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ABSTRACT

In this work, we propose a goal-driven collaborative task that contains language,
vision, and action in a virtual environment as its core components. Specifically,
we develop a Collaborative image-Drawing game between two agents, called
CoDraw. Our game is grounded in a virtual world that contains movable clip
art objects. The game involves two players: a Teller and a Drawer. The Teller
sees an abstract scene containing multiple clip art pieces in a semantically mean-
ingful configuration, while the Drawer tries to reconstruct the scene on an empty
canvas using available clip art pieces. The two players communicate via two-way
communication using natural language. We collect the CoDraw dataset of ∼10K
dialogs consisting of ∼138K messages exchanged between human agents. We
define protocols and metrics to evaluate the effectiveness of learned agents on this
testbed, highlighting the need for a novel crosstalk condition which pairs agents
trained independently on disjoint subsets of the training data for evaluation. We
present models for our task, including simple but effective nearest-neighbor tech-
niques and neural network approaches trained using a combination of imitation
learning and goal-driven training. All models are benchmarked using both fully
automated evaluation and by playing the game with live human agents.

1 INTRODUCTION

Building agents that can interact with humans in natural language while perceiving and taking ac-
tions in their environments is one of the fundamental goals in artificial intelligence. One of the
required components, language understanding, has traditionally been studied in isolation and with
tasks aimed at imitating human behavior (e.g. language modeling Bengio et al. (2003); Mikolov et al.
(2010), machine translation Bahdanau et al. (2014); Sutskever et al. (2014), etc.) by learning from
large text-only corpora. To incorporate both vision and action, it is important to have the language
grounded (Harnad, 1990; Barsalou, 1999), where words like cat are connected to visual percepts and
words like move relate to actions taken in an environment. Additionally, judging language under-
standing purely based on the ability to mimic human utterances has limitations: there are many ways
to express roughly the same meaning, and conveying the correct information is often more important
than the particular choice of words. An alternative approach, which has recently gained increased
prominence, is to train and evaluate language generation capabilities in an interactive setting, where
the focus is on successfully communicating information that an agent must share in order to achieve
its goals.
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Figure 1: Overview of the proposed Collaborative Drawing (CoDraw) task. The game consists of
two players – Teller and Drawer. The Teller sees an abstract scene, while the Drawer sees an empty
canvas. Both players need to collaborate and communicate so that the Drawer can reconstruct the
image of the Teller by dragging and dropping clip art objects.
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In this paper, we propose the Collaborative Drawing (CoDraw) task, which combines grounded lan-
guage understanding and learning effective goal-driven communication into a single, unified testbed.
This task involves perception, communication, and actions in a partially observable virtual environ-
ment. As shown in Figure 1, our game is grounded in a virtual world constructed by clip art ob-
jects (Zitnick et al., 2013; Zitnick & Parikh, 2013). Two players, Teller and Drawer, play the game.
The Teller sees an abstract scene made from clip art objects in a semantically meaningful configura-
tion, while the Drawer sees a drawing canvas that is initially empty. The goal of the game is to have
both players communicate so that the Drawer can reconstruct the image of the Teller, without ever
seeing it.

Our task requires effective communication because the two players cannot see each other’s scenes.
The Teller has to describe the scene in sufficient detail for the Drawer to reconstruct it, which will
require rich grounded language. Moreover, the Drawer will need to carry out a series of actions
from a rich action space to position, orient, and resize all of the clip art pieces required for the
reconstruction. Note that such actions are only made possible through clip art pieces: they can
represent semantically meaningful configurations of a visual scene that are easy to manipulate, in
contrast to low-level pixel-based image representations. The performance of a pair of agents is
judged based on the quality of reconstructed scenes. We consider high-quality reconstructions as a
signal that communication has been successful.

As we develop models and protocols for CoDraw, we found it critical to train the Teller and the
Drawer separately on disjoint subsets of the training data. Otherwise, the two machine agents may
conspire to successfully achieve the goal while communicating using a shared “codebook” that
bears little resemblance to natural language. We call this separate-training, joint-evaluation protocol
crosstalk, which prevents learning of mutually agreed upon codebooks, while still checking for goal
completion at test time. We highlight crosstalk as one of our contributions, and believe it can be
generally applicable to other related tasks (Sukhbaatar et al., 2016; Foerster et al., 2016; de Vries
et al., 2016; Das et al., 2017b; Lewis et al., 2017).

Summary of Contributions
• We propose a novel CoDraw task, which is a game designed to facilitate the learning and

evaluation of effective natural language communication in a grounded context.
• We collect a CoDraw dataset of ∼10K variable-length dialogs consisting of ∼138K messages

with the drawing history at each step of the dialog.
• We define a scene similarity metric, which allows us to automatically evaluate the effectiveness

of the communication at the end and at intermediate states.
• We propose a cross-talk training and evaluation protocol that prevents agents from potentially

learning joint uninterpretable codebooks, rendering them ineffective at communicating with
humans.
• We evaluate several Drawer and Teller models automatically as well as by pairing them with

humans, and show that long-term planning and context reasoning in the conversation are key
challenges of the CoDraw task.

2 RELATED WORK

Language and Vision. The proposed CoDraw game is related to several well-known language and
vision tasks that study grounded language understanding (Karpathy & Fei-Fei, 2015; Donahue et al.,
2015; de Vries et al., 2016). For instance, compared to image captioning (Vinyals et al., 2017; Xu
et al., 2015; Chen & Zitnick, 2015; Lu et al., 2017), visual question answering (Antol et al., 2015;
Zhang et al., 2016; Goyal et al., 2016; Gao et al., 2015; Krishna et al., 2017; Malinowski & Fritz,
2014; Ren et al., 2015; Tapaswi et al., 2016; Yu et al., 2015; Zhu et al., 2016) and recent embodied
extensions (Das et al., 2018), CoDraw involves multiple rounds of interactions between two agents.
Both agents hold their own partially observable states and need to build a mental model for each
other to collaborate. Compared to work on navigation (Vogel & Jurafsky, 2010; Anderson et al.,
2018; Fried et al., 2018b) where an agent must follow instructions to move itself in a static envi-
ronment, CoDraw involves moving and manipulating multiple clip art pieces, which must jointly
form a semantically meaningful scene. Compared to visual dialog (Das et al., 2017a;b; Strub et al.,
2017; Mostafazadeh et al., 2017) tasks, agents need to additionally cooperate to change the envi-
ronment with actions (e.g., move around pieces). Thus, the agents have to possess the ability to
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adapt and hold a dialog about novel scenes that will be constructed as a consequence of their dialog.
In addition, we also want to highlight that CoDraw has a well-defined communication goal, which
facilitates objective measurement of success and enables end-to-end goal-driven learning.

