Coefficient Estimates for a General Subclass of Analytic and Bi-Univalent Functions

H. M. Srivastava ${ }^{\text {a }}$, Serap Bulut ${ }^{\text {b }}$, Murat Çağlar ${ }^{\text {c }}$, Nihat Yağmur ${ }^{\text {d }}$
${ }^{a}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
${ }^{b}$ Kocaeli University, Civil Aviation College, Arslanbey Campus, TR-41285 İzmit-Kocaeli, Turkey
${ }^{c}$ Department of Mathematics, Faculty of Science, Atatürk University, TR-25240 Yakutiye-Erzurum, Turkey
${ }^{d}$ Department of Mathematics, Faculty of Science and Art, Erzincan University, TR-24000 Erzincan, Turkey

Abstract

In this paper, we introduce and investigate an interesting subclass $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$ of analytic and bi-univalent functions in the open unit disk \mathbb{U}. For functions belonging to the class $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$, we obtain estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The results presented in this paper would generalize and improve some recent works of Çağlar et al. [3], Xu et al. [10], and other authors.

1. Introduction

Let $\mathbb{R}=(-\infty, \infty)$ be the set of real numbers, \mathbb{C} be the set of complex numbers and

$$
\mathbb{N}:=\{1,2,3, \ldots\}=\mathbb{N}_{0} \backslash\{0\}
$$

be the set of positive integers.
Let \mathcal{A} denote the class of all functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

We also denote by \mathcal{S} the class of all functions in the normalized analytic function class \mathcal{A} which are univalent in \mathbb{U}.

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

[^0]and
$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geqq \frac{1}{4}\right) .
$$

In fact, the inverse function f^{-1} is given by

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). For a brief history and interesting examples of functions in the class Σ, see [8] (see also [1]). In fact, the aforecited work of Srivastava et al. [8] essentially revived the investigation of various subclasses of the bi-univalent function class Σ in recent years; it was followed by such works as those by Frasin and Aouf [4], Xu et al. [9, 10], Hayami and Owa [6], and others (see, for example, [5], [7] and [11]).

Recently, Çağlar et al. [3] introduced the following two subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in each of these subclasses (see also [4] and [10]). It should be mentioned in passing that the functional expression used in the inequalities in (2) and (7) of Definitions 1 and 2 is precisely the same as that used by Zhu [12] for investigating various extensions, generalizations and improvements of the starlikeness criteria which were proven by earlier authors (see, for details, Remark 1 below).

Definition 1. (see [3]) A function $f(z)$ given by (1) is said to be in the class $\mathcal{N}_{\Sigma}^{\mu}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad\left|\arg \left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)\right|<\frac{\alpha \pi}{2} \tag{2}
\end{equation*}
$$

$$
(0<\alpha \leqq 1 ; \lambda \geqq 1 ; \mu \geqq 0 ; z \in \mathbb{U})
$$

and

$$
\begin{aligned}
& \left|\arg \left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)\right|<\frac{\alpha \pi}{2} \\
& (0<\alpha \leqq 1 ; \lambda \geqq 1 ; \mu \geqq 0 ; w \in \mathbb{U})
\end{aligned}
$$

where the function g is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{4}
\end{equation*}
$$

Theorem 1. (see [3]) Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the class

$$
\mathcal{N}_{\Sigma}^{\mu}(\alpha, \lambda) \quad(0<\alpha \leqq 1 ; \lambda \geqq 1 ; \mu \geqq 0)
$$

Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \frac{2 \alpha}{\sqrt{(\lambda+\mu)^{2}+\alpha\left(\mu+2 \lambda-\lambda^{2}\right)}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{4 \alpha^{2}}{(\lambda+\mu)^{2}}+\frac{2 \alpha}{2 \lambda+\mu} \tag{6}
\end{equation*}
$$

Definition 2. (see [3]) A function $f(z)$ given by (1) is said to be in the class $\mathcal{N}_{\Sigma}^{\mu}(\beta, \lambda)$ if the following conditions are satisfied:

$$
\begin{aligned}
& f \in \Sigma \quad \text { and } \quad \mathfrak{R}\left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)>\beta \\
& (0 \leqq \beta<1 ; \lambda \geqq 1 ; \mu \geqq 0 ; z \in \mathbb{U})
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathfrak{R}\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)>\beta \\
& (0 \leqq \beta<1 ; \lambda \geqq 1 ; \mu \geqq 0 ; w \in \mathbb{U})
\end{aligned}
$$

where the function g is defined by (4).
Remark 1. For functions $f(z)$, which are analytic in \mathbb{U} and normalized by

$$
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \quad(n \in \mathbb{N})
$$

