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Abstract 25 

Codon bias has been implicated as one of the major factors contributing to mRNA stability in several 26 

model organisms. However, the molecular mechanisms of codon-bias on mRNA stability remain 27 

unclear in humans. Here we show that human cells possess a mechanism to modulate RNA stability 28 

through a unique codon bias. Bioinformatics analysis showed that codons could be clustered into two 29 

distinct groups – codons with G or C at the third base position (GC3) and codons with either A or T at 30 

the third base position (AT3); the former stabilizing while the latter destabilizing mRNA. Quantification 31 

of codon bias showed that increased GC3 content entails proportionately higher GC content. Through 32 

bioinformatics, ribosome profiling and in vitro analysis, we show that decoupling the effects of codon 33 

bias reveals two modes of mRNA regulation, one GC3- and one GC-content dependent. Employing 34 

an immunoprecipitation-based strategy, we identify ILF2 and ILF3 as RNA binding proteins that 35 

differentially regulate global mRNA abundances based on codon bias. Our results demonstrate that  36 

codon bias is a two-pronged system that governs mRNA abundance. 37 

 38 
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Introduction 39 

Messenger RNA (mRNA) regulation represents an essential part of regulating a myriad of 40 

physiological processes in cells, being indicated in the maintenance of cellular homeostasis to 41 

immune responses [1–3]. In addition to transcription regulation, post-transcriptional regulation of 42 

mRNA stability is vital to the fine-tuning of mRNA abundance. To date, several mRNA-intrinsic 43 

properties, often in 5′ or 3′ untranslated regions (UTR), have been shown to affect mRNA stability [4,5]. 44 

Due to the recent advances in technology, the contribution of mRNA stability to gene expression has 45 

been suggested [6]. However, the regulation of mRNA stability, which is possibly governed by mRNA 46 

intrinsic features, has not been fully elucidated. 47 

One of the most crucial mRNA-intrinsic features is codon bias. To scrutinize this bias in usage of 48 

redundant codons, several metrics to measure how efficiently codons are decoded by ribosomes 49 

(codon optimality) have been proposed. In a classical metric called the codon Adaptation Index (cAI), 50 

gene optimality is calculated by comparison between codon usage bias of a target gene and 51 

reference genes which are highly expressed [7,8]. Another index termed the tRNA Adaption Index 52 

(tAI) gauges how efficiently tRNA is utilized by the translating ribosome [9,10]. More recently, the 53 

normalized translation efficiency (nTE), which takes into consideration not only the availability of tRNA 54 

but also demand, was also proposed [11]. In addition to these, there are estimators of codon 55 

ribosome translation speed [12] as well as calculators of species-specific tAI [13]. 56 

Recently, Presnyak and colleagues showed that mRNA half-lives are correlated with optimal codon 57 

content based on a metric, the Codon Stabilization Coefficient (CSC) which was calculated from the 58 

correlations between the codon frequencies in mRNAs and stabilities of mRNAs. Additionally, they 59 

showed that the substitutions of codons with their synonymous optimal and non-optimal counterparts 60 

resulted in significant increases and decreases in mRNA stability in yeast [14]. This effect was 61 

brought by an RNA binding protein (RBP) Dhh1p (mammalian ortholog DDX6), which senses 62 

ribosome elongation speed [14–16]. In yeast, these differences in ribosome elongation speed in turn 63 

are influenced by tRNA availability and demand [11,17,18]. Taken together, codons can be 64 

designated into optimal and non-optimal categories; the former hypothesized to be decoded efficiently 65 

and accurately [19,20] while the latter slow ribosome elongation resulting in decreased mRNA stability 66 

[14–16]. It is also important to make the distinction that common and rare codons do not necessarily 67 

imply optimal and non-optimal codons. 68 

At present, codon optimality-mediated decay has been extensively studied and established 69 

particularly in Saccharomyces cerevisiae as well as other model organisms such as 70 

Schizosaccharomyces pombe, Drosophila melanogaster, Danio rerio,  Escherichia coli, Trypanosoma 71 

brucei and Neurospora crassa [21–27]. At present, the molecular mechanisms of this system of codon 72 

optimality in humans are under intense scrutiny [28,29]. 73 

In this study, we show that codon bias-mediated decay exists in humans. Principal component 74 

analysis (PCA) showed that codons could be clustered into two distinct groups; codons with A or T at 75 

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



 

 

the third base position (AT3) and codons with either G or C at the third base position (GC3). This 76 

clustering was associated with mRNA half-lives enabling us to determine GC3 and AT3 codons as 77 

stabilizing and non-stabilizing codons respectively. In this regard, the increased usage of GC3 codons 78 

entails an inevitable increase GC-content. We then developed an algorithm to quantify the codon bias 79 

of GC3 codons. With ribosome profiling, we show that codon bias-derived occupancy scores agreed 80 

with ribosome occupancy. Additionally, bioinformatics analysis revealed that frameshifts abrogate this 81 

GC3-AT3 delineation. We then verified our results in vitro using optimized and de-optimized reporter 82 

constructs. Here we propose that GC3 codons and AT3 codons are optimized and de-optimized 83 

codons respectively. Importantly, frameshifted optimized transcripts retain a certain level of stability 84 

suggesting that overall the overall GC content of transcripts is an additional determinant of stability. 85 

Finally, employing a ribonucleoprotein immunoprecipitation strategy, we identified RNA binding 86 

proteins which were bound to transcripts with low or high GC3-content. We propose that interleukin 87 

enhancer-binding factor 2 (ILF2) mediates mRNA stability of transcripts via codon bias. 88 

Results 89 

Codons in Homo sapiens can be categorized into GC3 and AT3 codons 90 

To examine whether a system of codon bias exists in human, we first compared codon frequencies in 91 

Homo sapiens and other model organisms. Hierarchical clustering analysis of codon frequency data 92 

obtained from Ensembl database [30] showed a difference between lower eukaryotes such as 93 

Saccharomyces cerevisiae and Caenorhabditis elegans, and higher eukaryotes such as Homo 94 

sapiens and Mus musculus (Fig 1A). To investigate codon bias in humans, we downloaded human 95 

coding sequence (CDS) data from the Ensembl Biomart database and calculated the codon counts 96 

for each coding sequence. For each CDS, we calculated the codon frequencies by expressed the 97 

codon counts as a fraction of the total number of codons in the CDS. We then performed a principal 98 

component analysis (PCA) on the CDS codon frequencies. The first principal component (PC1) of the 99 

PCA which accounted for 22.85% of the total variance, divided codons into two clusters: codons with 100 

either G or C at the third base position (GC3) and codons with either A or T at the third base position 101 

(AT3) (Fig 1B). Interestingly, the division within the second principal component (PC2) appeared to 102 

be split along the number of G/C or A/T bases in codons. We repeated our analysis on the CDS 103 

sequences from S. cerevisiae and found no such clustering (Fig EV1A). However, we discovered that 104 

the factor loading scores of the codons along the first principal component of our analysis in yeast 105 

corresponded to the CSC metric [14], albeit differences in the order (Fig EV1B). The above-106 

mentioned results therefore raised the possibility that the PCA method might have identified optimal 107 

and non-optimal codons; GC3 and AT3 codons in humans may have a valid effect on mRNA stability. 108 

To investigate the agreement between the PCA method and CSC in humans, we calculated the CSC 109 

scores in humans using published datasets of global mRNA decay rates in physiologically growing 110 

HEK293 cells (GSE69153) [Data ref: 31,32] and compared them to the PC1 factor loading scores of 111 

the codons (Fig EV1C). We observed a correlation of R2 = 0.58 between the two outputs indicating a 112 

moderately strong agreement despite the methodologies being different. 113 
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We then tested the link between mRNA stability and GC3-AT3 codons using the above-mentioned 114 

mRNA stability data (GSE69153) [Data ref: 31,32]. Briefly, we divided the transcripts equally into 115 

quartiles based on their half-lives and averaged the codon frequencies within the quartiles. Strikingly, 116 

genes with short half-lives were associated with AT3 codons while genes with longer half-lives were 117 

associated with GC3 codons (Fig 1C), suggesting a connection between third base of codons and the 118 

stability of mRNAs. 119 

Broadly, the codon bias in mRNA can predict the stability of the mRNA. Classification by GC3-content 120 

might potentially implicate GC-content as a factor which might affect the stability of mRNA. By 121 

summing the GC3 frequencies and GC bases of CDS sequences, we could determine the GC3- and 122 

GC- content of a gene (Dataset EV1). We then visualized the genome-wide GC3 and GC landscape 123 

by plotting the corresponding values via a histogram (Figure 1D). GC3-content was represented as a 124 

bimodal distribution with a range of values from the minimum of 24.1% to the maximum of 100% while 125 

GC-content appeared similarly as a bimodal distribution with a range of values from a minimum of 126 

27.6% to the maximum of 79.7%. A Pearson correlation analysis (R2 = 0.869) between gene GC-127 

content and GC3-content (Fig EV1D) reflected an enrichment of GC-content with increased GC3-128 

content. Indeed, higher GC3-content was generally associated with better stability (Fig 1E top and 129 

