Coercive Singular Perturbations

I. - A priori Estimates (*),

Leonip 8. FRANK (Nijmegen, The Netherlands)

Summary. — We consider general boundary value problems with small parameter & in the oper-
ator and boundary conditions. Both the perturbed and reduced operators are supposed to be
elliptic. We point out necessary and sufficient condifions of Shapiro-Lopatinsky type for
the singularly perturbed problem to be coercive, i.e. for a two-sided a priori estimafe to hold
for its solutions uniformly with respect to e.

I. — Singular perturbations of an elliptic boundary value problem.

The Dirichlet problem for singularly perturbed differential equations has been
widely studied in the literature. There are also some attempts to investigate more
general boundary value problems for operators containing small parameter (see [20],
[22] for the survey of results and references).

One of the interesting aspects connected with singular perturbations is asymptotie
formulas for their solutions so that the attention of many authors was mainly
concentrated on this subject. A non-less important problem is related with con-
vergence of the asymptotic expansions to the corresponding solutions, the latter
being closely connected with the stability of singular perturbations uniformly with
respect to the small parameter . Some stability results concerning singular per-
turbations were obtained in [6], [8], [13], [16], [23], [25], and others. In [8] the
author indicates some sufficient conditions on the bhoundary operators and the
operator in the domain for a non-adequate a priori estimate to hold uniformly with
respect to ¢ in Schauder type norms. Some conditions for the Vishik-Lyusternik
procedure (see [28], [29]) to be operative are also mentioned, the latter being nec-
essary but not sufficient for the stability of singularly perturbed boundary value
problem.

We point out necessary and sufficient conditions on the operator in the domain
and boundary conditions for a two-sided a priori estimate to hold for the solution
of elliptic singular perturbation uniformly with respect to e. Those conditions are
algebraic and have a great deal in common with well-known Shapiro-Lopatisky
coerciveness condition (see [18], [24]), which is necessary and sufficient for an ade-
quate a priori estimate for the solutions to an elliptic boundary value problem without

(*) Entrata in Redazione il 6 luglio 1977.
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small parameter to hold up to the boundary (see[1], [26] where these conditions
are used in order to establish the a priori estimates).

Let us sketch briefly the stability phenomena connected with singular perturbations
of elliptic boundary value problems.

An elliptic boundary value problem might happen to be perturbed by another
one containing small parameter ¢ in its coefficients in such a way that the stability
of the original problem is destroyed. In other words, the a priori estimate which is
the basic property of the original reduced problem (with £==0) does not hold
nniformly with respect to ¢ for the solutions to inconveniently perturbed problems.
Being more specific, we illustrate the situation by the following examples.

ExAMPLE 1. — Congider the Dirichlet problem:

{0.1) — Au°(z) = P’z , zelU,
(0.2) w(z') =10, 2'edlU

in a compact domain U with smooth boundary oU.
For the solutions of (0.1}, (0.2), the a priori estimation holds:

(0.3) lu i< €l

where |- |z are norms in the Sobolev spaces Hx(U).
Denoting the problem (0.1), (0.2) by

A = (— 4;{1})

consider two singular perturbations for the operator — A in U:

1 2 2 __ - i
(0.4) AL = (s A A,{l, aN})
and

Y 2
(0.5) o6 —(——e A— 4 {1, aN})

with homogeneous boundary conditions:
7 aus ' ’
(0.6) ué‘(w):a—ﬁ(m):O, »eol,

N being the inward normal to 27.
The singular perturbation 2 occurs when considering linearized model of thin
elastic plates.
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It is immediate that the a priori estimation (0.3) holds for the solution u¢(x) of
the problem A; with constant ¢ which does not depend on &, u'(z).

On the other hand (0.3) can not hold any longer for the solutions +*(x) of 3.
Moreover, even some weaker estimation of the type:

(0.7) ool < O(l— (242 + A)ve s +- [[o°]o)

does not hold with ¢ which does not depend on e.
Indeed, assuming that (0.7) is true and substituting there for »¢(x) the functions:

(0.8) v¥(w) = exp (iw-n/e) (@)

with ne R", [n] =1, p()e O(U), |pl, =1, one gets a contradiction, given that for
the functions (0.8) the left hand side in (0.7) grows like ¢~1 and the right hand side
is bounded as ¢ 0.

The ingtability of singular perturbation might oceur because of an inconvenient
perturbation of boundary operator.

ExAmprLE 2. — Consider two singular perturbations of the Dirichlet problem
N = (— A;1) by Neumann’s ones:

(0.9) e — (-4 {—e% + 1})
and
(0.10) : = (— A; {e %T + 1})

where again N is the inward normal to oU.
For A the a priori estimation

(0.11) lus], <€ (|]—-Aueu_1 + [(—aaiN + 1) w];r liwllo)

with [-], the Sobolev’s norm in H,(0U), holds with constant ¢ which does not
depend on &, u¢. When ¢ ->0 one gets from (0.11) the usual a priori estimation
for a second order elliptic partial differential equation.

For the solutions of 9° the estimation (0.11) is impossible with C which does
not depend on ¢ Indeed, assuming (0.11) and subistituting ws(x) of the form

(0.12) W) = exp (— @ fs -+ ia’ 0 Je)p(a)

where (2, #,) are local coordinates related with a point ;€ 0U, 5’ € R~ ly'| = 1,
y(@') has its support in a small neighborhood of x,€ dU and [yl = 1, one gets
a contradiction, given that the left-hand side in (0.11) with (0.12) substituted
for ut(w) grows as et while the right-hand-side is bounded when ¢ — + 0.
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Therefore, there iz a need to classify the singular perturbations of elliptic
boundary value problems.

One introduces algebraic conditions of ellipticity and coerciveness for singularly
perturbed boundary wvalue problems, which are mecessary and sufficient for the
stability of the singular perturbation uniformly with respect to the small parameter .

Introducing Sobolev spaces H with vectorial subscripts s = (s, s, s;) which
describe the behaviour of function wtc H, when ¢ — 0 and its smoothness with
respect to D and eD, where D is the differentiation, one establishes a two-sided a
priori estimates which are the characteristic property of coercive singular per-
turbation.

Let us briefly sketeh the contents of the paper.

In Section 1 we introduce the spaces Hy, with subscripts s € R* which are used
later to establish the a priori estimates. Spaces H . with two subscripts were
introduced previously in [4] to investigate Dirichlet problem for singular pseudo-
differential operators. It turns out that spaces with three subscripts are better
suited for studying general boundary value problems for singular perturbations.

In Section 2 we establish two-sided a priori estimates for elliptic singular per-
turbations in R» and show the necessity of the ellipticity condition for such an
estimate to held uniformly with respect to . The motivation to include this section
was mainly to make the paper self-contained.

In Section 3, which is the central part of the paper, we consider first singularly
perturbed boundary value problem for ordinary differential equations with small
parameter ¢ > 0 and large parameter &'c R7! and establish a priori estimates uni-
formly with respect to & and &'. Afterwards, the results are extended to singular
perturbations with constant coefficients in R” . Further we state the main results
for singular perturbations with variable coefficients in a bounded domain with
smooth boundary. It is interesting to point out that for singular perturbations there
are situations similar to the ones for pseudodifferential operators with negative
factorization index (see [5]) when solutions to an elliptic pseudodifferential equation
are not in general sufficiently smooth up to the boundary and there is a need to
introduce Poisson operators with unknown densities for the solution to be in cor-
responding Sobolev space. We end the Section 3 by discussing some examples of
elliptic and non-elliptic and also of coercive and non-coercive singular perturbations.

The results in this paper are a slight modification of the ones summarized in [10]
(see also [11], [12] for singularly perturbed ordinary differential and difference
operators).

1. — Spaces X, H,.

1.1. Spaces Ky(R), Hi,y (R,

Throughout this paper ¢ is a small positive or nonnegative parameter. We consider
functions u(e, ), £ [0, &], # € R* with complex values. Sometimes u(e, #) Wil be
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interpreted as a family of functions of £€[0,¢,] with values in some topologieal
vector space.

Let u: [0, g5] — C°(RY) be L™mapping with respect to the topology induced
by OP(R"). We write it in a short way: u e L%([0, g]; O(R"). For such # and
any vector s = (s, 8, $3) € R* we define the norms with subsecript s:

(1.1.1) Il == e [KDY*<eDY* u| py g
where D = (D, ..., D,), Dx=—i0/0ng, {D)2=1- |D]3, |D|2=— A, A being the

Laplacian in R}, and the norms (1.1.1) being well defined a.e. in [0, g,].
We denote by 3, (R") the closure of L™([0, &,]; 05° (R)) with respect to the norm:

(1.1.2) %] = vrai max |[u .
e€[0, &g,]

It is quite obvious that for non-negative integer s,, s; the norms (1.1.1) are equivalent
uniformly with respect to £€]0, g] to the following ones:

3
(1.1.3) ( > 82(]ﬁ]—sl)f [D*+B e, m)]zdm) .
[]< 82,8 < 85 A

ProrosITION 1.1.1. — J8(R*) is a Banach space.
Proor. — According to the definition of ¥ (R") a function u e #, (R") iff the

function v = ¢~ (DY*(eD)*u e L°([0, &]; L*(R:). Therefore, the mapping e~ **( D)
(D)% maps isometrically 3, (R") onto L([0, &]; L*(R%)). m

For ue X,(R*) we introduce the seminorm

(1.1.4) [ = 1?? o (s

and we denote by fe(s,(j’{n) the set of all functions « € ¥, (R*) such that |ul,, = 0:
ProrosiTION 1.1.2. — J%(S)(R") i8 a closed subspace in K(R").

Proor. — It is quite obvious that J%m(ﬂ{") is a vector space, given that for the
seminorm |-, the triangle inequality holds. For the same reason it is a closed set.
Indeed, if {u,},», is a Cauchy sequence in J&(R"), and |4,y = 0, then, u being
the limit of {u,},., in J,(R"), one can write

(1.1.5) [ Ul < [t — Waliey - [l = |4 — Unis) -

The left hand side in (1.1.5) does not depend on » and the right hand side vanishes
as N —>-4 co. w
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We define the spaces Hi,y(R*) to be:
(1.1.6) Hip(R?) = Reo B[R (R -
They are provided with the corresponding factor-norm, denoted again by |- |,

1.1.7) |Uko = Lim [uf

with # any element belonging to the same equivalency eclass U.

Given an L*-mapping u: [0, &] — §'(R;) we use the notation F, ..u or (s, &)
for its Fourier transform in the sense of tempered distributions. For u: [0, g] —
— LR it is defined by the usual formula:

(1.1.8) (B u)(e, &) = f exp (— iw-&) ule, ©) dw .
5{11

The inverse Fourier transform is denoted by F; .

=
The norm |-}, is said to be stronger than ||, if there exists a constant C,,
which depends only on its subscripts such that
(1.1.9) U, <0 Uy,  VUeH(RY
or, equivalently,

(1-1-10) “u”s’ < Os,s’ ”u'”s’ ? Vee [0’ 80]7 ue Je(s)(fﬁf) .

It is immediate that the necessary and sufficient condition for (1.1.10) to hold iis
the inequality

(1.1.11) e (B ey < O, e 1 CEYeEY,  Vee (0, &), VEe R™

ProrosITION 1.1.3. — The inequality (1.1.11) holds iff
(1.1.12) 8,8 5 8+ 8,8+ 5y, 8+ 85>8+ 85 -

PROOF. — It is quite obvious that the conditions (1.1.12) are necessary for (1.1.11)
to hold (by taking in (1.1.11) alternately ¢ —0, || =1, afterwards &= <&,
£ — co and, finally, e=1, £ — oo).

To show that (1.1.12) is sufficient, it is enough to consider s'= 0. Now,

(1.1.12) with ¢'=0 yields for g<1:

(1L1.13) e~ 5(EM(eby™ = (<€) T (EM T (k) > (BT TS () TR, .
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For a given s ¢ R3 the set of points s’ € R? satisfying (1.1.12) is a pyramid with
its vertex located at the point s. We use the notation s'<{ s for writing (1.1.12)
in a short way and the notation s’ < s if there is at least one strict inequality in
(1.1.12); the sums s, + s, and s, - s, are denoted respectively by |s| and [s].

With the relations <, <, the norms |-, ||+ [ and the spaces H,(R"), K, (R")
become partially ordered, i.e.

(1.1.14) H (R CHy (R, 34 C Hg)(R?) iff 5'<s.

