
Citation: Bi, D.; Han, S.; Zhou, J.;

Zhao, M.; Zhang, S.; Kan, X. Codon

Usage Analyses Reveal the

Evolutionary Patterns among Plastid

Genes of Saxifragales at a

Larger-Sampling Scale. Genes 2023,

14, 694. https://doi.org/10.3390/

genes14030694

Academic Editor: Zhiqiang Wu

Received: 15 February 2023

Revised: 7 March 2023

Accepted: 10 March 2023

Published: 11 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

Codon Usage Analyses Reveal the Evolutionary Patterns among
Plastid Genes of Saxifragales at a Larger-Sampling Scale
De Bi 1,†, Shiyun Han 2,3,† , Jun Zhou 1, Maojin Zhao 1, Sijia Zhang 2,3 and Xianzhao Kan 2,3,*

1 Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
2 Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources,

College of Life Sciences, Anhui Normal University, Wuhu 241000, China
3 The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
* Correspondence: xianzhao@ahnu.edu.cn; Tel.: +86-139-5537-2268
† These authors contributed equally to this work.

Abstract: Saxifragales is a 15-family order of early-divergent Eudicots with a rich morphological
diversity and an ancient rapid radiation. Codon usage bias (CUB) analyses have emerged as an
essential tool for understanding the evolutionary dynamics in genes. Thus far, the codon utilization
patterns had only been reported in four separate genera within Saxifragales. This study provides a
comprehensive assessment of the codon manipulation based on 50 plastid genes, covering 11 con-
stituent families at a larger sampling scale. Our results first showed a high preference for AT bases
and AT-ending codons. We then used effective number of codons (ENC) to assess a range of codon
bias levels in the plastid genes. We also detected high-informative intrafamilial differences of ENC
in three families. Subsequently, parity rule 2 (PR2) plot analyses revealed both family-unique and
order-shared bias patterns. Most importantly, the ENC plots and neutrality analyses collectively
supported the dominant roles of selection in the CUB of Saxifragales plastid genes. Notably, the
phylogenetic affinities inferred by both ML and BI methods were consistent with each other, and
they all comprised two primary clades and four subclades. These findings significantly enhance our
understanding of the evolutionary processes of the Saxifrage order, and could potentially inspire
more CUB analyses at higher taxonomic levels.

Keywords: Saxifragales; plastid genes; phylogeny; codon usage

1. Introduction

The order Saxifragales is the representative of parts of the early-divergent branches
of the Eudicot [1–3]. Fossil data have suggested a rapid radiation of this group [2,4], and
currently, it includes ca. 2500 taxa from 15 families [5], exhibiting a high degree of diversity
in morphology (e.g., succulents, shrubs, vines, and trees) [6–8]. Although the monophyly
of this order has been widely accepted [9–14], its internal phylogenetic affinities were
more elusive in earlier studies, which might be caused by an ancient, rapid radiation and
limited data resources [15,16]. In particular, the circumscriptions of Saxifragales have been
regarded as a major surprise in plant systematics [17]. Notably, based on a 50,845 bp con-
catenated dataset from nuclear, mitochondrial, and plastid sequences, Jian et al. [1] firstly
inferred three major clades of Saxifragales: (1) Peridiscaceae, (2) Paeoniaceae + “woody
group” (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae), and
(3) Crassulaceae alliance (Crassulaceae, Haloragaceae, Penthoraceae, and Tetracarpaeaceae)
+ Saxifragaceae alliance (Saxifragaceae, Grossulariaceae, Iteaceae, and Pterostemonaceae).
Thus far, many analyses have supported this backbone phylogeny, and greatly contributed
to insights into the interfamilial relationships among these lineages [18–20].

Saxifragales is considered to be a pretty good demonstration to explore diverse evo-
lutionary patterns among angiosperms [17,20]. Along with rapid progress in molecular
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methods, the evolutionary history of Saxifragales has undergone many intense explo-
rations [18–23]. Therefore, plastid genome data exemplifies the advantages of affordability,
high sequencing efficiency, and rich evolutionary information. Numerous studies on plas-
tomes have been dedicated to explore genomic organizations, interspecific differences,
intracellular gene transfer, RNA editing, genetic engineering, and evolutionary analy-
sis [24–28]. At present, plastomes have been regarded as a powerful tool not only for
phylogeny inference, but also for DNA barcoding of plants [24,29–33]. Furthermore, as for
plastid genes, the patterns of synonymous codon usage could reflect the driving factors in
evolution among different taxa [34–36].