Zhu [12] determined the conditions on the parameters M, α, λ and μ such that the following inequality:

$$
\left|(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}-1\right|<M
$$

implies that the so-normalized function $f(z)$ is in the corresponding class of starlike functions of order $\alpha(0 \leqq \alpha<1)$. Interestingly, the functional expression used by Zhu [12] is precisely the same as that used in the inequalities in (2) and (7) above. The work of Zhu [12] provided extensions, generalizations and improvements of the various starlikeness criteria which were proven by a number of earlier authors (see, for details, [12]).

Theorem 2. (see [3]) Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the class

$$
\mathcal{N}_{\Sigma}^{\mu}(\beta, \lambda) \quad(0 \leqq \beta<1 ; \lambda \geqq 1 ; \mu \geqq 0)
$$

Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \min \left\{\sqrt{\frac{4(1-\beta)}{(\mu+1)(2 \lambda+\mu)}}, \frac{2(1-\beta)}{\lambda+\mu}\right\} \tag{9}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leqq \begin{cases}\min \left\{\frac{4(1-\beta)}{(\mu+1)(2 \lambda+\mu)}, \frac{4(1-\beta)^{2}}{(\lambda+\mu)^{2}}+\frac{2(1-\beta)}{2 \lambda+\mu}\right\} & (0 \leqq \mu<1) \tag{10}\\ \frac{2(1-\beta)}{2 \lambda+\mu} & (\mu \leqq 1) .\end{cases}
$$

Remark 2. The following special cases of Definitions 1 and 2 are worthy of note:
(i) For $\mu=1$, we obtain the bi-univalent function classes

$$
\mathcal{N}_{\Sigma}^{1}(\alpha, \lambda)=\mathcal{B}_{\Sigma}(\alpha, \lambda) \quad \text { and } \quad \mathcal{N}_{\Sigma}^{1}(\beta, \lambda)=\mathcal{B}_{\Sigma}(\beta, \lambda)
$$

introduced by Frasin and Aouf [4].
(ii) For $\mu=1$ and $\lambda=1$, we have the bi-univalent function classes

$$
\mathcal{N}_{\Sigma}^{1}(\alpha, 1)=\mathcal{H}_{\Sigma}^{\alpha} \quad \text { and } \quad \mathcal{N}_{\Sigma}^{1}(\beta, 1)=\mathcal{H}_{\Sigma}(\beta)
$$

introduced by Srivastava et al. [8].
(iii) For $\mu=0$ and $\lambda=1$, we get the well-known classes

$$
\mathcal{N}_{\Sigma}^{0}(\alpha, 1)=\mathcal{S}_{\Sigma}^{*}[\alpha] \quad \text { and } \quad \mathcal{N}_{\Sigma}^{0}(\beta, 1)=\mathcal{S}_{\Sigma}^{*}(\beta)
$$

of strongly bi-starlike functions of order α and of bi-starlike functions of order β, respectively.
This paper is essentially a sequel to some of the aforecited works (especially see [3] and [10]). Here we introduce and investigate the general subclass $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu) \quad(\lambda \geqq 1 ; \mu \geqq 0)$ of the analytic function class \mathcal{A}, which is given by Definition 3 below.

Definition 3. Let the functions $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\mathfrak{R}(h(z)), \mathfrak{R}(p(z))\}>0 \quad(z \in \mathbb{U}) \quad \text { and } \quad h(0)=p(0)=1
$$

Also let the function f, defined by (1), be in the analytic function class \mathcal{A}. We say that

$$
f \in \mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu) \quad(\lambda \geqq 1 ; \mu \geqq 0)
$$

if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1} \in h(\mathbb{U}) \quad(z \in \mathbb{U}) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1} \in p(\mathbb{U}) \quad(w \in \mathbb{U}) \tag{12}
\end{equation*}
$$

where the function g is defined by (4).
We note that the class $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$ reduces to the function classes $\mathcal{B}_{\Sigma}^{h, p}(\lambda)$ and $\mathcal{H}_{\Sigma}^{h, p}$ given by

$$
\begin{aligned}
& \mathcal{B}_{\Sigma}^{h, p}(\lambda)=\mathcal{N}_{\Sigma}^{h, p}(\lambda, 1), \\
& \mathcal{B}_{\Sigma}^{h, p}=\mathcal{N}_{\Sigma}^{h, p}(1,0)
\end{aligned}
$$

