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Abstract 

Codon bias has been implicated as one of the major factors contributing to mRNA stability in yeast. 

However, the effects of codon-bias on mRNA stability remain unclear in humans. Here we show that 

human cells possess a mechanism to modulate RNA stability through a unique codon bias different 

from that of yeast. Bioinformatics analysis showed that codons could be clustered into two distinct 

groups – codons with G or C at the third base position (GC3) and codons with either A or T at the 

third base position (AT3); the former stabilizing while the latter destabilizing mRNA. Quantification of 

codon bias showed that increased GC3 content entails proportionately higher GC content. Through 

bioinformatics, ribosome profiling and in vitro analysis, we show that decoupling of the effects of 

codon bias reveals two modes of mRNA regulation, GC3- and GC-content dependent. Employing an 

immunoprecipitation-based strategy, we identified ILF2 as an RNA binding protein that differentially 

regulates global mRNA abundances based on codon bias. Our results demonstrate that codon bias is 

a two-pronged system that governs mRNA abundance. 

Introduction 

Messenger RNA (mRNA) regulation represents an essential part of regulating a myriad of 

physiological processes in cells, being indicated in the maintenance of cellular homeostasis to 

immune responses [1–3]. In addition to transcription regulation, post-transcriptional regulation of 

mRNA stability is vital to the fine-tuning of mRNA abundance. To date, several mRNA-intrinsic 

properties, often in 5′ or 3′ untranslated regions (UTR), have been shown to affect mRNA stability [4,5]. 
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Due to the recent advances in technology, the contribution of mRNA stability to gene expression has 

been suggested [6]. However, the regulation of mRNA stability, which is possibly governed by mRNA 

intrinsic features, has not been fully elucidated. 

One of the most crucial mRNA-intrinsic features is codon bias. To scrutinize this bias in usage of 

redundant codons, several metrics to measure how efficiently codons are decoded by ribosomes 

(codon optimality) have been proposed. In a classical metric called the codon Adaptation Index (cAI), 

gene optimality is calculated by comparison between codon usage bias of a target gene and 

reference genes which are highly expressed [7,8]. Another index termed the tRNA Adaption Index 

(tAI) gauges how efficiently tRNA is utilized by the translating ribosome [9,10]. More recently, the 

normalized translation efficiency (nTE), which takes into consideration not only the availability of tRNA 

but also demand, was also proposed [11].  

Recently, Presnyak and colleagues showed that mRNA half-lives are correlated with optimal codon 

content based on a metric, the Codon Stabilization Coefficient (CSC) which was calculated from the 

correlations between the codon frequencies in mRNAs and stabilities of mRNAs. Additionally, they 

showed that the substitutions of codons with their synonymous optimal and non-optimal counterparts 

resulted in significant increases and decreases in mRNA stability in yeast [12]. This effect was 

brought by an RNA binding protein (RBP) Dhh1p (mammalian ortholog DDX6), which senses 

ribosome elongation speed [12–14]. In yeast, these differences in ribosome elongation speed in turn 

are influenced by tRNA availability and demand [11,15,16]. Taken together, codons can be 

designated into optimal and non-optimal categories; the former hypothesized to be decoded efficiently 

and accurately [17,18] while the latter slow ribosome elongation resulting in decreased mRNA stability 

[12–14]. It is also important to make the distinction that common and rare codons do not necessarily 

imply optimal and non-optimal codons. 

At present, codon optimality-mediated decay has been extensively studied and established 

particularly in Saccharomyces cerevisiae as well as other model organisms such as 

Schizosaccharomyces pombe, Drosophila melanogaster, Danio rerio,  Escherichia coli, and 

Neurospora crassa [19–23]. Nevertheless to date, this system of codon optimality has been 

inadequately scrutinized in humans. 

In this study, we show that codon bias-mediated decay exists in humans. Principal component 

analysis (PCA) showed that codons could be clustered into two distinct groups; codons with A or T at 

the third base position (AT3) and codons with either G or C at the third base position (GC3). This 

clustering was associated with mRNA half-lives enabling us to determine GC3 and AT3 codons as 

stabilizing and non-stabilizing codons respectively. In this regard, the increased usage of GC3 codons 

entails an inevitable increase GC-content. We then developed an algorithm to quantify the codon bias 

of GC3 codons. With ribosome profiling, we show that codon bias-derived occupancy scores agreed 

with ribosome occupancy. Additionally, bioinformatics analysis revealed that frameshifts abrogate this 

GC3-AT3 delineation. We then verified our results in vitro using optimized and de-optimized reporter 

constructs. Here we propose that GC3 codons and AT3 codons are optimized and de-optimized 
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codons respectively. Importantly, frameshifted optimized transcripts retain a certain level of stability 

suggesting that overall the overall GC content of transcripts is an additional determinant of stability. 

Finally, employing a ribonucleoprotein immunoprecipitation strategy, we identified RNA binding 

proteins which were bound to transcripts with low or high GC3-content. We propose that interleukin 

enhancer-binding factor 2 (ILF2) mediates mRNA stability of transcripts via codon bias. 

Results 

Codons in Homo sapiens can be categorized into GC3 and AT3 codons 

To examine whether a system of codon bias exists in human, we first compared codon frequencies in 

Homo sapiens and other model organisms. Hierarchical clustering analysis of codon frequency data 

obtained from Ensembl database [24] showed a difference between lower eukaryotes such as 

Saccharomyces cerevisiae and Caenorhabditis elegans, and higher eukaryotes such as Homo 

sapiens and Mus musculus (Fig 1A). To investigate codon bias in humans, we then calculated the 

codon frequencies of individual genes from H. sapiens and performed a principal component analysis 

(PCA) on the data. The first principal component (PC1) of the PCA which accounted for 22.85% of the 

total variance, divided codons into two clusters: codons with either G or C at the third base position 

(GC3) and codons with either A or T at the third base position (AT3) (Fig 1B). Interestingly, the 

division within the second principal component (PC2) appeared to be split along the number of G/C or 

A/T bases in codons. We repeated our analysis on the CDS sequences from S. cerevisiae and found 

no such clustering (Fig EV1A). However, we discovered that the factor loading scores of the codons 

along the first principal component of our analysis in yeast corresponded to the CSC metric [12], 

albeit differences in the order (Fig EV1B). The above-mentioned results therefore raised the 

possibility that GC3 and AT3 codons in humans may have a valid effect on mRNA stability. 