Among the plastomes of Saxifragales, under the rapid development of DNA sequenc-
ing methodology, there have been several advances in understanding the nucleotide and
structural variations in gene content, intron indels, plastomic tRNAs secondary structures,
and hypervariable regions, etc. [20,21]. Furthermore, our previous work, involving 208 Sax-
ifragales plastomes, has suggested several family- and lineage-specific markers for this
order. However, the evolutionary dynamics of specific plastid genes in Saxifragales have
not been systematically investigated yet.

As a ubiquitous phenomenon, codon usage bias (CUB), referring to the unbalanced
employment of synonymous codons [37–40], can provided crucial information for decipher-
ing the evolutionary patterns of genes [41–43]. Unravelling such bias could be intriguing,
usually due to the comprehensive effects of mutation, selection, and genetic drift [44]. Most
significantly, the preference of codon usage is suggested to differ among organisms and
even within a certain gene [43,45]. Since the early report of codon catalog usage from
Grantham et al. [46], a series of indices have been proposed to quantify CUB, containing
effective number of codons (ENC) [47], relative synonymous codon usage (RSCU) [48],
parity rule 2 (PR2) plot [49], neutrality plot [50], etc. Within Saxifragales, the patterns
of codon usage have been reported for several taxa, including Crassulaceae (Aeonium,
Monanthes, and Crassula), and Saxifragaceae (Saxifraga) [19,51,52]. Of note, our previous
study on Crassula revealed a genera-specific distribution of ENC values in matK genes [52].
To reach a deeper understanding of Saxifragales plastomes, further explorations on a larger
sampling scale will thus be crucial.

The present work aims to comprehensively assess the evolutionary dynamics of
Saxifragales plastid genes, with all publicly available sequence data. Employing multiple
indices, the goals of this study are to elucidate (1) the various codon bias patterns among
plastid genes of Saxifragales, (2) the dominant factors in shaping the diverse CUB patterns,
and (3) the phylogenetic affinities within the saxifrage order. Most importantly, it is hoped
that this study will broaden and deepen, our understanding of the Saxifragales evolution,
as well as the patterns of codon usage at higher taxonomic levels.

2. Materials and Methods
2.1. Data Retrieval, Reannotation, Alignment, and Compositional Analysis

To obtain the widest sampling of available Saxifragales plastomes, 361 plastomes were
acquired from the GenBank of NCBI database (https://www.ncbi.nlm.nih.gov accessed
on 20 February 2023), including 24 sequences that were reported in our previous studies.
Overall, our sampling involved 258 taxa from 64 genera in 11 families of Saxifragales,
which are listed in Table S1 along with their accession numbers and genome sizes. Then,
under the principles of (1) including the initial codon, the terminal codon, and no internal
stop codons, and (2) being a multiple of three and longer than 300 bp in gene size, a total of
50 protein-coding genes (PCG) were filtrated from each plastome for further analyses. After
careful checking and correcting of gene annotations by GeSeq [53], CPGAVAS2 [54], and
BLAST [55], coding sequences (CDS) alignment was performed using MAFFT v7.505 [56].
The GC contents of the CDSs at different positions, including GC1, GC2, GC12, GC3, and
total GC, were also calculated using DAMBE v7.2.25 [57].

https://www.ncbi.nlm.nih.gov
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2.2. The Calculations of Codon Usage Indices

Concurring with McInerney [58], Roth et al. [59], Wang et al. [60], and others, the ter-
mination codons were removed from the CDS matrix for further analyses. Using CodonW
v1.4.4 for each gene, we focused on the following CUB parameters: RSCU, ENC, and GC
content of synonymous codons at the 3rd position (GC3s) [61].

RSCU represents the proportion of the actual frequency to the excepted frequency
for a certain codon, and is routinely applied to detect differences in codon use among
genes [44,48]. For this value, equality to, greater than, and less than 1 indicates no, positive,
and negative bias, respectively.