We will need later a substitute for the interpolation inequality in the usual Sobolev
spaces. It is convenient to be able to estimate a given norm of order se R3 by
some stronger one of order ¢ € R?* with small coefficient and by a weaker one of
order p e R?* with a large coefficient. It is easy to check that such an inequality
cannot hold for any o, s, o such that ¢ < 8 <. However, there is a useful substitute
for the interpolation inequality.

Prorosrrion 1.1.14. — Let 0,5 R?, s <o and

(1.1.15) 0 =s—1to—s), t>0.
Then
(1.1.16) lulf <0 lully + 67 ulf Vue ¥gy(R"), V6>0.

Proor. — It is guite obvious that it suffices to show (1.1.16) for s = 0. In that
case the inequality (1.1.16) is equivalent to the following one:

(1.1.17) 1< 8% 6201 (£Y20n (gE VR0 | 62 2o (B30 (g~ 2o
or, whith A= §%£72(£)** (ef)?™, to the inequality
(1.1.18) 1<Ad 2, Vi>0. m
For se R* we denote
(1.1.19) I={'eRs'<st, Ii={ecRs'>s}.
The pyramid I7 is called reciprocal to I',.
COROLLARY 1.1.5. — Let se R2 and ¢ e Int ;. Then for Yg e I', there exists a
t > 0 such that (1.1.16) holds.

Indeed, the condition ¢eIntl, means that o,— 8> 0, 0,F+ 0s— {81+ 8) >0,
Oy -+ 03— (8; + 83) > 0. Therefore there exists {>0 such that ¢>s—#(c— 8).
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For se R® we denote by oI, the boundary of the pyramid I, which has three
plane components:

oL, = {5/ < sl = 53,
(1.1.20) 0l = {s' Slsi + 8 =s+8},
0T, = {s'<sls, + 8, =83+ 8} -

We define 9,1 to be the component of ar:‘ such that 9,I", and 9,I"F are con-
tained in the same plane passing through s.

COROLLARY 1.1.6. — Let se 9,I, and o e Into,I. Then for Yo € 3,I, there exists
t > 0 such that (1.1.16) holds.
Indeed, one uses the same argument as in the Corollary 1.1.5.

1.2. Restriction to a hyperplane.

For ue L*([0, &1; 05°(R*) we denote by mu its restriction to the hyperplane
{#, =0} and consider the mapping

(1-2-1) Lw([07 80]5 O’(‘;"(:'R,g)) €Y —9710{1);_1%}1<5<K€L°°([07 80]; H Ggo(j{g'—l)’b ’
1 K

<i<

where & = (@, 2,); [myu], denotes the corresponding norm of order ¢e R:.
The mapping (1.2.1) is well defined a.e. on [0, g].

LEMMA 1.2.1. — Let s R be such that s, =%, 83> 0, and let 0 =s— }6;, =
= (81,0, 8,). Then for uwe L=([0,e,]; OF(RY) the following inequality holds:

(1.2.2) [l < O(1 + jIne]) [u], -
Proor. — Let (e, &, #,) = F,_.u be the partial Fourier transform of % with

respect to o' = (#,,... @,_;) eRe'. Now, d(e, §) = F,,.u being the Fourier trans-
form of u with respect to ¢ R», one can write down:

(1.2.3) (e, &, 0)F < (27) 2 f RGN dfnf<§> (e&YP (e, &) [F A&
R R

After the change of variable &, = ¢1(g&'>t, the first integral in the right hand side
of the last ineguality becomes:

[&r1ermag, = Gy (2D DT ) DT
R R
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Given that for 0 <g<(1 and s;> 0 holds:

[@+ et a<ome

R

one ean rewrite (1.2.3) in the following way:

(L2.4) &2 aEN fife, &, 0)P < O CIn (<8 (e8> [e72 ¢8> eby™ e, £
R

Given that the logarithm in the right hand side of (1.2.4) does not exceed
ne|, Vee (0, 4], one gets (1.2.2) by integrating (1.2.4) with respect to &'e R+
and applying the Parceval’s identity. m

Lemma 1.2.2. — Lot ueXy(Re) with $,>1%, s, &>3% Then for K<
< min {8, + }, 8 + 83 -+ &} the mapping:

(1.2.5) B2 u —>m{Dy i cpexe TI Ky(R*H
ISp<K

with g, = (83, $a— P + %, 85} is continuous linear one.

Proor. — Using the notation introduced above in the proof of the Lemma 1.2.1,
one can write down

(L2.6) DZ e, &, 0)F = (20)72| [ dle, )5 <
R

< (@) [y T, P 8, [ o) e, )
R R

After the change of variable &, == (£'>#, the first integral in the right hand side
of (1.2.6) becomes:

(1.2.7) f<§>-"282<8§>—'283¥§nIz(@-l)dsn — <51>"2(82—£}+%)<6§>—238.
R

f<t>—~2sg[t12(v—1)(1 + t2 £2<§’>2 <8§'>_2)_33 i .
R

If 8;,>0, then the integral in the right hand side of (1.2.7) is bounded by the fol-
lowing one:

(1.2.8) [wppe @< for 1<p<s,+3.
R

4 ~ dnnali di Matematica
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On the other hand, if s; < 0, then the same integral in the right hand side of (1.2.7)
is bounded by

(1.2.9) f<t>‘2‘-"ﬁ+sa’ (PO V@< oo, 1<p<s;t s34
R

Multiplying (1.2.8) by &= 2:(& )22 (/N2 one gets:

(1.2'10) 8_23‘ <El>2(s,——p+é) <851>2s3 IDzy:-—l 71(8, EI, O)lz< Cfé‘_zs‘ <§>2s, <8§>2s’ m(e’ E) |2d§n
R

and that along with Parceval’s identity ends the proof. =m
LeMMA 1.2.3. - Let ue By,(R") with s,<%, ss+ s5>%. Then the mapping
Ko (R") C U —mou € Ly (R1)
with ¢ = (81 -+ 8. — 1, 0, 8, -} 8, — %) is continuous linear one.

ProoOF. ~ With the same notations ad above, one can write down:

WL211)  [ile, &, 0)F <(@m) 2 <62 (et) a8, [<6)™ (o™ lale, &) Pl

R R
Making the change of variables &, = ¢~1{e&’> ¢ in the first integral in the right hand
side of (1.2.11), this integral becomes:

(12.12) [ceymcerymmag, = e 2o Gegryimrem e
R

[y 4 o)y a.
R

The integral in the right hand side of (1.2.12) is uniformly bounded with respect
to £€[0, &), £&'e R, given that s,<<} and s; 4 8> 3.
After multiplication by &'=2%7 2% (g£/24 42571 the inequality (1.2.11) becomes:

(1.2.13) 81—231-233 <8§r>233+235——1 ,’51:(8, 51’ 0)#2< Cf8—2s, <§>232 <8§>23. 1,&(5) ]2(15,; .
R

Finally one has to use the Parceval’s identity. m

REMARK 1.2.4. — The statements of the Lemmas 1.2.1-1.2.3 are valid for the
spaces H,(R") and corresponding H,\(R"?).
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1.3. Spaces Ky(R7), Hy(RY).

We denote by R the halfspace {w,> 0} and for s,, s, non-negative integer
define the norms |- |, s = (81, 82, 8), by the formula:

(1.3.1) nuna,=(

jo< 83, (B <o

3
g2lfl—2e f |D*+8 u(e, o) 2 m) :
R:

We denote by J(R") the space of all ue L ([0, &]; S{(R")) such that

(1.3.2) [ = vraimax |u{, < oo .

s€[0,8,

For functions ue L7([0, ,]; C5°(R".)) we use the usual extention operator I, defined
by the formula:

(1.3.3) (e, @) = gl ule, o) + f— ) 3 Cyuls, @', — pa,)

1K<+

where y(z,) is the Heviside’s function and ¢,, 1<p<8,+s;, satisfy the system of
linear equations:

(1.3.4) S (—p)iC =1, 1<j<s,+s,.

ISP+

LeMMA 1.3.1. — For s;, 3, non-negative integers, the operator 1 defined by (1.3.3),
(1.3.4) can be ewtended as linear continuwous mapping from Jg(R") into & (R").

PrOOF. — The Lemma 1.3.1 follows immediately from the inequalities
”D;;(Zu) ”Iﬁ(.‘R")< 0; "D‘i ”L’(:RZ) , for any ue CP(RY), I<j<sy+585). =
For se R? and e L([0, &]; 8'(R")) the norms |- |} are defined as follows:

(1.3.5) luldy = inf |t -
We denote by &, (R’ ) the space of all tempered distributions ue L>([0, &l; 8'(R™)
such that

(1.3.6) [#ld = vrai max|u[) < co.

&€[0, g0}

Introducing the subspace Iy (R")c ¥, (R") of distribution w(e, ) with their
support contained in Rr = {w,,<0}, one has the isomorphism:

(1.3.7) T R2) 22 By (R™)/He5(RT) -
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Now, the spaces Hy(R",) and corresponding norms |- |} are defined in the same
way as in the Section 1.1.

1.4. Spaces Ko(G), Hy(G).

Let @ be a compact domain, ¢ c RY, with boundary oG which is supposed to
be O~ oriented manifold. Denoting by X, the subspace of JC(R?) of all tempered
digtributions € L>([0, &]; 8'(R})), such that their support is contained in the
complementary set to @ in R, one defines the spaces ¥ (@) by the formula:

(1.4.1) Ko (F) = (R[5,

the spaces ¥, (@) being provided with the factor-norms induced by the topology
of factor-space.

Again, the spaces H(G) are defined in the same way as it was done in the
Section 1.1.

1.5. Spaces ¥,(0G), H,(oG).

The boundary 0@ being an oriented ¢ compact manifold, we denote by {0;},<;<x
a finite covering of 0G by open balls {0,} and by {y,} the partition of unity sub-
ordinated to the covering {0,}.

Using a local diffeomorphism 2 = z(y) in the neighborhood of a point P;e 0U N 0,
with Jacobian J(y), J(P,) = I (I is identity in Hom(R~"; ®R"), such that ¢ -y
maps the set 0; N G into the half-space R”, = {y,> 0}, one can define for a function
@(e, @): [0, &] X 0G — € the norm with subseript o e R* by the formula:

(1.5.1) [(P](a)= z [W;"P](o)

1IN

where the norms [y;¢],, are computed over Ry~ Ly’ = (Y, ..., Yu_y) after application
of the diffeomorphism z = x{y) above.

We denote by JC,(0G) the space of all functions (distributions) ¢e
e I7([0, &1; 8'(¢@)) such that

(1.5.2) |[@]]e) = vrai max [@lg < oo .

£€[0,€,1

Of course, the norms (1.5.1), (1.5.2) depend upon the choice of the covering {0}
and the subordinated partition of unity {y;}, but the topology in ¥5(0G) does not
and all the norms thus defined are equivalent each to other uniformly with respect
to e€[0, &].

The definition of the spaces H,)(0G) can be given by the procedure, nsed above
in the Section 1.1.
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We restricted ourselves to the minimum of definitions and facts about the spaces
F, Hiy that will be used later to investigate the boundary value problems for
singularly perturbed Differential Operators.

Of course, it is possible to develop the theory of spaces %, H* with u = ule, &)
family of weights depending on parameter ee [0, &), this theory being in many
points similar to this one developed in [30] for p = u(g).

2. — Singular perturbations in R».

The aim of this section is to establish a two-sided a priori estimate for elliptic
perturbations (defined below) in spaces JC,,(R") and also to show that the ellipticity
condition is necessary for the validity of such an estimate. To do this one uses
the classical technique of partition of unity. It goes without saying that one can
consider a more general class of pseudodifferential singular perturbations and develop
the calenlus analogue to the algebras of pseudodifferential and difference operators
investigated formerly in [9], [15], [17]. The main purpose in adding this section
is to make the paper self-contained.

2.1. Classes Z,.
Let § be a small non-negative parameter, 6 [0, d,], and Q°(x, &) a family of
polynomials in &€ R» with coefficients O© functions of xe R», &€ (0, d,], which

are supposed to be stabilizing to functions of § when # is large enough. We assume
also that

(2.1.1) deg.Q°=m, V5e(0,4,], deg,Q° = m;<m .
BExpanding @° in a finite sum of homogeneous polunomials @3,

(2.1.2) Qo= Y Quz &, deg.Qr=2K,

O<ES™m
we assume that @5 (s, £) can be represented in the form:

(2.1.3) Qlw, §) = 0™ q%(w, &),  17>0, 0<K<m

where the homogeneous polynomials ¢3(w, &) are supposed to have Holder continuous
coefficients at 6 =0 and ¢%(=, £), 0 <K <m, does not vanish identically.
The assumption (2.1.1) upon the degree of Q° yields:

(2.1.4) tw, =0, x>0, for m, < K<m.