and

$$
\mathcal{H}_{\Sigma}^{h, p}=\mathcal{N}_{\Sigma}^{h, p}(1,1)
$$

respectively, each of which was introduced and studied recently by Xu et al. [10], Bulut [2] and Xu et al. [9], respectively.
Remark 3. There are many choices of the functions $h(z)$ and $p(z)$ which would provide interesting subclasses of the analytic function class \mathcal{A}. For example, if we let

$$
\begin{equation*}
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leqq 1 ; z \in \mathbb{U}) \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leqq \beta<1 ; z \in \mathbb{U}), \tag{14}
\end{equation*}
$$

it is easy to verify that the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 3. If $f \in \mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$, then

$$
\begin{equation*}
f \in \Sigma \text { and }\left|\arg \left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)\right|<\frac{\alpha \pi}{2} \tag{15}
\end{equation*}
$$

$$
(0<\alpha \leqq 1 ; \lambda \geqq 1 ; \mu \geqq 0 ; z \in \mathbb{U})
$$

and

$$
\begin{aligned}
& \left|\arg \left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)\right|<\frac{\alpha \pi}{2} \\
& (0<\alpha \leqq 1 ; \lambda \geqq 1 ; \mu \geqq 0 ; w \in \mathbb{U})
\end{aligned}
$$

or

$$
\begin{aligned}
& f \in \Sigma \quad \text { and } \quad \mathfrak{R}\left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)>\beta \\
& (0 \leqq \beta<1 ; \lambda \geqq 1 ; \mu \geqq 0 ; z \in \mathbb{U})
\end{aligned}
$$

and

$$
\mathfrak{R}\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)>\beta
$$

$$
(0 \leqq \beta<1 ; \lambda \geqq 1 ; \mu \geqq 0 ; w \in \mathbb{U}),
$$

where the function g is defined by (4). This means that

$$
f \in \mathcal{N}_{\Sigma}^{\mu}(\alpha, \lambda) \quad(0<\alpha \leqq 1 ; \lambda \geqq 1 ; \mu \geqq 0)
$$

or

$$
f \in \mathcal{N}_{\Sigma}^{\mu}(\beta, \lambda) \quad(0 \leqq \beta<1 ; \lambda \geqq 1 ; \mu \geqq 0) .
$$

Our paper is motivated and stimulated especially by the works of Çağlar et al. [3] and Xu et al. [10]. Here we propose to investigate the bi-univalent function class $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$ introduced in Definition 3 and derive coefficient estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for a function $f \in \mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$ given by (1). Our results for the bi-univalent function class $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$ would generalize and improve the related works of Çağlar et al. [3] and Xu et al. [10] (see also [4] and [8]).

2. A Set of General Coefficient Estimates

In this section, we state and prove our general results involving the bi-univalent function class $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$ given by Definition 3 .

Theorem 3. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the function class $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2(\mu+1)(2 \lambda+\mu)}}\right\} \tag{19}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leqq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+\mu)}\right. \\
\left.\frac{(3+\mu)\left|h^{\prime \prime}(0)\right|+|1-\mu|\left|p^{\prime \prime}(0)\right|}{4(\mu+1)(2 \lambda+\mu)}\right\} . \tag{20}
\end{align*}
$$

Proof. First of all, we write the argument inequalities in (11) and (12) in their equivalent forms as follows:

$$
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}=h(z) \quad(z \in \mathbb{U})
$$

and

$$
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}=p(w) \quad(w \in \mathbb{U})
$$

respectively, where $h(z)$ and $p(w)$ satisfy the conditions of Definition 3. Furthermore, the functions $h(z)$ and $p(w)$ have the following Taylor-Maclaurin series expensions:

$$
h(z)=1+h_{1} z+h_{2} z^{2}+\cdots
$$

and

$$
p(w)=1+p_{1} w+p_{2} w^{2}+\cdots
$$

respectively. Now, upon equating the coefficients of

$$
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}
$$

with those of $h(z)$ and the coefficients of

$$
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}
$$

with those of $p(w)$, we get

$$
\begin{align*}
& (\lambda+\mu) a_{2}=h_{1} \tag{21}\\
& (2 \lambda+\mu) a_{3}+(\mu-1)\left(\lambda+\frac{\mu}{2}\right) a_{2}^{2}=h_{2} \tag{22}\\
& -(\lambda+\mu) a_{2}=p_{1} \tag{23}
\end{align*}
$$

and

$$
\begin{equation*}
-(2 \lambda+\mu) a_{3}+(\mu+3)\left(\lambda+\frac{\mu}{2}\right) a_{2}^{2}=p_{2} . \tag{24}
\end{equation*}
$$

