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Abstract. For λ ≥ 0 and 0 ≤ α < 1 < β, we denote by K (λ;α, β) the class of normalized analytic functions
satisfying the two sided-inequality

α <ℜ
(

z f ′(z)

f (z)
+ λ

z2 f ′′(z)

f (z)

)

< β (z ∈ U),

where U is the open unit disk. Let KΣ(λ;α, β) be the class of bi-univalent functions such that f and its
inverse f −1 both belong to the class K (λ;α, β). In this paper, we establish bounds for the coefficients, and
solve the Fekete-Szegő problem, for the classK (λ;α, β). Furthermore, we obtain upper bounds for the first
two Taylor-Maclaurin coefficients of the functions in the classKΣ(λ;α, β).

1. Introduction

LetA denote the class of the functions of the form:

f (z) = z +

∞
∑

n=2

anzn, (1.1)

which are analytic in the open unit diskU = {z ∈ C : |z| < 1}, and let S be the class of functions inA which
are univalent inU.

It is well known that every function f ∈ S of the form (1.1) has an inverse f−1, defined by

f−1
(

f (z)
)

= z (z ∈ U),

and

f
(

f−1(w)
)

= w
(

|w| < r; r ≥ 1

4

)

,
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where

f−1(w) = w − a2w2 +
(

2a2
2 − a3

)

w3 −
(

5a2
2 − 5a2a3 + a4

)

w4 + · · · . (1.2)

A function f ∈ A is bi-univalent in U if both f and f−1 are univalent in U. Let Σ denote the class of
bi-univalent functions defined in the open unit diskU. Recently, the bounds of coefficients of analytic and
bi-univalent functions have been studied by many authors. We refer the reader to [2, 3, 5, 12, 14–17, 19, 20]
for recent investigations in this topic.

For two analytic functions f and 1 inU, we say that f is subordinate to 1 inU, and write f ≺ 1 (z ∈ U),
if

f (z) = 1
(

ω(z)
)

(z ∈ U)

for some analytic function ω(z) such that

ω(0) = 0 and |ω(z)| < 1 (z ∈ U).

If 1 is univalent inU, then the subordination f ≺ 1 is equivalent to

f (0) = 1(0) and f (U) ⊂ 1(U).

A function f ∈ A is said to be starlike of order α (0 ≤ α < 1), if it satisfies the condition

ℜ
(

z f ′(z)

f (z)

)

> α (z ∈ U).

We denote S∗(α) by the class of starlike functions of order α. Also, we denoteM(β) be the subclass of A
consisting of functions f (z) which satisfy the inequality

ℜ
(

z f ′(z)

f (z)

)

< β (z ∈ U),

for some β > 1. Moreover, the subclass S∗(α, β) ⊂ A consists of functions, which satisfy the following
inequality

α <ℜ
(

z f ′(z)

f (z)

)

< β
(

0 ≤ α < 1 < β; z ∈ U
)

.

We remark that the functions classesM(β) and S∗(α, β) were first investigated by Uralegaddi et al. [18]
and Kuroki and Owa [11], respectively.

Next we consider the following two new subclasses ofA.

Definition 1.1. Let λ, α and β be real numbers such that λ ≥ 0 and 0 ≤ α < 1 < β. A function f ∈ A belongs
to the classK (λ;α, β) if f satisfies the inequality:

α <ℜ
(

z f ′(z)

f (z)
+ λ

z2 f ′′(z)

f (z)

)

< β (z ∈ U).

Remark 1.2. If we set λ = 0 in Definition 1.1, then it reduces to the class S∗(α, β). It is clear that S∗(α, β) ⊂
S∗(α) and S∗(α, β) ⊂ M(β).

Definition 1.3. Let λ ≥ 0 and 0 ≤ α < 1 < β, we denote by KΣ(λ;α, β) the class of bi-univalent functions
consisting of the functions inA such that

f ∈ K (λ;α, β) and f−1 ∈ K (λ;α, β),

where f−1 is the inverse function of f .
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Figure 1: The image ofD under the function p(z) for α = 1/2 and β = 2.

