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Abstract. The Hankel determinant for a function having power series was first defined by Pom-
merenke. The growth of Hankel determinant has been evaluated for different subcollections of
univalent functions. Many subclasses with bounded turning have several interesting geometric
properties. In this paper, some classes of functions with bounded turning which connect to the
sine functions, are studied in the region of the unit disc in order. Our purpose is to obtain some
upper bounds for the third and fourth Hankel determinants related to such classes.
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1. Introduction and Preliminaries

LetA be the class of all functions f(z) which are holomorphic in the region D = {z ∈ C : |z| < 1}
with the normalization f (0) = f ′(0)− 1 = 0. Therefore, for f(z) ∈ A, one has

f(z) = z +
∞∑
k=2

akz
k (z ∈ D) . (1)
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Let S ⊂ A represent all functions that are univalent in D. For a function f ∈ S of the form
(1) , Bieberbach conjectured in 1916 that |an| ≤ n, n = 2, 3, . . .. De Branges proved this
in 1985, see [7]. During this period, a lot of coefficients results were established for some
subfamilies of S. For example, the class S∗ of starlike functions, K of convex functions
and R of bounded turning functions:

S∗ =

{
f ∈ S :

zf ′(z)

f(z)
≺ 1 + z

1− z
, z ∈ D

}
, (2)

K =

{
f ∈ S :

(zf ′(z))′

f ′(z)
≺ 1 + z

1− z
, z ∈ D

}
,

R =

{
f ∈ S : f ′(z) ≺ 1 + z

1− z
, z ∈ D

}
,

where ” ≺ ” represents the subordination.
We write g1 ≺ g2, if there is an analytic function v in D, with limitations v (0) = 0

and |v(z)| < 1, such that g1(z) = g2 (v(z)) , z ∈ D. In case of univalency of g2 in D, the
following relation holds;

g1(z) ≺ g2(z), z ∈ D ⇐⇒ g1(0) = g2(0) and g1(D) ⊂ g2(D).

By varying the function right hand side of subordinations in (2), we can define some
subclasses of the set S which have several interesting geometric properties, see [9–12, 15–
17, 23, 28, 29, 35]. From among these subfamilies we recall here the families that are
associated with trigonometric function as follows;

Ksin =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ 1 + sin(z), z ∈ D

}
, (3)

S∗sin =

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 + sin(z), z ∈ D

}
, (4)

Rsin =
{
f ∈ A : f ′(z) ≺ 1 + sin(z), z ∈ D

}
. (5)

The set defined in (4) was established by Cho et.al [10] and studied the radii problems.
Here we investigated only the class (5) .

For given parameters q, n ∈ N = {1, 2, . . .}, the Hankel determinant Hq,n (f) was
defined by Pommerenke [32, 33] for a function f ∈ S having power series expansion (1) as
follows:

Hq,n (f) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ . (6)

The growth of Hq,n (f) has been evaluated for different subcollections of univalent func-
tions. Exceptionally, for each of the sets K, S∗ and R the sharp bound of the determinant
H2,2 (f) =

∣∣a2a4 − a23∣∣ were found by Janteng et al. [13, 14] while for the family of close-
to-convex functions the sharp estimation is still unknown (see, [38]). On the other hand,
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for the set of Bazilevič functions, the best estimate of |H2,2 (f)| was proved by Krishna
and RamReddy [21]. For more work on H2,2 (f) , see [5, 26, 27, 30, 31].
The determinant

H3,1 (f) =

∣∣∣∣∣∣
1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ (7)

is known as third order Hankel determinant and the estimation of this determinant
|H3,1 (f)| is a challenging task. In 2010, the first article on H3,1 (f) by Babalola [4], in
which he obtained the upper bound of |H3,1 (f)| for the groups of S∗, K and R. Later on, a
few creators distributed their work regarding |H3,1 (f)| for various subcollections of holo-
morphic and univalent functions, see [1, 2, 6, 8, 19, 22, 37, 39]. In 2017, the consequences
of Babalola [4] improved by Zaprawa [40], by proving

|H3,1 (f)| ≤


1, for f ∈ S∗,
49
540 , for f ∈ K,
41
60 , for f ∈ R.