ENC values are an excellent estimator for absolute synonymous codon bias and reflect
the degree of preferential codons in genes [44,62]. With a range of 20–61, ENC values are
inversely related to the extent of CUB [47]. In addition, considerable bias can be observed
for values no higher than 35 [63,64].

2.3. Graphic Analyses

To visually assess the driving factors of the CUB patterns among plastid genes within
Saxifragales, several plot analyses, including a PR2 plot, neutrality plot, and ENC–GC3s
plot, were carried out using ggplot2 in R v4.0.1 [65].

The PR2 plot analysis is performed to estimate the influences of mutation and se-
lection on the third position of codons, which is usually confined to the four-fold degen-
erate codons [42,44,49]. This plot is generated by GC bias [G3/(G3 + C3)] and AU bias
[A3/(A3 + U3)] as the x- and y-axis, respectively [66,67]. In detail, the center-located points
suggest no bias and equal effects from both mutation and selection, whereas the off-center
splashes would manifest the corresponding orientations and degrees of bias [42,44,68].
More specially, if A3 + T3 is equal to G3 + C3, then the preferential utilization of codons
might be entirely influenced by mutational pressure [69].

As a routine analysis to infer the determinants of CUB, ENC–GC3s plot is drawn by
GC3s (x-axis), ENC values (y-axis), and a standard curve (calculated following Wright
et al. [47]). In this plot, the splashes will fall near the curve when the CUB patterns are
mainly driven by mutational effects. Instead, if the codon preference is determined by
selection or other factors, the points will be distant from the curve [70–72].

Likewise, a neutrality plot, based on the regression analysis of GC12 against GC3, is
also utilized to evaluate the influences from mutation and selection [50]. Furthermore, if
the slopes of the regression line are close to 0, selection is suggested to be the decisive force
governing the codon usage, while being close to 1 is indicative of the dominating impact of
mutation in CUB.

2.4. Phylogenetic Inferences of Saxifragales

To reconstruct the evolutionary affinities within Saxifragales, phylogenetic analyses
were performed among all 258 involved species by maximum-likelihood (ML) and Bayesian
inference (BI) methods. With two taxa from Rosids as outgroups, a sequence matrix
of 79 plastid genes from 363 individuals was built using MAFFT v7.505 for multiple
alignments [56] and PhyloSuite v1.2.1 for concatenation [73].

In the ML inference, RAxML v8.2.12 was employed with 50 runs and 1000 bootstrap
replicates using the GTRCAT model [74]. Convergence was then examined using the com-
mand “-I autoMRE”. After determining the best models in ModelTest-NG [75], MrBayes
v3.2.7a was run to generate the Bayesian cladograms for 10,000,000 generations, with two
runs using four chains each (sampling every 1000 generations). Furthermore, we tested the
convergence of independent runs using Tracer v1.7.1 [76].

3. Results
3.1. Base Composition Comparisons of Plastid Genes among Saxifragales

To assess the impact of base compositions on codon bias in genes in the 361 individuals
of the Saxifragales group, the GC content of 50 plastomic genes was counted individually.
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Overall, Table S2 shows extensive variation in GC content (GC123) among the genes, from
a low of 28.91% in the ycf1 gene of Gonocarpus micranthus from Haloragaceae to a high of
48.31% in the rps11 gene in Crassula volkensii from Crassulaceae. Significantly, the GC and
GC3 contents of all investigated genes were less than 50%, suggesting that AT nucleotides
and AT-ending codons are often preferred within Saxifragales. Interestingly, in the first and
second positions of codons, despite the fact that most genes showed an AT bias, some genes
exhibited a GC bias. For instance, across 361 individuals, the following genes harbored
GC1 > 50%: atpB, clpP, petA, psaA, psbB, psbC, psbD, rbcL, rps11, and rps12, while rps11 and
rps7 showed GC2 > 50%.