Remark 1.4. If λ = 0 in Definition 1.3, for simplicity, we write S∗
Σ

(α, β) instead ofKΣ(0;α, β).

A classical theorem of Fekete and Szegő [7] states that for f ∈ S of the form (1.1), the functional
∣

∣

∣a3−λa2
2

∣

∣

∣

satisfies the inequality

∣

∣

∣a3 − λa2
2

∣

∣

∣ ≤



















3 − 4λ, λ ≤ 0,
1 + 2e−(2λ)/(1−λ), 0 ≤ λ ≤ 1,

4λ − 3, λ ≥ 1.

This inequality is sharp in the sense that for each real λ there exists a function in S such that equality holds

(see [1, 9]). Thus the determination of sharp upper bounds for the nonlinear functional
∣

∣

∣a3 − λa2
2

∣

∣

∣ for any
compact family F of functions inA is often called the Fekete-Szegő problem for F .

This paper is organized as follows. We start with coefficient estimates for functions of the classes
K (λ;α, β) and KΣ(λ;α, β). The first of our main results, Theorem 3.1, gives bounds of coefficients for the
the functions of the class K (λ;α, β). The second of our main results, Theorem 3.4, solves the Fekete-Szegő
problem for the classK (λ;α, β). Finally, in Theorem 3.6, we estimate the upper bounds of initial coefficients
of inverse functions and bi-univalent functions of the classKΣ(λ;α, β).

2. Preliminary Results

In [11], Kuroki and Owa defined an analytic function p : U→ C by

p(z) = 1 +
(β − α)i

π
log

(

1 − ze2π(1−α)i/(β−α)

1 − z

)

(0 ≤ α < 1 < β; z ∈ U), (2.1)

and they proved that p mapsU onto the convex domain (see Figure 1)

Ω =
{

ω : α <ℜ(ω) < β
}

.

We observe that the function p, defined by (2.1), has the representation

p(z) = 1 +

∞
∑

n=1

Bnzn (z ∈ U), (2.2)
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where

Bn =
(β − α)i

nπ

(

1 − e2nπ(1−α)i/(β−α)
)

(n ∈N). (2.3)

In order to prove our main results, we need the following lemmas.

Lemma 2.1. ([8]) Let p(z) = 1 + c1z + c2z2 + · · · be a function with positive real part inU. Then, for any complex
number ν,

∣

∣

∣c2 − νc2
1

∣

∣

∣ ≤ 2 max{1, |1 − 2ν|}.

The proof of the next lemma is similar to that of Lemma 1.3 in [11], and we omit the details.

Lemma 2.2. Let f ∈ A and 0 ≤ α < 1 < β. Then f ∈ K (λ;α, β) if and only if

z f ′(z)

f (z)
+ λ

z2 f ′′(z)

f (z)
≺ p(z) (z ∈ U), (2.4)

where p(z) is given by (2.1).

Lemma 2.3. ([13]) Let p(z) =
∑∞

n=1 Cnzn be analytic and univalent inU and suppose that p(z) mapsU onto a convex
domain. If q(z) =

∑∞
n=1 Anzn is analytic inU and satisfies the subordination:

q(z) ≺ p(z) (z ∈ U),

then
|An| ≤ |C1| (n = 1, 2, . . .).

3. Main Results

We begin by presenting some coefficient problems involving functions of the classK (λ;α, β).