We tested the link between mRNA stability and GC3-AT3 codons using published datasets of global 

mRNA decay rates in physiologically growing HEK293 cells (GSE69153) [25; Data ref: Murakawa et 

al, 2015]. Briefly, we divided the transcripts equally into quartiles based on their half-lives and 

averaged the codon frequencies within the quartiles. Strikingly, genes with short half-lives were 

associated with AT3 codons while genes with longer half-lives were associated with GC3 codons (Fig 

1C), suggesting a connection between third base of codons and the stability of mRNAs. 

Broadly, the codon bias in mRNA can predict the stability of the mRNA. By summing the GC3 

frequencies and GC bases of CDS sequences, we could determine the GC3- and GC- content of a 

gene (Dataset EV1). We then visualized the GC3 and GC landscape by plotting the the 

corresponding values via a histogram (Figure 1D). GC3-content was represented as a bimodal 

distribution with a range of values from the minimum of 24.1% to the maximum of 100% while GC-

content appeared similarly as a bimodal distribution with a range of values from a minimum of 27.6% 

to the maximum of 79.7%. A Pearson correlation analysis (R2 = 0.869) between gene GC-content and 

GC3-content (Fig EV1C) reflected an enrichment of GC-content with increased GC3-content. Indeed, 

higher GC3-content was generally associated with better stability (Fig 1E, Fig EV1D). Additionally, we 
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noted that the codon bias per se was different between yeast and humans (Fig 1B and Fig EV1A) 

[12]. Taken together, our analysis allowed us to designate GC3 and AT3 codons as stabilizing and 

destabilizing codons respectively. Additionally, high GC3 content in transcripts inevitably results in 

high GC-content, which is a feature of stable mRNAs. 

We then asked about the biological relevance associated with codon bias. Taking the 5% of lowest 

and highest ranked genes into account, we observed that genes with high GC3-content were enriched 

in developmental processes while genes with low GC3-content were enriched in cellular division 

processes (Fig EV1E and F), suggesting the importance of codon bias-mediated mRNA decay 

across dynamic cellular processes in humans. 

Ribosome profiling reveals that ribosome occupancy is correlated with codon bias 

Given that GC3-AT3 codons were associated with high and low stability respectively, we wondered if 

these two groups were synonymous with optimal and non-optimal codons. It has been proposed that 

slower ribosome elongation rate modulated by low codon optimality affects the stability of mRNAs in 

yeast [12]. This led us to examine whether decelerated ribosomes could be observed especially in 

regions where GC3-content was low. Because we speculated that a single codon would be 

insufficient in eliciting any noticeable effects on the speed of the ribosome, we divided each CDS into 

25 bins from start codon to stop codon and summed GC3-content within each bin. From the PCA, 

PC1 factor loadings of the codons were indicative of how much a particular codon contributed to the 

AT3-GC3 grouping i.e. instability-stability (Fig EV2A). Therefore as a measure of estimating ribosome 

occupancy, the factor loading scores of the codons from the first principal component were utilized to 

derive codon bias-derived occupancy scores. We then compared these scores with corresponding 

ribosome occupancies derived from ribosome profiling [26]. Ribosome occupancy obtained from 

HEK293 cells growing under physiological conditions generally coincided with codon bias-derived 

occupancy (Fig 2A). These measurements were highly reproducible between replicates of ribosome 

profiling experiments across the transcriptome (R2 = 0.750, 16,423 transcripts) (Fig EV2B). We 

observed a significantly better prediction of ribosome occupancy by codon bias-derived occupancy 

scores than that derived from scrambled codon bias-derived occupancy scores (Fig 2B). Indeed, 

representative transcripts showed a good correlation between our codon bias-derived occupancy 

scores and ribosome occupancy as exemplified by EIF2B2, DYNC1LI2, and IDH3G transcripts (Fig 

EV2C). 

Although translation elongation and initiation are distinct steps, previous literature has suggested that 

optimal codons are also enriched in mRNAs with high translation [27]. Ribosome footprint reads 

normalized by mRNA abundances from RNA-Seq enables the calculation of translation efficiency 

which in turn is also generally regarded as the translation initiation rate [28]. Therefore, to establish 

the link between translation status and codon bias, we calculated the translation efficiency (TE)—

ribosome footprints normalized by mRNA abundance. Indeed, our results showed that mRNAs with 

high GC3-content generally possessed high TE (Fig 2C).  
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To verify if GC3 and AT3 codons were indeed associated with stability and instability respectively, we 

performed PCA on +1 and -1 frameshifted CDS sequences genome-wide and show that the GC3-AT3 

demarcation was abolished (Fig 2D and E). Interestingly, we found that GC-rich (two or three G/C 

bases) and AT-rich (two or three A/T bases) codons contributed strongly to PC1 of the frameshifted 

data showing that GC/AT content is a natural consequence GC3-AT3 usage (Fig 1D and Fig EV1C). 

This phenomenon was also observed when we compared the frameshifted codon frequencies with 

mRNA decay rates from Fig 1C. 

Thus far, we show that GC3 and AT3 codons are associated with mRNA stability, ribosome 

translation speed and efficiency therefore suggesting that the former and latter can be designated into 

optimal and non-optimal codons respectively. 

Codon bias affects mRNA stability 

We then experimentally validated our bioinformatics observations of GC3 and AT3 codons in human 

cells. We developed a scheme based on the PC1 factor loadings in which we previously utilized in our 

ribosome profiling analysis (Fig EV2A). Based on this scheme, codons could be optimized and de-

optimized with regard to GC3 content within their codon boxes i.e. synonymous substitutions (Fig 

EV3A). Single box codons such as TGG (Trp) and ATG (Met) would remain unchanged. We 

synthesized two independent genes (REL and IL6) with differential GC3-content (Fig EV3B) and 

examined the stability of these reporter RNA in HEK293 cells utilizing the Tet-off system (Fig 3A). As 

expected, the optimized transcripts of REL and IL6 were more stable than their wild-type counterparts. 