To explore the interfamilial differences, the comparison of base compositions among
the 11 families was performed. Our findings, summarized in Table 1 with mean and
standard deviation, revealed that the patterns of GC content among different families
were remarkably similar. Notably, the average GC values among three major clades of
Saxifragales were highest in the Paeoniaceae + woody clade, with Paeoniaceae at the
top with 39.46%, followed by Altingiaceae at 39.29%, Daphniphyllaceae at 39.20%, and
Hamamelidaceae at 39.15%. Moreover, all 11 families exhibited a similar trend of GC-
distribution across the three codon positions, with GC1 > GC2 > GC3.

Table 1. Base compositions of 50 plastid genes among 11 families of Saxifragales.

Family GC% GC1% GC2% GC3%

Altingiaceae 39.29 ± 3.31 48.47 ± 5.45 40.05 ± 5.75 29.35 ± 3.21
Cercidiphyllaceae 38.67 ± 3.44 48.05 ± 5.48 39.65 ± 5.83 28.31 ± 3.59

Crassulaceae 38.42 ± 3.53 47.84 ± 5.56 39.54 ± 5.76 27.89 ± 3.69
Daphniphyllaceae 39.20 ± 3.25 48.43 ± 5.38 40.01 ± 5.57 29.15 ± 3.53
Grossulariaceae 38.83 ± 3.44 48.18 ± 5.52 39.82 ± 5.58 28.49 ± 3.74
Haloragaceae 38.79 ± 3.45 48.15 ± 5.51 39.78 ± 5.61 28.45 ± 3.57

Hamamelidaceae 39.15 ± 3.19 48.36 ± 5.51 40.11 ± 5.64 28.97 ± 3.34
Iteaceae 38.59 ± 3.59 48.04 ± 5.76 39.87 ± 5.83 27.87 ± 3.96

Paeoniaceae 39.46 ± 3.47 48.26 ± 5.34 39.86 ± 5.55 30.27 ± 3.60
Penthoraceae 38.75 ± 3.30 48.26 ± 5.56 39.88 ± 5.51 28.12 ± 3.57
Saxifragaceae 38.77 ± 3.43 48.23 ± 5.44 39.76 ± 5.77 28.33 ± 3.60

3.2. Codon Usage Bias Indices of Plastid Genes among Saxifragales

The aim of this study was to examine the codon preference patterns among 361 Sax-
ifragales individuals by calculating the ENC values of the 50 plastid genes (Table S3). As
shown in Table 2, the comparisons were initially performed at the intergenic level. The
overall ENC values ranged from 39.23 ± 2.50 to 54.91 ± 3.38, with the lowest ENC found
in the rpl16 (39.23 ± 2.50) and the highest in the pafI gene (54.91 ± 3.38). The genes with
lower ENC values, such as rpl16, psbA, and rps8, had stronger codon preferences, while
those with higher ENC values, such as pafI, ycf2, and rpl2, showed weaker codon bias.

Table 2. The mean ± SD ENC values of 50 plastid genes of Saxifragales.

Gene ENC
Values Gene ENC

Values Gene ENC
Values Gene ENC

Values Gene ENC
Values

rpl16 39.23 ± 2.50 ndhI 44.48 ± 3.03 atpF 47.13 ± 3.09 rps2 48.28 ± 1.81 rpoC1 50.16 ± 0.63
psbA 39.67 ± 1.82 rps7 44.77 ± 0.67 atpB 47.21 ± 1.78 ycf1 48.53 ± 1.09 rpoC2 50.54 ± 0.77
rps8 39.92 ± 3.46 atpI 45.28 ± 2.24 ndhC 47.27 ± 5.15 rps4 48.72 ± 1.40 petA 50.78 ± 2.10

