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Introduction

We consider a set of n first order simultaneous differential equations in
the dependent variables ylt y2, • • •, yn and the independent variable x

j

-fa. =fn(yi,ys.--.yn)-

No loss of generality results from taking the functions flt f2, • • - , /«
to be independent of a;, for if this were not so an additional dependent variable
yn+1, can be introduced which always equals x and thus satisfies the differen-
tial equation

da;
= 1.

When convenient we will write the set of equations (1) in one of the vector
forms

(2) S = /<(r)> {i=h 2' '"'n}>

or

(3) %-M

We will suppose that the values y = y0 are given at x = x0 and that it is
required to find an approximationy to the value oiy at the point x = xo+h.

A Runge-Kutta process is a solution to this problem defined by the equa-
tions
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(4) g(I) i
J=l

(5) y=yo + h2hg"1.
7=1

where glI) (I = 1, 2, • • •, v) is a set of n element vectors and the numbers
au> h are parameters which distinguish different processes of this type.
If the vectors g(1), gm, • • • ,g{1>) are to be evaluated one at a time in this
order then the parameters arJ must satisfy the conditions

(6) «/y = 0, (J^I).

However, since implicit processes are also possible we do not impose this
restriction.

The simplest examples of Runge-Kutta processes are, for v = 2, that due
to Runge [1] and for v = 3, that due to Kutta [2]. The non-vanishing au, bj
are, for the Runge process

and for the Kutta process

h =h= 6' h = I-
The values of these quantities are chosen so that the power series expansion
for y defined by (4) and (5) should be identical with that for y up to the
terms in h% (in the Runge case) or h3 (in the Kutta case). Other processes of
higher order are due to Kutta [2], Nystrom [3] and Gill [4].

It is the purpose of the present paper to derive expressions for the various
terms of the expansions for y and y and to present tables of certain coeffi-
cients which allow these terms to be written down immediately.

Thus the scope of the paper is similar to that of Merson [5] who used an
operational method to study these expansions. Certain vectors occurring in
the expansion, which are called "elementary differentials" in the present
paper were shown to bear a (1 — 1) correspondence to the rooted trees of
topology and a calculus was developed for manipulating them and thus
deriving the terms of the expansions in given cases.

The Taylor expansion for y

It is convenient to define from the functions f(y) occurring in (3), a set of
•A element vectors which we will call elementary differentials of given order
and degree. The order is an integer greater than zero while the degree is an
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integer less than the order and greater than zero. If the order is unity the
degree is not defined.

/ = f(y) is the only elementary differential of order 1.
F is an elementary differential of order r and degree s

if

i1=i i,=i v i &yhtyjt•••%/!,

where Fti is element number / of an elementary differential Ft of order
rt(i = 1, 2, • • •, s) such that

r = 1 + rx + r2 -{ \-r,.

For simplicity the elementary differential (7) will be written as

(8) F = {FtF2 • • • F,}.

In general Fx, F2- • • F, need not be distinct. Let us suppose for example
that Flt Fit • • • Fv are distinct but each of Fa+1, • • • P, is identical to one
of them so that in all Ft{i= 1, 2, • • • a) occurs /i{ times amongst F1,Fi,
•' • F,. In this case we have

r=l+ MTX + fi2r2 -\ h nvrv,

and we write F in (8) as

(9) P =

A further convenient abbreviation of the notation is possible for an elemen-
tary differential of degree 1. For example {F} where F is given by (9) will
be written as

and generally {a-iF}a-i will be written as

• • F>'}a,

for any positive integer a.
If Flt Fa, • • • Fs in (7) are linear combinations of elementary differentials

then F will also be a linear combination of elementary differentials. However,
the notations (8) and (9) will still be used in these cases and it is easy to see
for example that

{a(bF> + cF'^)Fi • • • F,}a = b{aF[F* • • • F.}a

+ c{X'F2---F,}a

for constants b and c.
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It is convenient to adopt one final convention. The symbol {1} will be
identified with /.

The importance of the elementary differentials results from the following
theorems.

THEOREM 1. The differential coefficient (with respect to x) of any elementary
differential of order r is a linear combination with non-negative integral
coefficients of the elementary differentials of order r + 1.

The proof is by induction. For r = 1, /is the only elementary differential
and

an elementary differential of order 2 (in fact the only one of this order).
If the operator D replaces an elementary differential on which it operates
by its derivative we have for the derivative of the elementary differential (7)

DF = {fF,F2 • • • F,} + {(DFJF, • • • P.] + {P^P,) • • • F,}
K ' + {/yv

each term of which, by the induction hypothesis, is of the correct form.
The following corollaries are easily proved by induction.