1
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Denoting m, = m — m,, we restrict ourselves to the polynomials Q° such that

(2.1.5) Mytz > (K — my) , for mi<K<<m.

The condition (2.1.5) being fulfilled we introduce a new small parameter e,
(2.1.6) &M= gt»,

Denoting by Q(w, ¢, &) and ggx(x, ¢, &) the polynomials which are thus obtained
from Q° and q}} respectively, one can write down

(2.1.7) Qe &)= 3 " mgp(m, e, ) + (@, 6 &),

m<ELm

where deg,r(x, &, §) <m;.
Introducing the numbers

(2.1.8) vy = My— K -+ mylgft,, , m<K<m,

which are non-negative, given the condition (2.1.5), and y, =y, =0, we can
rewrite (2.1.7) in the fashion

(2.1.9) Q@, &, &) = > Mg, 0, &) + R, &, &)

mE<ESm, yg=0
where the remainder R(w, ¢, &) of degree at most m satisfies the inequality:
(2.1.10) [R(, & §)| < C(EX™ T -+ & {ed™<ef)™)

with some positive constants y and C.
The polynomial

(2.1.11) Qulx, 6, &)= 3 & (,0,8)

my< E<m, yx=0

is called prineipal symbol of Q(w, &, £).
Obviously, Q,(#, &, £) is homogeneous function in (¢, &) of order m,,

(2.1.12) Qo(®@, & &) = £ ™ Qs(, 1, ££) ,
whiceh satisfies the inequality
(2.1.13) [Qolz, &, &)< ClE™(EY™, Voe R, Vée R=, Ve0.

The representation (2.1.9) with R and ¢, satisfying (2.1.10), (2.1.12), (2.1.13},
is called canonical for the family @°.



LeonNiDp 8. FRANK: Coercive singular perturbations, 1 55

We will consider a slightly larger class of polynomials Q(x, e, &) further called
symbols whose canonical representation satisfies the conditions:

(2.1.14) Qol®, &, £) = 6~ "IQq(x, 1, &),
[Qo(®, &, &)| < O™ |E]"2<e&)™,
[R(x, & &)| < O™ (<& &7 <EY"(e)™)

with some positive constants y and C.
O(w, &, £) is supposed also to stabilize to a symbol Q(e, &) a8 2 — oo in the fol-
lowing sense:

(2.1.15) Q(@, & &) — Qle, &) <go(w) 67<E)"Ced)™

where @y(z) € S(R").

The least vector ve R? such that (2.1.14) still holds, is called order of the
symbol @.

The class of the symbols Q(x, ¢, &) of order » is denoted by &, and the class
of corresponding singularly perturbed Partial Differential Operators Q(, e, D) is
denoted by P,.

2.2. Singular perturbations in the spaces JCip(R), H,y(R7).

For se R with integer s;>v;, j = 2, 3, it is immediate that
(2.2.1) Q € Hom (3, (R"); ¥,_,(R"), VQeP,.
PROPOSITION 2.2.1. — The inclusion (2.2.1) holds for Vse R® and VQeP,.

Proovr. — If @ does not depend. on x then (2.2.1) follows immediately. Therefore,
it suffices to show (2.2.1) for @ whose coefficients, as functions of x € R», belong
to S(R}).

The inclusion (2.2.1) is equivalent to the inequality

(2.2.2) | ED | gy < Clo [
where 9 — K is integral operator with the kernel:
(2.2.3) K(&, &ym) = (P QE— 1, £, ) <y T e T

and the constant ¢ does not depend on ¢ and 7.
Given that @€ S(R") as function of #, one can write down for @ = B, ,Q:

(2.2.4) e Q& — 1, &, )| < Oy <&~ >~V ()" *Cem)™
with VN > 0.
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Now using the Peetre’s inequality (see, for instance, [3]):
(2.2.5) EXpTe<AdE—ppld,  Yoe R,

(2.2.3)-(2.2.5) yield
(2.2.6) 15, & mas< 0y [~ pTag<0
R Rn

(15 &l dn< 0y e —my~Fran <0
5{1: .‘R"

where N; = N — [s,— v,|— [$;— v5| >0, and C does not depend on ¢, & 7.
The inequalities (2.2.6) show that the family of operators - Ko i3 nniformly
bounded in L(R;) with respect to £c€[0,5]. =

2.3. Singular perturbation and diffeomorphisms on R~

Let # = a(y) be a diffeomorphism of R} onto R): We denote by J(y) the
Jacobian of «(y) and by J(y) the transpose of the matrix J(y).

ProrosITION 2.3.1. — Let Q € P,, and Qy(w, ¢, &) be the principal symbol of Q. Then
after the diffeomorphism x = a(y) the principal symbol of the corresponding singular
perturbation in variables y becomes Q(a(y), &, ()Y y)n).

ProoF. - Breaking down the principal symbol @.{z, ¢, &) into the sum of hom-
geneous components:

(2.3.1) Qolwy g, &)= > (&)

Tra< E<ry+v,

the statement of the Proposition 2.3.1 follows immediately from the corresponding
formula for the principal symbol of differential operator q.(x, D) in variables y. ®

2.4. Hlliptic singular perturbations.
We start with the definition:

DEFINITION 2.4.1. — Singular perturbation Q € P, is called elliptic of order v if ils
principal symbol Q, satisfies the condition

(2.4.1) 0u(@, 0, &)|> Co™"1<o>™, Vo> 0, VEe Q,, Vwe R

with some constant C > 0 which does not depend on o, & », where by 2, we denote
the unit sphere in Ri: Q, = {E€€ R"||§] = 1}.
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REMARK 2.4.2. — Introducing reduced principal symbol Q3(w, &),

(2.4.2) QS(x, §) = Hm &1Q(w, ¢, &),

e—>+0

the condition (2.4.1) is equivalent to the following ones:

(i) Qolw,1,&) is an elliptic symbol in the usual sense, that is @,, being the
principal homogeneous symbol of order »,+|», to the symbol @,, the inequality holds:

Qoo(®, 1,£) 20,  VYzeRn VEcQ,.
(ii) Q5(x, &) is elliptic of order »,, that is
Qo & =0, Yoe Rn, Ve Q,.
(iii) Qo(z, 1, &) does not vanish:
Qol,1,E)#0, Yz e R, Ve R
It is quite obvious that (2.4.1) involves (i)-(iii) (oy taking in (2.4.1) alternately
¢ —> 0 aiter multiplication by ", afterwards, multiplying (2.4.1) by ¢"*~** and letting
@ — -+ oo and finally, using the homogeneity of Q).
On the other hand, using again the homogeneity and (iii) one gets
(@, 0, &) 0, Yo>0, Ve R?, |E]=1, Vze R
Finally, using (ii) one gets for o small enongh:
Qo 0, )|> 007, VE€Q,, Yo R,
and from (i) one obtains for o large enough:
[Qo(@, o, &)= O™, Vée Q,, Voe Re.
Sometimes it will be convenient to use another equivalent definition of ellipticity:
(2.4.3) 1Qo(, 0, §)|> Co™" E[*{0E)>,  VEe Rn, Yoe R, Vo> 0.

Its equivalency to (2.4.1) is quite obvious given the homogeneity of @, in (g%, £).
The class of elliptic singular perturbations of order » is denoted by E,.

PROPOSITION 2.4.3. — Ellipticity is an invariant property with respect to any diffeo-
morphism of R» onto itself.
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ProorF. — The statement is an immediate consequence of the Proposition 2.3.1.

ProOPOSITION 2.4.4. — Let Q€ B, and @ = Q(s, &) does not depend on x. Then for
g, small enough the following a priori estimate holds:

(2-4-4) "uﬂ(s) < Gs,a’(HQu"(a—v) + “uﬂ(s'))

with Ys' € 0,1, and a constant C,, which depends only on its subseripts.

ProOOF. — Introducing
(2.4.5) Qe(e, &) =Qule, &), with E=(Hw, o =Elf,
one can write down:
(2.4.6) Qle, &) = Q¢ () + B¥(z, &)
where R¥(e, £) satisfies the inequality:
(2.4.7) |R¥ (e, &)< Ce7(<EY ™ + &7 (&Y (ebD™) -

The ellipticity condition (2.4.3) and (2.4.5) yield:

(2.4.8) 198w,y > Clul -
Now,
(2.4.9) 1R )l gy < Ol sy + &30l )

with §" = (8;, 8a— 1, 83— v35).
Using the interpolation inequality for |ul[., with convenient ¢, i.e. such that
8”‘— t(S-— sll)< S,,

(2.4.10) i< &Flully + 0% ult
(2.4.8)-(2.4.10) yield
”Qu’”(s—v)>‘[qu[[(a—v)_ ﬂRguH(&—v)} (C—eg— 0)ulw— Oyl %l ey s

which leads to (2.4.4) if & and d are small enough. =

REMARK 2.4.5. — If (2.4.4) holds with some s'< s such that s:'l< s, then as a
matter of fact, Q(¢, D) for & small enough establishes the isomorphism:

(2.4.11) Q € Iso (¥,H(R"); B,y (R™) -

Indeed, in that case, [ufy,< Osjul,.
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Our aim now is to prove the a priori estimate (2.4.4) for elliptic singular per-
turbation of order v with wvariable coefficients., To do this we need several
lemmas.

LuEMMA 2.4.6. — For any 83, € R and 0 <<e,<1 the following inequality holds:

(2.4.12) ]<§>"= (Ee)* — <,7>9= <817>3’|<7]>1—3’ <En>—sa <20¢— 17>N.+1,
where
(2.4.13) 0= ma,x{|822lsa—ll+lhl’ |83I218=l+|s,—1]} ,

N,= ma'x{lsz_ 14 [ssly [sa] + lss"'ll}

Proor. — It is immediate that

(2.4.14) lgrad (5% < |ol<&>? ™.

Denoting the left hand side in (2.4.12) by g(s, &, 5), the inequality (2.4.14) and
Lagrange formula for the difference in the left hand side of (2.4.12) yield:

(2.418) gz, & ) <<E— nD(Isal<ED" 7 ebad™ +- elss| <Eg>™ Cebpd™ 1 KD~ em)™)

where §, = & 0(n— £) with some 6, 0 <6 <1,

Now using Peetre’s inequality (2.2.5) to estimate (£,>%<{n>~% and <{e£,>%* {end™®
with ¢, =38,, o;=8,—1 and g,=3s;, g, = s;— 1, one obtains for g(e, & %) the ine-
quality (2.4.12) with constants -(2.4.13), noficing also that s{n)<<en) for 0<e<
<5<l | |

LeMMA 2.4.7. — Let Ry(x, ¢, &) € P, and assume that the coefficients of & R, belong
to L=([0, &,1; S(RY). Then for ¥se R2, Yue L2([0, &]; CF(R™) holds:

(2.4.16) & (DY (eDY" Ry(®, ¢; D) u(w) = Ryl®, &, D) e~ (DY (e DY u(w) - Ku()
where the operator u — Ku satisfies the inequality
(2.4.17) [ K ”(o)< Cllulistp—ey

with e;=(0,1,0) and a constant C which does not depend on & and u.

PRoOF. ~ One finds immediately that F, ,.(Ku) is an integral operator: (&) —
— (K4)(§) with the kernel:

(2.4.18) R (& &, n) = e S[CE (kY — (pd<end™ 1 Ro(E— 1, 8, 1)
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where

Ro(é_ Ny & N) = Fmes—nRo(a"a &n) .

