COEFFICIENTS OF MEROMORPHIC SCHLICHT FUNCTIONS

PETER L. DUREN¹

ABSTRACT. This paper presents an elementary proof of a known theorem on the coefficients of meromorphic schlicht functions: if $f \in \Sigma$ and $b_k = 0$ for $1 \le k < n/2$, then $|b_n| \le 2/(n+1)$.

Let Σ denote the class of functions

$$f(z) = z + b_0 + b_1 z^{-1} + b_2 z^{-2} + \cdots$$

analytic and schlicht in |z| > 1 except for a simple pole at ∞ with residue 1. Let Σ_0 be the subclass of Σ for which $b_0 = 0$. It follows from the area theorem that $|b_1| \leq 1$, and Schiffer [7] obtained the sharp estimate $|b_2| \leq 2/3$. The form of the extremal functions suggested that $|b_n| \leq 2/(n+1)$ for all *n*. This has proved to be quite false, but it is true for certain subclasses of Σ . For example, the following theorem goes back to Goluzin [3].

THEOREM. Let $f \in \Sigma$ and suppose $b_1 = b_2 = \cdots = b_{m-1} = 0$ for some $m \ge 1$. Then $|b_n| \le 2/(n+1)$, $n = m, m+1, \cdots, 2m$.

The inequality $|b_2| \leq 2/3$ is a special case of this theorem. Jenkins [5] proved the theorem by the method of quadratic differentials. I claimed [1] to give an elementary proof based on the Grunsky inequalities. However, Professor Jenkins has pointed out to me that my proof contains an error, since the square-root transformation $\sqrt{(f(z^2))}$ will introduce a branch point wherever $f(z^2) = 0$. Furthermore, Goluzin made essentially the same mistake (see the footnote in [4, p. 279]).

The purpose of this paper is to correct the error in [1] and thus to deduce the theorem in an elementary way from the Grunsky inequalities. The main idea was suggested by Pommerenke's recent proof [6] that $|b_2| \leq 2/3$.

The *n*th Faber polynomial $F_n(w)$ of a function $f \in \Sigma$ is defined by

$$F_n[f(z)] = z^n + \sum_{k=1}^{\infty} \beta_{nk} z^{-k}.$$

Received by the editors March 16, 1970.

¹ Research supported in part by National Science Foundation Grant GP-19148.

Copyright © 1971, American Mathematical Society

AMS 1970 subject classifications. Primary 30A34.

Key words and phrases. Coefficient estimates, schlicht functions, Faber polynomials, Grunsky inequalities.

The inequality

(1) $|\beta_{nn}| \leq 1, \quad n = 1, 2, \cdots,$

is a very special case of the Grunsky inequalities.

To prove the theorem, it is enough to show $|b_{2m-1}| \leq 1/m$ and $|b_{2m}| \leq 2/(2m+1)$. For the first of these inequalities, assume without loss of generality that $f \in \Sigma_0$ and observe (as in [1]) that

$$[f(z)]^{m} = F_{m}[f(z)] = z^{m} + \sum_{j=1}^{\infty} \beta_{mj} z^{-j},$$

with $\beta_{mm} = mb_{2m-1}$. Hence $|b_{2m-1}| \leq 1/m$, by (1).

To obtain the estimate for $|b_{2m}|$, assume b_0 is chosen so that $f(z) \neq 0$ in |z| > 1, and let

$$g(z) = \sqrt{(f(z^2))} = z \{ 1 + b_0 z^{-2} + b_m z^{-2m-2} + b_{m+1} z^{-2m-4} + \cdots \}^{1/2}.$$

Let $F_n^*(w)$ be the *n*th Faber polynomial of g, so that

$$F_n^*[g(z)] = z^n + \sum_{j=1}^{\infty} \beta_{nj}^* z^{-j}.$$

The proof depends on the following lemma.

LEMMA. For each fixed m, there exist real numbers r_k such that

$$\beta_{2k+1,2m+1}^* = ((2k+1)/2)b_{m+k} + r_k b_0^{m+k+1}, \qquad k = 0, 1, \cdots, m.$$

PROOF. The lemma will be proved by induction on k. For k = 0, it is clear that $F_1[g(z)] = g(z)$, and one computes

$$\beta_{1,2m+1}^* = \frac{1}{2}b_m + \binom{\frac{1}{2}}{m+1}b_0^{m+1}$$

where $\binom{x}{n} = x(x-1) \cdots (x-n+1)/n!$ is a binomial coefficient. Assuming now that the lemma has been proved for 0, 1, \cdots , k-1, consider

$$[g(z)]^{2k+1} = z^{2k+1} \{1 + b_0 z^{-2} + b_m z^{-2m-2} + \cdots \}^{k+1/2}$$

= $z^{2k+1} \sum_{j=0}^{\infty} {\binom{k+\frac{1}{2}}{j}} (1 + b_0 z^{-2})^{k-j+1/2} (b_m z^{-2m-2} + \cdots)^j$
= $(1 + b_0 z^{-2})^{k+1/2} z^{2k+1} + (k + \frac{1}{2}) (1 + b_0 z^{-2})^{k-1/2}$
 $\cdot (b_m + b_{m+1} z^{-2} + \cdots) z^{2(k-m)-1} + O(z^{-2m-2})$
= $z^{2k+1} + \sum_{j=1}^k {\binom{k+\frac{1}{2}}{j}} b_0^j z^{2(k-j)+1} + \sum_{j=1}^{\infty} \gamma_{kj} z^{-j}$,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

say. A calculation gives

(2)
$$\gamma_{k,2m+1} = {\binom{k+\frac{1}{2}}{k+m+1}} b_0^{k+m+1} + (k+\frac{1}{2}) \sum_{n=0}^k {\binom{k-\frac{1}{2}}{n}} b_0^n b_{m+k-n}.$$