COROLLARY 1. The sum of the coefficients of the elementary differentials in
DF is r.

COROLLARY 2. D ' F is a linear combination with non negative integral
coefficients of the elementary differentials of order r + t and the sum of the
coefficients is (r + t — l)!/(r — 1)!

For the case of D'/ we see that each term is of order t -f 1 and that the
sum of the coefficients is t\ For this case we prove the stronger theorem.

THEOREM 2. When D ' / is written as a linear combination of the elementary
differentials of order t + 1 none of the coefficients vanishes.

For t = 1 we have

and this is clearly the only elementary differential of order 2. Let us assume
the result for t < r — 1 and consider the elementary differential (8).
Two cases arise

(i) F = { / - ! } ,
(ii) one at least of Flt F3- • • F, is not /. Suppose for example Fj is of

order rx where 1 < rx < r.
In case (i) F occurs in D{/r-2} and by hypothesis {/r-2} occurs in Dr~2/.
In case (ii) F occurs in DF' where
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F' = {(Di-i/J/J.P, ...p.}

and F' occurs in Dr~2/.
By repeated application of (10) we can write down the terms of D 'F

or in particular of D'/ . We find for example

D/ = {/},

D 2 / = { 2 / } 2 + {/2},
D3/ = {Jh + 3{/{/}} + {2/

2}2 + {/»}.

The Taylor expansion for y we find by evaluating these expressions at
y = y0. If evaluation at this point is understood for all elementary differen-
tials occurring in such a context as this we may write

where F ( l ) (= /), F(2), F<3), • • • are the complete set of elementary differen-
tials with orders r(1) ( = 1), r{2), r{3), • • • in non decreasing order and a(i) the
coefficient with which F( i ) occurs in D1"1"-1/.

The first few terms of (11) are easily found

For elementary differentials of high order the use of (10) to find the coeffi-
cients x(i) becomes increasingly tedious. However, a simpler method is to
use the following theorem.

THEOREM 3. 1/ (h3/rl) a. is the coefficient of F, defined by (9) in the expansion
(11) and Flt F2 , • • • Fa are all distinct then

where (hr'/ri\) a4(t = 1, 2, • • • <r) is the coefficient of Ft in (11).
To prove this result we substitute the expansion (11) into (3) and compare

terms.
The coefficient of F on the left hand side is

(13) - ^ _
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while the right hand side is given by the Taylor expansion

oo n n

where

Thus the right hand side may be written as

(U) JI
•—1 S !

or, adopting the conventions stated, as

{•+!£!=«'>•
We see that in (14) F occurs only in l/s\{t]'} where s is the degree of F.
Furthermore, the only terms of this that contribute come from

and the coefficient of F = {Ff'Fg1- • • F*"} in this is

where I I is the multinomial coefficient

Comparing (13) with (15) we obtain the result (12).
If (12) is used to compute the coefficients a, for the elementary differen-

tials of order r we may use as an independent check the fact that the sum
of the coefficients is (r — 1)! (THEOREM 1, COROLLARY 1.)

In table 1 the elementary differentials of orders up to 8 are tabulated in
the second column against order in the first column. The corresponding
values of « are in the third column.
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TABLE 1

191

r

1

2

3
3

4
4
4
4

5
5
5
5
5
5
5
S
5

6
6
6
6
6
6
6
6
6
6
6

6
6
6
6
6
6
6
6
6

7
7
7
7
7
7
7

/

{/}

UO,

v>.
(•*•}•
{{/}/}
{/•}

{./}.
{.f>»
{.{'}/},
{.f>.
{{.0,/}
{{/•}/}
{{/}•>

{''}

{,{,/}«/).