End-to-end Goal-Driven Dialog. Traditional goal-driven agents are often based on ‘slot fill-
ing’ (Lemon et al., 2006; Wang & Lemon, 2013; Yu et al., 2015), in which the structure of the
dialog is pre-specified but the individual slots are replaced by relevant information. Recently, end-
to-end neural models are also proposed for goal-driven dialog (Bordes et al., 2017; Li et al., 2017a;b;
He et al., 2017), as well as goal-free dialog or ‘chit-chat’ (Shang et al., 2015; Sordoni et al., 2015;
Vinyals & Le, 2015; Li et al., 2016; Dodge et al., 2016). Unlike CoDraw, in these approaches,
symbols in the dialog are not grounded into visual objects.

Language Grounded in Environments. Learning language games to change the environment has
been studied recently (Wang et al., 2016; 2017). The agent can change the environment using the
grounded natural language. However, agents do not have the need to cooperate. Other work on
grounded instruction following relies on datasets of pre-generated action sequences annotated with
human descriptions, rather than using a single end goal (Long et al., 2016). Speaker models for
these tasks are only evaluated based on their ability to describe an action sequence that is given to
them (Fried et al., 2018a), whereas Teller models for CoDraw also need to select a desired action
sequence in a goal-driven manner. Language grounding has also been studied for robot naviga-
tion, manipulation, and environment mapping (Tellex et al., 2011; Mei et al., 2015; Daniele et al.,
2016). However, these works manually pair each command with robot actions and lack end-to-end
training (Tellex et al., 2011), dialog (Mei et al., 2015; Daniele et al., 2016), or both (Walter et al.,
2014).

Emergent Communication. Building on the seminal works by Lewis (1969; 1975), a number of
recent works study cooperative games between agents where communication protocols emerge as
a consequence of training the agents to accomplish shared goals (Sukhbaatar et al., 2016; Foerster
et al., 2016). These methods have typically been applied to learn to communicate small amounts
of information, rather than the complete, semantically meaningful scenes used in the CoDraw task.
In addition, the learned communication protocols are usually not natural (Kottur et al., 2017) or
interpretable. On the other hand, since our goal is to develop agents that can assist and communicate
with humans, we must pre-train our agents on human communication and use techniques that can
cope with the greater linguistic variety and richness of meaning present in natural language.

3 CODRAW TASK AND DATASET

In this section, we first detail our task, then present the CoDraw dataset, and finally propose a Scene
Similarity Metric which allows automatic evaluation of the reconstructed and original scene.

3.1 TASK

Abstract Scenes. To enable people to easily draw semantically rich scenes on a canvas, we leverage
the Abstract Scenes dataset of (Zitnick et al., 2013; Zitnick & Parikh, 2013). This dataset consists of
10,020 semantically consistent scenes created by human annotators. An example scene is shown in
the left portion of Figure 1. Most scenes contain 6 objects (min 6, max 17, mean 6.67). These scenes
depict children playing in a park, and are made from a library of 58 clip arts, including a boy (Mike)
and a girl (Jenny) in one of 7 poses and 5 expressions, and various other objects including trees,
toys, hats, animals, food, etc. An abstract scene is created by dragging and dropping multiple clip art
objects to any (x, y) position on the canvas. Also, for each clip art, different spatial transformations
can be applied, including sizes (Small, Normal, Large), and two orientations (facing left or right).
The clip art serve simultaneously as a high-level visual representation and as a mechanism by which
rich drawing actions can be carried out.

Interface. We built a drag-and-drop interface based on the Visual Dialog chat interface (Das et al.,
2017a) (see Figures 4 and 5 in Appendix A for screen shots of the interface). The interface allows
real-time interaction between two people. During the conversation, the Teller describes the scene
and answers any questions from the Drawer on the chat interface, while Drawer “draws” or recon-
structs the scene based on the Teller’s descriptions and instructions. Each side is only allowed to
send one message at a time, and must wait for a reply before continuing. The maximum length of a
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single message is capped at 140 characters: this prevents excessively verbose descriptions and gives
the Drawer more chances to participate in the dialog by encouraging the Teller to pause more fre-
quently. Both participants were asked to submit the task when they are both confident that Drawer
has accurately reconstructed the scene of Teller. Our dataset, as well as this infrastructure for live
chat with live drawing, will be made publicly available.

Additional Interaction. We did not allow Teller to continuously observe Drawer’s canvas to make
sure that the natural language focused on the high-level semantics of the scene rather than instruc-
tions calling for the execution of low-level clip art manipulation actions, but we hypothesize that
direct visual feedback may be necessary to get the all the details right. For this, we give one chance
for the Teller to look at the Drawer’s canvas using a ‘peek’ button in the interface. Communication
is only allowed after the peek window is closed.

3.2 DATASET

We collect 9,9931 dialogs where pairs of people complete the CoDraw task, consisting of one dia-
log per scene in the Abstract Scenes dataset. The dialogs contain of a total of 138K utterances and
include snapshots of the intermediate state of the Drawer’s canvas after each round of each con-
versation. We reserve 10% of the scenes (1,002) to form a test set and an additional 10% (1,002)
to form a development set; the corresponding dialogs are used to evaluate human performance for
the CoDraw task. The remaining dialogs are used for training (see Section 5 for details about our
training and evaluation setup.)

The message length distribution for the Drawer is skewed toward 1 with the passive replies like “ok”,
“done”, etc. There does exist a heavy tail, which shows that Drawers do ask clarifying questions
about the scene like “where is trunk of second tree, low or high”. On the other hand, the distribution
of number of tokens in Tellers’ utterances is relatively smooth with long tails. The vocabulary size
is 4,555. Since the subject of conversations is about abstract scenes with a limited number of clip
arts, the vocabulary is relatively small compared to those on real images. See Appendix B for a
more detailed analysis of our dataset, where we study the lengths of the conversations, the number
of rounds, and the distributions of scene similarity scores when humans perform the task.