rps14 40.60 ± 1.56 rps12 45.56 ± 0.95 ndhD 47.66 ± 1.36 cemA 48.76 ± 2.68 ndhJ 50.86 ± 2.45
petD 41.32 ± 2.81 ccsA 45.77 ± 2.42 accD 47.74 ± 2.03 psaA 49.24 ± 1.19 ndhK 51.21 ± 1.53
ndhG 41.66 ± 3.06 psbB 46.21 ± 1.06 rps3 47.80 ± 2.36 rpoB 49.45 ± 0.93 atpE 52.19 ± 3.73
rpl20 42.05 ± 2.88 rps11 46.40 ± 3.25 ndhB 47.92 ± 0.67 rpoA 49.62 ± 1.27 clpP 52.68 ± 1.53
ndhA 43.59 ± 1.06 atpA 46.66 ± 1.27 rpl14 47.94 ± 3.61 ndhE 49.68 ± 4.29 rpl2 52.72 ± 1.15
psbD 44.30 ± 1.33 rbcL 46.80 ± 1.89 ndhH 48.09 ± 1.57 matK 49.78 ± 2.19 ycf2 52.98 ± 0.28
petB 44.42 ± 2.04 psbC 46.87 ± 1.06 psaB 48.20 ± 1.09 pafII 50.11 ± 1.95 pafI 54.91 ± 3.38
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Then, to gain further insights into the interfamilial differences, the ENC values of
50 plastid genes were calculated as mean ± SD for each family and compared. The results
displayed a high degree of diversity among 11 families (Table S3 and Figure 1). The most
striking heterogeneity was identified in ndhE between Paeoniaceae (mean value: 58.44)
and other ten families (mean values: 46.43–50.59), indicating a considerably lower bias in
the former. Meanwhile, evidence from some taxa also supported the existence of a higher
codon bias, particularly in the rps8 genes of 26 Crassulaceae taxa and Boykinia aconitifolia
(Saxifragaceae), with ENC < 35, suggesting significant codon usage preferences.
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Figure 1. The mean ± SD values of ENC for each gene in each family of Saxifragales. The center, size,
and color of circle denote the corresponding average value, SD value, and family, respectively.

Furthermore, to explore intrafamilial diversities, we also compared the ENC values of
genes within each family. Overall, a high level of variation was detected with the SD value
ranging from 0 to 4.93. Remarkably, the most informative differences were detected in
three families. For the ndhE genes in Haloragaceae, clade A and Glischrocaryon aureum had
ENC values ranging from 43.20 and 45.57, while clade B had higher values of 48.78 to 50.49
(Figure 2a). Likewise, in the cemA genes of Hamamelidaceae, except for clade A with ENC
of 50.88–53.68, clade B, C, D, E, and F similarly possessed lower a ENC range of 45.57–48.11
(Figure 2b). Strikingly, the most substantial intrafamilial difference was observed in the
atpF genes of Altingiaceae (Figure 2c), where clade A could be clearly distinguished by
its much higher ENC values of 51.42–52.07, compared to clade B and C, which had ENC
values of 44.74–44.92.
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Figure 2. The different ENC patterns of plastid genes in three families. (a) The ENC values of ndhE
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values of cemA genes in Hamamelidaceae taxa. Different clades are marked with dots in the nodes.

The RSCU index was also used to assess codon usage bias. We performed the calcula-
tions on a concatenated matrix of 50 plastid genes from 11 families (Table S4). In general,
the plastid genes of Saxifragales harbored RSCU values ranging from 0.32 (CGC) to 2.16
(AGA). It was noted that 93.25% of the preferred codons with RSCU > 1 ended in AT, indi-
cating an overwhelming bias for these codons in the CUB patterns. We further performed
clustering analyses among the codons and families (Figure 3). Intriguingly, all families
were clustered into the same branching patterns as those reported in the phylogeny trees of
Saxifragales [18–20], with the exception of the positions of Iteaceae and Paeoniaceae.
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3.3. Determinants in Codon Usage of Plastid Genes among Saxifragales

To understand the influences of mutation and selection on the CUB of plastid genes,
PR2 bias plots were created focusing on the four-fold degenerate codons. Initially, the AT
bias and GC bias at the third codon position were individually calculated in each gene
(Table S5). The ranges of AT bias (0.29 ± 0.02 to 0.67 ± 0.07) and GC bias (0.21 ± 0.09 to
0.84 ± 0.12) among the 50 genes of Saxifragales revealed a relatively high level of diversity.
Then, our plot analyses also allowed the identification of unequal codon usage in different
genes and families (Figure S1). Particularly, visibly family-specific variations were observed
in two genes. The petA gene showed a stronger G bias in Crassulaceae compared to other
families (Figure 4a). In addition, the rps11 gene exhibited a higher T bias in Paeoniaceae
than in other families (Figure 4b).