and asserted that these inequalities are as yet not sharp. Additionally for the sharpness,
he thought about the subfamilies of S∗, C and R comprising of functions with m-fold
symmetry and acquired the sharp bounds. Recently in 2018, Kowalczyk et.al [20] and
Lecko et.al [25] evaluated the sharp inequalities

|H3,1 (f)| ≤ 4/135, and |H3,1 (f)| ≤ 1/9,

for the recognizable sets K and S∗ (1/2) respectively, where the symbol S∗ (1/2) indicates
the family of starlike functions of order 1/2. Additionally in 2018, the authors [24] got
an improved bound |H3,1 (f)| ≤ 8/9 for f ∈ S∗, yet not best possible. Now in this paper,
our main purpose is to study third and fourth order Hankel determinants family defined
in (5) .

2. A Set of Lemmas

Let P be the family of functions p that are holomorphic in D with Rep(z) > 0 and the
power series form as follow;

p(z) = 1 +
∞∑
n=1

cn z
n (z ∈ D) . (8)

Lemma 1. If p ∈ P be expressed in series expansion (8), then

|cn| ≤ 2 for n ≥ 1, (9)∣∣∣∣c2 − c21
2

∣∣∣∣ ≤ 2− |c1|
2

2
, (10)

|ci+j − µcicj | ≤ 2, for 0 ≤ µ ≤ 1. (11)
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and for complex number ρ, we have∣∣c2 − ρc21∣∣ ≤ 2 max {1, |2ρ− 1|} . (12)

where the inequalities (9) , (10) , (11) are taken from [34] and (12) is obtained in [18].

Lemma 2. If p(z) ∈ P be expressed in series expansion (8), then

2c2 = c21 + x
(
4− c21

)
for some x, |x| ≤ 1 and

4c3 = c31 + 2
(
4− c21

)
c1x−

(
4− c21

)
c1x

2 + 2
(
4− c21

) (
1− |x|2

)
z

for some z, |z| ≤ 1.

Lemma 3. ([3]) Let p ∈ P has power series (8), then∣∣Jc31 −Kc1c2 + Lc3
∣∣ ≤ 2 |J |+ 2 |K − 2J |+ 2 |J −K + L| (13)

Corollary 1. ([34]) Let p ∈ P has power series (8), then∣∣c31 − 2c1c2 + c3
∣∣ ≤ 2,

Lemma 4. ([36]) Let m,n, l and a satisfy the inequalities 0 < m < 1, 0 < r < 1, and

8r (1− r)
[
(mn− 2l)2 + (m (r +m)− n)2

]
+m (1−m) (n− 2rm)2 ≤ 4m2 (1−m)2 r (1− r) .

If p(z) ∈ P and has power series (8) then∣∣∣∣lc41 + rc22 + 2mc1c3 −
3

2
nc21c2 − c4

∣∣∣∣ ≤ 2.

3. Improved bound of |H3,1 (f)| for the Set Rsin

Theorem 1. If f(z) of the form (1) belongs to Rsin, then

|ak| ≤
1

k
, k = 2, 3, 4, 5. (14)

The results are sharp.

Proof. Since f(z) ∈ Rsin, form subordination definition there exists a Schwarz function
v(z) with v (0) = 0 and |v(z)| < 1, in such a way that

f ′(z) = 1 + sin (v(z)) , (z ∈ D) .

Since,
f ′(z) = 1 + 2a2z + 3a3z

2 + 4a4z
3 + 5a5z

4 + · · · . (15)



P. Petchkaew et al. / Eur. J. Pure Appl. Math, 14 (1) (2021), 53-64 57

Define a function

h(z) =
1 + v(z)

1− v(z)
= 1 + c1z + c2z

2 + · · · . (16)

Clearly, we have h(z) ∈ P and

v(z) =
h(z)− 1

h(z) + 1
=

c1z + c2z
2 + c3z

3 + · · ·
2 + c1z + c2z2 + c3z3 + · · ·

.