Introducing #(&) = e~ ®HmI(EyHm— gt~ 14(8) the inequality (2.4.17) is
equivalent to the following one:

(2.4.19) 188 ) oy < ClF |22
where we denoted by S integral operator # —S7 with the kernel:
(2.4.20)  S(&, & n) = [ECelD™ — <) Len)™] Bo(§ — 7, &, ;) ™D~ Fademy ™,

Given that Ry(x, e, n) € &, and has coefficients which are in §(R}) as functions
of @, one can write down for R(&— 7, ¢,7):

(2.4.21) E— 77>N IRO(E“ 1 € 77)|8”1<7]>—u2<877>_ﬂ8< GN y YN >0

where the constant C depends only on N.
Now, the formula (2.4.20), the Lemma 2.4.6 and (2.4.21) with N = N, a -} 2
yield

(2.4.22) f]s‘(é, e, )| dE< 0, flﬁ(é, & nldn<C
R R

where the constant ¢ does not depend on &, &, 7.
The inequalities (2.4.22) show that (2.4.19) is valid, and, therefore (2.4.17)
holds for K. m

LeMMA 2.4.8. — Let Q(#, &, D) € B, and u € L*([0, g]; 07 (G,)) where diam Gy < 6.
Then given s € R* and Vs’ € 9,17, there exists a constant O, such that for 6 and &
small enough the a priovi estimate holds:

(2.4.23) lul < Coe(1Qu] o—ny + lll) -

PROOF. — With , any point in @, and introducing the notations:
Qs(®) = Qu(z, &, D), Q@) = Q(@, 8, D), Ry(x) = Qo(®) — Qo(@) , RB(x) = Q(x) — Qo()
one can write down:

(2.4.24) Q) = Qo(wo) + Bo(@) 4 B(®) .
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By (2.1.14) and the Proposition 2.2.1 the following inequality holds for the oper-
ator R(x):

(2'425) ”.R(.’I}) u”(s—v) < 0(”“”(8“‘65“1"3e3) + 87 ”u”(s))

with ¢, = (0,1, 0), e, = (0,0, 1).
Now let, 0,c @;, diam 0, < 28 and g, € 05°(0,) such that g,(@) =1 for wed,.
Denote R{(x) = g,(x) By(¢). Using the Lemma 2.4.7 one can write down:

(2.4.26) & TUKDY DY T Ry(m) u = T (DY T e DY T By =
= Ry(@) (DYDY " u - Kou

where the operator u —K°wu satisfies the inequality

(2.4.27) 1B 0y < Os ] 5—ey)

with some constant O that depends only on 4.
The coefficients of Rg(m) being smooth with their support in O, diam 0;<< 24
and Rg(wo) = 0, one gets immediately:

(2.4.28) | By(@) &~ DY* (e DY " u]ly < O8]u, ,

where (¢ does not depend on §, ¢ and 4.
By the Proposition 2.4.4 one has

(2.4.29) ” “”(s) < 0(“@0(%) u”(s—v) + ﬂ““(s'))

with Vs'e 0,1, and C which depends only on s,s’.
Finally (2.4.24)-(2.4.29) and the interpolation inequality (1.1.16) with J, instead
of § applied to the term [u],_,, yield:

(2.4.30) l o< Ox([ @) wlsy + (e 4 O [l +- Tl o)
the last inequality leading to (2.4.23) for g, and §, sufficiently small. m

REMARK 2.4.9. - If Q(w,¢,D)e B, and ue L*([0,¢]; 05(G,)) where G, =
= {o||#| > 7}, then for r large enough and g, sufficiently small (2.4.23) still holds.
Indeed, the fact that the supp w is smaller than § was used in the proof of the
Lemma 2.4.8 only to estimate the term R,(x). Now denoting by B,(x) the difference

(2.4.31) By(w) = Qo) — Qo( 00} ,

e Ry(w) has its coefficients in L*([0, ¢]; S(R")). Therefore for r = 6-* and 6 small
enough the inequality (2.4.28) still holds.
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THEOREM 2.4.10. — Let Q € B,. Then for &, sufficiently small the a priori estimation
holds:

(2'4'32) ”u”(s)< G(”Q'M’H(s—v) + “u”(s’)) H Vu’ € Je(s)(fﬂ"’) 1
for Yse Re, Ys'e 0.1, where the constant C does not depend on & and u.

PROOF. — Let B, be a ball with radius = 6~ and let {G;}, ;< be a finite cover-
ing of the ball B, such that diam@; < d, so that, denoting OB, = Gy, the col-
lection of open sets {G;}, ;<41 I8 @ finite covering of R}. Let {y;}, ;cy,, be the
partition of identity subordinated to the covering {G;},<;<y4+1, S0 that for
Vu € L=([0, &]; 05 (R%) one has

(2.4.33) uw= Vi

1<IKN+1

Now by Lemma 2.4.8 and the Remark 2.4.9 one obtains

(2.4.34) Julg< 1"% ully<C (1Q(w; w) les—sy + T “"(a')) .

1ISISN+ ISiISKN+1

Applying again the Lemma 2.4.7, and the interpolation inequality (1.1.16), one can
write down

(2.4.35) 19(w;8) | 5—ry <[Qulls—ry + Clluel(s)
Iy uley < Clul),

where the constant ¢ depends only on s, &', v, § and &.
This ends the proof of the Theorem 2.4.10. m

THEOREM 2.4.11. — If for Q € P, the a priori estimation (2.4.32) holds for some
scR® and s'ed, I, '<s, then Qe B,.

PrOOF. — With e K" and ¢(z) € C5°(R}), we will substitute into (2.4.32) the
functions wu(e, o)

(2.4.36) u(e, 2) = exp (te~1z-n) p(®) .
It is immediate by the Leibnitz’s formula that for such functions (e, #) holds
2.437) Q3 e, D)u =& " exp (is™1 &-n)[Qu(@, 1, n) p(@) + &, (e, ®)]

where y,(c, @) € L([0, &]; 07 (R})), suppy,Csuppy and y, = min {1, 9}, y being the
same in (2.1.14).
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It is easy to check that for Voe R3, Vye L([0, ¢]; 05 (R2) holds
(2.4.38) lexp (ie™ @ n) ] = s~ @+ Iyl D2l [ 9]y +- el
where C, depends on g but is bounded uniformly with respect to s€ [0, &] and 5
with [5|>r,> 0.

Indeed,

(2.4.39)  lexp(ie @ n) @l =l 4 67 )0 <eE + = PE) gy =
= g7 @ 8 (T 2 (D P(E) oy [N16%<E + &7 D% Cek 4 D% P(E) o) —
— [T 2 P(E) [ Lop} -

Denoting the difference within the brackets in the right hand side of (2.4.39),
by g(e, n) using the triangle inequality for the norms and the Lemma 2.4.6, one gets:

(2.4.40) lg(e, ;)| < Cefle® ™ ™1 o™ (N 1h(8) oy -
Now, noticing that for ly|>r,> 0 holds:

(2.4.41) le2e™ > — Iyt | < Celple™Y, VoeR,

one obtains (2.4.38) with

(4.4.42) Op <O BT 1PE) oy
where the constant C does not depend on ¢, & 5 and y.

Applying (2.4.38) to both the left and right hand gides of (2.4.32) and taking into
the consideration (2.4.37), one gets after the multiplication by &%y (n)’ %

(2.4.43) <" el < ClQ(@, 1, n) @l + Cpe
where O is the same as in the right hand side of (2.4.32) and C, does not depend

on ¢ and is uniformly bounded when |y|>r,> 0.
Letting & —0 in (2.4.43), one gets:

(2.4.44) = m" el < ClQo(; 1, n) @l

and that shows the ellipticity of @, given that (2.4.44) holds for Vg € C5°(R"), and C
does not depend on neR”. =
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3. — Coercive boundary value problems for elliptic singular perturbations.

The aim of this section is to investigate boundary value problems in a compact
domain for elliptic singular perturbations. We will point out necessary and suf-
ficient algebraic condition, called coerciveness condition, on principal symbols of
the operators for a two-sided a priori estimate for the solutions to the singularly
perturbed boundary value problem to hold in corresponding spaces ). Some
applications and examples will also be discussed.

3.1. Algebraic preliminaries.

We prove in this section some auxiliary statements that will be further used for
establishing a priori estimates for singular boundary value problems.

LisvMmA 3.1.1. — Let Qu(e, &) be elliptic principal symbol of order v, Qoo(&) the principal
homogeneous part of Qu(1, &) of order v, -I- v; and Ag, ') zero of the equation:

(3.1.1) Qo(0y 'y 1) =0

where 90>0, w'eQ,_;.
Then ImA(g, ") %0, >0, Yo' Q,_, and there ewist a rational number ¢ <0
and C(w') # 0 such that

(3.1.2) Mgy ') = doo(00') + 0[Cl@) + 0o(1)], @ -+ oo,
where Aglew’) is zevo of the equation

(3.1.3) Qoo(0’y 1) =0,

and o(1) =0 uniformly with respect to w'c 2,_; as o — -+ oco.

ProoFr. — The coefficients of the family of polynomials
A= @G0, @' A)
are continnous functions of g € (0, co] and o' € 2,_, and approach the ones of the
polynomial
A= Qo(w'y 2)
uniformly with respect to o', ,, as p = + co.
Besides, given the ellipticity of Q(&) in the usmal Petrovsky’s sense, the

leading coefficients of both polynomials A — g™ "Q,, A—>Q do not depend on
w'e 2, and are non-vanishing constants.
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Therefore, according to the theorem on continuous dependence of roots of poly-
nomials on parameters, one obtains:

lim Ao, ') = Ap(w’) -

e—>+ oo

Now, Ao, »’) being an algebraic funetion of p, it follows from the theory of
Puiseux’s series (see, for instance, [3]) that there exist a rational number ¢ < 0
and C(w') £ 0 such that (3.1.2) holds, the number ¢ being rational and continuous
function of w'e Q,_4, it follows that g does not depend on w’. m

Lemma 3.1.2. — Let Qye, &) be elliptic principal symbol of order v, Qo(&) the homo-
geneous part of Qu(1, &) of the lowest degree, degQy= vy, and Ao, w') zero of the
equation (3.1.1).

Then there ewist rvational numbers ¢ >0, ¢a>—1 and Cw'}y %0, j=1, 2, such
that either

(3.1.4) Mo, ") = A(0') + ¢ [Oi@') 4+ 0o(1)], @0

with AY(w") zero of the equation:

(3.1.5) QYw', ) =10
or
(3.1.6) Moy ') =07 u+ 0% Cy(0') + 0(1)], 00

with u a non-vanishing zero of the equation
(3.1.7) Qo(1,0, u)==10.

PrOOF. — Again, since A(g, ') is an algebraic function of p, it can be expanded
into Puiseux’s series.

First assume that A(g, w’) is bounded when p —0, o' €Q,. Then, as it follows
from the theory of Puisenx’s series, A(p, ') has the following behaviour:

(3.1.8) Moy o) ~2g(0') 0% @0,

with some «>0.

The number « being rational and depending continuously on o’e £2,, one gets
the conclusion that « does not depend on w’. Substituting (3.1.8) into (3.1.1) one
finds out that the following relations have to hold:

(8.1.9) a=0, Qo)) =0.

5 — dnnali di Malematica
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Again, the theory of Puiseux’s series asserts that there exist a rational number ¢,
and Oy (w') % 0 such that (3.1.4) holds.
Now assuming that A(g, ®') — co when ¢ —0, writing down

(3.1.10) Moy o)~ P ), wo)#0, o,

and substituting (3.1.10) into (3.1.1) one gets the conclusion that necessarily
(3.1.11) B=1, Qu1,0,u)=0.

Finally, one more use of the Puisenx series theory leads to the formula (3.1.6). =

REMARK 3.1.3. — The ellipticity of Q,(e, &) guarantees that Im A)(«w’) %0,
Imp =40, Yo'e2,.

REMARK 3.1.4. — It follows from the Lemma 3.1.2 that there are precisely v,
zeros (with their multiplicity) of (3 1.1) satisfying (3.1.4), (3.1.5) and precisely »,
zeros (with their multiplicity) of (3.1.1) satisfying (3.1.6), (3.1.7). Those zeros are
further called respectively of the first and second type.

We assume further that Qu(£) is properly elliptic polynomial of order v, 4 v,
in the nsual sense (see for instance, [19]).

DEFINITION 3.1.4. — An elliptic principal symbol Q,(e, &) of order v is called properly
elliptic principal symbol, if Quo(&) is properly elliptic polynomial of order vy -+ vs.

LEMMA 3.1.5. — Let Qu(e, &) be properly elliptic principal symbol of order v. Then
the reduced symbol Q&) is properly elliptic too.

ProoF. — It follows from the definition of the ellipticity (i)-(ili) of singular per-
turbation that QS(£) is elliptic homogeneous polynomial of order »,. For >3 the
class of Petrovsky’s elliptic symbols coincides with this one of properly elliptic poly-
nomials. Therefore, there is a need to prove the lemma only for n = 2.

The principal symbol Q,(e, &) being elliptic, the inequality (2.4.3) with ¢ instead
of g holds, and it can be rewritten as follows:

(3.1.12) €1 Qo(e, &)= CIE[(eb)™, V&, e>0.