3.3 SCENE SIMILARITY METRIC

The goal-driven nature of our task naturally lends itself to evaluation by measuring the similarity of
the reconstructed scene to the original. For this purpose we define a scene similarity metric, which
allows us to automatically evaluate communication effectiveness both at the end of a dialog and at
intermediate states. We use the metric to compare how well different machine-machine, human-
machine, and human-human pairs can complete the CoDraw task.

Let ci, cj denote the identity, location, configuration of two clipart pieces i and j. A clipart image
C = {ci} is then simply a set of clipart pieces. Given two images C and Ĉ, we compute scene
similarity by first finding the common clipart pieces C ∩ Ĉ and then computing unary f(ci) and
pairwise terms g(ci, cj) on these pieces in common:

s(C, Ĉ) =

∑
c∈C∩Ĉ f(c)

|C ∪ Ĉ|︸ ︷︷ ︸
unary

+

∑
ci,cj∈C∩Ĉ,i<j g(ci, cj)

|C ∪ Ĉ|(|C ∩ Ĉ| − 1)︸ ︷︷ ︸
pairwise

(1)

Using f(c) = 1 and g(ci, cj) = 0 would result in the standard intersection-over-union measure used
for scoring set predictions. The denominator terms normalize the metric to penalize missing or extra
clip art, and we set f and g such that our metric is on a 0-5 scale. The exact terms f and g are
described in Appendix C.

4 MODELS

We model both the Teller and the Drawer, and evaluate the agents using the metrics described in the
previous section. Informed by our analysis of the collected dataset (see Appendix B), we make three

1Excluding 27 empty scenes from the original dataset.
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modeling assumptions compared to the full generality of the setup that humans were presented with
during data collection. These assumptions hold for all models studied in this paper.

Assumption 1: Silent Drawer. We choose to omit the Drawer’s ability to ask clarification questions;
instead, our Drawer models will always answer “ok” and our Teller models will not condition on
the text of the Drawer replies. This is consistent with typical human replies (around 62% of which
only use a single token) and the fact that the Drawer talking is not strictly required to resolve the
information asymmetry inherent in the task. We note that this assumption does not reduce the
number of modalities needed to solve the task: there is still language generation on the Teller side,
in addition to language understanding, scene perception, and scene generation on the Drawer side.
Drawer models that can detect when a clarification is required, and then generate a natural language
clarification question is interesting future work.

Assumption 2: No Peek Action. The second difference is that the data collection process for
humans gives the Teller a single chance to peek at the Drawer’s canvas, a behavior we omit from
our models. Rich communication is still required without this behavior, and omitting it also does
not decrease the number of modalities needed to complete the task. We leave for future work the
creation of models that can peek at the time that maximizes task effectiveness.

Assumption 3: Full Clip Art Library. The final difference is that our drawer models can select
from the full clip art library. Humans are only given access to a smaller set so that it can easily fit in
the user interface, while ensuring that all pieces needed to reconstruct the target scene are available.
We choose to adopt the full-library condition as the standard for models because it gives the models
greater latitude to make mistakes (making the problem more challenging) and makes it easier to
detect obviously incorrect groundings.

4.1 RULE-BASED NEAREST-NEIGHBOR METHODS

Simple methods can be quite effective even for what appear to be challenging tasks, so we begin by
building models based on nearest-neighbors and rule-based approaches.

Rule-based Nearest-Neighbor Teller. For our first Teller model, We consider a rule-based dialog
policy where the Teller describes exactly one clip art each time it talks. The rule-based system
determines which clip art to describe during each round of conversation, following a fixed order that
roughly starts with objects in the sky (sun, clouds, airplanes), then objects in the scene (trees, Mike,
Jenny), and ends with small objects (sunglasses, baseball bat). The Teller then produces an utterance
by performing a nearest-neighbor lookup in a database containing (Teller utterance, clip art object)
pairs, where the similarity between the selected clip art and each database element is measured by
applying the scene similarity metric to individual clip art. The database is constructed by collecting
all instances in the training data where the Teller sent a message and the Drawer responded by
adding a single clip art piece to the canvas. Instances where the Drawer added multiple clip art
pieces or made any changes to the position or other attributes of pieces already on the canvas are
not used when constructing the nearest-neighbor database. This baseline approach is based on the
assumptions that the Drawer’s action was elicited by the Teller utterance immediately prior, and that
the Teller’s utterance will have a similar meaning when copied verbatim into a new conversation.

Rule-based Nearest-Neighbor Drawer. This Drawer model is the complement to the rule-based
nearest-neighbor Teller. It likewise follows a hard-coded rule that the response to each Teller utter-
ance should be the addition of a single clip art to the scene, and makes use of the same database of
(Teller utterance, clip art object) tuples collected from the training data. Each Teller utterance the
agent receives is compared with the stored tuples using character-level string edit distance. The clip
art object from the most similar tuple is selected and added to the canvas by the Drawer.

4.2 NEURAL DRAWER

In this section, we describe a neural network approach to the Drawer. Contextual reasoning is
an important part of the CoDraw task: each message from the Teller can relate back to what the
Drawer has previously heard or drawn, and the clip art pieces it places on the canvas must form a
semantically coherent scene. To capture these effects, our model should condition on the past history
of the conversation and use an action representation that is conducive to generating coherent scenes.
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Figure 2: A sketch of our model architectures for the neural Drawer and Teller. The Drawer (left)
conditions on the current state of the canvas and a BiLSTM encoding of the previous utterance to
decide which clip art pieces to add to a scene. The Teller (right) uses an LSTM language model
with attention to the scene (in blue) taking place before and after the LSTM. The “thought bubbles”
represent intermediate supervision using an auxiliary task of predicting which clip art have not been
described yet. In reinforcement learning, the intermediate scenes produced by the drawer are used
to calculate rewards. Note that the language used here was constructed for illustrative purposes, and
that the messages in our dataset are more detailed and precise.