Fig EV1E). To further verify the impact of GC3-content on mRNA stability, we plot the GC3-content 130 

data in Fig 1E (top) in the form of cumulative distribution functions and found these distributions to be 131 

significantly different from the genome average (Fig EV1F). As with our analysis with GC3-content, 132 

we grouped the half-life data by GC-content (Fig 1E, bottom) and observed a similar increase in half-133 

lives even with the GC-content grouping. Interestingly, we also noted a decrease in half-life beyond a 134 

GC-content of 60%; this decrease also coinciding with the decrease in half-lives in the GC3-content 135 

grouping (Fig EV1D). While we are currently unable to explain the associated decrease in both plots 136 

at extreme GC3- and GC- content, it would be interesting to investigate this particular drop-off in 137 

stability in the future. 138 

Additionally, we noted that the codon bias per se was different between yeast and humans (Fig 1B 139 

and Fig EV1A) [14]. We also observed this difference in Xenopus, zebrafish as well as Drosophila, 140 

when compared to humans [24,33]. We repeated our analysis, this time grouping the half-life dataset 141 

by their respective cAI (Fig EV1G). With the cAI dataset, we were able to observe increased half-life 142 

with an associated increased in cAI albeit only from the range of 0.75-0.95. In contrast, the PCA-143 

derived GC3-content method was better able to recapitulate this increase in half-life compared to the 144 

cAI metric. Taken together, our analysis allowed us to designate GC3 and AT3 codons as stabilizing 145 

and destabilizing codons respectively. Additionally, high GC3 content in transcripts inevitably results 146 

in high GC-content, which is a feature of stable mRNAs. 147 

We then asked about the biological relevance associated with codon bias. Taking the 5% of lowest 148 

and highest ranked genes into account, we observed that genes with high GC3-content were enriched 149 

in developmental processes while genes with low GC3-content were enriched in cellular division 150 

processes (Fig EV1H and I), suggesting the importance of codon bias-mediated mRNA decay across 151 

dynamic cellular processes in humans. 152 
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GC3-AT3 codon bias can explain ribosome occupancy to a certain extent 153 

Given that GC3-AT3 codons were associated with high and low stability respectively, we wondered if 154 

these two groups were synonymous with optimal and non-optimal codons. It has been proposed that 155 

slower ribosome elongation rate modulated by low codon optimality affects the stability of mRNAs in 156 

yeast [14]. This led us to examine whether decelerated ribosomes could be observed especially in 157 

regions where optimality was low. From the PCA, PC1 factor loadings of the codons were indicative of 158 

how much a particular codon contributed to the AT3-GC3 grouping i.e. instability-stability (Fig EV2A). 159 

Therefore as a measure of estimating ribosome occupancy, the factor loading scores of the codons 160 

from the first principal component were utilized to derive codon bias-derived occupancy scores (refer 161 

to materials and methods for details on the calculation of scores). Because we speculated that a 162 

single codon would be insufficient in eliciting any noticeable effects on the speed of the ribosome, we 163 

divided each CDS into 25 bins from start codon to stop codon and summed up the codon bias-derived 164 

occupancy scores. We then compared these scores with corresponding ribosome occupancies 165 

derived from ribosome profiling [34]. Ribosome occupancy obtained from HEK293 cells growing under 166 

physiological conditions generally coincided with codon bias-derived occupancy (Fig 2A). These 167 

measurements were highly reproducible between replicates of ribosome profiling experiments across 168 

the transcriptome (R2 = 0.750, 16,423 transcripts) (Fig EV2B). We observed a significantly better 169 

prediction of ribosome occupancy by codon bias-derived occupancy scores than that derived from 170 

scrambled codon bias-derived occupancy scores (Fig 2B). Unfortunately, at the individual codon level, 171 

we only observed a weak but positive correlation (R2 = 0.13) between ribosome occupancy and 172 

codon-bias derived scores (Fig EV2C). We believe that this difference in both calculations can be 173 

attributed to the binning of the ribosome occupancy data which ensures that any reasonable slowing 174 

of ribosomes in regions of low optimality could be accurately manifested. Indeed, representative 175 

transcripts showed a good correlation between our binned codon bias-derived occupancy scores and 176 

ribosome occupancy as exemplified by EIF2B2, DYNC1LI2, and IDH3G transcripts (Fig EV2D). 177 

Although translation elongation and initiation are distinct steps, previous literature has suggested that 178 

optimal codons are also enriched in mRNAs with high translation [35]. Ribosome footprint reads 179 

normalized by mRNA abundances from RNA-Seq enables the calculation of translation efficiency 180 

which in turn is also generally regarded as the translation initiation rate [36]. Therefore, to establish 181 

the link between translation status and codon bias, we calculated the translation efficiency (TE)—182 

ribosome footprints normalized by mRNA abundance. Indeed, our results showed that mRNAs with 183 

high GC3-content generally possessed high TE (Fig 2C). This phenomena also coincides with known 184 

research in zebrafish and yeast in that optimal genes generally have high TE [33,37]. To exclude the 185 

effect of mRNA abundances on TE, we grouped mRNA of similar abundances into separate groups 186 

and repeated our analysis (Fig EV2E). Within these groups, we still observed a general increase in 187 

TE within each of the groups, albeit a decrease in TE at a GC-content of 70 – 80% across all ranges 188 

of mRNA abundances (similar to Fig 2C). 189 

To verify if GC3 and AT3 codons were indeed associated with stability and instability respectively, we 190 

performed PCA on +1 and -1 frameshifted CDS sequences genome-wide and show that the GC3-AT3 191 
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demarcation was abolished (Fig 2D and E). Interestingly, we found that GC-rich (two or three G/C 192 

bases) and AT-rich (two or three A/T bases) codons contributed strongly to PC1 of the frameshifted 193 

data showing that GC/AT content is a natural consequence GC3-AT3 usage (Fig 1D and Fig EV1D).  194 

Thus far, we show that GC3 and AT3 codons are associated with mRNA stability, ribosome 195 

translation speed and efficiency therefore suggesting that the former and latter can be designated into 196 

optimal and non-optimal codons respectively. 197 

Codon bias affects mRNA stability 198 

We then experimentally validated our bioinformatics observations of GC3 and AT3 codons in human 199 

cells. We developed a scheme based on the PC1 factor loadings in which we previously utilized in our 200 

ribosome profiling analysis (Fig EV2A). Based on this scheme, codons could be optimized and de-201 

optimized with regard to GC3 content within their codon boxes i.e. synonymous substitutions (Fig 202 

EV3A). Single box codons such as TGG (Trp) and ATG (Met) would remain unchanged. We 203 

synthesized two independent genes (REL and IL6) with differential GC3-content (Fig EV3B, Dataset 204 

EV2) and examined the stability of these reporter RNA in HEK293 cells utilizing the Tet-off system 205 

(Fig 3A). As expected, the optimized transcripts of REL and IL6 were more stable than their wild-type 206 

counterparts. Additionally, the decay rate of the de-optimized IL6 reporter was faster, confirming that 207 

low GC3-content transcripts were unstable. 208 

In addition to the RNA stability, higher GC3-content was also associated with higher translation 209 

efficiency (Fig 2C), thereby increasing protein production. Indeed, the protein abundance of the 210 

optimized REL reporter was higher than REL-WT even after normalization of protein abundance by 211 

steady state mRNA levels (Fig 3B, Fig EV3C). Using enzyme-linked immunosorbent assay (ELISA), 212 

we observed that expression of IL6-OPT resulted in a 1.5-fold and 2-fold significantly higher level of 213 

IL6 compared to its WT and IL6-DE, respectively (Fig 3C). In a similar fashion, normalization of IL6 214 

protein abundance by mRNA levels revealed that translation efficiency of the optimized IL6 reporter 215 

was higher than its WT and de-optimized reporter counterparts (Fig EV3D). We tested our REL 216 

reporters in HeLa cells and show that the high protein abundance of REL-OPT could also be 217 

observed (Fig EV3E). Similarly, actinomycin-based stability measurements of the REL reporters in 218 

HeLa cells revealed a similar increase in mRNA stability in the REL-OPT transcript (Fig EV3F). 219 

Moreover, polysome fractionation and subsequent qPCR analysis revealed that within the polysome 220 

fractions, REL-OPT transcript amounts were proportionately higher than REL-WT transcripts, 221 

suggesting that REL-OPT was translated more efficiently than REL-WT (Fig 3D). Thus far, our results 222 

validate the bioinformatics analyses and show that GC3 and AT3 codons can be designated as 223 

optimal and non-optimal codons.  224 

GC-content as an additional determinant of stability  225 

We then hypothesized that if the effect on mRNA stability was entirely the result of translational 226 

elongation, blocking translational elongation would restore stability to transcripts possessing low 227 

optimality to levels similar to that of their high optimality counterparts. We therefore treated cells 228 
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expressing the REL reporters with a translation inhibitor, cycloheximide (CHX), and assayed the 229 

mRNA decay rates via the Tet-off system (Fig 4A). Treatment with CHX improved the stability of both 230 

REL-OPT and REL-WT transcripts compared to the control group. Interestingly, the stability of CHX-231 

treated REL-WT transcripts was still significantly lower than that of CHX-treated REL-OPT transcripts. 232 

We repeated our experiments using the IL6 reporters and found that in a similar fashion, CHX-treated 233 

IL6-DE transcripts were stabilized, albeit, not to the same extent as CHX-treated IL6-OPT (Fig 4B). 234 