In fact, the last inequality has to be valid also for & < 0, given that &”Q(e, £) is
homogeneous in (g1, &) of order v, 4 v,.

Without restricting the generality one can assume that », = 0. Introducing a
new parameter & == ¢! and denoting

(3.1.13) 0oy &) = £ Q&5 Y &),
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the polynomial ¢,(%,, &) in (&, &) satisfies the inequality

(3.1.14) 180(£05 &)= CIE["* (160l 4 |E])™

Besides, ¢q(&,, &) is homogeneous of order », 1 »;.

Consider now the polynomial & — |§|7"2¢,(&,, &) that is a homogeneous function
in (&, &) of order v, which does not vanish when (&, &€ R3\{0}.

If A(&) is zero of the equation:

(3.1.15) |7 q0(2, &) = 0

such that Im A > 0, then the complex number y = — A(— §) is a zero of the same
equation such that Imu < 0. When &e R2\{0}, both A(§) and — A(— &) cannot
meet the real line. Given that the circle |§] = 1 is a connex set in R\ {0}, one can
deform — & to & along this circle, so that £ does not vanish. Therefore, the root
w(&) = — M— &) will be transformed into some other zero of the equation (3.1.15),
say f@(£). Consequently, to any root of (3.1.15), say A(£), contained in the upper
half plane corresponds a root fi(£) eontained in the lower one, which shows that v,
has to be an even non-negative integer. @(%) being properly elliptic in the usual
sense, the number », - », is also even, and, consequently, so it is for v,.
Denote: v; = 27;. Qyle, &, 4) being properly elliptic in the usual sense for any
fixed ¢ € (0, &), it has precisely r, -+ 7, roots in both upper and lower half planes.
None of these roots can meet the real line if & 20, so that the pelynomial
Qo(&1, A) =lim@Q,(e, &, 1) of order y, = 27, must have the same number of roots in

&0

both upper and lower half-planes, given that precisely r, roots of @y(e, &, 1) in both
upper and lower half planes go to infinity as ¢ —>0. =

CoroLLARY 3.1.6. — If Qy(e, &) iz properly elliptic prineipal symbol of order »,
then »,, v; are even non-negative integers:

(3.1.16) v, = 2r,.

Let 1 —Qf (e, &, 2) be the factor of the polynomial A — Qu(e, &, A) that cor-
responds to the zeros of @, contained within the upper half of the complex A-plane,
when &e R*1\{0}, ¢ > 0. Besides, 2 —@QF being well defined up to a coefficient
depending on ¢, &, the latter is supposed to be chogen in such a way that

(3.1.17) lim A=Cst Qi (e, &, A) = &%,

A=>00

LemmA 3.1.7. — Let Qole, &) be properly elliptic of order v and 4 —Q (e, &, A) the
factor of A-—>Q, as described above. Then QF (e, &, 1) is homogeneous fumction in
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(7%, &', A) of order ry which satisfies the inequalities

(3.1.18)  O-([&'| + |1A])"(1 + &&'| + elA) <
<|@d (& & D)< O(I&'] + 1A)™(1 + £l&'] + &]a])"

for any &'e R, any A€ C such that Im A< 0; here the constant O does not depend on
e€[0, o), &e R 1, and AcC, ImA<O.

Besides, for [0, &) (with & sufficiently small) and [&'|<2 the polynomial A —
—>QJ (e, &, A) can be split into the product

(3.1.19) Q&F (&, &, 2) = Q{;(g, &, 2 %(87 &, 4, €€[0,4g) ’§,i<2 ’

where the zeros of the polynomial A — Q) are contained within o compact domain in
the wpper half plane uniformly with respect to € € [0, &), |&'| <2 and the zeros of A — Qg
multiplied by ¢ also are contained in a compact domain in the upper half plane uniformly
with respect to & € [0, &], |£'|<2; the functions (e71, &, 1) -Qf, (€7, &, 2) ~Qg can
be extended as homogeneous fumctions of (e71, &, 1) € (0, co) X RE"I X C respectively
of orders v, and 0.

The leading coefficients of A — Q,1, 1 — Qg being respectively 1 and &, the following
inequalities hold:

(3.1.20) Qaule, &5 )] > O(1E'| + 12)™,
Qaa(es € A)|> O(L + &lg'| + e]A)",

for any &'e R+, any AeC, Im1<0.

Proor. — It is immediate that the roots A;(¢, &) of the equation
Qo(, &, 1) =0

are homogeneous functions of order 1 in variable (¢71, &), given that the polynomial
A —@, is homogeneons function in (¢2, &, 1).
Therefore one can write down with g = ¢|&'|, o'= &'|&'|%:

(3.1.21) Aile, &)y = |E| 456, @)

where A;(o, ') satisfies the equation (3.1.1).

According to the Lemma 3.1.2 either (3.1.4), (3.1.5) or (3.1.6), (3.1.7) holds for
2i(0, ') a8 o — - 0, and there are precisely r, roots i;, 1<j<r, of (3.1.1) satisfy-
ing (3.1.4), (3.1.8) with Im(w')>C,>0, Yo'e R*?, |o'|=1, and precisely 7,
roots A;, r,<<j<r, -+ rs, of (3.1.1) satisfying (3.1.6), (3.1.7) with Tmu;> 0.
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Therefore, one has with some constant C,> 0:

(3.1.22) Im (e, &) > 0pl&'|, Vee[0, o), Y&e R*1, when 1<j<r,,
and

(3.1.23) ImAde, &YV>Che?y, VEe R, Yee[0, o), when #,<<j<ry, -+ 7.
Now if (¢f') = p — oo, one gets by Lemma 3.1.1 and (3.1.21)

(3.1.24) Im (e, &) > Ope1(eE’>y, VE'e R, Yee (0, o], 1<j<ry+ 75 .
The formulas (3.1.22)-(3.1.24) yield

(3.1.25) ImAe, &)= Ohf'|, for 1<j<r,,

Im A(e, &) > Cpe1<e&’>, for r,<j<ry-t7s,

for any &€ R*1, any g€ (0, co)
Now, obviously, one has

(3.1.26) Qe &, ) =TI A— (e, &) TI (eA—edls, &),

1<i<rg I rgtry

where the factors in the right hand side are repeated according to the multiplicity
of the corresponding zero 1,.
Therefore, (3.1.25), (3.1.26) yield:

(8.1.27)  C(I&'| + |A)™(L + l&'| + e|A)"*> |07 (=, &, B>
>C7H|E] 4 |2)"(1 + el&'] + el Al

for any &'e R»1, any ¢€ (0, co) with some constant ¢ > 0.

The homogeneity of @, in (¢7%, &, 1) of order 7, follows immediately from the
fact that (e, &) are homogeneous in (e, &) of order 1.

Moreover, for ¢e(0,g], with ¢ small enough and |&|<2 the zeros A,e, &),
1<j<r,, of the first type and the zeros A,(e, &), 7, < j<r, + 7, of the second one
can be separated each from others by two Jordanian curves contained in the upper
half of the complex A-planes so that the breaking down (3.1.26) into the product
of two polynomials:

(3.1.28) Q(;F(é" &, A) = Q(;'i(‘% &, 2) Q(E(ea &, 2)

with ¢; and @/, having respectively the zeros Ay, 1<j<ry, and 1, <j<r, -+ 1y, 18
a smooth one with respect to the parameters &e R, |&']<2, and £ (0, &].
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It goes without saying that the splitting (3.1.28) is smooth in & for g, sufficiently
small whenever [§'|<C. Of course, g depends on € in that case.
It is quite obvious that @, j =1, 2, satisfy (3.1.20). m

REMARK 3.1.8. — In fact, given the inequalities (3.1.25) and also the obvious
inequalities:

(3.1.29) [4i(e, &)< ClE], 1<,
lAie, E)|< Oe2e>,  1<j<ra-t1s,

with ¢ which does not depend on (s, '), there exists a contour I
(3.1.30) I'={AImi>0, [Rei|=yImA}
such that inequalities (3.1.18), (3.1.20) hold for Ael.

REMARK 3.1.9. — The function Qgi(e, &, 1) in (3.1.19) being homogeneous in
(e, &', ) of order 0, one concludes immediately, taking into aecount (3.1.5), (3.1.6),
that the zeros of the polynomial

=@, oo’y 2)

are contained in a compaect domain within the upper half of complex A-plane, when
w'ef, , and pe [0, o,] With g, sufficiently small.

3.2. Singular perturbations in R .

We will consider here a boundary value problem for singularly perturbed ordinary
differential equation containing two parameters: g€ (0, g] and &'e R

Let Qu(s, &, &,) be properly elliptic principal symbol with constant coefficients
of order ye R3 and let v, = 2r;, j =1, 2, r; being non-negative integers.

Let by(e, &, &,) be principal symbols of orders u, € R, u; = (y;, m;, ps), 1<j<
<%, r,, where, of course, m;, p; are non-negative integers. Besides, we assume
that b,, are ordered in such a way that the sequence {m,}, 1<j<r, -+ 5, is nOD-
decreasing and, moreover, we assume that

(3.2.1) My <My < oee KMy, My K on e KWy
We denote
(3.2.2) =o' with o' =E&[F],

so that |£'] = (&".
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The following boundary value problem on a half line R, = {¢{ > 0} is basic in
investigating boundary value problems for singularly perturbed Partial Differential
Equations:

(3.2.3) Qole &, D)u(t) =ft), teR,
(3.2.4) To(biole, &, D) ull)) = @;, 1<j<rat 1,

where by 7z, we denote the restriction of function v(f) to the point = 0.
Our first step is to study the homogeneous problem (3.2.3), (3.2.4), i.e. when
f(t) = 0, which we rewrite in the following fashion:

(3.2.5) & Qule, &, Dy ult) =0 y teR,
(326) JTO(EWbm(E, é’, .Dt) M(t)) == EW‘Py‘ ] 1<j<"'2 _|_ 73 .

The solution u(f) of (3.2.5), (3.2.6) is sought in the class of functions on R, decreas-
ing as 1 — -} oo,

With 21— Q7 (¢, £, 1) the polynomial in the factorization of A —Qy(e, &, A)
defined above in the previous section, the general solution of (3.2.5) in the class of
functions decreasing as ¢— -4 oo, can be written in the following fashion:

1 M, é,’ 1) .
w(t) = -— | ~5—=— eXDp (itA)dA
W= 5ai ) i 8,0 P U
where I' is any Jordanian contour, which encloses all the roots of @/ (e, £, 4) and
A—M(e, £, 2) is a polynomial in A.
Introducing a new variable 1-><(&'>1 and denoting ¢ = &(¢’> ,the last formula
becomes

1 [(M(e, 0,0 4) s et
(3.2.7) w(t) = 2—m.r e, 'y ) exp (i1 <&'> A) dA
where 1 — M(e, g, w’, ) is again some polynomial.

The advantage of using the formula (3.2.7) is that the contour I" can now be chosen
independently on g>p,>0 and w'e®, if g, is any positive constant. Indeed,
aceording to the Lemma 3.1.1 the zeros of 1 — @, (9, ®', 1) are contained within
a compact domain in the upper half plane and they have as limits the corresponding
zeros of the polynomial 1 — Qg (', 1), where

G5’y 2) = lim ¢~ (g, 0, 4) -

0>+ o

We will consider first the case when <0, where g, is sufficiently small.
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In this case, as asserts the Lemma 3.1.7, the polynomial 4 — @, (¢, ®', ) can
be broken down into the product of two polynomials Qf(¢0, w’, 1), j = 1,2, the
factors in the product being smooth in g, w’. Besides, the zeros of Qg (o, w’, A) can
be enclosed within compaet Jordanian curve contained in the upper half plane
say Iy, which does not depend on g€[0, g,] and w'e R, |w'|=1, while the
zeros of Qf(o, ®', A) grow as 1/p when ¢ — 0 and have imaginary parts growing
to | oo in the same faghion.

Using the splifting (3.1.19) one can rewrite the formula for general decreasing
at infinity solution of (3.2.5) in the following way:

1 M, y @y ,, A Ry .
(328  ul) =5 —@%jz%exp (<€ 1A) dA+
L

L M,y(e, 0 (D’,})
2ai ) Q& ow'y A)

I,

+ exp (de1eAd) dA

where the contour I, is also a compact Jordanian curve in the upper half plane,
which contains all the roots of A — @Q.5(1, g, ) and does not depend on g, w'e
€ [0, 0] X 82y _1.