When considering past history, we make the Markovian assumption that the current state of the
Drawer’s canvas captures all information from the previous rounds of dialog. Thus, the Drawer
need only consider the most recent utterance from the Teller and the current canvas to decide what
to draw next. We experimented with incorporating additional context – such as previous messages
from the teller or the action sequence by which the Drawer arrived at its current canvas configuration
– but did not observe any gains in performance.

The current state of the canvas is represented using a collection of indicator features and real-valued
features. For each of the nc = 58 clip art types, there is an indicator feature for its presence on
the canvas, and an indicator feature for each discrete assignment of an attribute to the clip art (e.g.
1size=small, 1size=medium, etc.) for a total of nb = 41 binary features. There are additionally two
real-valued features that encode the x and y position of the clip art on the canvas, normalized to the
0-1 range. The resulting canvas representation is a feature vector vcanvas of size nc× (nb+2), where
all features for absent clip art types are set to zero.

We run a bi-directional LSTM over the Teller’s most recent message and extract the final hidden
states for both directions, which we concatenate to form a vector vmessage. The Drawer is then a feed-
forward neural network that takes as input vcanvas and vmessage and produces an output vector vaction.
The action representation vaction also consists of nc × (nb + 2) elements and can be thought of as a
continuous relaxation of the mostly-discrete canvas encoding. For each clip art type, there is a real-
valued score that determines whether a clip art piece of that type should be added to the canvas: a
positive score indicates that it should be added as part of the action. During training, a binary cross-
entropy loss compares these scores with the actions taken by human drawers. vaction also contains
unnormalized log-probabilities for each attribute-value assignment (e.g. zsize=small, zsize=medium, etc.
for each clip art type); when a clip art piece is added to the canvas, its attributes are assigned to
their most-probable values. The log-probabilities are trained using softmax losses. Finally, vaction
contains two entries for each clip art type that determine the clip art’s x, y position if added to the
canvas; these elements are trained using an L2 loss.

4.3 NEURAL TELLER: SCENE2SEQ

For our neural Teller models, we adopt an architecture that we call scene2seq. This architecture is
a conditional language model over the Teller’s side of the conversation with special next-utterance
tokens to indicate when the Teller ends its current utterance and waits for a reply from the Drawer.2
The language model is implemented using an LSTM, where information about the ground-truth

2Though none of the models in this paper handle language in the Drawer replies, these can be incorporated
into the scene2seq framework similar to the approach of Lewis et al. (2017).
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scene is incorporated both before and after each LSTM cell through the use of an attention mecha-
nism. Attention occurs over individual clip art pieces: each clip art object in the ground-truth scene
is represented using a vector that is the sum of learned embeddings for different clip art attributes
(e.g. etype=Mike, esize=small, etc.) At test time, the Teller’s messages are constructed by decoding from
the language model using greedy word selection.

To communicate effectively, the Teller must keep track of which parts of the scene it has and has
not described, and also generate language that is likely to accomplish the task objective when in-
terpreted by the Drawer. We found that training the scene2seq model using a maximum likelihood
objective did not result in long-term coherent dialogs for novel scenes. Rather than introducing a new
architecture to address these deficiencies, we explore reducing them by using alternative training ob-
jectives. To better ensure that the model keeps track of which pieces of information it has already
communicated, we take advantage of the availability of drawings at each round of the recorded hu-
man dialogs and introduce an auxiliary loss based on predicting these drawings. To select language
that is more likely to lead to successful task completion, we further fine-tune our Teller models to
directly optimize the end-task goal using reinforcement learning.

4.3.1 TRAINING WITH INTERMEDIATE SUPERVISION

We incorporate state tracking into the scene2seq architecture through the use of an auxiliary loss.
This formulation maintains the end-to-end training procedure and keeps test-time decoding exactly
the same. The only change is that, at each utterance separator token, the output from the LSTM is
used to predict which clip art still need to be described. More precisely, the network must classify
whether each clip art in the ground truth has been drawn already or not. The supervisory signal
makes use of the fact that the CoDraw dataset records human drawer actions at each round of the
conversation, not just at the end. The network outputs a score for each clip art ID, which is connected
to a softmax loss for the clip art in the ground truth scene (the scores for absent clip arts do not
contribute to the auxiliary loss). We find that adding such a supervisory signal reduces the Teller’s
propensity for repeating itself or omitting objects.

4.3.2 FINE-TUNING WITH REINFORCEMENT LEARNING

The auxiliary loss helps the agent be more coherent throughout the dialog, but it is still trained to
imitate human behavior rather than to complete the downstream task. By training the agents using
reinforcement learning (RL), they can learn to use language that is more effective at achieving high-
fidelity scene reconstructions. In this work we only train the Teller with RL, because the Teller has
challenges maintaining a long-term strategy throughout a long dialog, whereas preliminary results
showed that making local decisions is less detrimental for Drawers.

The scene2seq Teller architecture remains unchanged, and each action from the agent is to output a
word or one of two special tokens: a next-utterance token and a stop token. After each next-utterance
token, our neural Drawer model is used to take an action in the scene and the resulting change in
scene similarity metric is used as a reward. However, this reward scheme alone has an issue: once
all objects in the scene are described, any further messages will not result in a change in the scene
and have a reward of zero. As a result, there is no incentive to end the conversation. We address this
by applying a penalty of 0.3 to the reward whenever the Drawer makes no changes to the scene. We
train our model with REINFORCE (Williams, 1992).

5 TRAINING PROTOCOL AND EVALUATION

To evaluate our models, we pair our models with other models, as well as with a human.

Human-Machine Pairs. We modified the interface used for data collection to allow human-machine
pairs to complete the tasks. Each model plays one game with a human per scene in the test set, and
we compare the scene reconstruction quality between different models and with human-human pairs.