From the form of $[g(z)]^{2k+1}$, it is clear that

$$F_{2k+1}^{*}[g(z)] = [g(z)]^{2k+1} - \sum_{j=0}^{k-1} \binom{k+\frac{1}{2}}{k-j} b_{0}^{k-j} F_{2j+1}^{*}[g(z)].$$

Thus by (2) and our inductive hypothesis, we have

$$\beta_{2k+1,2m+1}^{*} = \gamma_{k,2m+1} - \sum_{j=0}^{k-1} {\binom{k+\frac{1}{2}}{k-j}} b_0^{k-j} [(j+\frac{1}{2})b_{m+j} + r_j b_0^{m+j+1}]$$
$$= (k+\frac{1}{2})b_{m+k} + r_k b_0^{m+k+1},$$

since

$$(k+\frac{1}{2})\binom{k-\frac{1}{2}}{k-j} = (j+\frac{1}{2})\binom{k+\frac{1}{2}}{k-j}, \quad j=0, 1, \cdots, k-1.$$

This proves the lemma.

In view of (1), the lemma gives the inequality

(3)
$$|((2m+1)/2)b_{2m} + r_m b_0^{2m+1}| \leq 1$$

for the case in which $f(z) \neq 0$ in |z| > 1. Now let

$$f(z) = z + b_m z^{-m} + b_{m+1} z^{-m-1} + \cdots \in \Sigma_0,$$

and let *E* be the complement of the range of *f*. If $0 \in E$, then (3) gives at once the inequality $|b_{2m}| \leq 2/(2m+1)$. The proof is complete also if $r_m = 0$.

Suppose next that $0 \notin E$ and $r_m \neq 0$. Assume without loss of generality that $b_{2m} > 0$. If $\alpha \in E$, then $[f(z) - \alpha]$ has no zeros in |z| > 1, so by (3),

$$b_{2m} \leq (2/(2m+1))[1+r_m \operatorname{Re}\{\alpha^{2m+1}\}], \quad \alpha \in E.$$

The proof will be complete, then, if we show that $\alpha \in E$ can be chosen so that

(4)
$$r_m \operatorname{Re}\left\{\alpha^{2m+1}\right\} \leq 0.$$

But if this expression is positive for all $\alpha \in E$, then since E is connected and $0 \notin E$, it follows that E lies entirely in an open sector with vertex 0 and angle $\pi/(2m+1)$. On the other hand, 0 is in the convex hull of E,

1971]

since $\int_{0}^{2\pi} f(re^{i\theta}) d\theta = 0$, r > 1. This contradiction shows that $\alpha \in E$ can be chosen to satisfy (4), proving that $b_{2m} \leq 2/(2m+1)$.

Garabedian and Schiffer [2] found that Re $\{b_{a}\}$ is maximized by a function $f \in \Sigma$ with

$$f(z) = z + 4ie^{-3}z^{-1} + (\frac{1}{2} + e^{-6})z^{-3} + \cdots$$

However, the above theorem shows that $|b_3| \leq \frac{1}{2}$ if $b_1 = 0$. This can be generalized as follows.

THEOREM. If $f \in \Sigma$ and $|\arg \{b_3\} - \arg \{b_1^2\}| \leq \pi/2$, then $|b_3| \leq \frac{1}{2}$.

PROOF. Assume that $b_0 = 0$ and, after a suitable rotation, that $b_3 > 0$ and Re $\{b_1^2\} \ge 0$. Observe that

$$\left[f(z)\right]^{2} = z^{2} + 2b_{1} + 2b_{2}z^{-1} + (2b_{3} + b_{1}^{2})z^{-2} + \cdots$$

Hence by (1), $\operatorname{Re}\left\{2b_3+b_1^2\right\} \leq 1$, which shows $b_3 \leq \frac{1}{2}$.

Similar generalizations can be made to higher coefficients.

References

1. P. L. Duren, Coefficient estimates for univalent functions, Proc. Amer. Math. Soc. 13 (1962), 168-169. MR 28 #1286.

2. P. R. Garabedian and M. Schiffer, A coefficient inequality for schlicht functions, Ann. of Math. (2) 61 (1955), 116-136. MR 16, 579.

3. G. M. Goluzin, Some estimates of the coefficients of schlicht functions, Mat. Sb. 3 (1938), 321-330. (Russian)

4. —, On p-valent functions, Mat. Sb. 8(50) (1940), 277-284. (Russian) MR 2, 185.

5. J. A. Jenkins, On certain coefficients of univalent functions. II, Trans. Amer. Math. Soc. 96 (1960), 534-545. MR 23 #A309.

6. Ch. Pommerenke, Unpublished Lecture Notes, March 1969.

7. M. Schiffer, Sur un problème d'extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938), 48–55.

UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104