Significantly, several common patterns have also been discovered among the Saxifra-
gales group. As illustrated in Figure 5, all 11 families collectively presented the CT bias in
atpA, psbA, and psbC, the CA bias in clpP and rps7, as well as the GA bias in rpl14.
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With the aim of inferring the main governing factors in the codon use patterns of plas-
tid genes, ENC-GC3s plot and neutrality plot analyses were performed across Saxifragales.
The results of the ENC plots revealed a similar pattern of point distribution among the
11 families (Figure 6). The GC3s values were relatively narrow (ranging from 0.14 to 0.35),
and most of the splashes lay distant from the expected curve, suggesting that selection
might play a bigger role in codon bias than mutation. Moreover, the gradient of regression
line in the neutrality plot (GC12 vs. GC3) denoted the balance between mutation and
selection (Figure 7). Across Saxifragales, the GC12 (0.45 ± 0.05) and GC3 (0.25 ± 0.04)
were relatively concentrated, with a weak correlation (r = 0.02, p < 0.05), suggesting that
mutation had a limited impact on the CUB. More importantly, the slopes of all 11 families
were close to 0, with non-negative values ranging from 0.00593 (Altingiaceae) to 0.136
(Hamamelidaceae). The findings from both of the neutrality and ENC plots support the
dominant role of selection pressure in shaping the CUB of plastid genes within Saxifragales.
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3.4. Phylogenetic Inferences of Saxifragales Based on Plastid Data

We are dedicated to uncovering the phylogenetic relationships within the Saxifragales
order. Our analysis utilized a 364-taxon matrix to generate a 77,368 bp alignment for
further analyses. Based on two approaches, the ML and BI inferences generally resulted in
well-resolved phylogenetic cladograms that shared similar topologies (Figures 8 and S2).

Overall, our results suggested the existence of two main clades: Core Saxifragales
(maximum likelihood bootstrap [BS] = 100 and Bayesian posterior probability [PP] = 1.00)
and PWC (BS = 66, PP = 0.53). Two subclades of the former clade, the Crassulaceae alliance
and the Saxifragaceae alliance, were both well recovered (BS = 100, PP = 1.00).

Within the Crassulaceae alliance, the Haloragaceae and Penthoraceae families are sister
to the Crassulaceae, with robust supports (BS = 100, PP = 1.00). The families Saxifragaceae
and Grossulariaceae (BS = 100, PP = 1.00), along with Iteaceae, were observed to be nested
within the Saxifragaceae alliance. In addition, it is now recognized that the PWC clade
consists of five families, with Hamamelidaceae + (Cercidiphyllaceae + Daphniphyllaceae)
and Altingiaceae forming the sister group to Paeoniaceae. Notably, with the rare exceptions
of Cercidiphyllaceae + Daphniphyllaceae (BS = 66, PP = 0.93) and the PWC node (BS = 66,
PP = 0.53), all inter-family affinities received strong node support.
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At a deeper phylogenetic level, we obtained high-resolution support (BS = 100,
PP = 1.00) for the monophyly of all nine multiple-sample families. However, our anal-
yses also revealed non-monophyly for some genera, including Hylotelephium, Orostachys,
and Sedum in Crassulaceae, and Distylium in Hamamelidaceae.

In particular, our findings showed that Pachyphytum compactum was not assigned to its
expected position based on the previous report, but rather clustered with Echeveria lilacina by
weak support (BS = 55). Furthermore, at the deepest level, several individuals from the same
taxon were not grouped together, but instead were nested within the clusters of other taxa,
such as Rhodiola quadrifida (individual 2) and Paeonia suffruticosa (individual 5, 7, and 8).
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4. Discussion

With the currently largest sampling of 361 Saxifragales plastomes, this study aimed
to comprehensively evaluate the codon usage patterns of plastid genes in the Saxifrage
order. Significantly, we employed many indices for analyses, including GC content at
different positions of codons, RSCU, ENC, PR2 bias, ENC–GC3s, and neutrality plots. Most
importantly, our findings presented here would considerably deepen our understanding of
the evolutionary dynamics of plastid genes within the Saxifragales.