Script-based Drawer Evaluation. In addition to human evaluation, we would like to have auto-
mated evaluation protocols that can quickly estimate the quality of different models. Drawer models
can be evaluated by pairing them with a Teller that replays recorded human conversation from a
script (a recorded dialog from the dataset) and measuring scene similarity at the end of the dia-
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similarity: 4.32 similarity: 4.85

Human Reconstruction Machine Reconstruction

Teller: to the right of swing set is big
table . girl in front with hands out , not
smiling burger on ground in front of her

Round 3 of Machine Conversation

Drawer:

Teller: crown is tilted down to right
not straight on head . and i am going
to peek also

Round 8 of Machine Conversation

Drawer:

Figure 3: A rule-based nearest-neighbor Teller/Drawer pair “trained” on the same data outperforms
humans for this scene according to the similarity metric, but the language used by the models doesn’t
always correspond in meaning to the actions taken. The three panels on the left show a scene from
the test set and corresponding human/model reconstructions. The two panels on the right show the
Teller message and Drawer action from two rounds of conversation by the machine agents.

log. While this setup does not capture the full interactive nature of the task, the Drawer model still
receives human descriptions of the scene and should be able to reconstruct it. Our modeling as-
sumptions include not giving Drawer models the ability to ask clarifying questions, which further
suggests that script-based evaluation can reasonably measure model quality.

Machine-Machine Evaluation. Unlike Drawer models, Teller models cannot be evaluated using
a “script” from the dataset. We instead consider an evaluation where a Teller model and Drawer
model are paired, and their joint performance is evaluated using the scene similarity metric.

5.1 CROSSTALK TRAINING PROTOCOL

Automatically evaluating agents, especially in the machine-machine paired setting, requires some
care because a pair of agents can achieve a perfect score while communicating in a shared code
that bears no resemblance to natural language. There are several ways such co-adaptation can de-
velop. One is by overfitting to the training data to the extent that it’s used as a codebook – we see
this with the rule-based nearest-neighbor agents described in Section 4.1, where a Drawer-Teller
pair “trained” on the same data outperforms humans on the CoDraw task. An examination of the
language, however, reveals that only limited generalization has taken place (see Figure 3). Another
way that agents can co-adapt is if they are trained jointly, for example using reinforcement learning.
To limit these sources of co-adaptation, we propose a training protocol we call “crosstalk.” In this
setting, the training data is split in half, and the Teller and Drawer are trained separately on disjoint
halves of the training data. When multiple agents are required during training (as with reinforce-
ment learning), the joint training process is run separately for both halves of the training data, but
evaluation pairs a Teller from the first partition with a Drawer from the second. This ensures to some
extent that the models can succeed only if they have learned generalizable language, and not via a
highly specialized codebook specific to model instances.

Taking the crosstalk training protocol into account, the dataset split we use for all experiments is:
40% Teller training data (3,994 scenes/dialogs), 40% Drawer training data (3,995), 10% develop-
ment data (1,002) and 10% testing data (1,002).

6 RESULTS

Results for our models are shown in Table 1. All numbers are scene similarities, averaged across
scenes in the test set.

Neural Drawer Performs the Best. In the script setting, our neural Drawer is able to outperform
the rule-based nearest-neighbor baseline (3.39 vs. 0.94) and close most of the gap between baseline
(0.94) and human performance (4.17).

Validity of Script-Based Drawer Evaluation. To test the validity of script-based Drawer evaluation
– where a Drawer is paired with a Teller that recites the human script from the dataset corresponding
to the test scenes – we include results from interactively pairing human Drawers with a Teller that
recites the scripted messages. While average scene similarity is lower than when using live human
Tellers (3.83 vs. 4.17), the scripts are sufficient to achieve over 91% of the effectiveness of the
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Table 1: Results for our models on the test set, using three types of evaluation: script-based (i.e. re-
playing Teller utterances from the dataset), human-machine, and machine-machine pair evaluation.

Teller Drawer Scene similarity
Sc

ri
pt

-b
as

ed

{
Script (replays human-generated messages) Rule-based Nearest Neighbor 0.94
Script (replays human-generated messages) Neural Network 3.39
Script (replays human-generated messages) Human 3.83

H
um

an
-M

ac
hi

ne


Rule-based Nearest Neighbor Human 3.21
Scene2seq (imitation learning) Human 2.69

+ auxiliary loss Human 3.04
+ RL fine-tuning Human 3.65

M
ac

hi
ne

-M
ac

hi
ne


Rule-based Nearest Neighbor Neural Network 3.08
Scene2seq (imitation learning) Neural Network 2.67

+ auxiliary loss Neural Network 3.02
+ RL fine-tuning Neural Network 3.67

Human Human 4.17

same Teller utterances when they were communicated live (according to our metric). The drop in
similarity may be in part due to the inability of the Teller to peek at the Drawer’s canvas and suggest
specific corrections, and in part because the Teller can’t answer clarifying questions specific to the
Drawer’s personal understanding of the instructions. Note that a human Drawer with a script-based
Teller still outperforms our best Drawer model paired with a script-based Teller.

Benefits of Intermediate Supervision and Goal-Driven Training. Pairing our models with hu-
mans shows that the scene2seq Teller model trained with imitation learning is worse than the rule-
based nearest-neighbor baseline (2.69 vs. 3.21), but that the addition of an auxiliary loss followed
by fine-tuning with reinforcement learning allow it to outperform the baseline (3.65 vs. 3.21). How-
ever, there is still a gap between to human Tellers (3.65 vs. 4.17). Many participants in our human
study noted that they received unclear instructions from the models they were paired with, or ex-
pressed frustration that their partners could not answer clarifying questions as a way of resolving
such situations. Recall that our Teller models currently ignore any utterances from the Drawer.

Correlation Between Fully-automated and Human-machine Evaluation. We also report the
result of paired evaluation for different Teller models and our best Drawer, showing that the relative
rankings of the different Teller types match those we see when models are paired with humans.
This shows that automated evaluation while following the crosstalk training protocol is a suitable
automated proxy for human-evaluation.

6.1 TYPICAL ERRORS

The errors made by Teller reflect two key challenges posed by the CoDraw task: reasoning about the
context of the conversation and drawing, and planning ahead to fully and effectively communicate
the information required. A common mistake the rule-based nearest-neighbor Teller makes is to
reference objects that are not present in the current scene. Figure 3 shows an example (second panel
from the right) where the Teller has copied a message referencing a “swing” that does not exist in the
current scene. In a sample of 5 scenes from the test set, the rule-based nearest-neighbor describes a
non-existent object 11 times, compared to just 1 time for the scene2seq Teller trained with imitation
learning. The scene2seq Teller, on the other hand, frequently describes clip art pieces multiple times
or forgets to mention some of them: in the same sample of scenes, it re-describes an object 10 times
(vs. 2 for the baseline) and fails to mention 11 objects (vs. 2.) The addition of an auxiliary loss
and RL fine-tuning reduces these classes of errors while avoiding frequent descriptions of irrelevant
objects (0 references to non-existent objects, 3 instances of re-describing an object, and 4 objects
omitted.)