Additionally, the decay rate of the de-optimized IL6 reporter was faster, confirming that low GC3-

content transcripts were unstable. 

In addition to the RNA stability, higher GC3-content was also associated with higher translation 

efficiency (Fig 2C), thereby increasing protein production. Indeed, the protein abundance of the 

optimized REL reporter was higher than REL-WT even after normalization of protein abundance by 

mRNA levels (Fig 3B, Fig EV3C). Using enzyme-linked immunosorbent assay (ELISA), we observed 

that expression of IL6-OPT resulted in a 1.5-fold and 2-fold significantly higher level of IL6 compared 

to its WT and IL6-DE, respectively (Fig 3C). In a similar fashion, normalization of IL6 protein 

abundance by mRNA levels revealed that translation efficiency of the optimized IL6 reporter was 

higher than its WT and de-optimized reporter counterparts (Fig EV3D). We tested our REL reporters 

in HeLa cells and show that the high protein abundance of REL-OPT could also be observed (Fig 

EV3E). Moreover, polysome fractionation and subsequent qPCR analysis revealed that within the 

polysome fractions, REL-OPT transcript amounts were significantly higher than REL-WT transcripts, 

suggesting that REL-OPT was translated more efficiently than REL-WT (Fig 3D). Thus far, our results 

validate the bioinformatics analyses and show that GC3 and AT3 codons can be designated as 

optimal and non-optimal codons.  

We then synthesized a +1 frameshifted version of the REL-OPT transcript, removing any potential 

stop codons which would have resulted in premature termination of transcription and measured its 
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stability via the Tet-off system (Fig 3E). This frameshifted version, while possessing a lower GC3-

content, retained the same GC-content as its in-frame counterpart (REL-OPT) (Fig EV3B). 

Surprisingly, the frameshifted version, was still more stable than the WT form, yet less stable 

compared to its in-frame optimized counterpart, suggesting that GC-content could be an additional 

determinant of stability. Taken together, our results show that codon bias encompasses two modes of 

mRNA regulation, GC3- and GC-content dependent. 

RNA binding proteins differentially bind to transcripts of varying degrees of codon bias 

Having shown that high optimality content inevitably accords high GC-content which in turn promotes 

mRNA stability, we wondered if there were RNA binding proteins (RBPs) which scrutinize, 

discriminate or even affect an mRNA’s fate. To identify RBPs which were either bound to transcripts 

bearing high or low optimality, we performed a ribonucleoprotein immunoprecipitation-based 

approach termed ISRIM (In vitro Specificity based RNA Regulatory protein Identification Method) [29]. 

Lysates of HEK293 cells were mixed with FLAG peptide-conjugated REL and IL6 transcripts of high 

and low optimality and their interacting proteins were determined using mass spectrometry. We then 

calculated the fold changes based on the abundance of RBPs bound to REL-WT with respect to REL-

OPT (Fig 4A).  

As IL6 transcripts possessed three levels of GC3-content (OPT, WT, DE), we defined high GC3-

content binding RBPs based on the RBP enrichment of IL6-WT to IL6-DE (Fig 4B) as well as IL6-

OPT compared to IL6-WT (Fig 4C). Similarly, we defined low GC3-content binding RBPs based on 

the RBP enrichment of IL6-DE compared to IL6-WT (Fig4B) as well as IL6-WT to IL6-OPT (Fig 4C). 

By selecting common RBPs belonging to each group, we defined a set of RBPs which bound 

differentially to high GC3 and low GC3 IL6 transcripts respectively (Fig EV4A) We then selected RBP 

candidates which were specifically enriched with either low or high GC3 transcripts common to both 

REL and IL6 ISRIM experiments (Fig EV4B, Dataset EV2). In all, we show that RBPs can 

differentiate between transcripts of high GC3 and low GC3 content. 

ILF2 regulates the stability of low GC3 / high AT3 transcripts 

We investigated the role of RBPs in modulating the stability of transcripts with different codon bias. Of 

interest were ILF2 and ILF3, RPBs identified from the list of RBPs interacting exclusively with low 

optimality transcripts. ILF2 and ILF3, also known as NF45 and NF90/NF110, respectively, are well 

known to function dominantly as heterodimers which bind double stranded RNA. ILF3 has been 

extensively studied, having shown to bind to AU-rich sequences in 3′ UTR of target RNA to repress its 

translation [30]. We hypothesize that the binding of ILF2 and ILF3 to their targets occur as low 

optimality transcripts are inadvertently AU-rich. Here we focused on the effects of these RBPs on low 

optimality transcripts. Firstly, using published RIP-seq data of ILF2 in two multiple myeloma cell lines, 

H929 and JJN3, we observed that ILF2 interacts with low optimality transcripts (Fig EV5A) [31; Data 

ref: Marchesini et al. 2017]. Additionally, we analysed RNA-Seq data obtained from the ENCODE 

project of K562 cells treated by CRISPR interference targeting ILF2 [32; Data ref: ENCODE Database 
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ENCSR073QLQ]. Strikingly, we observed that transcripts that possessed low optimality scores were 

upregulated whereas transcripts that possessed high optimality scores were downregulated (Figure 

5A, Fig EV5B). The abundance changes of representative mRNAs by ILF2 knockdown were 

antiparallel to their GC3-content (Fig EV5C).  

To confirm our observations, we examined the stability of FLAG-tagged versions of REL-OPT and 

REL-WT in the Tet-off system after ILF2 and ILF3 knockdown via siRNA (Fig 5B-C). Interestingly, we 

observed that the optimized reporter was more unstable under the knockdown of both ILF2 and ILF3 

whereas the WT reporter was more stable with the knockdown of ILF2 only and a combination of both 

ILF2 and ILF3. No change in stability was observed with ILF3-only knockdown WT reporters 

suggesting that the increase in the stability of the WT reporter was due to the knockdown of ILF2, not 

ILF3. In agreement with this, we found a significant increase in protein levels of REL-WT when cells 

were treated with ILF2- and ILF3-targeting siRNA (Fig 5D and Fig EV5D). However, despite seeing a 

decrease in stability of the GC3-optimized reporter under both ILF2 and ILF3 knockdown, we were 

unable to observe this change at the protein level.  