Now, the polynomials 4 - M(e, g, w’, A) of orders »;— 1 at most, j=2,83 in
the right hand side of (3.2.8) have to be found in such a way for the boundary con-
ditions (3.2.6) to be satisfied.

Besides, it is quite obvious that there exist limits

(3.2.9) 11151 Qale, 0’y 4) = (o', 4)
Q‘—)‘

(3.2.10) 1in; Qn(1, o'y 1) = Q5:(1, 0, 4)
Q-—)

where A — Q3" (w', A) is the polynomial in the factorization to the reduced symbol
2 —>Q%(w’, A), which corresponds to the roots of Qg(w’, ) contained in the upper
half plane when w'e 2, ,.

We will also denote:

(3.2.11) QT (A) = Qe_;a? 0, 2) .

One finds immediately that @+(1) is the factor in the factorization for the poly-
nomial 1 — A7"2Q,(1, 0, 1) which corresponds to the roots of 27"2Q,(1, 0, 1) contained
in the upper half plane. Of course, the ellipticity (2.4.1) of Q,(¢, §) guarantees that
all the zeros of 17" Q,(1, 0, 1) are non-real numbers and the proper ellipticity says
that the number of zeros contained in the upper and lower half planes is ;.

Now we will restrict the class of boundary operators in (3.2.6); the restrictions
below will enable us to establish a two-sided a priori estimate for the solutions
of (3.2.5)-(3.2.6).
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Denoting by bj(&', 4) the reduced symbols for b,y(e, &):

(3.2.12) b%(&'5 4) =‘}i£)1 ebyle, &' 1),

and by b;(A) the symbols:

(3.2.13) b;(A) = b,(1,0, ),

we put the conditions:
ConpITION 3.2.1. — The polynomials

(3.2.14) A=, 2), 1<j<n

are supposed to be linearly independent modulo Q2 (w', 2), Yo'e Q,_s.
CoNDITION 3.2.2. — The polynomials

(3.2.15) A=bi4), n<j<ntn

are supposed to be linearly independent modulo Q+(A).
Let

(3.2.16) Bio(e, &'y A) = &"bs(e, &, )

With the notation (3.2.16) and the Conditions 3.2.1, 3.2.2 being fulfilled, the poly-
nomials

(3.2.17) A—=Bjlo,w', 4), 1<i<r,
are linearly independent modulo Qg (g, ®', 1), as well as the polynomials:
(3.2.18) A=by(, 00’y 1), F<<jgra-t1y

are linearly independent modulo Qg(1, e’ 1), for Va'e R+, |o'|=1, Yo€[0, g],
it g is sufficiently small, given the continuous dependence of all these polynomials
on the parameters o0, g,] and w’'e R, |w'| = 1 and the compactness of the set
Q.1 %[0, 0] in R~.

Consequently, there exist polynomials
(3.2.19) A—>Mi(o,w's Ay, 1<j<n,

of order <r,, and the polynomials

(3.2.20) A—>M(pw',A), r,<j<ry-+7s,
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of order <7, which depend continuously on the parameters (p, ') € [0, go] X 2n_;
and satisfy the orthogonality relations (see, for instance [19]):

1 (B o'y A) Mo, »', A .
(3.2.21) %f ’“°(9’Q§1’(9’)w,’(§)’ Mg =5, 1<k, j<r,
and
b ) M (o0, A .
(3.2.22) -f il ’50‘:1’ Qw’(f)“’ Yan— 6y, r<k, j<r, 1,

where §,, =1 and J;; = 0 otherwise.
We seek the solution to the problem (3.2.5), (3.2.6) in the form:

(3.2.23)  w(t) = 1<Z<T 15 f @___Q?_a_’_’_i; exp (¢ <&'>tA) dA +

1 Milew', 2)
r,<y<z'rg+1‘allpa27m @1, ow’, A)

2

-+ exp (ie~1tA) dA
where u; = 9;(0, ®’') have to be found.

Substituting (3.2.23) into the boundary conditions (3.2.6), using the homogeneity
and the orthogonality conditions (3.2.21), (3.2.22), one gets:

z @0”1— bro(1y o'y A) M;(ow’, A)
1y <j<ratra " 271 Qg'z(l; wa’ )

dA = ere (&g,

(3.2.24) y o™

for 1<k<r,, and

1 Biolg, @'y 1) M (0, ', 4)
3.2.25 ok j=— '
( ) ¢ 1<i<'r2w 2mi Q;‘)—I(Q’ 'y 4)

I,

d}. + "l)k — 8?k+m1c¢k

for ro<k<ry-+7;.
Introdueing the notations:

1 [ b1, o0’y A) M(pw’, A) .

3.2. ; ) & <k<r <

(3.2.26) (0, ') ng:f ng(l’ le’ D ai, 1<k<r,<i<rs+ 174
T,

and

1 Biolo, o'y 4) Mi(0, o', A)

%F Qailey o'y 4)

(3.2.27)  anlo, @) = b, 1<j<r,<k<ra+rs.

the gystem of linear equations (3.2.24), (3.2.25) for y, can be rewritten in the follow-
ing fashion:

(3.2.28) (Im diag (™)1 4o, w’)) - (diag (8”‘<<f'>‘”*)§‘)

diag (em)pip Ay (e, ), I, diag (e7+tm)peye
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where I, is identity in Hom (C"; C"), diag(e,) is diagonal matrix having the
complex numbers ¢,;, I<j<m, on its principal diagonal, and the matrices 4,,(¢ ')
with the elements (3.2.26) and A,(p o) with the elements (3.2.27) depend con-
tinuously on (p, w') €[0, o] X 2,_, Wwith their values in Hom (C™; C™) and
Hom (C™; C™) respectively.

Let us denote by 7

o,w" )

(0, w') €0, go] X £2,,, the class of matrices of the form:

0, o=*4;:(0, w’))
’

3.2.29 T =1 ( )
( ) e T Qﬂ-An(Q; w’), 0

where 7, - € Hom (C"**"s; C™**"), Au(0, '), Au(e, ®') are continuous functions of
0, @' €[0, go] X 2,_, with values respectively in Hom (C"; C™) and Hom (C™; C").

LeMwmA 3.2.3. — If 0<a <<f then for o, sufficiently small there exvists the imverse
T o to the mairiv (3.2.29) which has the form:

By(o, »'), 0 0, 07*Bis(p, ®")
3.2.30 Tl =1 ﬂ—“( me o ,) ( ! -
( ) @ + ¢ 0, Bza(@y w') + Qﬂle(Qa [ )7 0

where B;,(g, »') and By(e, w') are continuous functions of o, w' &[0, po] X 2,_; with
values respectively in Hom (C7*; C") and Hom (C™*+; C*), Hom (C"+; C™*).

Proor. — First of all, it is immediate that

dety@’w, = det (Irz - Qﬂ—“Alz(Q’ w,)Azl(Q? w’)) =1+ O(Qﬁ_“) y e—>0

and, consequently, the inverse matrix J ;af, exists for g, sufficiently small. Let us

denote by K(p, »') the matrix with the block structure

0, g7 4.5(0 w’))
3.2.31 K(g, ') =" s .
( ) (Q’ ) (QﬂAzl(Qy 60,), 0

Given that for matrices with block structure the multiplication is performed as
though the corresponding block-matrices were numbers (see, for instance, [7 ]) , one
finds easily, for any integer p > 0:

(AIZAZI)p7 0)
3.2.32 K2(p, 0') = p(ﬁ—or)( )
(3:2:32) (@ @) =N, Unduy

Therefore the Neumann’s series for 7, 1.
yg—:;’ = (I + K(g, w,))_l =I4 z (_ K(p, wl))j
i>1

converges uniformly with respect to (g, ') €[0, go] X £2._, if g, is sufficiently small,
which leads us immediantely to the form (3.2.30) for the inverse matrix 7, (*). =

(*) Another argument which can be used in order to prove the Lemma 3.2.3 is the
multiplication of 7, ., by I—HK(p, w') and the use of (3.2.32) with p =1, so that
T o = I —K(g, ') + 0(gF~*), g — 0, with K(o, ) defined in (3.2.31).
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With ¢ = (¢', ¢"), '€ C", ¢"c C™ we introduce the notations:

(3.2.33) xrz d_ia.g (87k<§1>—mk)rz / M = {MK ;aecra
%/1 — diag (87k+m15):::ll‘_ff(p , M7 = {MK}Zii? cC",

Applying the Lemma 3.2.3 (with « = m, , f =m, ,,) and using the notations (3.2.33)
one can write down the following formula for the solution %(f) to the problem (3.2.5),
(3.2.6) valid for g, w'&[0, g] X 2,1 With g, sufficiently small:

(3:2.34)  ult) =5

f [(x'4 0f*Buy')- M'+ 07*Byy" M'NQs1) " exp (i <E')14) dA -

27”/ f[ '+ 08 %8By, ") M"4- 08By '+ M"](Q&) exp (le1tA)dA

where o« = m,, f=m, ,, and a-b= 3 a,b,, with a,beC" {cR,.
Now our purpose is to estimate the following norms with parameters of the
solution u(f) given by (3.2.34):

(3.2.35) [l = 0L <8 <ed) Ui 1o, )

where (Ju)(f) is an extention of u(f) on the whole line ¢ R, (14)(§,) = F, ¢ lu and
the infinum is taken over all possible extention operators I.

Tt is well known that the norm in the right hand side of (3.2.25) is equivalent
to the following one (see, for instance, [5] or [211}

(3.2.36) lul e = e TH(E, + <8 D)k, + 1<eED™ Vg bl priar,,

where lyu(t) = 0 for <0, lyu(t) = w(t) for ¢> 0, and II* is Fourier transform of the
multiplication operator by the characteristic function of R, .

For ve 8(R,,),IT+ is Cauchy integral type operator which ean be written in this
case in the following fashion:

1 ¥(1n) @1
2. *¥(E,) = lim o " 2w ) En—ma—io
(3.2.37) 1T+ v(£,) 6_?1102%,]5”_%“@.3 201 ) &p—nn—io
R

1t projects functions from L*(R; ) onto the subspace of those functions in this space
that can be extended ad analytic function onto the lower complex half plane-
Imé,<0.

Taking the Fourier transform of l,u(f) with u(f) given by (3.2.34) for te R,
we will have to compute (or to estimate) the following projections (*):

(3.2.38) wy(&n) = ITH(E, - 1<ED) sk + § <8 D) (£n— A<ED)

(*) We recall that [; is extension by zero for < 0.
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and
(3.2.39) wy(E,) = IT*+ (&, - T<E D) (e -+ T (€ D) (&, — Ae~2)!

where A is contained within Iy or I} and, therefore, ImAi>C,>0, |ij<C with
some positive consfant €,, €. We start with the projection (3.2.38).

For s, <%, s, + 8 <<% the function in the right hand side of (3.2.38) under the
IT+ sign belongs to L,(R, ). Therefore,

(3.2.40) [y |, ) <[1(En A <ED™) (68 4 $<eE D) (B — A<ED) M mams <
< G<§/>sz—%<£§/>ss< 01 <§/>sa——é’

where (; does not depend on se[0, 5], §&'e R*1, g[0, gol.
Now assume that s, = n, | o, 8 - 83 = 75 - o5, Where n,, n, are integer m —
= max {#y, 0y} >0, and a; < }.
Using the formula
52.41) 1 (A€ (A4imEm 1
Ea =&Y o<kEm-1 (GaFAKED) T (G, ED)m Ea—AED

and noticing that
(3.2.42) ITH(E, + iED) " F ek, + idek>) =0

for VE, s,, s, (because the function in (3.2.42) is analytic in the upper half plane and,
consequently, its inverse Fourier transform is a distribution whose support is con-
tained in R_= {{<0}), one can write down for w,(£,) the following expression:

(3.243)  wy(Ea) = ITH(En + 6CED)"™(edn + i CE/) (A + ) (&Y™ (En— ACED),

Given that s,—m <%, 8,4 s;— m <}, one gets again the estimate (3.2.40) for w,,
in this case, too.

Now we will estimate w,(&,).

Again for s,>— 1, s, + s;,<<1 the function in the right hand side of (3.2.39)
(under the II*+ sign) being in L2(fR§n), one can write down:

(3.2.44)  wylm, ) <|(&, + 5<ED) ek, + i<eE D) (6, — A6 e,y < O,
where € does not depend on e€[0, g,], &€ R, 0|0, gl
If s, 8= m - « with integer m >0 and « < 4, then using again the for-

mula (3.2.41) with e~ instead of {&'), one gets for w,(&,) the same estimate (3.2.44) (*).