Following this, we repeated our experiments using a different translation inhibitor, anisomycin (ANI) 235 

and obtained similar results (Fig 4C and D), suggesting that a translation-independent mRNA 236 

degradation pathway could also be present. It should be noted that an important caveat to the use of 237 

global translation inhibitors, CHX in particular, is that they have been reported to potentially distort 238 

mRNA level measurements as well as translation efficiency [38–40].  239 

We then synthesized a +1 frameshifted version of the REL-OPT transcript, removing any potential 240 

stop codons which would have resulted in premature termination of transcription and measured its 241 

stability via the Tet-off system (Fig 4E). This frameshifted version, while retaining a high GC-content 242 

(similar to REL-OPT), possessed a lower GC3-content, than its in-frame counterpart (Fig EV3B). 243 

Surprisingly, the frameshifted version, was still more stable than the WT form, yet less stable 244 

compared to its in-frame optimized counterpart, suggesting that high GC / low AU-content was able to 245 

retain a significant amount of transcript stability. To verify our findings, we similarly synthesized a +1 246 

frameshifted version of the IL6-OPT transcript which had a high GC-content (similar to IL6-OPT) but a 247 

GC3-content of 39.15%; the GC3-content falling between its WT and DE counterparts (Fig EV3B). 248 

This frameshifted version of IL6 was relatively more stable compared to the DE transcript (Fig 4F). 249 

Taken together, our results reinforce the notion that in addition to GC3-content, GC-content could be 250 

an additional determinant of stability. Taken together, our results show that codon bias encompasses 251 

two modes of mRNA regulation, GC3- and GC-content dependent. 252 

RNA binding proteins differentially bind to transcripts of varying degrees of codon bias 253 

Having shown that high optimality content inevitably accords high GC-content which in turn promotes 254 

mRNA stability, we wondered if there were RNA binding proteins (RBPs) which scrutinize, 255 

discriminate or even affect an mRNA’s fate. To identify RBPs which were either bound to transcripts 256 

bearing high or low optimality, we performed a ribonucleoprotein immunoprecipitation-based 257 

approach termed ISRIM (In vitro Specificity based RNA Regulatory protein Identification Method) [41]. 258 

Lysates of HEK293 cells were mixed with FLAG peptide-conjugated REL and IL6 transcripts of high 259 

and low optimality and their interacting proteins were determined using mass spectrometry. We then 260 

calculated the fold changes based on the abundance of RBPs bound to REL-WT with respect to REL-261 

OPT (Fig 5A).  262 

As IL6 transcripts possessed three levels of GC3-content (OPT, WT, DE), we defined high GC3-263 

content binding RBPs based on the RBP enrichment of IL6-DE to IL6-WT (Fig 5B) as well as IL6-WT 264 

compared to IL6-OPT (Fig 5C). Similarly, we defined low GC3-content binding RBPs based on the 265 

RBP enrichment of IL6-DE compared to IL6-WT (Fig 5B) as well as IL6-WT to IL6-OPT (Fig 5C). By 266 
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selecting common RBPs belonging to each group, we defined a set of RBPs which bound 267 

differentially to high GC3 and low GC3 IL6 transcripts respectively (Fig EV4A) We then selected RBP 268 

candidates which were specifically enriched with either low or high GC3 transcripts common to both 269 

REL and IL6 ISRIM experiments (Fig EV4B, Dataset EV3). In all, we show that RBPs can 270 

differentiate between transcripts of high GC3- and low GC3- content. 271 

ILF2 regulates the stability of low GC3 / high AT3 transcripts 272 

We investigated the role of RBPs in modulating the stability of transcripts with different codon bias. Of 273 

interest were ILF2 and ILF3, RPBs identified from the list of RBPs interacting exclusively with low 274 

optimality transcripts. ILF2 and ILF3, also known as NF45 and NF90/NF110, respectively, are well 275 

known to function dominantly as heterodimers which bind double stranded RNA. ILF3 has been 276 

extensively studied, having shown to bind to AU-rich sequences in 3′ UTR of target RNA to repress its 277 

translation [42]. We hypothesize that the binding of ILF2 and ILF3 as a heterodimer to their targets 278 

occur as low optimality transcripts are inadvertently AU-rich. Here we focused on the effects of these 279 

RBPs on low optimality transcripts. Firstly, using published RIP-seq data of ILF2 in two multiple 280 

myeloma cell lines, H929 and JJN3, we observed that ILF2, interacts with low optimality transcripts 281 

(Fig EV5A) [Data ref: 43,44]. Additionally, we analysed RNA-Seq data obtained from the ENCODE 282 

project of K562 cells treated by CRISPR interference targeting ILF2 [Data ref: 45]. Strikingly, we 283 

observed that transcripts that possessed low optimality scores were upregulated whereas transcripts 284 

that possessed high optimality scores were downregulated (Fig 6A, Fig EV5B). The abundance 285 

changes of representative mRNAs by ILF2 knockdown were antiparallel to their GC3-content (Fig 286 

EV5C).  287 

However, differences in mRNA levels do not necessarily imply a difference in mRNA stability. To 288 

confirm if mRNA stability was indeed affected, we examined the stability of FLAG-tagged versions of 289 

REL-OPT and REL-WT in the Tet-off system after ILF2 and ILF3 knockdown via siRNA (Fig 6B-C). 290 

Interestingly, we observed that the optimized reporter was more unstable under the knockdown of 291 

both ILF2 and ILF3 whereas the WT reporter was more stable with the knockdown of ILF2 and a 292 

combination of both ILF2 and ILF3 knockdown. In agreement with this, we found a significant increase 293 

in protein levels of REL-WT when cells were treated with ILF2- and ILF3-targeting siRNA (Fig 6D and 294 

Fig EV5D). However, despite seeing a decrease in stability of the GC3-optimized reporter under both 295 

ILF2 and ILF3 knockdown, we were unable to observe this change at the protein level. Focusing our 296 

attention on ILF2, we expressed FLAG-tagged versions of REL-OPT and REL-WT, along with the two 297 

isoforms of ILF2 and detected the reporter protein levels via western blot. A significant decrease in 298 

band intensity was observed for the REL-WT bands when both isoforms of ILF2 were expressed, 299 

whereas the amount of REL-OPT was not changed (Fig 6E and Fig EV5E). Taken together, our 300 

results suggest that ILF2 and ILF3 affect mRNA transcripts with low GC3-content (and inadvertently 301 

low GC-content) to induce their decay. 302 

Next, we sought to identify possible motifs which are enriched in ILF2/3 targets. Based on the RIP-303 

seq data in JJN3 and H929 [Data ref: 43,44], we identified common transcripts which were more than 304 
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5-fold differentially upregulated and subjected their cDNA sequences to de novo motif identification 305 

via the MEME (Multiple EM for Motif Elicitation) software [46]. Our analysis identified AU-rich motifs of 306 

about 6-7nt long (Fig EV5F) as well as their distributions mainly in the CDS and 3’UTR along target 307 

transcripts. It should be noted that that these motifs are enriched in mRNA targets, and may not 308 

necessarily imply bona fide binding motifs of ILF2/3. Therefore, we performed an additional motif 309 

search on a recently identified and experimentally validated ILF3 motif from RNA Bind-n-seq 310 

experiments by Dotu and colleagues [47] and found a similar distribution of motifs in the CDS and 311 

3’UTR of targets (Fig EV5F). 312 

Discussion 313 

This study provides a framework describing codon bias-mediated RNA decay in humans. We first 314 

show that GC3 codons are associated with stability and AT3 codons with instability. We quantified 315 

codon bias by calculating the GC3 content within the CDS of genes and showed that GC3-content is 316 

strongly correlated with RNA stability and amount of protein expressed. In general, the use of optimal 317 

GC3 codons correlated with higher GC-content at a genome-wide level. We then show a modest 318 

agreement between codon bias-derived scores and ribosome occupancy as determined by ribosome 319 

profiling. Using GC3-optimized and de-optimized reporters we validate our bioinformatics 320 

observations in vitro. Screening of RNA binding proteins and further in vitro analysis suggests a role 321 

of ILF2, possibly in complex with ILF3, in the codon-mediated regulation of mRNA. Taken together, 322 

we conclude that gene expression can be shaped by codon bias and inevitably by GC/AU-content 323 

through the modulation of mRNA stability in human cells. 324 

Investigating the System of Codon Bias in Humans 325 

Since translation elongation is affected by tRNA availability, the tRNA adaptation index (tAI), which is 326 

based on genomic tRNA copy number, has been used as a surrogate for codon optimality. However, 327 

in contrast to yeast, tRNA copy number in the genome is not always correlated with tRNA abundance 328 

in higher eukaryotes [48]. Hence, this metric is less suitable for quantifying codon optimality in 329 

humans. Independent of tRNA-based metrics, we addressed these challenges by utilizing an 330 

unsupervised learning algorithm, PCA, to identify features in that were mRNA-intrinsic. In the PCA of 331 

both yeast and humans, we demonstrated that the first principal component mirrored optimal/non-332 

optimal assignments. We also show that the codon bias is different between these two organisms 333 

(Fig 1B, Fig EV1A). In humans, the classification of codons into AT3 and GC3 groups was striking, 334 

but the percentage by which it accounts for its variation however was modest.  335 