MO*},
{.{0/'},
{,/4},
{{,0.0
{{«^}./>
{{{000
{{/•}/}
{{•!>.{/}}
{{/•HO)
U.O,/2}

imn
«o*o{{/}/"}

{.'}.
{./*}.

uoo«
{.'*>4
{.{,0.0,
{,{>'}0,
U02},

a

1

1

1
1

1
1
3
1

1
1
3
1
4
4
3
6
1

1
1
3
1
4
4
3
6
1
5
5

15
5

10
10
10
10
15
10

1

1
1
3
1
4
4
3

f

1

1

2
1

6
3
6
1

24
12
24

4
24
12
12
12

1

120
60

120
20

120
60
60
60

5
120

60
120

20
120

60
60
30
60
20

1

720
360
720
120
720
360
360

V

1

2

6
3

24
12

S
4

120
60
40
20
30
15
20
10

5

720
360
240
120
180
90

120
60
30

144
72
48
24
72
36
36
18
24
12
6

5040
2520
1680

840
1260
630
840

r

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

8
8
8
8
8
8
8
8

F

{Af}f},

{.{,0,/},

{2{^}0.
{,{./}•{/}}.
{,{/=></}}.
{,{./},*•},
{.W}.
{,{/Mt
MW,
tf1}.
{{«'}.'}
{V>i0
{{.{00,0
{{^JiO
{{{.0,/)0
{{{/*}/}'}
{{WlK>
{{WK>
{{'4W
{{,(],{')}
{{,/•}•{/}}
{{{'KM)
{{/»}{/}}
{{,/},''}

{{{W>
{{/»}/«}

{{.'wn

am{{if),{t)n
{{pwv)
{MS)

{{/}«!•}

{/•}

{TIT
UP),
{.{'}'}.
{./*}.
{.{,'},'}*
{.{^K)4
{,{«'),
{!{0'2}4

a

6
1
5
5

15
5

10
10
10
10
15
10

1
6
6

18
6

24
24
18
36

6
15
15
45
15
15
15
45
15
10
20
10
60
60
20
20
15
45
15

1

1
1
3
1
4
4
3
6

P

360
30

720
360
720
120
720
360
360
180
360
120

6
720
360
720
120
720
360
360
360

30
720
360
720
120
300
180
360

60
360
360

90
720
360
120
60

120
180
30

1

5040
2520
5040

840
5040
2520
2520
2520

V

420
210

1008
504
336
168
504
252
252
126
168

84
42

840
420
280
140
210
105
140

70
35

336
168
112

56
168

84
56
28

252
126
63
84
42
42
21
56
28
14

7

40320
20160
13440
6720

10080
5040
6720
3360
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TABLE 1 (continued)

[8]

r

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

F

W>.
{3{3/}3/}3

{AzP}if)a
{A{f)f)f},

{,{,/},/•},
{Af*)Ph
{3{/}2/}3

{3{/}/5}3

{3/*}a
{2{4/}4/},

«„/"}:,/}»