Interspecific codon usage heterogeneities are believed to be strongly influenced by GC
content [77], which plays a vital role in the evolution of genome structure [34,78,79]. A high
AT content has been widely recognized as an iconic characteristic of the plastome, which
can be observed by a consistent pattern at the third codon position [44,80,81]. Similarly,
all involved plastid genes in our investigation showed a tendency to utilize AT bases and
AT-ending codons. It is noteworthy that a neutral effect of mutation on the third codon
position leads to random usage of synonymous codons, resulting in a proportional usage
of GC and AT [82,83]. Consequently, AT is strongly favored at the third bases of codons in
the Saxifragales plastid genes, suggesting that selection pressure is responsible for the CUB
patterns. Additionally, our findings revealed that ten genes in Saxifragales had GC1 > 0.5
and two genes had GC2 > 0.5, which is different from other studies where GC1, GC2, and
GC3 values of plastid genes were all less than 0.5 [36,62,84,85]. Most notably, as proposed
by Morton and So [86], stronger codon adaptation in plastid genes would lead to higher GC
contents in the first and second bases of codons. Therefore, the 12 plastid genes mentioned
above, particularly rps11 with both GC1 and GC2 values over 0.5, might undergo higher
codon adaptations during the evolution of the Saxifrage order. These findings will definitely
provide a better understanding of the various evolutionary processes involving CUB across
different plastid genes in the Saxifragales group.

The absolute synonymous codon bias can be accurately quantified by the ENC index,
which measures the preferential degree of codon in a gene [19,44]. Importantly, it has been
proposed that genes with higher expression tend to harbor lower ENC values and stronger
CUB, and vice versa [60,87,88]. Moreover, Bulmer et al. [89] suggested that natural selection
increases with the extent of gene expression. The plastid genes of Saxifragales exhibit a
range of codon bias levels, both high and low. In particular, the highest bias was detected
in rps8 of 27 taxa (ENC < 35), which were mostly from Crassulaceae. Conversely, much
weak bias was found in ndhF of Paeoniaceae with an average ENC > 55. Thereby, these
findings not only highly mirrored the various expression levels of plastid genes among
Saxifragales families, but also indicated that rps8 might undergo more selection pressure
in Crassulaceae. Additionally, the most substantial differences in ENC within each of the
three families (Altingiaceae, Haloragaceae, and Hamamelidaceae) were found to harbor
strong phylogenetic implications, which can further serve as clade-specific markers.

As another important index for CUB assessment, RSCU values could directly reflect the
usage of synonymous codons. Thus far, it has been widely applied to explore codon use
variations among genes. Across Saxifragales, the vast majority of the preferred codons were
revealed to end with A/T bases. Notably, such bias might be congruent with its plastomic AT-
rich base composition, and is also similar to the patterns of most dicot genomic genes [90–92]. In
addition, the RSCU values of all NCG codons in Saxifragales families were less than 1, implying
their relative rarity. Interestingly, it has been proposed that the infrequent usage of NCG codons
might indicate a high level of methylation in the organism [93]. Our results demonstrated here
could deepen our insights into the evolutionary patterns of plastid genes in the Saxifragales.

The silent (i.e., synonymous) sites of codons have been considered a powerful can-
didate to investigate evolutionary processes. To explain the preference for codon usage,
several theoretical models have been proposed, comprising the neutral theory [94], the
expression regulation theory [95], and the selection–mutation drift (SMD) theory [96].The
SMD model, which attributes CUB to the combined consequence of selection, mutation,
and drift [96–99], has received widespread attention. To date, numerous studies have sup-
ported its applicability in elucidating codon bias [42,100–103]. Of particular interest are the
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conclusions drawn for plastomic genes of angiosperms, where two different perspectives
have emerged concerning the governing factors in CUB. Morton [104] argued that mutation
and generic drift had a stronger influence, while another model suggests that selection
plays a larger role, which has received support from multiple studies [105–107].