From the PCA, the first and second principal components only explain a quarter of total variance in 336 

codon frequencies (Fig 1B), implying that other factors that explain bias of codon frequency possibly 337 

remains in human cells. The limitation of this method is reflected in the use of codon frequencies as 338 

our input data for the PCA. This approach might have neglected other factors of stability or instability 339 

which might be codon-independent or which might be inherent at the nucleotide level. Assuming that 340 

evolution drives the selection of codons, synonymous codon usage in different organisms must be 341 
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fine-tuned over time to achieve precise expression levels of mRNA and eventually proteins in 342 

essential physiological process. Indeed, similar to our findings, a study by Bazzini et al. showed that a 343 

system of codon optimality is conserved among vertebrates, Xenopus and Zebrafish [33]. In addition, 344 

they demonstrated that in Zebrafish embryos, low codon optimality was associated with shorter 345 

poly(A) tail length in addition to lower levels of translation. Our data together with recently published 346 

work by Wu and colleagues [28] indicates that a system of codon optimality exists in humans.  347 

Our investigations show that high GC3/AT3-content or GC/AT-content in mRNA is selected for to 348 

modulate transcript stability in essential physiological processes, but is subject to constraints by 349 

amino sequence. Indeed, we show that transcripts with high and low GC3-content were linked to 350 

particular physiological and cellular processes (Fig EV1H and I). In a particular study, Gingold and 351 

colleagues argue that tRNA abundances vary in proliferating and differentiating cell types [49]. 352 

Interestingly, they showed that codons preferred by cell cycling genes were AT3 codons while 353 

pattern-specification preferred codons tended to be GC3 codons—in agreement with our GO 354 

analyses. In Drosophila, the correlation between codon optimality and mRNA stability has been 355 

demonstrated to be attenuated in neural development, possibly allowing the effect of trans-acting 356 

factors to dominate development [24].  357 

Our results show that the codon bias we have identified affects ribosome occupancy to a significant 358 

but limited extent (Fig 2B). At the level of individual codon occupancies, we only observed a weak but 359 

positive correlation (R2 = 0.13) between ribosome occupancy and codon-optimality derived scores 360 

(Fig EV2C). These results however are not surprising given that studies based on ribosome profiling 361 

data found no correlations between ribosome occupancy and rare codons [50,51]. In view of this we 362 

binned the CDS into 25 evenly spaced groups to ensure that any reasonable slowing of ribosomes in 363 

regions of low optimality could be accurately represented by the GC3-AT3 bias. However, we 364 

acknowledge that our matric is only able to demonstrate a prediction to a limited extent. There are 365 

many factors can affect ribosome profiling results such as growth conditions, coverage, cloning and 366 

sequencing biases, methods of bioinformatic analysis, as well as experimental noise [18,52,53]. 367 

Taking into account our in vitro experiment results together with the ribosomal profiling results, we 368 

suggest that GC3 and AT3 codons are synonymous with optimal and non-optimal codons. 369 

Additionally, our study along with others’ suggests that slower elongation of ribosome is a key feature 370 

of mRNA stability. However, it should be noted that in our analysis methodology, the assumption that 371 

stability is solely a function of ribosome speed might only hold true to a limited extent. There is 372 

evidence to show that mRNA intrinsic features which have the propensity to regulate ribosome 373 

velocity are essential in maintaining the function and correct expression of proteins, the failure of 374 

which may result in degradation of the mRNA and protein: Although codon optimality is a dominant 375 

factor in general, other factors may also be involved in decelerated ribosomes, such as secondary 376 

structures [54,55]. These obstacles for ribosome elongation are reversible and dynamically regulated 377 

by RNA helicases [56,57]. Importantly, these structures may serve to reduce ribosome speed when 378 

the nascent peptide requires additional time to fold to its correct conformation [58]. Furthermore, it has 379 
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been shown in Neurospora that codon usage can regulate co-translational protein folding and 380 

subsequently, its function [59]. 381 

As such, while we have shown that the optimizations of transcripts leads to increases in protein 382 

production, further studies are required to investigate protein folding dynamics and determine if the 383 

produced protein still retains its functionality. Furthermore, in a study of two model organisms, E. coli 384 

and S. cerevisiae by Tuller et. al., the rate of translation elongation was shown to be determined by 385 

the folding energy, codon bias and amino acid charge of at the beginning of the CDS [60]. It is likely 386 

that these factors may also affect the local speed of the ribosome further down the CDS, and by 387 

extension, the stability of the mRNA. Further studies will be required to elucidate the role of RNA 388 

secondary structures and helicases and their relevance to codon bias, protein folding and mRNA 389 

stability decay. 390 

In attempts to quantify the effect of ribosomal density on mRNA stability, several studies have 391 

demonstrated that in general, increased ribosomal density results in increased mRNA stability of a 392 

transcript [61,62]. This phenomenon has been attributed to competition between the initiation complex 393 

and decay factors as well as ribosomes sterically excluding decay factors from accessing the mRNA 394 

[63,64]. To this effect, reduction in translation initiation has been shown to decrease ribosomal density 395 

and subsequently, mRNA stability [65]. On the other hand, inhibiting translation elongation causes an 396 

increase in ribosome density and consequently, mRNA stability [66]. Here we show that optimized 397 

transcripts are highly polysome bound as opposed to their WT counterparts suggesting increased 398 

rates of translation initiation (Fig 3D). This is corroborated by our ribosome profiling findings that high 399 

GC3-containing transcripts have higher TE (Fig 2C), possibly protecting transcripts from decay factors.  400 

In this regard, transcripts with high optimality have higher translation initiation rates, causing them to 401 

be highly polysome bound. Additionally, optimized codons allow for efficient decoding and thus, 402 

smoother ribosome traffic. On the other hand, transcripts with low optimality tend to be less polysome 403 

bound with frequent ribosome deceleration and/or stalling. Our ribosome profiling analyses in Fig 2B 404 

however, is tailored to comparing the relative ribosome densities (in bins) within an individual 405 

transcript, against the codon bias-optimality scores. While we show relative accumulation of 406 

ribosomes in low optimality regions locally within a transcript, this particular analysis can neither be 407 

extended to comparing total ribosome densities across the transcriptome nor compared to the 408 

polysome profiling results.  409 

Interestingly, in a separate study in Neurospora, gene expression modulated by codon usage was 410 

shown to be due to the effects of transcription rather than translation [67]. In a follow-up study, the 411 

group also demonstrated C/G bias is able to promote gene expression by suppressing premature 412 

transcription termination [68]. In addition, several other studies have demonstrated that in mammalian 413 

cells, GC-rich genes are transcribed with increased efficiency resulting in higher levels of transcripts 414 

independent of mRNA degradation [69,70]. Next, a study by Fu et al. which investigated the effects of 415 

codon usage bias on two proto-oncogenes with similar amino acid identity, but differing levels of 416 

optimality, KRAS and HRAS, showed that codon usage can affect both transcription and translation 417 
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efficiency suggesting that the effect of codon bias is multi-level [71]. In this and another study, 418 

changing the rare codons of KRAS to common ones increased its enrichment in the polysome 419 

fractions [72]. Likewise, REL-OPT transcripts were enriched in the polysome fractions compared to 420 

REL-WT transcripts. Nevertheless, our investigations also show that steady state transcript copy 421 

number of the optimized reporter transcripts were significantly higher than that of the WT (and DE 422 

versions) (Fig EV3C,D). In addition to this however, we also show increased translation efficiency in 423 

mRNA that contain a higher proportion of optimized codons. In our study and several other 424 

vertebrates however, translation is the predominant effector of gene expression [33]. 425 

At the time of writing this manuscript, a study was published by Wu and colleagues which 426 

demonstrated that translation is indeed a determinant of mRNA stability in human cells [28]. While 427 

paper by Wu et al. had assigned optimal and non-optimal designations to codons via the calculation 428 

of the CSC derived from ORFeome and SLAM-seq experiments, we noted that some of the findings 429 

paralleled ours. Indeed, the codon designations of optimal and non-optimal codons also showed 430 

modest delineation of codons into GC3 and AT3 codons respectively. In another article published in 431 

the bioRxiv preprint server, Forrest and colleagues utilized a combination of endogenous and human 432 

ORFeome collection mRNAs in human cells to derive the CSC for human cells [29].Similar to the 433 

study by Wu and colleagues, the codon designations of optimal and non-optimal codons also showed 434 

a modest division of codons into GC3 and AT3 codons respectively. Similarly, we also show that the 435 

use of optimal and non-optimal codons can affect both mRNA stability as well as translation initiation 436 

to a large extent (Fig 1-3); albeit transcription to a limited extent. However, we have yet to identify an 437 

RBP that is involved in direct co-translational decay of mRNAs in humans as with that in yeast. 438 

Moreover, DDX6, the mammalian ortholog of DHH1, was recently demonstrated in humans to be 439 

involved in miRNA-driven translational repression, not mRNA destabilization as previously shown in 440 

yeast [73]. DDX6 aside, it would certainly be exciting for future experiments to uncover the nature of 441 

this elusive RBP. 442 

c-Rel, a protein encoded by the REL gene and a canonical nuclear factor κB (NF-κB) subunit, is 443 

expressed abundantly in differentiated lymphoid cells and has been shown to be vital in thymic 444 

regulatory T cell development in addition to controlling cancer via activated regulatory T cells [74,75]. 445 