Focusing our attention on ILF2, we expressed FLAG-tagged versions of REL-OPT and REL-WT, 

along with the two isoforms of ILF2 and detected the reporter protein levels via western blot. A 

significant decrease in band intensity was observed for the REL-WT bands when both isoforms of 

ILF2 were expressed, whereas the amount of REL-OPT was not changed (Fig 5E and Fig EV5E). 

Taken together, our results suggest that ILF2 targets mRNA transcripts with low GC3-content (and 

inadvertently low GC-content) to induce their decay. 

Discussion 

This study provides a framework describing codon bias-mediated RNA decay in humans. We first 

show that GC3 codons are associated with stability and AT3 codons with instability. We quantified 

codon bias by calculating the GC3 content within the CDS of genes and showed that GC3-content is 

strongly correlated with RNA stability and amount of protein expressed. In general, the use of optimal 

GC3 codons correlated with higher GC-content at a genome-wide level. We then show a modest 

agreement between codon bias-derived scores and ribosome occupancy as determined by ribosome 

profiling. Using GC3-optimized and de-optimized reporters we validate our bioinformatics 

observations in vitro. Screening of RNA binding proteins revealed that ILF2, which interacts with 

transcripts with low GC3-content, induces their degradation. Taken together, we conclude that gene 

expression can be shaped by codon bias and inevitably by GC/AU-content through the modulation of 

mRNA stability in human cells. 

Investigating the System of Codon Bias in Humans 

Since translation elongation is affected by tRNA availability, the tRNA adaptation index (tAI), which is 

based on genomic tRNA copy number, has been used as a surrogate for codon optimality. However, 

in contrast to yeast, tRNA copy number in genome is not always correlated with tRNA abundance in 

higher eukaryotes [33]. Hence, this metric is less suitable for quantifying codon optimality in humans. 
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Independent of tRNA-based metrics, we addressed these challenges by utilizing an unsupervised 

learning algorithm, PCA, to identify features in that were mRNA-intrinsic. In the PCA of both yeast and 

humans, we demonstrated that the first principal component mirrored optimal/non-optimal 

assignments. We also show that the codon bias is different between these two organisms (Fig 1B, 

Fig EV1A). In humans, the classification of codons into AT3 and GC3 groups was striking, but the 

percentage by which it accounts for its variation however was modest. From the PCA, the first and 

second principal components only explain a quarter of total variance in codon frequencies (Fig 1B), 

implying that other factors that explain bias of codon frequency possibly remains in human cells. 

Assuming that evolution drives the selection of codons, synonymous codon usage in different 

organisms must be fine-tuned over time to achieve precise expression levels of mRNA and eventually 

proteins in essential physiological process. It is therefore plausible that high GC3/AT3-content or 

GC/AT-content in mRNA is selected for to modulate transcript stability in essential physiological 

processes, but subject to constraints by amino sequence. Indeed, we show that transcripts with high 

and low GC3-content were linked to particular physiological and cellular processes (Fig EV1E and F). 

In a particular study, Gingold and colleagues argue that tRNA abundances vary in proliferating and 

differentiating cell types [34]. Interestingly, they showed that codons preferred by cell cycling genes 

were AT3 codons while pattern-specification preferred codons tended to be GC3 codons—in 

agreement with our GO analyses. In Drosophila, the correlation between codon optimality and mRNA 

stability has been demonstrated to be attenuated in neural development, possibly allowing the effect 

of trans-acting factors to dominate development [22]. c-Rel, a protein encoded by the REL gene and a 

canonical nuclear factor κB (NF-κB) subunit, is expressed abundantly in differentiated lymphoid cells 

and has been shown to be vital in thymic regulatory T cell development in addition to controlling 

cancer via activated regulatory T cells [35,36]. Given the inherent low optimality and associated 

instability of REL in its WT form (Fig 3A), we wonder if besides transcriptional control of REL, could 

there be other post-transcriptional regulation systems at play. Further studies would be necessary to 

investigate if codon optimality or codon optimality-associated RBPs modulate REL gene expression. 

Our results show that codon bias affects ribosome occupancy to a significant extent (Fig 2B). Taking 

into account our in vitro experiment results together with the ribosomal profiling results, we suggest 

that GC3 and AT3 codons are synonymous with optimal and non-optimal codons. Additionally, our 

study along with others’ suggests that slower elongation of ribosome is a key feature of mRNA 

stability. Although codon optimality is a dominant factor in general, other factors may also be involved 

in decelerated ribosomes, such as secondary structures [37,38]. These obstacles for ribosome 

elongation are reversible and dynamically regulated by RNA helicases [39,40]. Further studies will be 

required to elucidate the role of RNA secondary structures and helicases and their relevance to codon 

bias and mRNA stability decay. 

The stability of mRNA can be modulated by RBPs which bind AU-rich sequences 

Whereas AU-rich elements (AREs) in the 3′ UTR have been traditionally targeted by RBPs, we found 

that coding regions are also targeted by ARE-recognizing RBPs. The identification of the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/585992doi: bioRxiv preprint 

https://doi.org/10.1101/585992


heterodimeric complex consisting of ILF2 and ILF3 among others shows that a wide array of RBPs 

recognizes low optimality (AU-rich) sequences (Fig 4). Here, we show that ILF2 destabilizes AU-rich, 

GC-poor transcripts. At the protein level however, knockdown ILF2 and ILF3 show better stabilization 

of GC3-poor transcripts even when compared to ILF2 knockdown alone.  Interestingly, Kuwano and 

colleagues show that NF90, the shorter isoform of ILF3, specifically targets AU-rich sequences in 

mRNA 3’UTRs and represses their translation, not stability [30]. Taking into consideration reports that 

ILF2 and ILF3 can function independently of each other [41–43], it is possible that ILF2 and ILF3 

regulate the fate of mRNA differently. Our screens also detected HNRNPD/AUF1, which destabilizes 

transcripts via recognition of AU-rich motifs [44], binding to low optimality mRNAs (Dataset EV2). 

These observations emphasize the importance of AU-content, which is strongly connected with low 

optimality, in RNA destabilization. However, we could not exclude the possibility that these factors 

induced the degradation of AU-rich transcripts independent of the model proposed by Presnyak and 

Radhakrishnan [12,13] as our RBP identification method was not fully reflective of the active 

translational status required for co-translational degradation of mRNA transcripts. Further studies 

would be necessary to discern if these or other factors act as sensors of codon optimality during 

translation. 