From (21) and (23), we obtain

$$
\begin{equation*}
h_{1}=-p_{1} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\lambda+\mu)^{2} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} . \tag{26}
\end{equation*}
$$

Also, from (22) and (24), we find that

$$
\begin{equation*}
(\mu+1)(2 \lambda+\mu) a_{2}^{2}=h_{2}+p_{2} . \tag{27}
\end{equation*}
$$

Therefore, we find from the equations (26) and (27) that

$$
\left|a_{2}\right|^{2} \leqq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu)^{2}}
$$

and

$$
\left|a_{2}\right|^{2} \leqq \frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2(\mu+1)(2 \lambda+\mu)^{\prime}},
$$

respectively. So we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (19).
Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (24) from (22). We thus get

$$
\begin{equation*}
2(2 \lambda+\mu) a_{3}-2(2 \lambda+\mu) a_{2}^{2}=h_{2}-p_{2} . \tag{28}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (26) into (28), it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{2(\lambda+\mu)^{2}}+\frac{h_{2}-p_{2}}{2(2 \lambda+\mu)} .
$$

We thus find that

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+\mu)} . \tag{29}
\end{equation*}
$$

On the other hand, upon substituting the value of a_{2}^{2} from (27) into (28), it follows that

$$
a_{3}=\frac{(3+\mu) h_{2}+(1-\mu) p_{2}}{2(\mu+1)(2 \lambda+\mu)}
$$

Consequently, we have

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{(3+\mu)\left|h^{\prime \prime}(0)\right|+|1-\mu|\left|p^{\prime \prime}(0)\right|}{4(\mu+1)(2 \lambda+\mu)} . \tag{30}
\end{equation*}
$$

This evidently completes the proof of Theorem 3.

3. Corollaries and Consequences

By setting $\mu=1$ in Theorem 3, we get Corollary 1 below.
Corollary 1. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}^{h, p}(\lambda)(\lambda \geqq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1+\lambda)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(1+2 \lambda)}}\right\} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1+\lambda)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(1+2 \lambda)}, \frac{\left|h^{\prime \prime}(0)\right|}{2(1+2 \lambda)}\right\} . \tag{32}
\end{equation*}
$$

Remark 4. Corollary 1 is an improvement of the following estimates obtained by Xu et al. [10].
Corollary 2. (see [10]) Suppose that $f(z)$ given by its Taylor-Maclaurin series expansion (1) is in the function class $\mathcal{B}_{\Sigma}^{h, p}(\lambda)(\lambda \geqq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(1+2 \lambda)}} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{\left|h^{\prime \prime}(0)\right|}{2(1+2 \lambda)} \tag{34}
\end{equation*}
$$

By setting $\mu=1$ and $\lambda=1$ in Theorem 3, we get the following consequence.
Corollary 3. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the function class $\mathcal{H}_{\Sigma}^{h, p}$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}}\right\} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}, \frac{\left|h^{\prime \prime}(0)\right|}{6}\right\} \tag{36}
\end{equation*}
$$

Remark 5. Corollary 3 is an improvement of the following estimates obtained by Xu et al. [9].
Corollary 4. (see [9]) Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the function class $\mathcal{H}_{\Sigma}^{h, p}$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{\left|h^{\prime \prime}(0)\right|}{6} \tag{38}
\end{equation*}
$$

Remark 6. By setting $\mu=0$ and $\lambda=1$ in Theorem 3, we get [2, Theorem 2.1].
If we set

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leqq 1 ; z \in \mathbb{U})
$$

in Theorem 3, we can readily deduce Corollary 5.
Corollary 5. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent function class

$$
\mathcal{N}_{\Sigma}^{\mu}(\alpha, \lambda)(0<\alpha \leqq 1 ; \lambda \geqq 1 ; \mu \geqq 0)
$$