Given the inherent low optimality and associated instability of REL in its WT form (Fig 3A), we wonder 446 

if besides transcriptional control of REL, could there be other post-transcriptional regulation systems 447 

at play. Further studies would be necessary to investigate if codon optimality or codon optimality-448 

associated RBPs modulate REL gene expression. 449 

In our investigation, mRNA stability can be affected by GC3- and GC- content. It is important to note 450 

that the latter of which is also implicated in several processes such as miRNA binding, mRNA folding 451 

and splicing which in turn can affect mRNA stability. It is thus plausible that GC-content can also 452 

affect gene expression independent of RBP association. A study of transcriptome miRNA binding 453 

sites has shown that effective miRNA binding sites tend to dwell in G-poor and U-rich environments 454 

[76]. In addition, while our analyses are CDS-based, it has been shown that GC-content of both 455 

introns and exons are important in splicing via RNA structures [77–79]. Taken together, we propose 456 

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



 

 

that codon bias is able to exert its effects at multiple levels, consequently effecting gene and protein 457 

expression. 458 

The stability of mRNA can be modulated by RBPs which bind AU-rich sequences 459 

Whereas AU-rich elements (AREs) in the 3′ UTR have been traditionally targeted by RBPs, we found 460 

that coding regions are also targeted by ARE-recognizing RBPs. The identification of the 461 

heterodimeric complex consisting of ILF2 and ILF3 among others shows that a wide array of RBPs 462 

recognizes low optimality (AU-rich) sequences (Fig 5). However, the binding of ILF2/3 to target RNA 463 

presents as a challenge when trying to identify its target motif. Studies have shown that the RNA-464 

binding portion of the ILF2/3 complex, ILF3, in particular is a promiscuous RBP, binding to RNA with 465 

no obvious sequence specificity [80]. It is interesting to note that several binding motifs, all of which 466 

are AU-rich have been proposed for ILF3. Analysis of ILF3 RNA Bind-n-Seq measurements identified 467 

a 9nt AU-rich motif that is bound to by ILF3 [47]. Kuwano and colleagues show that NF90, the shorter 468 

isoform of ILF3, specifically targets a 30nt AU-rich sequence in mRNA 3’UTRs and represses their 469 

translation, not stability [42]. This state of promiscuousness was compounded by a recent study by 470 

Wu and colleagues, in which where almost all genes where ILF3 occupancy was detected on the 471 

genome by ChIP-seq, was ILF3 occupancy on the corresponding transcript. Indeed, ILF3 is a 472 

multifunctional protein, affecting several biological processes. In addition to ours, other studies have 473 

shown that ILF3 can contribute to splicing [81], stabilization, nuclear export [82] and as mentioned, 474 

translation [42]. 475 

ILF2 on the other hand has been less scrutinized compared to its partner. From our experiments, we 476 

find that the longer isoform of ILF2 is predominantly and highly expressed while the shorter isoform is 477 

low in expression. Additionally, we observed that overexpression of the longer isoform appeared to 478 

upregulate the expression of the shorter isoform albeit to a small extent. From the literature it is 479 

known that ILF2 stabilizes ILF3 in the heterodimeric form [83]. We postulate that it is possible that the 480 

ILF2/3 heterodimer represses translation of mRNA with AU-rich sequences at a steady state in both 481 

CDS and 3’UTR. Knockdown of ILF2/3 relieves the repression on translation initiation allowing an 482 

increase in bound (translating) ribosomes which sterically exclude decay factors from accessing the 483 

mRNA, thereby increasing stability. Indeed, the knockdown of ILF2, which is critical in maintaining the 484 

stability of the heterodimeric complex, results in a stabilization of mRNA possibly due to increased 485 

ribosome traffic. At the protein level, while the knockdown of ILF2 results in an increased protein 486 

expression of target mRNA, the combined effect of both ILF3 and ILF2 knockdown results in a higher 487 

increase in target mRNA expression as compared to the ILF2-only knockdown. Unfortunately, in the 488 

case of the ILF2/3 siRNA experiments (Fig 6D), we were unable to achieve a complete knockdown of 489 

ILF2 due to the very high and constitutive production of ILF2. However, we still noted a small 490 

reduction in ILF3 protein levels hinting that ILF2 stabilizes ILF3 in the heterodimer form. In addition, 491 

taking into consideration reports that ILF2 and ILF3 can function independently of each other [84–86], 492 

it is also possible that ILF2 and ILF3 regulate the fate of mRNA differently; ILF2 being able to dimerize 493 

with other binding partners such as ZFR and SPNR. It is unknown however, how optimized transcripts 494 

are affected. Whereas our screens revealed that ILF2/3 bind exclusively to low optimality targets, we 495 
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noted from our analysis of ILF2 knockdown data from the ENCODE database [Data ref: 45] as well as 496 

tests from our reporter constructs that high optimality transcripts are being regulated. Given this, we 497 

postulate that ILF2/3 might not interact directly with high optimality targets. Instead, ILF2/3 may be 498 

indirectly (de)antagonizing certain transcripts which may code for other regulators of high optimality 499 

genes. Further investigations will be required to assess how high optimality transcripts are 500 

antagonized.  501 

Our screens also detected HNRNPD/AUF1, which destabilizes transcripts via recognition of AU-rich 502 

motifs [87], binding to low optimality mRNAs (Dataset EV3). These observations emphasize the 503 

importance of AU-content, which is strongly connected with low optimality, in RNA destabilization. 504 

However, it is possible that these factors induced the degradation of AU-rich transcripts different from 505 

the model proposed by Presnyak and Radhakrishnan [14,15] as our RBP identification method was 506 

not fully reflective of the active translational status required for co-translational degradation of mRNA 507 

transcripts. Further studies would be necessary to discern if these or other factors act as sensors of 508 

codon optimality during translation. 509 

In conclusion, in human cells, the redundancy of the genetic code allows the choice between 510 

alternative codons for the same amino acid which may exert dramatic effects on the process of 511 

translation and mRNA stability. In our experiments, we show that two modes of mRNA regulation exist 512 

– GC3 and GC-content dependent. This system potentially confers freedom for calibrating protein and 513 

mRNA abundances without altering protein sequence. Beginning from our exploratory analysis, we 514 

have developed an approach to quantify codon bias and demonstrate that beneath the redundancy of 515 

codons, exists a system which modulates mRNA and consequently, protein abundance. 516 

Materials and Methods 517 

Cell Cultures, Growth, and Transfection Conditions 518 

HEK293T cells were maintained in Dulbecco’s modified eagle medium (DMEM) (Nacalai Tesque), 519 

supplemented with 10% (v/v) fetal bovine serum. HEK293 Tet-off cells were maintained in Minimum 520 

Essential Medium Eagle - Alpha Modification (α-MEM) (Nacalai Tesque), supplemented with 10% (v/v) 521 

Tet-system approved fetal bovine serum (Takara Bio) and 100 µg/ml of G418 (Nacalai Tesque). For 522 

REL and IL6 overexpression experiments, plasmids were transfected using PEI MAX (Polysciences 523 

Inc). For co-transfection of ILF2 siRNA with REL plasmids, Lipofectamine 2000 was used as per 524 

manufacturer’s protocol. ILF2 siRNA which targeted ILF2 at exons 8 and 9 were Silencer Select 525 

siRNA, S7399 (Ambion, Life Technologies). Actinomycin D-based stability assays in HeLa cells were 526 

performed by adding actinomycin D to the transfected cells to a final concentration of 2 µg/ml.  527 

Plasmid Construction  528 

Codon optimized-REL (REL-OPT), IL6 (IL6-OPT) and codon de-optimized IL6 (IL6-DE) sequences 529 

were synthesized as gBlocks Gene Fragments (Integrated DNA Technologies) (Dataset EV2). The 530 

REL-OPT (+1 Frameshift) sequence was constructed by adding a +1 frameshift just after the start 531 

codon. Resulting stop codons were removed to ensure no premature termination. These sequences 532 
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and corresponding WT sequences were polymerase chain reaction (PCR) amplified (with the 533 

inclusion of a FLAG tag for REL sequences) and inserted into the pcDNA3.1(+) vector (Invitrogen) 534 

and pTRE-TIGHT vector (Takara Bio). The sequences were confirmed via restriction enzyme digest 535 

and sequencing. 536 

Tet-Off Assay 537 

HEK293 Tet-off cells (Clontech) were transfected with pTRE-TIGHT plasmids bearing the 538 

(de)optimized and WT sequences and incubated overnight at 37ºC. Transcriptional shut-off for the 539 

indicated plasmids was achieved by the addition of doxycycline (LKT Laboratories Inc.) to a final 540 

concentration of 1 µg/ml. Cycloheximide-based stability assays in HEK293 Tet-off cells were 541 

performed by adding actinomycin D to the transfected cells to a final concentration of 50 µg/ml. 542 

Anisomycin-based stability assays in HEK293 Tet-off cells were performed by adding anisomycin to 543 

the transfected cells to a final concentration of 20 µg/ml. Samples were harvested at the indicated 544 

timepoints after the addition of doxycycline (and cycloheximide/anisomycin). 545 

RNA Extraction, Reverse Transcription PCR, and Quantitative Real-time PCR 546 

Total RNA was isolated from cells using TRIzol reagent (Invitrogen) as per manufacturer’s instructions. 547 

Reverse transcription was performed using the ReverTra Ace qPCR RT Master Mix with gDNA 548 

remover kit (Toyobo) as per manufacturer’s instructions. cDNA was amplified with PowerUp SYBR 549 