On the Drawer side, the most salient class of mistakes made by the neural network model is seman-
tically inconsistent placement of multiple clip art pieces. Several instances of this can be seen in

9
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Figure 10 in the Appendix D, where the Drawer places a hat in the air instead of on a person’s head,
or where the drawn clip art pieces overlap in a visually unnatural way.

Qualitative examples of both human and model behavior are provided in Appendix D.

7 CONCLUSION

In this paper, we introduce CoDraw: a collaborative task designed to facilitate learning of effective
natural language communication in a grounded context. The task combines language, perception,
and actions while permitting automated goal-driven evaluation both at the end and as a measure
of intermediate progress. We introduce a dataset and models for this task, and propose a crosstalk
training + evaluation protocol that is more generally applicable to studying emergent communica-
tion. The models we present in this paper show levels of task performance that are still far from
what humans can achieve. Long-term planning and contextual reasoning as two key challenges for
this task that our models only begin to address. We hope that the grounded, goal-driven commu-
nication setting that CoDraw is a testbed for can lead to future progress in building agents that can
speak more naturally and better maintain coherency over a long dialog, while being grounded in
perception and actions.
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A INTERFACE AND DATA COLLECTION

A.1 INTERFACE

Figure 4 shows the interface for the Teller, and Figure 5 shows the interface for the Drawer. Fol-
lowing previous works (Zitnick et al., 2013; Zitnick & Parikh, 2013), Drawers are given 20 clip art
objects selected randomly from the 58 clip art objects in the library, while ensuring that all objects
required to reconstruct the scene are available.

Chat to Complete!

Instructions�

Instructions for Teller

�

Your fellow Turker will ask you questions about your secret scene.1

Your objective is to help the fellow Turker recreate the scene. You typically describe the details of the image and/or answer their questions.2

You have to help the fellow Turker to draw the image by answering given questions or 

describe the details of the image.

Fellow Turker connected. Now you can send

messages.

Use Chance     

Message Send

Type Message Here:

Finish HIT!

Figure 4: User interface for Teller. The left image is one of abstract scenes from Zitnick & Parikh
(2013). The Teller sends messages using an input box. The Teller has a single chance to peek
Drawer’s canvas to correct mistakes. When the Teller feels good to finish, the Teller can finish the
session.

Chat to Complete!

Instructions�

Instructions for Drawer

�

Your objective is to create a scene that matches the Teller's secret scene.1

Feel free to raise questions about the scene, which your fellow Turker will answer. They can see their secret scene.2

You have to draw the same image as the fellow Turker's by asking about the image.

Fellow Turker connected. Now you can send

messages.

    

Message Send

Type Message Here:

Use Chance Finish HIT!

Figure 5: User interface for a Drawer. The Drawer has an empty canvas and a randomly generated
drawing palette of Mike, Jenny, and 18 other objects, chosen from a library of 58 clip arts. We
ensure that using the available objects, Drawer can fully reproduce the scene. Using the library, the
Drawer can draw on the canvas in a drag-and-drop fashion. Drawer can also send messages using a
given input box. However, the peek button is disabled. Only the Teller can use it.
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A.2 PARTICIPANT STATISTICS

We found that approximately 13.6% of human participants disconnect voluntarily in an early stage
of the session. We paid participants who stayed in the conversation and had posted at least three
messages. However, we exclude those incomplete sessions in the dataset, and only use the completed
sessions.

There are 616 unique participants represented in our collected data. Among these workers, the 5
most active have done 26.63% of all finished tasks (1,419, 1,358, 1,112, 1,110, and 1,068 tasks).
Across all workers, the maximum, median, and minimum numbers of tasks finished by a worker are
1,419, 3, and 1, respectively.
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*Collected 9,993 sessions as of Apr 19 2017
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Figure 6: Statistics of the CoDraw dataset. (a) The distribution of the number of tokens in Teller’s
(blue) and Drawer’s (green) messages. Notice that the number of single-token messages of Drawer is
41,195 (62.06%). The medians for Teller and Drawer are 16 and 1, respectively. (b) The distribution
of the numbers of conversational rounds. The median is 7 rounds. (c) The distribution of the duration
of dialog sessions. The median is 6 minutes.

B DATASET STATISTICS

The CoDraw dataset consists of 9,993 dialogs consisting of a total of 138K utterances. Each dialog
describes a distinct abstract scene.

Messages. Figure 6a shows the distribution of message lengths for both Drawers and Tellers.
Drawer messages tend to be short (the median length is 1 accounts for 62% of messages), but there
does exist a heavy tail where the Drawer asks clarifying questions about the scene. Teller message
length have a more smooth distribution with a median length of 16 tokens. The size of vocabulary is
4,555: since conversations describe abstract scenes consisting of a limited number of clip art types,
the vocabulary is relatively small compared to tasks involving real images.

Rounds. Figure 6b shows the distribution of the numbers of conversational rounds for dialog ses-
sions. Most interactions are shorter than 20 rounds, median being 7.

Durations. In Figure 6c we see that the median session duration is 6 minutes. We had placed a
20-minute maximum limit on each session.

Scores. Figure 7 shows the distribution of scene similarity scores throughout the dataset. Figure 8
shows the progress of scene similarity scores over the rounds of a conversation. An average conver-
sations is done improving the scene similarity after about 5 rounds, but for longer conversations that
continue to 23 rounds, there is still room for improvement.

Figure 7: The distribution of overall scores (section 3.3) at the end of the dialog.
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Figure 8: Average scene similarity plotted for different conversation rounds. On the left, only
conversations that have reached the given number of rounds are included. On the right, conversations
that end early are padded to 35 rounds through the addition of empty messages/actions.