Then

$$
\left|a_{2}\right| \leqq \begin{cases}\frac{2 \alpha}{\lambda+\mu} & (\lambda \geqq 1+\sqrt{1+\mu}) \tag{39}\\ \frac{2 \alpha}{\sqrt{(\mu+1)(2 \lambda+\mu)}} & (1 \leqq \lambda<1+\sqrt{1+\mu})\end{cases}
$$

and

$$
\left|a_{3}\right| \leqq \begin{cases}\min \left\{\frac{4 \alpha^{2}}{(\lambda+\mu)^{2}}+\frac{2 \alpha^{2}}{2 \lambda+\mu}, \frac{4 \alpha^{2}}{(\mu+1)(2 \lambda+\mu)}\right\} & (0 \leqq \mu<1) \tag{40}\\ \frac{2 \alpha^{2}}{2 \lambda+\mu} & (\mu \geqq 1)\end{cases}
$$

Remark 7. It is easy to see, for the coefficient $\left|a_{2}\right|$, that

$$
\begin{aligned}
& \frac{2 \alpha}{\lambda+\mu} \leqq \frac{2 \alpha}{\sqrt{(\lambda+\mu)^{2}+\alpha\left(\mu+2 \lambda-\lambda^{2}\right)}} \\
& (0<\alpha \leqq 1 ; \lambda \geqq 1+\sqrt{1+\mu} ; \mu \geqq 0)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{2 \alpha}{\sqrt{(\mu+1)(2 \lambda+\mu)}} \leqq \frac{2 \alpha}{\sqrt{(\lambda+\mu)^{2}+\alpha\left(\mu+2 \lambda-\lambda^{2}\right)}} \\
& (0<\alpha \leqq 1 ; 1 \leqq \lambda<1+\sqrt{1+\mu} ; \mu \geqq 0) .
\end{aligned}
$$

On the other hand, for the coefficient $\left|a_{3}\right|$, we make the following observations:
(i) If $0 \leqq \mu<1$ and

$$
\min \left\{\frac{4 \alpha^{2}}{(\lambda+\mu)^{2}}+\frac{2 \alpha^{2}}{2 \lambda+\mu^{\prime}}, \frac{4 \alpha^{2}}{(\mu+1)(2 \lambda+\mu)}\right\}=\frac{4 \alpha^{2}}{(\lambda+\mu)^{2}}+\frac{2 \alpha^{2}}{2 \lambda+\mu^{\prime}}
$$

then

$$
\frac{4 \alpha^{2}}{(\lambda+\mu)^{2}}+\frac{2 \alpha^{2}}{2 \lambda+\mu} \leqq \frac{4 \alpha^{2}}{(\lambda+\mu)^{2}}+\frac{2 \alpha}{2 \lambda+\mu} \quad(0<\alpha \leqq 1 ; \lambda \geqq 1) ;
$$

(ii) If $0 \leqq \mu<1$ and

$$
\min \left\{\frac{4 \alpha^{2}}{(\lambda+\mu)^{2}}+\frac{2 \alpha^{2}}{2 \lambda+\mu^{\prime}} \frac{4 \alpha^{2}}{(\mu+1)(2 \lambda+\mu)}\right\}=\frac{4 \alpha^{2}}{(\mu+1)(2 \lambda+\mu)^{\prime}}
$$

then

$$
\begin{aligned}
\frac{4 \alpha^{2}}{(\mu+1)(2 \lambda+\mu)} & \leqq \frac{4 \alpha^{2}}{(\lambda+\mu)^{2}}+\frac{2 \alpha^{2}}{2 \lambda+\mu} \\
& \leqq \frac{4 \alpha^{2}}{(\lambda+\mu)^{2}}+\frac{2 \alpha}{2 \lambda+\mu} \quad(0<\alpha \leqq 1 ; \lambda \leqq 1) ;
\end{aligned}
$$

(iii) If $\mu \geqq 1$, then

$$
\begin{aligned}
\frac{2 \alpha^{2}}{2 \lambda+\mu} & \leqq \frac{2 \alpha}{2 \lambda+\mu} \\
& \leqq \frac{4 \alpha^{2}}{(\lambda+\mu)^{2}}+\frac{2 \alpha}{2 \lambda+\mu} \quad(0<\alpha \leqq 1 ; \lambda \leqq 1) .
\end{aligned}
$$

Thus, clearly, Corollary 5 is an improvement of Theorem 1.
By setting $\mu=1$ in Corollary 5 , we obtain the following consequence.
Corollary 6. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent function class

$$
\mathcal{B}_{\Sigma}(\alpha, \lambda)(0<\alpha \leqq 1 ; \lambda \geqq 1) .
$$

Then

$$
\left|a_{2}\right| \leqq \begin{cases}\frac{2 \alpha}{\lambda+1} & (\lambda \leqq 1+\sqrt{2}) \tag{41}\\ \sqrt{\frac{2}{2 \lambda+1}} \alpha & (1 \leqq \lambda<1+\sqrt{2})\end{cases}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{2 \alpha^{2}}{2 \lambda+1} . \tag{42}
\end{equation*}
$$