Theorem 3.1. If f ∈ K (λ;α, β), then

|a2| ≤
|B1|

2λ + 1
and |an| ≤

|B1|
(n − 1)(nλ + 1)

n−1
∏

k=2

(

1 +
|B1|

(k − 1)(kλ + 1)

)

(n = 3, 4, 5, . . .), (3.1)

where |B1| is given by

|B1| =
2(β − α)

π
sin
π(1 − α)

β − α . (3.2)

Proof. Let us define

q(z) =
z f ′(z)

f (z)
+ λ

z2 f ′′(z)

f (z)
(z ∈ U), (3.3)

and let the function p be given by (2.1). Then, the subordination (2.4) can be written as follows:

q(z) ≺ p(z) (z ∈ U). (3.4)

Note that the function p defined by (2.1) is convex inU and has the form

p(z) = 1 +

∞
∑

n=1

Bnzn (z ∈ U),
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where Bn is given by (2.3). If we let

q(z) = 1 +

∞
∑

n=1

Anzn (z ∈ U),

then from Lemma 2.3 we see that the subordination (3.4) implies

|An| ≤ |B1| (n = 1, 2, . . .), (3.5)

where |B1| is given by (3.2).
Now, (3.3) implies that

z f ′(z) + λz2 f ′′(z) = q(z) f (z) (z ∈ U).

Then, by comparing the coefficients of zn on the both sides, we see that

an =
1

(n − 1)(nλ + 1)
×

(

An−1 + a2An−2 + a3An−3 + · · · + an−1A1

)

.

A simple calculation together with the inequality (3.5) yields that

|an| =
1

(n − 1)(nλ + 1)
×

∣

∣

∣An−1 + a2An−2 + a3An−3 + · · · + an−1A1

∣

∣

∣

≤ 1

(n − 1)(nλ + 1)
×

(

|An−1| + |a2||An−2| + |a3||An−3| + · · · + |an−1||A1|
)

≤ |B1|
(n − 1)(nλ + 1)

n−1
∑

k=1

|ak|,

where |B1| is given by (3.2) and |a1| = 1. Hence, we have |a2| ≤ |B1| /(2λ + 1). To prove the remaining part of
the theorem, we need to show that

|B1|
(n − 1)(nλ + 1)

n−1
∑

k=1

|ak| ≤
|B1|

(n − 1)(nλ + 1)

n−1
∏

k=2

(

1 +
|B1|

(k − 1)(kλ + 1)

)

, (3.6)

for n = 3, 4, 5, . . .. We use induction to prove (3.6). The case n = 3 is clear. Next, assume that the inequality
(3.6) holds for n = m. Then, a straightforward calculation gives

|am+1| ≤
|B1|

m[(m + 1)λ + 1]

m
∑

k=1

|ak| =
|B1|

m[(m + 1)λ + 1]















m−1
∑

k=1

|ak| + |am|














≤ |B1|
m[(m + 1)λ + 1]

m−1
∏

k=2

(

1 +
|B1|

(k − 1)(kλ + 1)

)

+
|B1|

m[(m + 1)λ + 1]
× |B1|

(m − 1)(mλ + 1)

m−1
∏

k=2

(

1 +
|B1|

(k − 1)(kλ + 1)

)

=
|B1|

m[(m + 1)λ + 1]

m
∏

k=2

(

1 +
|B1|

(k − 1)(kλ + 1)

)

,

which implies that the inequality (3.6) holds for n = m+1. Hence, the desired estimate for |an| (n = 3, 4, 5, . . .)
follows, as asserted in (3.1). This completes the proof of Theorem 3.1.
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Taking λ = 0 in Theorem 3.1, and using the identity

|B1|
n − 1

n−1
∏

k=2

(

1 +
|B1|

k − 1

)

=

n
∏

k=2

(

k − 2 + |B1|
k − 1

)

(n = 3, 4, 5, . . .),

we obtain the following corollary.

Corollary 3.2. If f ∈ S∗(α, β), then

|an| ≤
n

∏

k=2

(

k − 2 + |B1|
k − 1

)

(n = 2, 3, 4, . . .),

where |B1| is given by (3.2).

Remark 3.3. For 0 ≤ α < 1 < β, we have

|B1| =
2(β − α)

π
sin
π(1 − α)

β − α ≤ 2(β − α)

π
× π(1 − α)

β − α = 2(1 − α) ≤ 2,

thus, we obtain

|an| ≤
n

∏

k=2

(

k − 2 + |B1|
k − 1

)

≤
n

∏

k=2

(

k

k − 1

)

= n (n = 2, 3, 4, . . .),

shows how that the coefficient bounds in Corollary 3.2 are related to the well-known Bieberbach conjecture
[4] proved by de Branges in 1985 [6] (cf. [10]).