In conclusion, in human cells, the redundancy of the genetic code allows the choice between 

alternative codons for the same amino acid which may exert dramatic effects on the process of 

translation and mRNA stability. In our experiments, we show that two modes of mRNA regulation exist 

– GC3 and GC-content dependent. This system potentially confers freedom for calibrating protein and 

mRNA abundances without altering protein sequence. Beginning from our exploratory analysis, we 

have developed an approach to quantify codon bias and demonstrate that beneath the redundancy of 

codons, exists a system which modulates mRNA and consequently, protein abundance. 

Materials and Methods 

Cell Cultures, Growth, and Transfection Conditions 

HEK293T cells were maintained in Dulbecco’s modified eagle medium (DMEM) (Nacalai Tesque), 

supplemented with 10% (v/v) fetal bovine serum. HEK293 Tet-off cells were maintained in Minimum 

Essential Medium Eagle - Alpha Modification (α-MEM) (Nacalai Tesque), supplemented with 10% (v/v) 

Tet-system approved fetal bovine serum (Takara Bio) and 100 µg/ml of G418 (Nacalai Tesque). For 

REL and IL6 overexpression experiments, plasmids were transfected using PEI MAX (Polysciences 

Inc). For co-transfection of ILF2 siRNA with REL plasmids, Lipofectamine 2000 was used as per 

manufacturer’s protocol. ILF2 siRNA which targeted ILF2 at exons 8 and 9 were Silencer Select 

siRNA, S7399 (Ambion, Life Technologies). 

Plasmid Construction  

Codon optimized-REL (REL-OPT), IL6 (IL6-OPT) and codon de-optimized IL6 (IL6-DE) sequences 

were synthesized as gBlocks Gene Fragments (Integrated DNA Technologies) (Dataset EV3). The 

REL-OPT (+1 Frameshift) sequence was constructed by adding a +1 frameshift just after the start 

codon. Resulting stop codons were removed to ensure no premature termination. These sequences 
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and corresponding WT sequences were polymerase chain reaction (PCR) amplified (with the 

inclusion of a FLAG tag for REL sequences) and inserted into the pcDNA3.1(+) vector (Invitrogen) 

and pTRE-TIGHT vector (Takara Bio). The sequences were confirmed via restriction enzyme digest 

and sequencing. 

Tet-Off Assay 

HEK293 Tet-off cells (Clontech) were transfected with pTRE-TIGHT plasmids bearing the 

(de)optimized and WT sequences and incubated overnight at 37ºC. Transcriptional shut-off for the 

indicated plasmids was achieved by the addition of doxycycline (LKT Laboratories Inc.) to a final 

concentration of 1 µg/ml. Samples were harvested at the indicated timepoints after the addition of 

doxycycline. 

RNA Extraction, Reverse Transcription PCR, and Quantitative Real-time PCR 

Total RNA was isolated from cells using TRIzol reagent (Invitrogen) as per manufacturer’s instructions. 

Reverse transcription was performed using the ReverTra Ace qPCR RT Master Mix with gDNA 

remover kit (Toyobo) as per manufacturer’s instructions. cDNA was amplified with PowerUp SYBR 

Green Master Mix (Applied Biosystems) and quantitative real-time PCR (qPCR) was performed on the 

StepOne Real-Time PCR System (Applied Biosystems). Human GAPDH abundance was used for 

normalization. The list of qPCR primers can be found in Dataset EV3. 

Sucrose Gradient Centrifugation (Polysome Profiling) 

HEK293T were transfected with equal concentrations of REL-OPT and REL-WT plasmids. Cells were 

lysed the next day in polysome buffer [20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES‐KOH) (pH 7.5], 100 mM KCl, 5 mM MgCl2, 0.25% (v/v) Nonidet P‐40, 10 µg/ml 

cycloheximide, 100 units/ml RNase inhibitor, and protease inhibitor cocktail (Roche)]. Lysates were 

loaded on top of a linear 15%–60% sucrose gradient [15%–60% sucrose, 20 mM HEPES‐KOH [pH 

7.5], 100 mM KCl, 5 mM MgCl2, 10 µg/ml cycloheximide, 100 units/ml RNase inhibitor, and protease 

inhibitor cocktail (Roche)]. After ultracentrifugation at 38,000 rpm for 2.5 h at 4ºC in a HITACHI P40ST 

rotor, fractions were collected from the top of the gradient and subjected to UV‐densitometric analysis. 

The absorbance profiles of the gradients were determined at 254 nm. For disassociation of ribosome 

and polysome, EDTA was added to Mg2+
‐free polysome buffer and 15%–60% sucrose gradient at 

concentrations of 50 mM and 20 mM, respectively. For RNA analysis, RNA from each fraction was 

extracted via the High Pure RNA Isolation Kit (Roche) and subject to reverse transcription and qPCR. 

Immunoblot Analysis 

Samples were lysed in RIPA buffer (20 mM Tris-HCl [pH 8], 150 mM NaCl, 10 mM EDTA, 1% 

Nonidet-P40, 0.1% SDS, 1% sodium deoxycholate, and cOmplete Mini EDTA-free Protease Inhibitor 

Cocktail [Roche]). Protein concentration was determined by the BCA Protein Assay (Thermo Fisher). 

Whole cell lysates were resolved by SDS-PAGE and transferred onto PVDF membranes (Bio-Rad). 

The following antibodies were used for immunoblot analysis: mouse monoclonal anti-FLAG (F3165, 

Sigma), mouse monoclonal anti-ILF2 (sc-365283, Santa Cruz Biotechnology), mouse anti-β-actin (sc-

47778, Santa Cruz), and mouse IgG HRP linked F(ab’)2 fragment (NA9310, GE Healthcare). 
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Luminescence was detected with a luminescent image analyser (Amersham Imager 600; GE 

Healthcare). 