C SCENE SIMILARITY METRIC

Given a ground-truth scene C and a predicted scene Ĉ (where the presence of a clip art type c in the
scene C is indicated by c ∈ C) scene similarity s is defined as:

s(C, Ĉ) =

∑
c∈C∩Ĉ f(c)

|C ∪ Ĉ|
+

∑
ci,cj∈C∩Ĉ,i<j g(ci, cj)

|C ∪ Ĉ|(|C ∩ Ĉ| − 1)

where

f(c) =w0

− w11clip art piece c faces the wrong direction

− w21clip art piece c is Mike or Jenny and has the wrong facial expression

− w31clip art piece c is Mike or Jenny and has the wrong body pose

− w41clip art piece c has the wrong size

− w5

√(
x̂c − xc

W

)2

+

(
ŷc − yc

H

)2

g(ci, cj) =− w61(x̂ci
−x̂cj

)(xci
−xcj

)<0

− w71(ŷci
−ŷcj

)(yci
−ycj

)<0

Here xc and yc refer to the position of the clip art piece in the ground-truth scene, x̂c and ŷc refer to
its position in the predicted scene, and W,H are the width and height of the canvas, respectively.

We use parameters w = [5, 1, 0.5, 0.5, 1, 1, 1, 1], which provides a balance between the different
components and ensures that scene similarities are constrained to be between 0 and 5.

D QUALITATIVE EXAMPLES

Figure 9 shows some examples of scenes and dialogs from the CoDraw dataset. The behavior of our
Drawer and Teller models on a few randomly-selected scenes is illustrated in Figures 10, 11, and 12.
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D: ready

similarity: 0.00 similarity: 0.83 similarity: 1.65 similarity: 2.29 similarity: 4.64 Ground Truth

T: On the right is a
large girl sitting with
legs out, mad face,
facing left. Her eyes
are at horizon back
hand is slightly cut off
D: got it

T: Above her in the
right top corner is a
large cloud. Cut off at
the top and right side.
D: got it

T: On the left is a
large oak tree, hole
facing right. The top
of the trunk is at the
horizon line and a
little is cut off on the
side
D: is girl occluding
the tree?

T: Thanks
D: <stop>

D: ready

similarity: 0.00 similarity: 0.82 similarity: 2.39 similarity: 2.23 similarity: 4.93 Ground Truth

T: OK... Cloud on the
right side, exactrly in
the middle of the sky,
1/2 from top
andbottom
D: small cloud?

T: Big boy facing
right, smiling, right
leg up, soccer ball
1/2inch from his foot
D: where is boy?

T: Medium cloud I
think. Boy 2 inch
from left of image, his
shoulders touch the
skyline
D: ok

T: Just make cloud
bigger! GREAT ;)
D: <stop>

D: start

similarity: 0.00 similarity: 0.46 similarity: 1.09 similarity: 2.45 similarity: 2.88 Ground Truth

T: med size bushy
tree on right third cut
offmidway to grass
D: ok

T: small rain cloud on
right visible on side of
tree
D: ok

T: large ocket in
middle facing left
large cloud on left
D: ok

T: tree make smaller
D: <stop>

T: Ok are you ready?
D: Yes, ready to go!

similarity: 0.00 similarity: 0.83 similarity: 1.66 similarity: 2.49 similarity: 4.95 Ground Truth

T: There is a snake,
large I think. It is
facing left in the
bottom left, like an
inch from left and
bottom
D: Okay. What's
next?

T: Directly above it
there is a large cloud
the tip top of it is out
of scene
D: Okay, done. What
else?

T: There's a large tree
right in scene. The
Trunk starts about 1.3
inches from bottom,
half an inch from
right. oak tree. hole
facing right
D: What else?

T: You got it like
perfectly right
D: Great! Thanks for
the excellent
directions.
T: <stop>

Figure 9: Examples from the Collaborative Drawing (CoDraw) dataset, chosen at random from the
test set. The images depict the Drawer’s canvas after each round of conversation. From left to right,
we show rounds one through four, then the last round, followed by the ground truth scene. The
corresponding conversations between the Teller (T) and Drawer (D) are shown below the images.
Note that there is no restriction on which of the two participants begins or ends the dialog.
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similarity: 0.69 similarity: 1.26 similarity: 1.08 similarity: 0.95

Ground Truth

Script: A large oak
tree is on the left,
trunk point just off the
edge. Hole faces right.
Top of trunk is just
over horizon.

similarity: 0.60 similarity: 1.23 similarity: 2.23 similarity: 2.67

similarity: 1.50

similarity: 3.44

Script: Angry Mike is
in front of the lower
half of the hole, right
foot touching bottom
edge. He is kicking.

Script: Yes. The
soccer ball is in the
center, a little over an
inch below the
horizon. A small dog's
hind leg is behind the
ball. Dog faces left.

Script: Okay. Last
thing is a small
bumblebee toy at the
right edge. It touches
Jenny's pigtail. I'll
check when you are
ready.

Script: Oh, I thought
I mentioned Jenny,
sorry. She is
surprised, kicking,
facing left. Eyebrows
just below horizon.
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similarity: 0.69 similarity: 1.05 similarity: 0.92 similarity: 1.29

Ground Truth

Script: there is a large
helicopter to theright
in the middle of the
sky facingleft with the
tail out of frame

similarity: 0.52 similarity: 0.89 similarity: 1.57 similarity: 2.53

similarity: 1.03

similarity: 3.58

Script: There is a
medium sized pine
tree all the way left
with the leaves
partially out of frame

Script: there is a large
cloud in the corner of
the left top with a little
of the cloud behind
the top of the tree

Script: in front of the
tree directly under the
cloud is a boy
standing with a
surprised look and left
hand out is wearing a
gray and red hat

Script: there is a
frisbeeon the girls
right leg also... now i
will look at the picture
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similarity: 0.49 similarity: 0.42 similarity: 0.37 similarity: 0.77

Ground Truth

Script: Hi we have
big smiling kids
facing each other. Boy
with not teeth is near
left edge, head above
horizon, arms up high.

similarity: 0.62 similarity: 1.67 similarity: 2.29 similarity: 3.18

similarity: 0.62

similarity: 3.95

Script: Girl has teeth
at horizon and arms
up with shovel in
center hand, pointing
away from her.

Script: Pink pail
covers all her center
foot but heel, non of
her leg is hidden. front
of handle is on left
side.

Script: Big sun is
jammed with 1/4 off
right side and 1/3 off
the top.