(*) The same argument can be used when s, << —1%.
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The inegualities (3.2.40), (3.2.44) and (3.2.34) yield:

(3.2.48)  [ule <OLe™ <& (iy/|+ e 717D + &Iy’ | + 2] <

<0 3 ernyrigl g 3 et 4

1<ig<r, 1 <jLrz 4Ty
+ Z ew—sx+ﬁ—s=+%<§f>ﬂ—-m1l%|+ z ew—s;+w—sg+%l%|)
1<i<rg ro<j<ret1;

where the constant € does not depend on £€[0, &], &'e R, g0, g,] and u, @;.
For s, satisfying the inequalities:

(3.2.46) 2t h<si<f+}

the last estimate can be rewritten in a simpler equivalent form, given that the
second and the third sums in the right hand side of (3.2.45) can be estimated
respectively by the fourth and the first ones. In this case, when (3.2.46) holds, the
estimate (3.2.45) becomes:

(3.2.47) ]]u]l(“:)’e< 0[ Z g4 <§/>sg—m1—if I%I + 2 gYitm— s+t kpyl] ,

1<i<rg rg<i<ratrg

where the constant C does not depend on ze[0, &), £&'e R*1, &[0, ], 4 and ¢;.
We have proved the following statement:

LEMMA 3.2.4. — If Qyle, &) is elliptic principal symbol of order v and principal
symbols bj,(e, &) of orders p; = (y;, m;, p;) satisfy the Conditions 3.2.1, 3.2.2, then
for o= e<{&'>< 0, with o, sufficiently small there exists a unique solution to the prob-
lem (3.2.5), (3.2.6) which satisfies the a priori estimate (3.2.45). If in addition s,
satisfies (3.2.46), then for the solution u(t) to the problem (3.2.5), (3.2.6) the a priori
estimation (3.2.47) holds.

REMARK 3.2.5. — Given that 1< (e£">®<1-0f, one can rewrite the estimate (3.2.47)
in the following equivalent form:

(3.2.48)  Julde< 08_31[ S I E Y T g |
1<igr,
+ E 87,+m,——32+§<65/>sa+s,—ma—m—% l%‘l] .

Te<i<ratTs

Now we will investigate the case when g¢>g, where g, is the positive number
fixed above in the Lemma 3.2.4.

In this case the roots of the first and second type to the polynomial 2 — Qg (g, @', )
cannot be separated from each others and the solution to the problem (3.2.5),
(3.2.6) has to be sought in the form (3.2.7) with g>g,> 0.
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More precisely, according to (3.1.18) @/ (o, w’, ) grows like o™ as ¢ — oco.
Therefore, we seek the solution u(t) to the problem (3.2.5), (3.2.6) in the form

. __1_ M, o, Colyl_) el
u(t) = 27”:[' oG (0, o 3) exp (it &> A) dA

where the polynomial 4 — M(g, g, @', 2) has to be found, and the contour I' does
not depend on ge[g,, 4+ <], ' €2, ;.
The roots of the polynomial @, (g, »’, ) being of the form (Lemma 3.1.1)

(3.2.49) A0, 0') = @ Ao’} = Ai(w') + O0("), o~ oo

with some p > 0, the contour I" can be chosen independently on ge[g,, o], ®'€2,,.
It turns out from (3.1.18) that there exists the limit

(3.2.50) lim ¢="Q¥(0, 'y A) = Q& (', A) ,

o>+ 0

where A — Qg (', A) is the polynomial in the factorization for A —> Qu(w', 1), Which
corresponds to the roots of Q. (w’, 1), contained in the upper half of the complex
A-plane, when w'e 2,,.

Denoting by b;,(£’, ) the homogeneous symbol of b,(1, &, 1) of the highest
order m; -+ p; one gets immediately

liin 071 9bio(0y 'y A) = bgo(w’y A)y 1Py 15
g—>+ o0

We restriet the class of boundary operators in (3.2.6) by putting the following
conditions:

CONDITION 3.2.6. — The polynomials

(3.2.51) A—>bilo, 0y ), 1<j<rs+ 7,

are supposed to be linearly independent modulo Qf (o, ', 1), 0€(0, + o), Yo' € 2,
ConpITION 3.2.7. — The polynomials

(3.2.52) A b, A), 1<j<rs--s

are supposed to be linearly independent modulo Qgh(w', 4), Yo'e 2,_,.
As a consequence of the conditions 3.2.6, 3.2.7, there exist poltnomials

(3.2.53) A—>Mip, 0y A), 1<j<r,+n
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of order < ¢, r;, which depend continuously on ge[g,, + o0}, w'€ 2, ; and have
a finite limit when g — - oo, the latter being confinuous functions of w'e 2, ,
such that the orthogonality conditions are fulfilled wuniformly with respect to

0€lon, + ool '€y
1 071,40, 'y A) My(0, 'y A)

3.2.5 — = j j g
( 2 ‘)4) 27I’L Q._TSQ;;_(Q, C()I, Z) dl 6ka I l<k7 7<7‘2 + 73 bl
r

Yo'e 2,4, Yoe[0, 4- ].
REMARK 3.2.8. — Ag it was mentioned above, one has

(3.2.55) lim g=?e*¥sh(0, 'y A) = brge(’y A) -

o>+ oo

Therefore, for g = - oo the orthogonality condition is this one for the poly-
nomials (3.2.52).
We seek the solution w(f) to the problem (3.2.5), (3.2.6) in the form:

1 M (0, @', )

3.2.56 U 1) = ) e
( ) ) 1<5<7‘z+?‘sw 2mF o Q% o, »'5 4)

exp (it¢&'y 1) di

where v, have to be found from the boundary conditions.
Substituting (3.2.56) into (3.2.6) one gets using the orthogonality conditions (3.2.54)
and the homogeneity of &™by(e, &, 1) in (e, &, 1) of order my:

(3.2.57) po= T, Lk 1y

Hence, the formula for «(f) takes the form:

(3.2.58) ult) = AR EP, (i1<&"y 2) 42

 2ai) Q%
)

with vectors ¢ = {y;} and M = {M} defined by (3.2.57), (3.2.54). Besides, M(e, »’)
depends continuously on g, w'€[g,, + o0) X 2., and is uniformly bounded for
Q, COIG [QO’ + oo] X‘Qn-l-
We stress again that the contour I" does not depend on g€ [g,, 4 oo] and w'e Doy,
Bstimating the norm [u|l, . as we did it before for w(&.), when we had
e €[0, g,], one finds out

(3.2.59) ”“”(:-),l,:' < Qe <£r>sg—-% <£E/>ss le <0 Z gl <5/>sz—-m1—% <8§>ss—m [(PI

1<igrg+rs
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with & constant ¢ which does not depend on e€[0, 5], &'e R*1, p>0,>0 with g,
fixed above.
Given that for 9 =¢e{&>>p,>0 and ee(0, 5], {g,<1), there is the equivalency

(3.2.60) EHr<eed <1 - 057) <62
one can rewrite the estimate (3.2.59) in the following fashion:

(3.2.61) [lhe<0( 3 Wpet+ 3 Blone)

1<i<ry Ta<JKTa+7Tg

with Tjy g;€E 5{;3,
775:8"‘,“]"“%327 €= (0,1, 0)

;= 1;+ (sa—m;— e, e=(1,—1,1)
and the following notation:
(3.2.62) [Py, =& <E D Y g] o = (04, 04, 03) € R,
Therefore we have proved the following statement:

LeMma 3.2.9. — Qq(¢, &) being clliptic symbol of order v and principal symbols
bjole, &) of orders u; = (y;, m;, p;) satisfying the conditions (3.2.6), (3.2.7), there exists
for 9=0,> 0 unique solution u(t) to the problem (3.2.5), (3.2.6) which satisfies the a
priori estimate (3.2.61) with a constant O which might depend on g, (fixed above in the
Lemma 3.2.4) but not upon c€[0, &], §c R*, @; and u.

LeMMA 3.2.10. — Both solutions to the problem (3.2.5), (3.2.6), constructed for
0 < o<, and 0>p, coincide for o = g, and are continuous functions of the para-
meters p >0, &'e R, g(0, &)

Proor. — Immediately follows from the uniquess of the solution to the prob-
lem (3.2.6), (3.2.7) for p<<p, and p>g,, and from the theorem on continuous depen-
dence of solutions to ordinary differential equations on parameters. w

Therefore, when « -+ §<<s,<f-+ 4% with e« =m,, f=m, ,, the a priori esti-
mate (3.2.61) holds for the solutions to the ptoblem (3.2.5), (3.2.6) uniformly with
respect to the parameters ge[0, + oo], c€[0,g], £&'c Rr-1 given that for o< g, the
estimate (3.2.61) coincides with (3.2.48).

Now let s,>f+ 4, f=m, ;. Then the estimate (3.2.45) can be rewritten in
the following equivalent form:

(3.2.63) I[uﬂ(*;),g,<0( S grmarhostbgrnbomie | 4

1<i<sry
Yi—8+mi—sa+%
+ 3 orermeetp)) o 0<e<a,
Te<i<retrs

6 — dnnali di Malematica
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given that in this case holds:
(3.2.64) Prcani <§’>32_mi"‘§~ < Q%a—ﬂ_% 8’}'1—814-5——32-{—-} <§/>ﬂ-—m‘,.

On the other hand the estimate (3.2.59) for p> g, can be rewritten in the fol-
lowing way:

(3.2.63) [lbe<0( 3 Ipderst 3 lodone)

i<y re<i<rgtry

with
Q]:Tf—}_(SZ—ﬁ—%)e’ e=(1,—1,1),

the vector subseript 7;, o;, ¢ being the same as in (3.2.61) and the norms [p],
defined by (3.2.62).

Given that for o €[0, g,] the factor <(sf')>* for any se R is uniformly bounded
with respect to [0, &], &e R»1, one gets the conclusion that (3.2.65) holds for
any g € [0, + oo] with a constant ¢ which does not depend on &€ [0, &], ¢ €[0, -} <],
&e Rr1, y and ¢;, the constant g, being fixed in the Lemma 3.2.4.

Let s,<a+ %, «=m, . Then the estimate (3.2.45) can be rewritten in the
following equivalent form:

(3.2.66)  Ju]he<O [ S @TuE T g
1<ige, )
+ z S‘Vj—s,+mr-oc<E/>32—rx—-=1r’(p§]] , 0< 0< 0o,

ra<J<rat7s

given that in this case holds:
(3267) 871—-sl+m;—sz+%<gg—s”+% sw—sl+mj—o¢<§/>sg—ac—%.
Rewriting the estimate (3.2.59) in the convenient form one gets:

(3.2.68) [Wge<0( 3 Wloet 3 oo

<igr; ra<i<ry+rs

with

Oi=0;+ (a—s: 4 %) ¢,

the vector subscripts 7;, o;, ¢ being the same as in (3.2.61) and the norm [g],, .
defined by (3.2.62).
Again the constant ¢ in the right hand side of (3.2.68) does not depend on
e€[0, 5], &€ R, u, @;, the constant g, > 0 being fixed in the Lemma 3.2.4.
We will combine the conditions 3.2.1, 3.2.2, 3.2.6, 3.2.7 and later call them the
coerciveness condition.
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COERCIVENESS CONDITION:

(i) The polynomials
A bgpo(a)ly A, 1<j<n

which are homogeneous symbols of (the highest) order m; to the reduced boundary con-
ditions, are linearly independent modulo Q3* (o', A), Vo' € 2._,, where Q3 is the
factor in the factorization of the reduced symbol Qp which corresponds to the roots of @
contained in the upper half of the complex A-plane, when w'e 2,_,.

(ii) The polynomials
A—=bi{d), rn<j<r.d7n,

bi(A) = by(1, 0, A), are linearly independent modulo Q+(A), where Q+(2) is the factor
of the polymomial A7 "Qy(1, 0, 1) which corresponds to the roots of A7*Q,(1, 0, 1) con-
tained in the upper half of the complex A-plane.

(iii) The polynomials
A —=>byg(00’y A) 1<j<ra+7;

which are homogeneous parts of the highest order m;+p, of the polynomials b,o(1, w', A)
are linearly independent modulo Qgy(w', 1), Yo' 2,_1, where Qgy(w’, 4) is the factor
of the homogeneous polynomial Que(w', A) of the highest order v, + v, to the polynomial
Qu(w’, A), which corresponds to the roots of Qulw’, A) contained in the upper half of the
complex A-plane.