Green Master Mix (Applied Biosystems) and quantitative real-time PCR (qPCR) was performed on the 550 

StepOne Real-Time PCR System (Applied Biosystems). To quantify transcript abundance of the REL 551 

reporters, pTRE-TIGHT plasmids bearing the (de)optimized and WT reporter sequences were used 552 

as standards. Human GAPDH abundance was used for normalization. The list of qPCR primers can 553 

be found in Dataset EV2. 554 

Sucrose Gradient Centrifugation (Polysome Profiling) 555 

HEK293T were transfected with equal concentrations of REL-OPT and REL-WT plasmids. Cells were 556 

lysed the next day in polysome buffer [20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 557 

(HEPES‐KOH) (pH 7.5], 100 mM KCl, 5 mM MgCl2, 0.25% (v/v) Nonidet P‐40, 10 µg/ml 558 

cycloheximide, 100 units/ml RNase inhibitor, and protease inhibitor cocktail (Roche)]. Lysates were 559 

loaded on top of a linear 15%–60% sucrose gradient [15%–60% sucrose, 20 mM HEPES‐KOH [pH 560 

7.5], 100 mM KCl, 5 mM MgCl2, 10 µg/ml cycloheximide, 100 units/ml RNase inhibitor, and protease 561 

inhibitor cocktail (Roche)]. After ultracentrifugation at 38,000 rpm for 2.5 h at 4ºC in a HITACHI P40ST 562 

rotor, fractions were collected from the top of the gradient and subjected to UV‐densitometric analysis. 563 

The absorbance profiles of the gradients were determined at 254 nm. For disassociation of ribosome 564 

and polysome, EDTA was added to Mg2+‐free polysome buffer and 15%–60% sucrose gradient at 565 

concentrations of 50 mM and 20 mM, respectively. For RNA analysis, RNA from each fraction was 566 

extracted via the High Pure RNA Isolation Kit (Roche) and subject to reverse transcription and qPCR. 567 

Immunoblot Analysis 568 

Samples were lysed in RIPA buffer (20 mM Tris-HCl [pH 8], 150 mM NaCl, 10 mM EDTA, 1% 569 

Nonidet-P40, 0.1% SDS, 1% sodium deoxycholate, and cOmplete Mini EDTA-free Protease Inhibitor 570 
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Cocktail [Roche]). Protein concentration was determined by the BCA Protein Assay (Thermo Fisher). 571 

Whole cell lysates were resolved by SDS-PAGE and transferred onto PVDF membranes (Bio-Rad). 572 

The following antibodies were used for immunoblot analysis: mouse monoclonal anti-FLAG (F3165, 573 

Sigma), mouse monoclonal anti-ILF2 (sc-365283, Santa Cruz Biotechnology), mouse anti-β-actin (sc-574 

47778, Santa Cruz), and mouse IgG HRP linked F(ab’)2 fragment (NA9310, GE Healthcare). 575 

Luminescence was detected with a luminescent image analyser (Amersham Imager 600; GE 576 

Healthcare). 577 

ELISA 578 

HEK293T cells were transfected with pcDNA3.1(+) plasmids bearing the (de)optimized and WT 579 

sequences and incubated overnight at 37ºC. Cell supernatant was aspirated and the cell monolayer 580 

washed with 1x PBS (pre-warmed at 37ºC). Pre-warmed DMEM was added to the monolayer and the 581 

cells incubated for 2 hr at 37ºC. Thereafter, the cell supernatant was harvested and centrifuged at 300 582 

x g to pellet residual cells. The resulting supernatant was decanted and the concentration of secreted 583 

IL6 was measured by the human IL6 ELISA kit (Invitrogen) according to the manufacturer’s 584 

instructions. 585 

ISRIM (In vitro Specificity based RNA Regulatory protein Identification Method) 586 

Preparation of bait RNAs. T7-tagged cDNA template was PCR amplified and subjected to in vitro 587 

transcription using a MEGAscript T7 kit (Applied Biosystems). Amplified cRNA was purified with an 588 

RNeasy Mini Kit (Qiagen) and then subjected to FLAG conjugation as described (10) with some 589 

modifications. Briefly, 60 μl of freshly prepared 0.1 M NaIO4 was added to 60 μl of 250 pmol cRNA, 590 

and the mixture was incubated at 0ºC for 10 min. The 3′ dialdehyde RNA was precipitated with 1 ml of 591 

2% LiClO4 in acetone followed by washing with 1 ml acetone. The pellet was dissolved in 10 μl of 0.1 592 

M sodium acetate, pH 5.2 and then mixed with 12 μl of 30 mM hydrazide–FLAG peptide. The reaction 593 

solution was mixed at room temperature for 30 min. The resulting imine-moiety of the cRNA was 594 

reduced by adding 12 μl of 1 M NaCNBH3, and then incubated at room temperature for 30 min. The 595 

RNA was purified with an RNeasy Mini Kit (Qiagen).  596 

Purification and analysis of RNA-binding proteins. Purification and analysis of RNA-binding 597 

protein (RBP) were carried out as described [41] with some modifications. Briefly, HEK293T cells 598 

were lysed with lysis buffer [10 mM HEPES (pH 7.5), 150 mM NaCl, 50 mM NaF, 1 mM Na3VO4, 5 599 

μg/ml leupeptin, 5 μg ml aprotinin, 3 μg/ml pepstatin A, 1 mM phenylmethylsulfonyl fluoride (PMSF), 600 

and 1 mg/ml digitonin] and cleared by centrifugation. The cleared lysate was incubated with indicated 601 

amounts of FLAG-tagged bait RNA, antisense oligos and FLAG-M2-conjugated agarose for 1 hr. The 602 

agarose resin was then washed three times with wash buffer [10 mM HEPES (pH 7.5), 150 mM NaCl, 603 

and 0.1% Triton X-100] and co-immunoprecipitated RNA and proteins were eluted with FLAG elution 604 

buffer [0.5 mg/ml FLAG peptide, 10 mM HEPES (pH 7.5), 150 mM NaCl, and 0.05% Triton X-100]. 605 

The bait RNA associated proteins were digested with lysyl endopeptidase and trypsin. Digested 606 

peptide mixture was applied to a Mightysil-PR-18 (Kanto Chemical) frit-less column (45 3 0.150 mm 607 

ID) and separated using a 0–40% gradient of acetonitrile containing 0.1% formic acid for 80 min at a 608 

flow rate of 100 nl/min. Eluted peptides were sprayed directly into a mass spectrometer (Triple TOF 609 
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5600+; AB Sciex). MS and MS/MS spectra were obtained using the information-dependent mode. Up 610 

to 25 precursor ions above an intensity threshold of 50 counts/s were selected for MS/MS analyses 611 

from each survey scan. All MS/MS spectra were searched against protein sequences of RefSeq 612 

(NCBI) human protein database using the Protein Pilot software package (AB Sciex) and its decoy 613 

sequences then selected the peptides FDR was <1%.  Ion intensity of peptide peaks ware obtained 614 

using Progenesis QI for proteomics software (version 3 Nonlinear Dynamics, UK) according to the 615 

manufacturer's instructions. 616 

Ribosome profiling and RNA-Seq 617 

Ribosome profiling was performed according to the method previously described with following 618 

modifications [34]. RNA concentration of naïve HEK293T lysate was measured by Qubit RNA BR 619 

Assay Kit (Thermo Fisher Scientific). The lysate containing 10 µg RNA was treated with 20 U of 620 

RNase I (Lucigen) for 45 min at 25ºC. After ribosomes were recovered by ultracentrifugation, RNA 621 

fragments corresponding to 26-34 nt were excised from footprint fragment purification gel. Library 622 

length distribution was checked using a microchip electrophoresis system (MultiNA, MCE-202, 623 

Shimadzu). 624 

For RNA-seq, total RNA was extracted from the lysate using TRIzol LS reagent (Thermo Fisher 625 

Scientific) and Direct-zol RNA Kit (Zymo research). Ribosomal RNA was depleted using the Ribo-Zero 626 

Gold rRNA Removal Kit (Human/Mouse/Rat) (Illumina) and the RNA-seq library was prepared using 627 

TruSeq Stranded mRNA Library Prep Kit (Illumina) according to the manufacturer's instructions. 628 

The libraries were sequenced on a HiSeq 4000 (Illumina) with a single-end 50 bp sequencing run. 629 

Reads were aligned to human hg38 genome as described [34,88]. The offsets of A-site from the 5′ 630 

end of ribosome footprints were determined empirically as 15 for 25-30 nt, 16 for 31-32 nt, and 17 for 631 

33 nt. For RNA-seq, offsets were set to 15 for all mRNA fragments. For calculation of the ribosome 632 

occupancies, mRNAs with lower than one footprint per codon were excluded. For calculation of the 633 

translation efficiencies (TEs), we counted the number of reads within each CDS, and ribosome 634 

profiling counts were normalized by RNA-seq counts using the DESeq package [89]. Reads 635 

corresponding to the first and last five codons of each CDS were omitted from the analysis of TEs. 636 

The Custom R scripts will be available upon requests. 637 

Bioinformatics and Computational Analyses 638 

Principal component analysis. To calculate the codon frequencies of individual genes from H. 639 

sapiens, we first downloaded coding sequences (CDS) data (Human genes, GRCh38p12) from the 640 