In this study of the Saxifragales group, the origin of the CUB in plastid genes appears
to have been influenced by three factors, as suggested by the SMD model. One piece of
evidence supporting this model is the presence of several splashes in the ENC–GC3s plots
that are just on and near the curve, which suggests a partial role of mutation/drift [42,47].
However, the dominant role of selection is indicated by several factors, such as the obvious
AT bias of the third codon position, the weak correlation between GC12 and GC3, the
distant location of most splashes from the curve in the ENC plots, and the near zero slopes
of neutrality plots. These findings collectively suggest that selection played a major role in
shaping the CUB of Saxifragales plastid genes.

The rapid radiation in Saxifragales has resulted in highly divergent morphology,
constituting a significant obstacle to disentangle its taxonomy [20]. Along with the great
development of phylogenomic methodology, numerous efforts have been made to better
understand its internal phylogenetic relationships [1,15–17,19,20,22]. Despite the place-
ments of most constituent families having been well recovered to date, the relationships
within the PWC clade are still a matter of debate [1].

Here, our phylogenetic inferences assigned 361 individuals into two main clades
and four subclades. In general, the topology of the yielding trees was highly similar to
those of the previous work [1,19,20]. Notably, most nodes received relatively high support,
but some nodes had issues. For instance, we found that Paeoniaceae was a weak sister
to the woody group, and a sister relationship existed between Cercidiphyllaceae and
Daphniphyllaceae in the woody group, consistent with the findings of Han et al. [19] and
Jian et al. [1]. However, these relationships were poorly resolved. In fact, the placement of
Paeoniaceae has long been a taxonomic enigma, with inconsistent and weak support in
previous analyses [1,7,15,16]. Additionally, according to the phylogeny analyses by multiple
datasets of Jian et al. [1], the placement of Paeoniaceae resulted as an important inconformity
among nuclear, mitochondrial, and plastid topologies of Saxifragales. Fishbein et al. [15]
argued that the longest branch leading to this family could best explain such poor resolution,
while Jian et al. [1] attributed the unrecovered relationships of the woody clade to an ancient,
rapid radiation.

In addition, the unexpected phylogenetic positions of several taxa, as noted above,
might be due to the following reasons: (1) species identification errors, (2) the current
phylogenetic dataset’s inability to distinguish between extremely closely related taxa, and
(3) potential chloroplast capture events. Therefore, acquiring more data and increasing
sampling efforts will be crucial for gaining a deeper understanding of the phylogenetic
affinities within Saxifragales.

5. Conclusions

This study aimed to present a comprehensive analysis of the codon utilization of the
plastid genes, focusing on a larger-sampling scale of Saxifragales. Evaluations of CUB were
performed with a series of indices at the inter- and intra-family levels, involving a total of
11 families. Overall, a variety of codon bias was elucidated among the 50 plastid genes.
Despite a general bias toward AT bases and AT-ending codons, the GC1 and GC2 were still
found to be more than 50% in 12 genes. Furthermore, the ENC values exhibited a high level
of diversity among the constituent families. Notably, significant phylogenetic implications
were identified for the intrafamilial heterogeneities of ENC in Altingiaceae, Haloragaceae,
and Hamamelidaceae. Moreover, PR2 plots revealed that the petA genes in Crassulaceae
and the rps11 genes from Paeoniaceae were more G biased and T biased, respectively,
compared to the other ten families. Furthermore, six genes exhibited favored base patterns
that were shared by all the examined Saxifragales lineages. More importantly, both the
ENC plots and neutrality plots suggested that selection pressure predominantly governed
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the CUB of Saxifragales plastid genes. Furthermore, the phylogenetic affinities inferred
by both the ML and BI methods were consistent with each other, comprising two primary
clades and four subclades. Altogether, our findings presented herein will convincingly
deepen the current understanding of the molecular evolution of Saxifragales.
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//www.mdpi.com/article/10.3390/genes14030694/s1, Figure S1: The PR2 plots of the 50 plastid
genes among Saxifragales; Figure S2: The ML phylogenetic tree obtained by 79 PCGs among 361
Saxifragales plastomes; Table S1: List of the plastomes of Saxifragales involved in this study; Table S2:
Nucleotide compositions of the plastid genes among Saxifragales involved in this study; Table S3: The
ENC values of the plastid genes among Saxifragales; Table S4: The RSCU values of the concatenated
plastid genes among Saxifragales; Table S5: The PR2 analysis of the plastid genes among Saxifragales.
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