(iv) The polynomials
A=>bylo, 0’y 2), 1<j<r+n,

are Unearly independent modulo Qf (9, w', 1), Vo€ (0, +o0), Yo'e R, ,, where
Qd (0, w'y 4) is the factor of Qo(e, 'y A) which corresponds to the roots of @, contained
in the upper half of the complex A-plane.

Finally, we have proved the following main statement:

THEOREM 3.2.11. — The polynomial Qy(e, &) being elliptic of order v and the poly-
nomials by(e, &), of orders u;, 1<j<rs + 73, satisfying the coerciveness condition (i)-(iv),
there exists unique solution to the singularly perturbed boundary value problem (3.2.5),
(3.2.6), which satisfies alternately the a priori estimate (3.2.61) when a + % << s, <f+ %,
the a priori estimate (3.2.65) when s> + L, and the o priori estimate (3.2.68) when
sy <o -+ &, with a constant C which does not depend on &€ [0, &), &€ R*?* and @,, u.
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Now our aim is to estimate the norm |- ||} .- of the solution u(t) to the problem
(8.2.3), (3.2.4) with second member f(#) which will be supposed to have a finite norm
I+ ¢y the norms | -] . being defined by (3.2.35) (or, equivalently, by (3.2.36)).

We have to put some restrictions on s,, s; for the traces of #{f) and its derivatives
up to the highest order in the boundary eonditions (3.2.4) at the point ¢ = 0 to exist.

From now on we assume that the following condition is fulfilled:

(3.2.69) 848> max {m;+p;}+%.

1Ki<ry+1y

According to the definition (3.2.35), there exists an extention If(f) for f(f) with
the finite norm [+ ¢ ¢,

(3.2.70) 1 g0 = e <EP** <€ > Yl 1o,

where lf= By 1.
We define »(f) to be

(3.2.71) () = F 500 (e, & EVF e, Uf
so that »(f) is the solution of the equation (3.2.3), such that
(3.2.72) 1915 <12l < O Do < Oy 11

with some constant O, which does not depend on ¢€[0, g], &e R
Of course, (3.2.72) holds iff Q,(¢, &) is elliptic of order ».
Looking for the solution to the problem (3.2.3), (3.2.4) in the form:

(3.2.73) u(t) = (1) -+ w(t)
and denoting

(3.2.74) Ri(t) = biole, &, Do) w(t)

we will have to estimate no(h,-(t)) multiplied by suitable function of &, &'

First leb a + § < s, < B + 1. Using (1.2.10) (with p = 1 and s — u, instead of s
one finds out for 1<j<r,:
(3.2.78)  [mo(h) ey, = &7 &Y™l Y g (By) | < OBy (g, < O o -

Now using (1.2.13) (with s— u; instead of s), one gets for r,<<j<r, + 75

(3.2.76) [n()(h'j)](o'j),é‘ = ghtt m:—s;—sﬁ%<85/>sg+sa—ml—m~% Iﬂo(hj)l < 0” h’, ”(s_m),é,g 0”"’“(3),6"
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Consequently, assuming (3.2.46), we obtained for the solution u(¢) to the prob-
lem (3.2.3), (3.2.4) the a priori estimate:

(3.2.77) H“H(j),e'<0(ﬂf lo—ne+ 2 [@lape+ 2 {%](d;),s') s

1<i<rg re<i<ry+71s

with 7;, o;€ R3 the same as in (3.2.61) and a constant ¢ which does not depend
on ¢€[0, &), &e R*1, u and ¢;.

Now, let s,>p -+ 4. Given that f— m,> 0 for 1<j<r,, one gets using (1.2.10)
(with p =1):
(3.2.78) [_»;;;o(h,:’,)](91)’f — o sty tp+E <5/>ﬁ—m:<8£r>s.+s;—m—ﬁ—§ [gzo(hj)[ <

<0 h; ”(g;+¥;e,),§’ < G“V"(s+4ﬁe),}s' .
where we denoted:

(3.2.79) dy=(s,—B— 1) .

We use here the fact that the order of b, is p; and that g, 4+ u; 4 46, = s 4 Age.
Using again (1.2.13) (with s,==0) one gets for », + 1 <j<r, } 73
(3.2.80) [72o(;) o, < Clle™™ 7 e +m’<8§>si+ss_m_m%j [ LA(Re) S
S Ofe™ i rMENM EY T T g,y =
= O] (e®)m Pt em ot P Bl T T g, 5 <
< Olemsmantbrigyftt <€§>s’+s"—ﬁ_%ﬁ”L=(3{§") = Olv](s+ a0),8 -

Consider now the term j=17»,-1-1, m;= .
Using (1.2.4), one can write in this case: (with ¢ = (&) (ef'>"Y)

(3.2.81)  [my(Ry)]eyye < O(1 + fngl) [e™o P FEEN Gy ¥ d ]y g (<
<O 4 [Ingl) [ e eyt g = O 4 [lng)) [v] s a0 -

Therefore, for s,>f -+ 4, the following a priori estimate holds for the solutions to
the problem (3.2.3), (3.2.4):

(3.2.82) luld< C[(l + lIJlQI)%”f”(-:-v-(-dﬁe),E’ +1<Z e, dore, + 2 [‘Pf](aj),g']

Iy ra<j<rytrg

with Ay = (s,— f—3), e= (1, —1,1), ¢ =e{&D<e&H
We point out that s A,1>s if 4,50.
Finally, consider the case s,<<a -+ .



86 LeoNID S. FRANK: Coercive singular perturbations, I

Agsume first that s,— m;— > 0 and estimate the corresponding term. We will
have, using (1.2.10) (with (p = 1):

(3.2.83) (o33 ke, < Ol o6 < Ol¥ (a1 -
Now, let s,— m;— <0 and 1<j<r,. We can write in this case:

(3.2.84) [ﬂo(h’a')](rj),é’ - e—sl+71<§l>sr~m1—%<8§/>s=—mlﬂo(hj)l<

<7 (e T =Y g (B
Using (1.2.13) with s— u; instead of s, the last inequality becomes:
(3.2.85)  [my(M) ey, < O™ ¥ b, lts—p, e < Ot~} 91,60 < Ol s+ tnep) 5
where we denoted:
{3.2.86) d,y=(e+3—8), €=(1,0,0).
If $,—m;— 1 <0 and r,<j<r,-+ 75, we can write:

(3.2.87) [no(hj)](dj),é’ — —31+7:+m1—a<§1>s,—a—% <8§/>s,—w—m1+ocln0(hj)l<

<8~81+y;+m3—-ac<8§z>s,+sx—-m;—p;—%|%0(hi)‘ .
Using again (1.2.13) with s— u; instead of s, one gets:
(3.2.88)  [mo(l) a0 < O H Iyl g e < O ol = Cl¥ (64 ueyrs

with A, defined in (3.2.86).

It iy easy to check that 6, = o; -+ 4,e.

Therefore for s, <« -}, the following a priori estimate holds for the solution
to the problem (3.2.3), (3.2.4):

(3.2.89)  Julge< ¢ (HI’ hé—st duerr =+ 1<E Pdepe+ 2 [‘Pa'](cﬁda),?)

i<, 1, <i<r,+ 73

with 7;, o; the same as in (3.2.61) and 4, defined in (3.2.86). Of course, the constant ¢
does not depend on £€[0, g], &e R, u, f and ¢;.
We have proved the following main result:

THEOREM 3.2.12. — The polynomial Qy(e, &) being elliptic of order v and the poly-
nomials byy(e, &) of orders u;, 1<j<r,-+7s, satisfying the coerciveness condition (i)-(iv),
there exists unique solution to the problem (3.2.3), (3.2.4), which satisfies alternately
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the a priori estimate (3.2.77) when o + < s, <f -+ %, the a priori estimate (3.2.82)
when 8,8 -+ L, and the a priori estimate (3.2.89) when s, << o -+ L, with a constant C
which does not depend on g€ [0, &], &'e R, f, p; and u.

REMARK 3.2.13. — When s, = o + %, there is a logarithmic coefficient which
multiplies |f[({_, 1 40, 2like to the corresponding term in (3.2.82). By the way,
the assumption that s, > § -+ 1 does not help to remove the logarithmic coefficient
in (3.2.82).

REMARK 3.2.14. — Taking ¢ = 1 in (3.2.77), (3.2.82), (3.2.89) one gets, after the
integration with respect to &'e R~ the usunal a priori estimates for coercive elliptic
boundary value problems without small parameter in usual Sobolev spaces. Indeed,
for the vectoral subseripts 7;, o;, ¢;, d;, the sum of the two last coordinates equals:

(3.2.90) rl=lol=[e]=[0]l=8tss—mi—p;—%, 1<j<n-trn
while the sum of the two last coordinate for s —w, s— v - d;, s— v+ 4, equals:
(3.2.91) [s—vi=[s—v+ dsel=[s—v+ del=8+8—v,—,.

ReEMARK 3.2.15. — Assume again that the functions of £¢[0, &), &€ R+t in
the right hand side of (3.2.77), (3.2.82), (3.2.89) are contained in L=([0, &1; L2(5{g71)).
Let « + 3 <s,<f+ 1. Denote

(3.2.92) Y; = g <85/>s,—m% ’ 1<j<ra,
g = 8v1_31H+(8§n _l_ ,L'<8£/>)s;;—valf”’
= 8"‘81H+(£§n _[_ ,L'<8§I>)Sa lu ,

A5

and assume that there exist the limits

(3.2.93) lim [y; — w?](o,sz—mj—i;,o),é’ =0, 1<j<rs

&30

Hm [@;]s)),¢ =0, Py <Jj<ry 13
&0

hm ”g —_g‘]” (+0,Sz—va,0),§' = O 3

e—>0

lim [y —2° [ 5,09 =0,

&—>0

where 'a”;‘)eﬁh—mj—%(j{?'_l)’ 1<j<ry, goeﬁ (R%)s ﬁoeﬁ&(fﬂ?), Hz(ji?'_l)y ﬁp(-ﬂg)

S~ %2

being the spaces of Fourier transform of functions respectively from the usual
Sobolev spaces Hy(Ry '), H (RY).



88 LzoNID 8. FRANK: Overcive singular perturbations, I

Then for & ->0 the estimate (3.2.77) becomes (after integrating with respect
to &e R and applying the Parceval’s identity) the usual a priori estimate for +°,
solution to the reduced coercive elliptic boundary value problem, in usnal Sobolev

spaces.
If s,>f - %, then introducing

(3.2.94) y,= S—sl+w—s,+ﬂ+%<§/>ﬁ—sz+f}<€§/>32+Sa~m—ﬂ—’z~q)j ,  l<i<r,
é — ea'vl—sl—sa+ﬁ+?z(l + IanD%H'F(Sn + i(f’)ﬂ_“%(sg’-‘n + i<8§r>)82+33—%—ﬁ—% If
= eI+ (€, + i) lu

assuming that there exist a.e. the limits:

(3.2.95) Bim. [yp; — Yilom-m-toe =0, 1<j<r,
eligl [@ilon.e =0, rH<j<r+rs
lim [g =9’ [foe-0er =0,
1 |y — 9%, =0,

with 92 € H, _,. (RN, 1<j<n, e H, _, (RY), #° € H,(R}), as above, and letting
¢ —0 one obtains from (3.2.82) the usual a priori estimate for the coercive elliptic
reduced problem.

Finally, if s,<<a+ §, then introducing wu;, 1<j<r,, like above in (3.2.92),

putting

— 8"’1_31+52—"‘_Ja‘ <£§>33*73f7

— Evl—s,+sg—a—%ﬂ+(£§n + 7;<£§r>)sa—vs Z]‘ ,
$ = g7 IT+(e&, - i <eE"D)* lu

(3.2.96)

S @

agsuming that there exist the limits

(3.2.97) zilf)l [ — os—m-tore =0, 1<j<r
}Eﬁl [@slen.e =0, 1<j<ra+r
lim 19— 9" [Gos-roree =0,
lim [y — "] 6,000 =0,

and letting ¢ —0, one obtaing from (3.2.89) the usual a priori estimate for the
reduced elliptic problem (see, for instance, [19]).
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REMARK 3.2.16. — It is convenient to point out the connection between the
vectorial subsecripts in the estimates (3.2.77), (3.2.82), (3.2.89). When a + $ < 8, <
< f + %, then the subseripts are respectively:

(3'2'98) s—v, {Tj}l<:i<fz ! {G:i}r,<a‘<r,+1, .

One should expect the subscripts (3.2.98) to show up given that for ