains to be proved. A trivial 
example of a shift-invariant basis is a delta-function model. For a model to encode 
information efficiently, the representation should be non-redundant. Each basis 
function should "grab" as much structure in the data as possible and achieve the 
same level of coding efficiency for arbitrary shifts of the data. The matrix form 
of the model (4) suggests that it is possible to achieve this optimum by adapting 
the kernel functions themselves using the methods of Lewicki and Sejnowski (1998). 
Initial results suggest that this approach is promising. Beyond this, it is evident that 
modeling the higher-order structure in the coefficients themselves will be necessary 
both to achieve an efficient representation and to capture structure that is relevant 
to such tasks as speech recognition or auditory stream segmentation. These results 
are a step toward these goals. 
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