{2{2/3},/}2

UfA'Wi
{A{P}f}fU
{Aim/}.
{A{f}P}f)t

{2{3/}s{/}},

{l{«f*}«{f}}l
{s{{z}/}{/}},

{,{'*}{'}},
{2{3/}3/!}s

{2{2/2}2/2}2

{aHZJZ}/2^

U{P}P],
{s{sZ}i!}s

{jJZ2}2},

{,{/«}{/}/},
{2{2/}2/>}t

{sfz^z*},
{,{/}•}.
{Af)'P},
{,{f)fl).
{2/6}2

{{»Z}S/}

{{a/»}3/}

{{2{,/},Z},Z}
{{2{/«}/}2/}

{{«{/}*}«/}
{{,{Z}/"},/}
{{,{*}/}
{{{,/}./}/}

a

1
5
5

15
5

10
10
10
10
15
10

1
6
6

18
6

24
24
18
36

6
15
15
45
15
15
15
45
15
10
20
10
60
60
20
20
15
45
15

1
7
7

21
7

28
28
21
42

7
35

P

210
5040
2520
5040

840
5040
2520
2520
1260
2520

840
42

5040
2520
5040

840
5040
2520
2520
2520

210
5040
2520
5040

840
2520
1260
2520

420
2520
2520
630

5040
2520
840
420
840

1260
210

7
5040
2520
5040
840

5040
2520
2520
2520
210

5040

y

1680
8064
4032
2688
1344
4032
2016
2016
1008
1344

672
336

6720
3360
2240
1120
1680

840
1120
560
280

2688
1344

896
448

1344
672
448
224

2016
1008
504
672
336
336
168
448
224
112
56

5760
2880
1920

960
1440

720
960
480
240

1152

r

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

F

UWMW
m\mm
{{{2/}2{/}}/}
{{{/2}{/}j/}

{{{tf},p}t}
{{{Z8}/2}/}

{{{/}/>}/}
{{/*}/}

{{./Mm
{{3/3}3{/}}
{{2{/}/}2{/}}

{{{2/}2/}{/}}

{{{/}*}{/}}

{{/'}{/}}
{{,/},/"}

{{2{/}/}2/2}
{{2f>}2/3}
{{{2/}2/}/2}

{{{P}f]P}
{{{Z}2}/2}
{{{Z}/2}/2}
{{Z4}/2}
{{3/}3{2f}2}
{{j/jjf/2}}

1 t s ^ J 212* 18 /

{{{/}/} UU)
{{{/}/}{/*}}
{{/3}{2/}2}
{{f>}{f*}}

{{3/},{/}/}

{{s^ijf/}/}
{{{/}/}{/}/}
{{PH'}/}
{{3/jjZ3}
{{jZ2}*/8}
{{{/JZJZ3}

{{Z3}^}
{{2/}8

2/}

{{j/M/ijf}
{{/•}*/}

{{|Z}«{Z}'}
{{Z*}{/}8}

a

35
105

35
70
70
70
70

105
70

7
21
21
63
21
84
84
63

126
21
21
21
63
21
84
84
63

126
21
35
35
35
35

105
105
35
35

105
105
315
105
35
35

105
35
70

140
70

105
105
210

P

2520
5040

840
5040
2520
2520
1260
2520

840
42

5040
2520
5040

840
5040
2520
2520
2520

210
2520
1260
2520

420
2520
1260
1260
1260

105
5040
2520
2520
1260
5040
2520

840
420

5040
2520
5040

840
840
420
840
140

2520
2520

630
2520
1260
2520

7

576
384
192
576
288
288
144
192

96
48

1920
960
640
320
480
240
320
160

80
960
480
320
160
240
120
160

80
40

1152
576
576
288
384
192

192
96

384
192
128
64

192
96
64
32

288
144
72

192
96
96

https://doi.org/10.1017/S1446788700027932 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027932


[9] Coefficients for the study of Runge-Kutta integration processes 193

TABLE 1 (continued)

r

8
8
8
8
8
8
8

P

{{/*}{/}/=}

iuyi)

{wn
«rm
{{1)1*}

in

a

210
35
35

105
105
21

1

P

1260
210
105
840
420

42
1

y

48
48
24
64
32
16
8

The Taylor expansion for y

The derivative of y with respect to x will depend on the numbers bx, aTJ

(/, / = 1, 2, • • • v). It is convenient to define certain vector functions of
these numbers and of f(y) which bear a (1 — 1) correspondence to the
elementary differentials.

We define

1=1

where giZ) is defined by (4) as the only weighted differential of order 1
(the degree is undefined) and generally

is the weighted differential corresponding to (and having the same order
and degree as) F in equation (8) if Ot corresponds to Ft{i = 1, 2, • • •, a).

We also write

(18) G=<a?>Gff>--.O£->

as the weighted differential corresponding to (9). The right hand side of
(17) is to be defined as follows:

Suppose G( has components (Ga, G<2, • • • Gin) where

7-1

then

<o1oi---a,y = 2 £ £ . • •
1-1 !̂=1 ,̂=1

( » ) • •

where the partial derivative of gw in the right hand side indicates a differ-
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entiation of f(y) with respect to the elements of y followed by the substitu-
tion

It is also convenient to define a set of functions of aTJ, bt alone which we will
call elementary weights. These also have a (1 — 1) correspondence to the
elementary differentials. The order and degree of an elementary weight are
defined as identical with the corresponding elementary differential. Each
elementary weight is a homogeneous function of degree 1 in bx and of degree
r — 1 in au where r is its order.

The elementary weight corresponding to / is

and the elementary weight corresponding to {Fx F3- • • F,} is

(20) 0 = [0X0Z • • • 0,],

where Olt 02, • • • 0, correspond to Flt F2-• • F,. As before we write

(21) 0 = [0^0^ • • • 0?°]

corresponding to (9) and we define the right hand side of (20) by the
equation

(22) [*!#,•••*,] =£ £ i i
i=i jl=i

where

and 0f is independent of bt, b2, • • •, bv.
At h = 0 the partial derivative in (19) becomes identical with that in (7)

so an inductive proof to the following theorem is trivial.

THEOREM 4. When h = 0 and O, F and 0 correspond

It will be shown that the derivatives of y depend only on the weighted differ-
entials so that the Taylor expansion for y will depend only on the elementary
differentials the coefficients, however, not being constants as in the expan-
sion for y but instead products of numerical constants and the correponding
elementary weights.