This gives

1 + sin (v(z)) = 1 +
1

2
c1z +

(
c2
2
− c21

4

)
z2 +

(
5c31
48
− c1c2

2
+
c3
2

)
z3

+

(
− 1

32
c41 +

5

16
c21c2 −

1

2
c3c1 −

1

4
c22 +

1

2
c4

)
z4 + · · · . (17)

By comparing (15) and (17), we may get

a2 =
c1
4
, (18)

a3 =
1

3

(
c2
2
− c21

4

)
, (19)

a4 =
1

4

(
5

48
c31 +

c3
2
− c1c2

2

)
, (20)

a5 =
1

5

(
c4
2

+
5

16
c21c2 −

c41
32
− c1c3

2
− c22

4

)
. (21)

Now implementing (9), in (18), we obtain

|a2| ≤
1

2
.

Now using (10), in (19), we get

|a3| ≤
1

6

(
2− |c1|

2

2

)
The maximum value of above function at c1 = 0.

|a3| ≤
1

3
.

Implementation of triangle inequality and Lemma 3, in (20), leads us to

|a4| ≤
1

4
.

By applying Lemma 4 in (21), it provides

|a5| ≤
1

5
.



P. Petchkaew et al. / Eur. J. Pure Appl. Math, 14 (1) (2021), 53-64 58

If for k = 2, 3, 4, 5, we take the functions fk(z) = z + · · · such that

f ′k(z) = 1 + sin(zk−1), (z ∈ D),

then f ′k(z) ≺ 1 + sin z and so fk ∈ Rsin and

fk(z) = z +
1

k
zk − 1

3!(3k − 2)
z3k−2 + · · · , (z ∈ D) (22)

which shows that the bounds are sharp.

Conjecture If f(z) of the form (1) belongs to Rsin, then

|an| ≤
1

n
, n ≥ 6. (23)

Theorem 2. If f(z) of the form (1) belongs to Rsin, then for any complex number ρ∣∣a3 − ρa22∣∣ ≤ 1

3
max

{
1,

3|ρ|
4

}
. (24)

The result is sharp.

Proof. Utilizing (18) and (19), we may get∣∣a3 − ρa22∣∣ =

∣∣∣∣c26 − c21
12
− ρ

16
c21

∣∣∣∣ .
This gives ∣∣a3 − ρa22∣∣ =

1

6

∣∣∣∣{c2 − (4 + 3ρ

8

)
c21

}∣∣∣∣ .
Application of (12), leads us to∣∣a3 − ρa22∣∣ ≤ 1

3
max

{
1,
|3ρ|
4

}
.

For the sharpness of (24) consider (22), with k = 2:

f2(z) = z +
1

2
z2 − 1

4!
z4 + · · · , (z ∈ D),

which gives equality in (24) when |ρ| ≥ 4/3, namely∣∣a3 − ρa22∣∣ = |ρa22| =
|ρ|
4
.

For the case |ρ| ≤ 4/3 consider

f3(z) = z +
1

3
z3 − 1

42
z7 + · · · , (z ∈ D),

which gives ∣∣a3 − ρa22∣∣ = |a3| =
1

3
=

1

3
max

{
1,

3|ρ|
4

}
.
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Corollary 2. If f ∈ Rsin and |ρ| ≤ 4/3, then∣∣a3 − ρa22∣∣ ≤ 1

3
. (25)

Theorem 3. If f of the form (1) belongs to Rsin, then

|a2a3 − a4| ≤
1

4
. (26)

The result is sharp.

Proof. From (18),(19) and (20), we have

|a2a3 − a4| =
∣∣∣∣− 3

64
c31 +

1

6
c2c1 −

1

8
c3

∣∣∣∣ =

∣∣∣∣ 3

64
c31 −

c1c2
6

+
c3
8

∣∣∣∣ .
Implementation of triangle inequality and Lemma 3, in (20), leads us to

|a2a3 − a4| ≤
1

4
.

The sharpness of (26) shows f4(z) = z + z4/4− z10/60 + · · · which was defined in (22).

Theorem 4. If f(z) of the form (1) belongs to Rsin, then∣∣a2a4 − a23∣∣ ≤ 1

9
. (27)

The result is sharp.