Remark 8. Corollary 6 provides an improvement of the following estimates obtained by Frasin and Aouf [4].
Corollary 7. (see [4]) Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent function class

$$
\mathcal{B}_{\Sigma}(\alpha, \lambda) \quad(0<\alpha \leqq 1 ; \lambda \geqq 1) .
$$

Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \frac{2 \alpha}{\sqrt{(\lambda+1)^{2}+\alpha\left(1+2 \lambda-\lambda^{2}\right)}} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{4 \alpha^{2}}{(\lambda+1)^{2}}+\frac{2 \alpha}{2 \lambda+1} \tag{44}
\end{equation*}
$$

By setting $\mu=1$ and $\lambda=1$ in Corollary 5, we get the following consequence.
Corollary 8. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}^{\alpha}(0<\alpha \leqq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{2}{3}} \alpha \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{2 \alpha^{2}}{3} \tag{46}
\end{equation*}
$$

Remark 9. Corollary 8 is an improvement of the following estimates which were given by Srivastava et al. [8].
Corollary 9. (see [8]) Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}^{\alpha}(0<\alpha \leqq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{2}{\alpha+2}} \alpha \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{\alpha(3 \alpha+2)}{3} \tag{48}
\end{equation*}
$$

By setting $\mu=0$ and $\lambda=1$ in Corollary 5, we get the following consequence.
Corollary 10. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent function class $\mathcal{S}_{\Sigma}^{*}[\alpha](0<\alpha \leqq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{2} \alpha \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq 2 \alpha^{2} \tag{50}
\end{equation*}
$$

Remark 10. If we set

$$
\begin{equation*}
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leqq \beta<1 ; \lambda \geqq 1 ; z \in \mathbb{U}) \tag{51}
\end{equation*}
$$

in Theorem 3, we can readily deduce Theorem 2.
Remark 11. The aforecited work by Çağlar et al. [3] contains several interesting further special cases and consequences of Theorem 2, which we have generalized here by means of Theorem 3 (see Remark 3). The reader will find each of these further special cases and consequences of Theorem 2, too, to be motivatingly interesting.

4. Concluding Remarks and Observations

In our present investigation, we have considered an interesting subclass $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$ of analytic and biunivalent functions in the open unit disk \mathbb{U}. We have derived estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions belonging to the class $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$. By means of corollaries and consequences which we discussed in the preceding section by suitably specializing the functions $h(z)$ and $p(z)$ (and also the parameters λ and μ), we have also shown already that the results presented in this paper would generalize and improve some recent works of Çağlar et al. [3], Xu et al. [10], and other authors.

Finally, our motivation for introducing the subclass $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$ of analytic and bi-univalent functions in the open unit disk \mathbb{U} in Definition 3 is motivated at least partially by the work of Zhu [12] who provided extensions, generalizations and improvements of the various starlikeness criteria which were proven by a number of earlier authors (see, for details, Remark 1).

References

[1] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in Mathematical Analysis and Its Applications (S. M. Mazhar, A. Hamoui and N. S. Faour, Editors) (Kuwait; February 18-21, 1985), KFAS Proceedings Series, Vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986), 70-77.
[2] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43 (2) (2013) (in press).
[3] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27:7 (2013), 1165-1171.
[4] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[5] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc. 20 (2012), 179-182.
[6] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22 (4) (2012), 15-26.
[7] X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum 7 (2012), 1495-1504.
[8] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[9] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.
[10] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465.
[11] H. M. Srivastava, G. Murugusundaramoorthy and N. Mangesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Global J. Math. Anal. 1 (2) (2013), 67-73.
[12] Y. Zhu, Some starlikeness criterions for analytic functions, J. Math. Anal. Appl. 335 (2007), 1452-1459.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50
 Keywords. Analytic functions; Univalent functions; Bi-univalent functions; Taylor-Maclaurin series expansion; Coefficient bounds and coefficient estimates; Taylor-Maclaurin coefficients

 Received: 26 September 2012; Accepted: 21 March 2013
 Communicated by Miodrag Mateljević
 Email addresses: harimsri@math.uvic.ca (H. M. Srivastava), serap.bulut@kocaeli.edu.tr (Serap Bulut), mcaglar25@gmail.com (Murat Çağlar), nhtyagmur@gmail.com (Nihat Yağmur)