Let us for example consider the first derivative of y.
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(23) £ *"» - 2 ̂  ( 2 a«g^ + h 2 «„ 1
ax ,=i 8yt \j_i ,/_i ax

so that

(24) Lg=<*>+A<2^>2+A2<3^>3+" ••
We note that in this example the derivative of a weighted differential of
order r contains terms in the weighted differentials of order greater than
r+1.

This will be found to be generally true and in fact a straightforward
differentiation of (17) gives

DO = <gaxat • • • G,> + hiigya^ • • • a.y

(25) + • • • + <(DO1)Oi!O3 • • • a.y + <G1(DG2)G3 • • • G,> + • • •

+ <G1G2G3---(DG.)>.

We now state the analogue of THEOREM 1.

THEOREM 5. The differential coefficient with respect to x of any weighted
differential of order r is a power series in h, the coefficient of h' being a linear
combination with non-negative integral coefficients of the weighted differentials
of order r -f- t + 1-

The proof is almost identical to that for Theorem 1 except that (25)
plays the role played there by (10).

COROLLARY 1. The sum of the coefficients of weighted differentials of order
r + t -\- 1 occurring in DG is rh'.

COROLLARY 2. D" G is a power series in h the coefficient of h* being a linear
combination with non-negative integral coefficients of weighted differentials
of order r + t + u.

The question of the sum of the coefficients of a given order we defer to a
later time.

As DG contains terms corresponding to those in the expansion of DF
(and some extra ones as well) we can easily prove the analogue to Theorem 2.

THEOREM 6. When Dug is written as a power series in h so that the leading
term is a linear combination with non-negative integral coefficients of the
weighted differentials of order 1 + u, none of the coefficients vanishes.

It is of course this theorem which makes Runge-Kutta processes possible.
Similar to the Taylor expansion (11) we have

hr«>

(26) y = ya+y
- 1)!
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where F(1), F(2), • • •, ra\ r{2\ • • • are as previously defined, 0(1), 0(2), • • • are
the corresponding elementary weights and /S'" is the coefficient with which
G"1 corresponding to F(1) occurs in TfM g for i — 1, 2, • • •.

Repeated application of (25) enables us to find the first few coefficients in
(26), For example we find

y = y0

+
so that the specification for a fourth order Runge-Kutta process would be

or in expanded form for v — 4 and with the restriction (6)

where
C2 ~ a21> C3 = = a31 H" a32> C4 ~ ail "H a42 4" a43-

In general if the Runge-Kutta process is to be accurate up to terms in h' (11)
and (26) must agree to this accuracy so that

1 a"» 1
v ' r<<> s i i } y { i ) '

say, for all i such that rl<) ^ r.
The use of (25) to find the values of j3(<) is even more tedious than is the

use of (10) to find «"'. However, we have corresponding to Theorem 3 the
following result.

THEOREM 7. / / (hr/(r— 1)!) p& is the coefficient of F defined by (9) in the
expansion (26) where <P is the corresponding elementary weight and F1,F2, • • •
Fa are all distinct then

(28) (S = (r — 1) ! f l —

where (h"/(r(—1)1) pi<t>i (i= 1, 2, • • -, a) is the coefficient of F< in (26) and
0t corresponds to F(.
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To prove this result we confine ourselves to the special case v = 1,
6t = Oj! = 1. This restriction is unimportant as the terms in (25) do not
depend on these parameters. (5) now becomes

y = y0 + hf(y).

Substitute (26) into this equation with <£(<) now set equal to unity and we
obtain a coefficient for F on the left hand side

Bhr

(29)
( r - 1 ) !

while the right hand side can be formally written as

(30) {«'},

where
hri"

n = 2 T

Thus the terms in (30) are identical to those in (14) except that a, is to be
replaced by ;•</?,• and an extra factor h is present. Thus the coefficient of F
in (30) is

and a comparison of this with (29) gives the result (28).
The fourth column in Table 1 gives the corresponding values of (i to the

elementary differentials in the second column. As with the values of a,
the sum of all values of /? for a given order has a simple expression. Let this
sum for order r be BT and consider the function of f say

A comparison of (29) and (30) gives us that

The solution to this equation corresponding to B = 0 at f = 0 is [6],
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The values of y defined in (27) are useful and these can be found from the
relation

However, by comparing (28) with (12) we find an inductive means of com-
puting this quantity independently. We find

(31) V = rf[y!>

where yt corresponds to oCf, p(.