Script: That is it. I
will check.
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Figure 10: Drawer model behavior where the Teller is simulated by replaying messages associated
with three randomly-selected scenes from the test set. The images depict the Drawer’s canvas after
each round of conversation. For each of the three scenes, the behavior of the Rule-Based Nearest-
Neighbor Drawer is shown in the upper row and the behavior of the Neural Network Drawer is
shown in the lower row.
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Scene A

Scene,
Round

Rule-Based
Nearest-Neighbor

Scene2seq

Imitation learning + Auxiliary Loss + RL Fine-tuning

A1 in the top left corner is a medium
sun very close to the top and left
edge

medium sun on left , 1 2 inch
from top and side

on the right hand side is a
medium bear facing left with a
basketball in his left hand

medium sun top left

A2 guy angry arms down facing right
like his right knees touches the
top right corner of the table

medium bear on right , facing left
, 1 2 ” from bottom , small bas-
ketball in left hand , racket in left
hand

in the middle of the grass is a
medium sized boy facing right
with a racket in his left hand

medium boy on right angry fac-
ing right holding racket

A3 right under it is medium girl ,
waving with a sad face , facing
right .

small bear on right side , facing
left , 1 2 ” from bottom , small
bear on left facing right , armpits
on horizon ,

he is holding a racket in his left
hand and a tennis racket in the
middle of the sky

medium girl on left facing right
sad one arm up holding basket-
ball

A4 on the right side of screen ,
medium bear , chest on horizon
, paw almost touching right side
of screen

small bear on right facing left ,
chest at horizon , small basket-
ball in left hand , 1 inch from left
, 1 2 from bottom

on the left hand side is a medium
girl with sad face facing right
with a racket in her right hand .

medium bear on right facing left
wearing rainbow hat basketball
racket in right hand

A5 he also has a rainbow hat , but it
’s not snugly on him , it ’s only
slightly touching his head .

small bear on right facing left ,
chest at horizon , small basket-
ball in left hand , racket in left
hand , racket in left hand , racket
in left

the bear is facing left . the bear
is facing right . the bear is facing
left .

<STOP>

A6 sorry there ’s a basketball above
the boy ’s head near the tree

<STOP> <STOP>

A7 she is holding a racket in her left
hand .

A8 <STOP>

Scene B

Scene,
Round

Rule-Based
Nearest-Neighbor

Scene2seq

Imitation learning + Auxiliary Loss + RL Fine-tuning

B1 two finger spaces to right of heli-
copter , small hot air balloon . top
of balloon level with helicopter
propeller

small hot air balloon , top right ,
1 2 ” from top , 2 ” from right

small hot air balloon on right cor-
ner , fully visible .

small hot air balloon top right

B2 in front of tree is boy , he is to
the left part of tree and is cover-
ing the curve up . he is angry ,
standing , arms , out facing left

small girl , running , facing right
, surprised , 1 ” from bottom , 1 2
” from left

small hot balloon on right corner
, half ” from top .

large bear on left faced right

B3 the head of surprised girl is on
front the trunk . she is like run-
ning and faces right .

small pine tree behind her , bot-
tom of trunk at horizon , bottom
of trunk at horizon , small boy in
front of tree , head touching bot-
tom of tree , standing , smiling ,
facing right , holding a hot dog in
left hand

on center , a mad mike with
hands front facing left .

medium shocked girl running
facing right holding hot dog in
right hand

B4 large bear on left side . facing
right . arm cut off on left . feet
half inch from bottom

he is at the edge , small size , 1 2
” from bottom , 1 2 ” from bottom
, small kite in left corner , facing
right

on center , a small jenny , sur-
prised , running facing right ,
shoulders at horizon .

boy on right angry facing left
holding kite in right hand hot dog
in right hand

B5 place a hot dog in her left hand <STOP> on center , a small hot balloon ,
half finger from right side .

<STOP>

B6 right top a kite , small size , tail
is off screen . below kite dog
medium size , facing left

a small kite on right corner , only
half visible .

B7 <STOP> <STOP>

Figure 11: A comparison of the descriptions generated by each of our Teller models for two
randomly-sampled scenes from the test set.
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T: large bushy tree on
left hole facing right
D: ok

similarity: 0.77 similarity: 1.55 similarity: 2.90 similarity: 4.32 similarity: 4.32 Ground Truth

T: large cloud on
right
D: ok

T: large boy on left
facing right sad one
hand up wearing blue
hat
D: ok

T: large girl angry
facing left holding hot
dog in left hand
D: ok

T: large hot dog on
left facing left
D: ok
T: <stop>

T: large cloud on
right
D: ok

similarity: 0.81 similarity: 2.17 similarity: 2.88 similarity: 3.60 similarity: 4.25 Ground Truth

T: large boy on left
facing right wearing
pirate hat
D: ok

T: soccer ball in
middle
D: ok

T: big dog on right
facing left
D: ok

T: girl sitting on right
facing right smiling
wearing pirate hat
D: ok
T: <stop>

T: large cloud on left
D: ok

similarity: 0.80 similarity: 1.60 similarity: 2.25 similarity: 3.73 similarity: 3.73 Ground Truth

T: small bushy tree on
right
D: ok

T: large rocket in
middle facing right
D: ok

T: girl sitting
surprised facing right
wearing sunglasses
D: ok

T: large rocket on left
facing right
D: ok
T: <stop>

T: large cloud on left
D: ok

similarity: 0.82 similarity: 1.63 similarity: 2.32 similarity: 3.50 similarity: 4.22 Ground Truth

T: large bushy tree on
right hole facing right
D: ok

T: large snake on left
facing left
D: ok

T: large boy on left
facing left sad holding
bat
D: ok

T: girl surprised
kneeling facing left
holding bat in left
hand
D: ok
T: <stop>

Figure 12: Dialogs from our best Teller model (scene2seq with an auxiliary loss and RL fine-tuning)
communicating with our best Drawer model (Neural Network Drawer). The dialogs feature the same
scenes as in Figure 9, which were sampled at random from the test set. From left to right, we show
the first to the fifth rounds of conversations, followed by the ground truth scene. Our Teller model
chose to use exactly five rounds for each of these four scenes. The corresponding conversations
between Teller (T) and Drawer (D) are shown below the images.
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