ELISA 

HEK293T cells were transfected with pcDNA3.1(+) plasmids bearing the (de)optimized and WT 

sequences and incubated overnight at 37ºC. Cell supernatant was aspirated and the cell monolayer 

washed with 1x PBS (pre-warmed at 37ºC). Pre-warmed DMEM was added to the monolayer and the 

cells incubated for 2 hr at 37ºC. Thereafter, the cell supernatant was harvested and centrifuged at 300 

x g to pellet residual cells. The resulting supernatant was decanted and the concentration of secreted 

IL6 was measured by the human IL6 ELISA kit (Invitrogen) according to the manufacturer’s 

instructions. 

ISRIM (In vitro Specificity based RNA Regulatory protein Identification Method) 

Preparation of bait RNAs. T7-tagged cDNA template was PCR amplified and subjected to in vitro 

transcription using a MEGAscript T7 kit (Applied Biosystems). Amplified cRNA was purified with an 

RNeasy Mini Kit (Qiagen) and then subjected to FLAG conjugation as described (10) with some 

modifications. Briefly, 60 μl of freshly prepared 0.1 M NaIO4 was added to 60 μl of 250 pmol cRNA, 

and the mixture was incubated at 0ºC for 10 min. The 3′ dialdehyde RNA was precipitated with 1 ml of 

2% LiClO4 in acetone followed by washing with 1 ml acetone. The pellet was dissolved in 10 μl of 0.1 

M sodium acetate, pH 5.2 and then mixed with 12 μl of 30 mM hydrazide–FLAG peptide. The reaction 

solution was mixed at room temperature for 30 min. The resulting imine-moiety of the cRNA was 

reduced by adding 12 μl of 1 M NaCNBH3, and then incubated at room temperature for 30 min. The 

RNA was purified with an RNeasy Mini Kit (Qiagen).  

Purification and analysis of RNA-binding proteins. Purification and analysis of RNA-binding 

protein (RBP) were carried out as described [29] with some modifications. Briefly, HEK293T cells 

were lysed with lysis buffer [10 mM HEPES (pH 7.5), 150 mM NaCl, 50 mM NaF, 1 mM Na3VO4, 5 

μg/ml leupeptin, 5 μg ml aprotinin, 3 μg/ml pepstatin A, 1 mM phenylmethylsulfonyl fluoride (PMSF), 

and 1 mg/ml digitonin] and cleared by centrifugation. The cleared lysate was incubated with indicated 

amounts of FLAG-tagged bait RNA, antisense oligos and FLAG-M2-conjugated agarose for 1 hr. The 

agarose resin was then washed three times with wash buffer [10 mM HEPES (pH 7.5), 150 mM NaCl, 

and 0.1% Triton X-100] and co-immunoprecipitated RNA and proteins were eluted with FLAG elution 

buffer [0.5 mg/ml FLAG peptide, 10 mM HEPES (pH 7.5), 150 mM NaCl, and 0.05% Triton X-100]. 

The bait RNA associated proteins were digested with lysyl endopeptidase and trypsin. Digested 

peptide mixture was applied to a Mightysil-PR-18 (Kanto Chemical) frit-less column (45 3 0.150 mm 

ID) and separated using a 0–40% gradient of acetonitrile containing 0.1% formic acid for 80 min at a 

flow rate of 100 nl/min. Eluted peptides were sprayed directly into a mass spectrometer (Triple TOF 

5600+; AB Sciex). MS and MS/MS spectra were obtained using the information-dependent mode. Up 

to 25 precursor ions above an intensity threshold of 50 counts/s were selected for MS/MS analyses 

from each survey scan. All MS/MS spectra were searched against protein sequences of RefSeq 

(NCBI) human protein database using the Protein Pilot software package (AB Sciex) and its decoy 

sequences then selected the peptides FDR was <1%.  Ion intensity of peptide peaks ware obtained 
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using Progenesis QI for proteomics software (version 3 Nonlinear Dynamics, UK) according to the 

manufacturer's instructions. 

Ribosome profiling and RNA-Seq 

Ribosome profiling was performed according to the method previously described with following 

modifications [26]. RNA concentration of naïve HEK293T lysate was measured by Qubit RNA BR 

Assay Kit (Thermo Fisher Scientific). The lysate containing 10 µg RNA was treated with 20 U of 

RNase I (Lucigen) for 45 min at 25ºC. After ribosomes were recovered by ultracentrifugation, RNA 

fragments corresponding to 26-34 nt were excised from footprint fragment purification gel. Library 

length distribution was checked using a microchip electrophoresis system (MultiNA, MCE-202, 

Shimadzu). 

For RNA-seq, total RNA was extracted from the lysate using TRIzol LS reagent (Thermo Fisher 

Scientific) and Direct-zol RNA Kit (Zymo research). Ribosomal RNA was depleted using the Ribo-Zero 

Gold rRNA Removal Kit (Human/Mouse/Rat) (Illumina) and the RNA-seq library was prepared using 

TruSeq Stranded mRNA Library Prep Kit (Illumina) according to the manufacturer's instructions. 

The libraries were sequenced on a HiSeq 4000 (Illumina) with a single-end 50 bp sequencing run. 

Reads were aligned to human hg38 genome as described [26,45]. The offsets of A-site from the 5′ 

end of ribosome footprints were determined empirically as 15 for 25-30 nt, 16 for 31-32 nt, and 17 for 

33 nt. For RNA-seq, offsets were set to 15 for all mRNA fragments. For calculation of the ribosome 

occupancies, mRNAs with lower than one footprint per codon were excluded. For calculation of the 

translation efficiencies (TEs), we counted the number of reads within each CDS, and ribosome 

profiling counts were normalized by RNA-seq counts using the DESeq package [46]. Reads 

corresponding to the first and last five codons of each CDS were omitted from the analysis of TEs. 

The Custom R scripts will be available upon requests. 

Bioinformatics and Computational Analyses 

Principal component analysis. CDS data (Human genes, GRCh38p12) was obtained from the 

Ensembl Biomart Database and the average human codon frequencies per transcript were calculated 

for all transcripts. The resulting data was subject to PCA analysis using the Python 3.4 environment 

via the factoextra program [47]. Finally, the data was trimmed to remove truncated sequences as well 

as sequences with non-canonical start codons to a final of 9898 genes. 

Hierarchical clustering analysis.  mRNA transcripts ranked in order of their half-lives, divided 

equally into 4 groups and their average half-lives within each group was calculated. The 

corresponding codon frequencies of transcripts within each group were averaged. Hierarchical 

clustering was performed using the average linkage method to cluster the codon frequencies in R 

using the ggplot2 program [48]. 

Quantification of GC3-content. To quantify GC3-content, we summed up the codon frequencies of 

GC3 codons and expressed the frequencies on a percentage scale. 

Binning of ribosomal occupancy frequencies and calculation of codon bias-derived occupancy 

scores. To quantify codon bias for ribosome profiling, the factor loading scores of the codons from 
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the first principal component were normalized linearly on a percentage scale from 0 to 1 where 0 

corresponded to the codon with the lowest score (AAT) and 1 for the codon with the highest score 

(GCC) (Fig EV2A). Binning of the ribosome occupancies were performed in the R environment via a 

custom script. To calculate the corresponding codon bias-derived occupancy scores, we substituted 

the codon sequences of mRNA transcripts with their respective codon scores and in a similar fashion, 

binned the data into 25 bins. As the scores of codons should inversely reflect the ribosome occupancy 

(i.e. higher ribosome occupancy associated with lower codon scores), we calculated the reciprocal of 

the binned codon scores within each bin for all 25 bins to derive the codon bias-derived occupancy 

scores. Both ribosome occupancy and codon bias-derived occupancy scores were normalized on a 

linear scale and a Pearson correlation performed on each transcript. To exclude the possibility that 

the correlations were due to chance, we shuffled the bins for the codon bias-derived occupancy 

scores within each individual transcripts and calculated the Pearson correlation between shuffled and 

ribosomal occupancy data. 
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TABLE AND FIGURES LEGENDS 

Figure 1. Bioinformatics analysis reveals that biased codons can be categorized into GC3 and 

AT3 codons respectively. 

A. Hierarchical clustering analysis of model organisms and their average CDS codon frequencies. 

B. Principal component analysis of the CDS codon frequencies of 9666 protein-coding genes. PC1 
and PC2 indicate the first and second principal components. 

C. Heatmap of half-lives of mRNA and their CDS codon frequencies. The transcripts were ranked 
according to their half-lives and divided equally into quartiles. The respective codon frequencies of 
each group were then averaged. 

D. Histogram illustrating the distribution of genes and their respective GC3- and GC-content. 

E. Comparison of average transcript mRNA half-lives across their respective GC3-content ranges. 
Number of transcripts within each gene optimality range is indicated above their respective points.  

Data information: In (E), error bars represent the 95% confidence intervals. 

Figure 2. Ribosome profiling reveals that ribosome occupancy is moderately correlated with 

codon bias. 

A. Average ribosome occupancy and their respective codon bias-derived occupancy scores across 
the CDS of transcript (in 25 bins). Ribosome occupancy for 16,423 transcripts and their respective 
codon bias-derived occupancy were firstly binned into 25 bins and the mean occupancy was 
calculated for each bin.  

B. Cumulative distribution plots showing the distributions of correlations between ribosome occupancy 
and codon bias-derived occupancy. Correlations obtained from the ribosome occupancy and 
scrambled codon bias-derived occupancy served as the control. A Kolmogorov–Smirnov test was 
performed between the codon bias-derived occupancy and the control group.   

C. Comparison of average transcript translation efficiencies (TEs) across their respective GC3-content 
ranges. Number of transcripts within each gene optimality range is indicated above their respective 
points. 

D, E. Principal component analysis of CDS codon frequencies of protein-coding genes derived from a 
+1 frameshift (D) and a -1 frameshift (E). Shaded ellipses indicate codons which are GC-rich (orange) 
and AT-rich (blue). 

Data information: In (A, C), error bars represent the 95% confidence intervals. 

Figure 3. GC3-content of transcripts determine their fate. 

A. HEK293 Tet-off experiments showing the degradation of REL-OPT and REL-WT transcripts (left) 
as well as IL6-OPT, IL6-WT and IL6-DE transcripts (right), post-doxycycline addition.  

B. Representative immunoblot of FLAG-tagged REL-OPT and REL-WT in HEK293T cells transfected 
with either empty plasmids, plasmids bearing REL-OPT or REL-WT. The immunoblot is representative 
of 3 independent experiments. ACTB is shown as the loading controls. 
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C. ELISA of secreted IL6 concentrations of IL6-OPT, IL6-WT and IL6-DE from HEK293T cells 
transfected with plasmids bearing IL6-OPT, IL6-WT and IL6-DE.  

D. Fold changes of REL-OPT and REL-WT transcript levels (top) relative to their abundances from 
fraction 1 as detected by qPCR across polysome fractions (below). Data represents the mean ± SD 
for 3 biological replicates.  

E. HEK293 Tet-off experiments showing the degradation of REL-OPT, REL-OPT (+1 Frameshift) and 
REL-WT transcripts post-doxycycline addition.  

Data information: In (A, E), data is representative of 3 independent experiments each with 3 
replicates. The data represents the mean ± SD for 3 replicates. A two-way ANOVA with Holm-Sidak 
multiple comparisons was performed. P-values are denoted as follows: p < 0.05 (*), p<0.01 (**) and 
p<0.001 (***). The half-lives of the respective transcripts are indicated in brackets. In (C), the data is 
representative of 3 independent experiments each with 3 replicates. The data represents the mean ± 
SD for 3 replicates. A one-way ANOVA with Tukey’s multiple comparisons was performed between 
samples where, p<0.01 (**) and p<0.001 (***). 

Figure 4. RNA binding proteins bind differentially to transcripts with different levels of GC3-

content. 

A, B, C. Volcano plots showing the enrichment of RBPs which bind to REL-WT relative to REL-OPT 
transcripts (A), IL6-DE relative to IL6-WT transcripts (B) and IL6-WT relative to IL6-OPT transcripts 
(C).  

Data information: In (A, B, C), vertical dotted lines indicate a 1.5-fold enrichment while horizontal 
dashed lines indicate the p-value cut-off of 0.05. Points shaded in blue indicate RBPs which have a 
differential fold change of more than 1.5 and p<0.05. 