A process of order 5

As an example of the preceding theory we shall derive the parameters
for a 3 stage process of 5th order accuracy.

We define

(32) cg = a a + «22 + a23>

and suppose that blt b2, bz, cx, c2, c3 are chosen so that

(33) <f> = bx + b% + b3 = 1,

(34) \tfi\ = btct -\- &2c2 + b3c3 = \ ,

(35) [*i] ^ blCf + btc\ + b34 = i ,
(36) m^hcl + b^ + b^^i,
(37) [<?} = blC\ + b2ci + b3c* = i .

It is clear that none of blt b2, b3 can vanish and that clt c2, c3 are distinct.
The equations [2^]2 = ^ , [[</>]$] = -3 , [0]^2] = x r w n e n combined with

equations (35), (36), (37) respectively give

( 2
\2-l

Hence, since the matrix

- ic\j = 0,

a3Ic, - i<*) = 0.
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ft, ba '

62c2 bac3

199

has non vanishing determinant b^b^c^ — c2)(c2 — ca)(c3 — cx) we have

<hiCi + «i2Ci! + <haca = 14 •
(38) a^ + anc2 + a^ca = \c\,

<*3l<a + a32C2 + ^ S = \<\-

Similarly, the equations [j^*]a = xs> [[^2]^] = xs

(39)

3C3»

and it is convenient to assume these conditions which, together with (32)
and (38), may be used to find au{I, J = 1, 2, 3) once the values of cx, ca, cs

are chosen.
The equation [8^]3 = ^ is 2 i , j ,K_i6 / a / J a j X c x = ^ and the left-hand

side is

so that all elementary weights of order less than 5 have now been seen to
have the correct value.

It is now easy to verify that [[2<f>]2</>] = ^ and [[^]a] = ^ . We have

3

/.J.K-l \ 2
Z.J-1

3
j = \ 2 bi4 = ^

11-1

= 2 6/ ( 2 -w^V = i 2 »/4 = 5̂-
/-i \/=i / /=i

and

It now remains to prove 0 = 1 / 7 when 0 is of order 5 and degree 1.
However, first we will prove that, assuming b1,bi,bz,an,ai3,---, aa3 to be
chosen to satisfy equations (32)—(39), then

(40) 63O32 = 62(1 - c2),

bsaaa = b3{l — c3).

This will be true if
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-63 ( l—c 3 ) ) = 0

for three independent vectors (u, v, w). This is easily verified for the three
vectors (1, 1, 1), (c1( cg, c3), {c\, c\, c\) so the result follows.

Now consider an elementary weight of degree 1 and order 5,

0 = [0']
where

0' = [0X02 • • • 0,]
is of degree s and order 4.

We have 0X = \jyv 02 = l/y2, • • • , $ , = 1/y,, <P' = 1/y' where y' =
4y!y2 • • • y, (from (31)) and we wish to prove 0 = 1/y where y = 5y'.

Let us now define 0" = [<£#i<£2 • • • &,], of order 5 and degree greater than
1, so that 0" = 1/y" where y" = 5yxy2 • • • y, = Jy. Using (22), (40) we find

0 = 0' - 0"

_ 1 1 _ 1

the correct value.
It now remains to choose a convenient solution to (33)—(37) and to find

the values of a^, a^, • • • aS3 from (32), (38), (39). For simplicity we suppose
q = 0 so that d^ = #12 = a13 = 0.

We now find

6 - V6 6 + V6 . 1 16 + ^ 6

3 ~

w ' C3 = ^ 0 t l = i > &2 36 '

16 - V6 _ 9 + \/6 24 + V6 _ 168 -73-y/6
3l ' *21 = 75 ' ' M = ~120 a 2 3 ~ 600̂  '

9 — V« 168 + 73V6 24 - V«

Thus we have for a possible process in which g(1) is defined explicitly and
g{2)> gm implicitly,

(( /9 4 ^ 6 24 + A/6 168
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It is remarkable that the choice of 12 independent parameters au, o^, • • •,
fl33.i1.62. b3 has enabled us to satisfy no less than 17 separate equations.
It happens that this situation is capable of extensive generalization and,
for example, keeping this same value v = 3 it is possible to satisfy the 37
conditions necessary for a sixth order process. Similarly for any value of v
a process of order up to 2v is possible. It is intended that details of such
processes will be discussed in a later publication.
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