Next, we will solve the Fekete-Szegő problem for functions f ∈ K (λ;α, β).

Theorem 3.4. Let f ∈ K (λ;α, β). Then, for a complex number µ,

∣

∣

∣a3 − µa2
2

∣

∣

∣ ≤ |B1|
2(3λ + 1)

max

{

1,

∣

∣

∣

∣

∣

B2

B1
− 2(3λ + 1)µ − (2λ + 1)

(2λ + 1)2
B1

∣

∣

∣

∣

∣

}

, (3.7)

where B1 and B2 are given by (2.3). The result is sharp.

Proof. Let us consider the functions p and q were given by (2.1) and (3.3), respectively. Then, since
f ∈ K (λ;α, β), in view of Lemma 2.2, we have

q(z) ≺ p(z) = 1 +

∞
∑

n=1

Bnzn (z ∈ U),

where Bn is given by (2.3). Let

h(z) =
1 + p−1

(

q(z)
)

1 − p−1
(

q(z)
) = 1 + h1z + h2z2 + · · · (z ∈ U). (3.8)

Then h is analytic, and it has positive real part inU. We obtain

q(z) = p

(

h(z) − 1

h(z) + 1

)

(z ∈ U). (3.9)
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We find from (3.8) and (3.9) that

(2λ + 1)a2 =
1

2
B1h1 and 2(3λ + 1)a3 − (2λ + 1)a2

2 =
1

2
B1h2 +

1

4
(B2 − B1)h2

1.

Therefore, we have

a2 =
B1h1

2(2λ + 1)
and a3 =

2(2λ + 1)B1h2 +
[

B2
1
+ (2λ + 1)(B2 − B1)

]

h2
1

8(2λ + 1)(3λ + 1)
,

which imply that

a3 − µa2
2 =

B1

4(3λ + 1)
(h2 − νh2

1),

where

ν =
1

2

(

1 − B2

B1
+

2(3λ + 1)µ − (2λ + 1)

(2λ + 1)2
B1

)

.

By applying Lemma 2.1, we obtain

∣

∣

∣a3 − µa2
2

∣

∣

∣ =
|B1|

4(3λ + 1)

∣

∣

∣h2 − νh2
1

∣

∣

∣ ≤ |B1|
2(3λ + 1)

max{1; |1 − 2ν|}

=
|B1|

2(3λ + 1)
max

{

1;

∣

∣

∣

∣

∣

B2

B1
− 2(3λ + 1)µ − (2λ + 1)

(2λ + 1)2
B1

∣

∣

∣

∣

∣

}

,

where B1 and B2 are given by (2.3). This implies the desired estimate of (3.7).
The estimate is sharp for the function f : U→ C defined by

f (z) =

∫ z

0

{

exp

(∫ ζ

0

p(ξ) − 1

ξ
dξ

)}

dζ, (3.10)

where the function p is given by (2.1) (see Figure 2). Hence the proof of Theorem 3.4 is completed.

Using Theorem 3.4, we can easily get the following result.

Corollary 3.5. Let f ∈ K (λ;α, β), and let f−1 be the inverse function of f . If

f−1(w) = w +

∞
∑

n=2

bnwn
(

|w| < r; r ≥ 1

4

)

, (3.11)

then

|b2| ≤
|B1|

2λ + 1
and |b3| ≤

|B1|
2(3λ + 1)

max

{

1,

∣

∣

∣

∣

∣

B2

B1
− 10λ + 3

(2λ + 1)2
B1

∣

∣

∣

∣

∣

}

,

where B1 and B2 are given by (2.3).

Proof. The relations (1.2) and (3.11) yield

b2 = −a2 and b3 = 2a2
2 − a3.