Proof. Now since from (18), (19), and (20), we have

∣∣a2a4 − a23∣∣ =

∣∣∣∣c1c332
− c21c2

288
− c41

2304
− c22

36

∣∣∣∣ .
Now in terms of Lemma 2, we obtain

∣∣a2a4 − a23∣∣ =

∣∣∣∣c1c332
− c21c2

288
− c41

2304
− c22

36

∣∣∣∣
=

∣∣∣∣∣∣− c41
768
−
c21x

2
(
4− c21

)
128

−
x2
(
4− c21

)2
144

+
c1
(
4− c21

) (
1− |x|2

)
z

64

∣∣∣∣∣∣ .
Let |z| = 1 , |x| = t, t ∈ [0, 1], |c1| = c ∈ [0, 2] . Then, using the triangle inequality, we get

∣∣a2a4 − a23∣∣ ≤ c4

768
+
t2c2

(
4− c2

)
128

+
t2
(
4− c2

)2
144

+

(
1− t2

)
c
(
4− c2

)
64

.
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Putting

H (c, t) =
c4

768
+
t2c2

(
4− c2

)
128

+
t2
(
4− c2

)2
144

+

(
1− t2

)
c
(
4− c2

)
64

,

then,
∂H (c, t)

∂t
=
t
(
c2 − 18c+ 32

) (
4− c2

)
576

> 0,

which shows that H (c, t) increases on [0, 1] with respect t. That is H (c, t) have maximum
value at t = 1, which is

maxH (c, t) = H (c, 1) =
c4

768
+
c2
(
4− c2

)
128

+

(
4− c2

)2
144

.

Setting

G (c) =
c4

768
+
c2
(
4− c2

)
128

+

(
4− c2

)2
144

,

then we have

G
′
(c) =

c3

192
+
c
(
4− c2

)
64

− c3

64
−
c
(
4− c2

)
36

.

If G
′
(c) = 0, then the root is c = 0. Further, since G

′′
(c) = − 7

144 < 0, so the function
G (c) can attain the maximum value at c = 0, which is∣∣a2a4 − a23∣∣ ≤ 1

9
.

The sharpness of (27) shows f3(z) = z + z3/3− z7/42 + · · · which was defined in (22).

Theorem 5. If f(z) = z + a2z
2 + a3z

3 + · · · belongs to Rsin, then

|H3,1 (f)| ≤ 359

2160
= 0.16620 . . . . (28)

Proof. Third order Hankel determinant form equation (7) one may written as;

H3,1 (f) = a3
(
a2a4 − a23

)
− a4 (a4 − a2a3) + a5

(
a3 − a22

)
.

where a1 = 1. This provides that

|H3,1 (f)| ≤ |a3|
∣∣a2a4 − a23∣∣+ |a4| |a4 − a2a3|+ |a5|

∣∣a3 − a22∣∣ .
By implementing (14), (25), (26) and (27 ), we obtain our desired result.
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4. Bound of |H4,1 (f)| for the Set Rsin

First we can write H4,1 (f) in the form

H4,1 (f) = a7H3,1 (f)− 2a4a6
(
a2a4 − a23

)
− 2a5a6 (a2a3 − a4)− a26

(
a3 − a22

)
+a25

(
a2a4 − a23

)
+ a25

(
a2a4 + 2a23

)
− a35 + a44 − 3a3a

2
4a5. (29)

Also ∣∣a2a4 + 2a23
∣∣ ≤ ∣∣a2a4 − a23∣∣+ 3 |a3|2 ,

using (14) and (27) , we get ∣∣a2a4 + 2a23
∣∣ ≤ 1

9
+

1

3

=
4

9
. (30)

Theorem 6. If f(z) = z + a2z
2 + a3z

3 + · · · belongs to Rsin, then

|H4,1 (f)| ≤ 0.10556.

Proof. Using triangle inequality in (29) , we obtain

|H4,1 (f)| ≤ |a7| |H3,1 (f)|+ 2 |a4| |a6|
∣∣a2a4 − a23∣∣+ 2 |a5| |a6| |a2a3 − a4|+ |a6|2

∣∣a3 − a22∣∣
+ |a5|2

∣∣a2a4 − a23∣∣+ |a5|2
∣∣a2a4 + 2a23

∣∣+ |a5|3 + |a4|4 + 3 |a3| |a4|2 |a5| .

By using(14), (23) , (25), (26) , (27 ) , (28) and (30) , we get the required result.
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