Ensembl Biomart Database. For each CDS, we tabulated the occurrences of each codon – sans the 641 

stop codons. We then expressed the codon counts as a percentage of the total number of codons in 642 

its CDS to obtain the codon frequencies for each CDS. The codon frequencies for all 9666 CDS were 643 

used as the input for the PCA using the Python 3.4 environment via the factoextra program [90]. 644 

Finally, the data was trimmed to remove truncated sequences as well as sequences with non-645 

canonical start codons to a final of 9898 genes. 646 
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Hierarchical clustering analysis.  mRNA transcripts ranked in order of their half-lives, divided 647 

equally into 4 groups and their average half-lives within each group was calculated. The 648 

corresponding codon frequencies of transcripts within each group were averaged. Hierarchical 649 

clustering was performed using the average linkage method to cluster the codon frequencies in R 650 

using the ggplot2 program [91]. 651 

Quantification of GC3-content. To quantify GC3-content, we summed up the codon frequencies of 652 

GC3 codons and expressed the frequencies on a percentage scale. 653 

Calculation of cAI and CSC. cAI values were calculated using the standalone CAICal program [92] 654 

in which the human mean codon usage dataset obtained from the Kazusa Codon Usage Database 655 

[93] was used as the reference set. The CSC was calculated as described by Presnyak and 656 

colleagues [14] using the HEK293 mRNA stability dataset (GSE69153) [Data ref: 31,32]. 657 

Binning of ribosomal occupancy frequencies and calculation of codon bias-derived occupancy 658 

scores. To quantify codon bias for ribosome profiling, the factor loading scores of the codons from 659 

the first principal component were normalized linearly on a percentage scale from 0 to 1 where 0 660 

corresponded to the codon with the lowest score (AAT) and 1 for the codon with the highest score 661 

(GCC) (Fig EV2A). Binning of the ribosome occupancies were performed in the R environment via a 662 

custom script. To calculate the corresponding codon bias-derived occupancy scores, we substituted 663 

the codon sequences of mRNA transcripts with their respective codon scores and in a similar fashion, 664 

binned the data into 25 bins. As the scores of codons should inversely reflect the ribosome occupancy 665 

(i.e. higher ribosome occupancy associated with lower codon scores), we calculated the reciprocal of 666 

the binned codon scores within each bin for all 25 bins to derive the codon bias-derived occupancy 667 

scores. Both ribosome occupancy and codon bias-derived occupancy scores were normalized on a 668 

linear scale and a Pearson correlation performed on each transcript. To exclude the possibility that 669 

the correlations were due to chance, we shuffled the bins for the codon bias-derived occupancy 670 

scores within each individual transcripts and calculated the Pearson correlation between shuffled and 671 

ribosomal occupancy data. 672 

De novo motif discovery. Common transcripts which were more than 5-fold differentially upregulated 673 

between the RIP-seq data [Data ref: 43,44] in JJN3 and H929 cells were firstly identified. The 674 

corresponding cDNA sequences of the transcripts were downloaded from the UCSC table browser, 675 

with the option of masking repeats in the sequences [94]. The sequences were subject to de novo 676 

motif discovery via the MEME (Multiple EM for Motif Elicitation) software under the MEME tools suite 677 

of programs [46].  678 

Data Availability 679 

Ribosome profiling and RNA-Seq results of HEK293 cells have been deposited at GEO and can be 680 

accessed under dataset GSE126298. 681 
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 929 

TABLE AND FIGURES LEGENDS 930 

Figure 1. Bioinformatics analysis reveals that biased codons can be categorized into GC3 and 931 

AT3 codons respectively. 932 

A. Hierarchical clustering analysis of model organisms and their average CDS codon frequencies. 933 

B. Principal component analysis of the CDS codon frequencies of 9666 protein-coding genes. PC1 934 

and PC2 indicate the first and second principal components. 935 

C. Heatmap of half-lives of mRNA and their CDS codon frequencies. The transcripts were ranked 936 

according to their half-lives and divided equally into quartiles. The respective codon frequencies of 937 

each group were then averaged. 938 

D. Histogram illustrating the distribution of genes and their respective GC3- and GC-content. 939 

E. Comparison of average transcript mRNA half-lives across their respective GC3- and GC-content 940 

ranges. Number of transcripts within each gene optimality range is indicated above their respective 941 

points.  942 

Data information: In (E), error bars represent the 95% confidence intervals. 943 

Figure 2. GC3-AT3 codon bias can explain ribosome occupancy to a certain extent 944 

A. Average ribosome occupancy and their respective codon bias-derived occupancy scores across 945 

the CDS of transcript (in 25 bins). Ribosome occupancy for 16,423 transcripts and their respective 946 
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codon bias-derived occupancy were firstly binned into 25 bins and the mean occupancy was 947 

calculated for each bin.  948 

B. Cumulative distribution plots showing the distributions of correlations between ribosome occupancy 949 

and codon bias-derived occupancy. Correlations obtained from the ribosome occupancy and 950 

scrambled codon bias-derived occupancy served as the control. A Kolmogorov–Smirnov test was 951 

performed between the codon bias-derived occupancy and the control group.   952 

C. Comparison of average transcript translation efficiencies (TEs) across their respective GC3-content 953 

ranges. Number of transcripts within each gene optimality range is indicated above their respective 954 

points. 955 

D, E. Principal component analysis of CDS codon frequencies of protein-coding genes derived from a 956 

+1 frameshift (D) and a -1 frameshift (E). Shaded ellipses indicate codons which are GC-rich (orange) 957 

and AT-rich (blue). 958 

Data information: In (A, C), error bars represent the 95% confidence intervals. 959 

Figure 3. GC3-content of transcripts determine their fate. 960 

A. HEK293 Tet-off experiments showing the degradation of REL-OPT and REL-WT transcripts (left) 961 

as well as IL6-OPT, IL6-WT and IL6-DE transcripts (right), post-doxycycline addition.  962 

B. Representative immunoblot of FLAG-tagged REL-OPT and REL-WT in HEK293T cells transfected 963 

with either empty plasmids, plasmids bearing REL-OPT or REL-WT. The immunoblot is representative 964 

of 3 independent experiments. ACTB is shown as the loading controls. 965 

C. ELISA of secreted IL6 concentrations of IL6-OPT, IL6-WT and IL6-DE from HEK293T cells 966 

transfected with plasmids bearing IL6-OPT, IL6-WT and IL6-DE.  967 

D. Fold changes of REL-OPT and REL-WT transcript levels (top) relative to their abundances from 968 

fraction 1 as detected by qPCR across polysome fractions (below). Data represents the mean ± SD 969 

for 3 biological replicates.  970 

Data information: In (A, D), data is representative of 3 independent experiments each with 3 971 

replicates. The data represents the mean ± SD for 3 replicates. A two-way ANOVA with Holm-Sidak 972 

multiple comparisons was performed. P-values are denoted as follows: p < 0.05 (*), p<0.01 (**) and 973 

p<0.001 (***). The half-lives of the respective transcripts are indicated in brackets. In (C), the data is 974 

representative of 3 independent experiments each with 3 replicates. The data represents the mean ± 975 

SD for 3 replicates. A one-way ANOVA with Tukey’s multiple comparisons was performed between 976 

samples where, p<0.01 (**) and p<0.001 (***). 977 

Figure 4. GC-content as an additional determinant of stability  978 
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A, B. HEK293 Tet-off experiments showing the degradation of REL-OPT and REL-WT transcripts (A) 979 

and IL6-OPT, IL6-WT and IL6-DE transcripts (B), under vehicle (DMSO)- and cycloheximide (CHX)-980 

treatment, post-doxycycline addition. 981 

C, D. HEK293 Tet-off experiments showing the degradation of REL-OPT and REL-WT transcripts (C) 982 

and IL6-OPT, IL6-WT and IL6-DE transcripts (D), under vehicle (PBS)- and anisomycin (ANI)-983 

treatment, post-doxycycline addition. 984 

E, F. HEK293 Tet-off experiments showing the degradation of REL-OPT, REL-OPT (+1 Frameshift) 985 

and REL-WT transcripts (E) as well as IL6-OPT, IL6-WT, IL6-DE and IL6-OPT (+1 Frameshift) 986 

transcripts (F) post-doxycycline addition.  987 

In (A-F), data is representative of 3 independent experiments each with 3 replicates. The data 988 

represents the mean ± SD for 3 replicates. A two-way ANOVA with Holm-Sidak multiple comparisons 989 

was performed. P-values are denoted as follows: p < 0.05 (*), p<0.01 (**) and p<0.001 (***). 990 

Figure 5. RNA binding proteins bind differentially to transcripts with different levels of GC3-991 

content. 992 

A, B, C. Volcano plots showing the enrichment of RBPs which bind to REL-WT relative to REL-OPT 993 

transcripts (A), IL6-DE relative to IL6-WT transcripts (B) and IL6-WT relative to IL6-OPT transcripts 994 