Thus, in view of (3.1) and the identity |b2| = |a2|, the estimate for |b2| follows immediately. Furthermore,
applying Theorem 3.4 with µ = 2 gives the estimate for |b3|.
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Figure 2: The image ofD under the function f (z), defined by (3.10), for α = 1/2 and β = 2.

Finally, we will estimate some initial coefficients for the bi-univalent functions f ∈ KΣ(λ;α, β).

Theorem 3.6. Let f ∈ KΣ(λ;α, β). Then

|a2| ≤
|B1|
√
|B1|

√

∣

∣

∣(4λ + 1)B2
1
+ (2λ + 1)2(B1 − B2)

∣

∣

∣

and |a3| ≤
|B1| + |B1 − B2|

4λ + 1
, (3.12)

where B1 and B2 are given by (2.3).

Proof. If f ∈ KΣ(λ;α, β), then f ∈ K (λ;α, β) and 1 = f−1 ∈ K (λ;α, β). Hence

M(z) :=
z f ′(z)

f (z)
+ λ

z2 f ′′(z)

f (z)
≺ p(z) (z ∈ U),

L(z) :=
z1′(z)

1(z)
+ λ

z21′′(z)

1(z)
≺ p(z) (z ∈ U),

where the function p is given by (2.1). Let

t(z) =
1 + p−1

(

M(z)
)

1 − p−1
(

M(z)
) = 1 + t1z + t2z2 + · · · (z ∈ U),

and

k(z) =
1 + p−1

(

L(z)
)

1 − p−1
(

L(z)
) = 1 + k1z + k2z2 + · · · (z ∈ U).

Then t and k are analytic and have positive real part inU, and satisfy the well-known estimates

|tn| ≤ 2 and |kn| ≤ 2 (n ∈N). (3.13)

Therefore, we have

M(z) = p

(

t(z) − 1

t(z) + 1

)

and L(z) = p

(

k(z) − 1

k(z) + 1

)

(z ∈ U).
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By comparing the coefficients, we get

(2λ + 1)a2 =
1

2
B1t1, (3.14)

2(3λ + 1)a3 − (2λ + 1)a2
2 =

1

2
B1t2 +

1

4
(B2 − B1)t2

1, (3.15)

−(2λ + 1)a2 =
1

2
B1k1, (3.16)

and

−2(3λ + 1)a3 + (10λ + 3)a2
2 =

1

2
B1k2 +

1

4
(B2 − B1)k2

1, (3.17)

where B1 and B2 are given by (2.3). From (3.14) and (3.16), we obtain

t1 = −k1. (3.18)

Also, from (3.15), (3.16), (3.17) and (3.18), we see that

a2
2 =

B3
1
(t2 + k2)

4[(4λ + 1)B2
1
+ (2λ + 1)2(B1 − B2)]

and

a3 =
B1[(10λ + 3)t2 + (2λ + 1)k2] + 2(3λ + 1)(B2 − B1)t2

1

8(3λ + 1)(4λ + 1)
.

These equations, together with (3.13), give the bounds on |a2| and |a3| as asserted in (3.12). This completes
the proof of Theorem 3.6.

By setting λ = 0 in Theorem 3.6, we obtain the following corollary.

Corollary 3.7. Let f ∈ S∗
Σ

(α, β). Then

|a2| ≤
|B1|
√
|B1|

√

∣

∣

∣B2
1
+ B1 − B2

∣

∣

∣

and |a3| ≤ |B1| + |B1 − B2| ,

where B1 and B2 are given by (2.3).
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[9] W. Koepf, On the Fekete-Szegő problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), 89–95.

[10] W. Koepf, Bieberbach’s conjecture, the de Branges and Weinstein functions and the Askey-Gasper inequality, Ramanujan J. 13 (2007),
103–129.

[11] K. Kuroki and S. Owa, Notes on new class for certain analytic functions, RIMS Kokyuroku 1772 (2011), 21–25.
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