Figure 5. ILF2 regulates the stability of low GC3 / high AT3 transcripts 

A. Cumulative distribution plots showing the difference in distribution of transcript optimality between 
upregulated and downregulated transcripts in K562 cells subject to ILF2 CRISPR interference 
targeting ILF2.  

B, C. HEK293 Tet-off experiments showing the degradation of REL-OPT (B) and REL-WT (C) 
transcripts with ILF2 and ILF3 siRNA and Control (CTR) siRNA treatment, post-doxycycline addition. 

D. Representative immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in HEK293T cells 
under ILF2 and ILF3 siRNA treatment. The immunoblot is representative of 3 independent 
experiments. ACTB was shown as loading controls. 

E. Representative immunoblot of FLAG-tagged REL-OPT and REL-WT in HEK293T cells co-
expressed with two different isoforms of ILF2. The immunoblot is representative of 3 independent 
experiments. ACTB was shown as loading controls. 

Data information: In (A), Kolmogorov–Smirnov tests were performed on the upregulated and 
downregulated groups against the control group. P-values are denoted (right). In (B, C), data is 
representative of 3 independent experiments in which the data represents the mean ± SD for 3 
biological replicates. Unpaired t-tests were performed between samples where, p < 0.05 (*) and 
p<0.01 (**). 

Expanded View Figure 1 

A. Principal component analysis of the CDS codon frequencies of protein-coding genes in S. 
cerevisiae. PC1 and PC2 indicate the first and second principal components. 
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B. F1 factor loadings of codons from the yeast dataset ranked from the highest to the lowest. The 
optimal and non-optimal designation at the bottom of the figure refers to the designation according to 
Presnyak and colleagues [12]. 

C. Pearson correlation between GC-content and GC3-content for 9666 protein-coding genes. 

D. Violin plots visualizing the distribution of mRNA half-lives across their respective GC3-content 
brackets.  

E. Gene ontology analysis (biological processes) of the top 5% ranked genes in terms of gene GC3-
content 

F. Gene ontology analysis (biological processes) of the bottom 5% ranked genes in terms of gene 
GC3-content 

Data information: In (D), the box plots within each figure are indicative of the median and 
interquartile ranges. 

Expanded View Figure 2 

A. PC1 factor loadings of codons from the human dataset ranked from the highest to the lowest 
(bottom) and their corresponding normalized factor loadings after linear normalization onto a 
percentage scale (top). 

B. Pearson correlation between the correlations of derived from comparison of ribosome occupancy 
and codon bias-derived scores for two ribosome profiling sample replicates. 

C. Three example transcripts (EIF2B2, DYNC1LI2 and IDH3G) which demonstrate high correlation 
between ribosome occupancy and codon bias-derived scores (left) as well as their corresponding 
Pearson correlations over 25 bins (right). 

D, E. Hierachical clustering analysis of half-lives of mRNA and their CDS codon frequencies after a +1 
frameshift (D) and -1 frameshift (E). The transcripts were ranked according to their half-lives and 
divided equally into quartiles. The respective codon frequencies of each group were then averaged. 
Codon highlights indicate codons which are GC-rich (yellow) and AT-rich (blue). 

Expanded View Figure 3 

A. Example of how transcript GC3-optimization and deoptimization was performed to generate GC3-
optimized and de-optimized versions of REL and IL6 transcripts. 

B. GC3- and GC-content of REL-OPT/WT , REL-OPT (+1 Frameshift), and IL6-OPT/WT/DE 
transcripts. 

C. Protein abundance of immunoblot of FLAG-tagged REL-OPT and REL-WT in HEK293T cells 
transfected with either empty plasmids, plasmids bearing REL-OPT or REL-WT (corresponding to Fig 
3B). The protein abundance was normalized by respective mRNA levels.  

D. Protein abundance as determined by ELISA of IL6-OPT, IL6-WT and IL6-DE in HEK293T cells 
transfected with either empty plasmids, plasmids bearing IL6-OPT, IL6-WT or IL6-DE (corresponding 
to Fig 3D). The protein abundance was normalized by respective mRNA levels. The ELISA 
quantification is representative of 3 independent experiments.  

E. Representative immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in HeLa cells (left). 
The immunoblot is representative of 3 independent experiments. 
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Data information: In (C), the densitometry data is representative of 3 independent experiments. 
Unpaired t-tests were performed within the REL-OPT and REL-WT samples, p<0.05 (*). In (D), a one-
way ANOVA with Tukey’s multiple comparisons was performed between samples where, p<0.01 (**) 
and p<0.001 (***). 

Expanded View Figure 4 

A. Venn diagram indicating the number of RBPs identified from the IL6 ISRIM experiments. 

B. Venn diagram indicating the number of RBPs identified from the REL and IL6 ISRIM experiments. 

 

 

Expanded View Figure 5 

A. Cumulative distribution plots showing the GC3-content distribution of transcripts bound to by ILF2 
in H929 (top) and JJN3 cells (bottom). Kolmogorov–Smirnov tests were performed on the ILF2 RIP 
group against the control group.  

B. Scatterplot of the RPKM values of mRNA transcripts in K562 cells subject to ILF2 CRISPR 
interference and its corresponding WT control. mRNA transcripts were colored according to their 
GC3-content.  

C. Fold changes of example mRNA representing low, average and high GC3-content transcripts from 
the RPKM values of mRNA transcripts in K562 cells subject to ILF2 CRISPR interference.  

D. Densitometric analysis of immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in 
HEK293T cells under ILF2 and ILF3 siRNA treatment (corresponding to Fig 5D).  

E. Densitometric analysis of immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in 
HEK293T cells co-expressed with two different isoforms of ILF2 (corresponding to Figure 5E) 

Data information: In (C), data represents the mean ± SD for 2 biological replicates. In (D, E), 
densitometry data is representative of 3 independent experiments. A one-way ANOVA with Tukey’s 
multiple comparisons was performed within the REL-OPT and REL-WT samples. P-values are 
denoted as follows, p < 0.05 (*), p<0.01 (**) and p<0.001 (***). 

Dataset EV1. List of genes and their corresponding GC3- and GC-content. 

Dataset EV2. List of RBPs identified in ISRIM experiments. 

Dataset EV3. List of qPCR primers and their corresponding sequences. 
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