(C).  995 

Data information: In (A, B, C), vertical dotted lines indicate a 1.5-fold enrichment while horizontal 996 

dashed lines indicate the p-value cut-off of 0.05. Points shaded in blue indicate RBPs which have a 997 

differential fold change of more than 1.5 and p<0.05. 998 

Figure 6. ILF2 regulates the stability of low GC3 / high AT3 transcripts 999 

A. Cumulative distribution plots showing the difference in distribution of transcript optimality between 1000 

upregulated and downregulated transcripts in K562 cells subject to ILF2 CRISPR interference 1001 

targeting ILF2. Transcript quantities are indicated in the figure legend. 1002 

B, C. HEK293 Tet-off experiments showing the degradation of REL-OPT (B) and REL-WT (C) 1003 

transcripts with ILF2 and ILF3 siRNA and Control (CTR) siRNA treatment, post-doxycycline addition. 1004 

D. Representative immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in HEK293T cells 1005 

under ILF2 and ILF3 siRNA treatment. The immunoblot is representative of 3 independent 1006 

experiments. ACTB is shown as loading controls. 1007 

E. Representative immunoblot of FLAG-tagged REL-OPT and REL-WT in HEK293T cells co-1008 

expressed with two different isoforms of ILF2. The immunoblot is representative of 3 independent 1009 

experiments. ACTB is shown as loading controls. 1010 

Data information: In (A), Wilcoxon signed rank tests were performed on the upregulated and 1011 

downregulated groups against the control group. P-values are denoted (right). In (B, C), data is 1012 
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representative of 3 independent experiments in which the data represents the mean ± SD for 3 1013 

biological replicates. A two-way ANOVA with Holm-Sidak multiple comparisons was performed. P-1014 

values are denoted as follows: p < 0.05 (*), p<0.01 (**). 1015 

Expanded View Figure 1. Bioinformatics analysis reveals that GC3-content is a determinant of 1016 

stabiity. 1017 

A. Principal component analysis of the CDS codon frequencies of protein-coding genes in S. 1018 

cerevisiae. PC1 and PC2 indicate the first and second principal components. 1019 

B. PC1 factor loadings of codons from the yeast dataset ranked from the highest to the lowest. The 1020 

optimal and non-optimal designation at the bottom of the figure refers to the designation according to 1021 

Presnyak and colleagues [14]. 1022 

C. Pearson correlation between PC1 factor loading scores and CSC for individual codons (excluding 1023 

stop codons). 1024 

D. Pearson correlation between GC-content and GC3-content for 9666 protein-coding genes. 1025 

E, F. Violin plots (E) and cumulative relative frequency distributions (F) visualizing the distribution of 1026 

mRNA half-lives across their respective GC3-content brackets.  1027 

G. Comparison of average transcript mRNA half-lives across their respective cAI. Number of 1028 

transcripts within each range is indicated above their respective points.  1029 

H. Gene ontology analysis (biological processes) of the top 5% ranked genes in terms of gene GC3-1030 

content 1031 

I. Gene ontology analysis (biological processes) of the bottom 5% ranked genes in terms of gene 1032 

GC3-content 1033 

Data information: In (E), the box plots within each figure are indicative of the median and 1034 

interquartile ranges. In (F), Wilcoxon signed rank tests were performed on the various distributions 1035 

against the control (All transcripts) group. P-values are denoted. In (G), error bars represent the 95% 1036 

confidence intervals. 1037 

Expanded View Figure 2. GC3-content can explain ribosome occupancy and translation 1038 

efficiency to a certain extent 1039 

A. PC1 factor loadings of codons from the human dataset ranked from the highest to the lowest 1040 

(bottom) and their corresponding normalized factor loadings after linear normalization onto a 1041 

percentage scale (top). 1042 

B. Pearson correlation between the correlations of derived from comparison of ribosome occupancy 1043 

and codon bias-derived scores for two ribosome profiling sample replicates. 1044 
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C. Pearson correlation between codon bias-derived occupancy scores and ribosome occupancy for 1045 

individual codons (excluding stop codons). 1046 

D. Three example transcripts (EIF2B2, DYNC1LI2 and IDH3G) which demonstrate high correlation 1047 

between ribosome occupancy and codon bias-derived scores (left) as well as their corresponding 1048 

Pearson correlations over 25 bins (right). 1049 

E. Comparison of average transcript translation efficiencies (TEs) across their respective GC3-content 1050 

ranges after grouping by mRNA abundances. Error bars represent the 95% confidence intervals. 1051 

F, G. Hierarchical clustering analysis of half-lives of mRNA and their CDS codon frequencies after a 1052 

+1 frameshift (F) and -1 frameshift (G). The transcripts were ranked according to their half-lives and 1053 

divided equally into quartiles. The respective codon frequencies of each group were then averaged. 1054 

Codon highlights indicate codons which are GC-rich (yellow) and AT-rich (blue). 1055 

Expanded View Figure 3. GC3-content of transcripts affects translation efficiency and stability 1056 

A. Example of how transcript GC3-optimization and deoptimization was performed to generate GC3-1057 

optimized and de-optimized versions of REL and IL6 transcripts. 1058 

B. GC3- and GC-content of REL-OPT/WT, REL-OPT (+1 Frameshift), as well as IL6-OPT/WT/DE and 1059 

IL6-OPT (+1 Frameshift) transcripts. 1060 

C. Protein abundance of immunoblot of FLAG-tagged REL-OPT and REL-WT in HEK293T cells 1061 

(normalized by respective mRNA levels) transfected with either empty plasmids, plasmids bearing 1062 

REL-OPT or REL-WT (corresponding to Fig 3B). The data is representative of 3 independent 1063 

experiments. The respective steady state mRNA levels (transcript copy numbers) are shown on the 1064 

right. 1065 

D. IL6 Protein abundance as determined by ELISA of IL6-OPT, IL6-WT and IL6-DE in HEK293T cells 1066 

(normalized by respective mRNA levels) transfected with either empty plasmids, plasmids bearing 1067 

IL6-OPT, IL6-WT or IL6-DE (corresponding to Fig 3C). The ELISA quantification is representative of 3 1068 

independent experiments. The respective steady state mRNA levels (transcript copy numbers) are 1069 

shown on the right. 1070 

E. Representative immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in HeLa cells (left). 1071 

The immunoblot is representative of 3 independent experiments. 1072 

F. mRNA stability experiments showing the degradation of REL-OPT and REL-WT transcripts in HeLa 1073 

cells, post-actinomycin-D addition.  1074 

Data information: In (C), the densitometry data is representative of 3 independent experiments. 1075 

Unpaired t-tests were performed within the REL-OPT and REL-WT samples, p<0.05 (*). In (D), a one-1076 

way ANOVA with Tukey’s multiple comparisons was performed between samples where, p<0.01 (**) 1077 

and p<0.001 (***). In (F), data is representative of 3 independent experiments each with 3 replicates. 1078 
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The data represents the mean ± SD for 3 replicates. A two-way ANOVA with Holm-Sidak multiple 1079 

comparisons was performed. P-values are denoted as follows: p<0.001 (***). 1080 

Expanded View Figure 4. RNA binding proteins can be identified from ISRIM experiments 1081 

A. Venn diagram indicating the number of RBPs identified from the IL6 ISRIM experiments. 1082 

B. Venn diagram indicating the number of RBPs identified from the REL and IL6 ISRIM experiments. 1083 

Expanded View Figure 5. ILF2 is an RNA binding protein that can bind differentially to 1084 

transcripts with different levels of GC3-content. 1085 

A. Cumulative distribution plots showing the GC3-content distribution of transcripts bound to by ILF2 1086 

in H929 (top) and JJN3 cells (bottom). Wilcoxon signed rank tests were performed on the ILF2 RIP 1087 

group against the control group. P-values are denoted in the figure. 1088 

B. Scatterplot of the RPKM values of mRNA transcripts in K562 cells subject to ILF2 CRISPR 1089 

interference and its corresponding WT control. mRNA transcripts are colored according to their 1090 

respective GC3-content.  1091 

C. Fold changes of example mRNA representing low, average and high GC3-content transcripts from 1092 

the RPKM values of mRNA transcripts in K562 cells subject to ILF2 CRISPR interference.  1093 

D. Densitometric analysis of immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in 1094 

HEK293T cells under ILF2 and ILF3 siRNA treatment (corresponding to Fig 6D).  1095 

E. Densitometric analysis of immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in 1096 

HEK293T cells co-expressed with two different isoforms of ILF2 (corresponding to Figure 6E) 1097 

F-G. Top three RNA Motifs enriched in upregulated transcripts (>5 fold) in ILF2 RIP-seq data (Fig 1098 

EV5A) derived from both H929 and JJN3 datasets (left) and their corresponding annotations in 1099 

transcripts (right) (F), followed by the ILF3 motif and its distribution identified by Dotu et al [47] from 1100 

ILF3 RNA Bind-n-seq experiments (G). 1101 

Data information: In (D, E), densitometry data is representative of 3 independent experiments. A 1102 

one-way ANOVA with Tukey’s multiple comparisons was performed within the REL-OPT and REL-WT 1103 

samples. P-values are denoted as follows, p < 0.05 (*), p<0.01 (**) and p<0.001 (***). 1104 

Dataset EV1. List of genes and their corresponding GC3- and GC-content 1105 

Dataset EV2. List of Sequences of synthesized constructs as well as qPCR primers and their 1106 

corresponding sequences 1107 

Dataset EV3. List of RBPs identified in ISRIM experiments 1108 
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Figure 3
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Figure 5
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Expanded View Figure 1
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Expanded View Figure 2
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Expanded View Figure 3
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Expanded View Figure 4
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Expanded View Figure 5
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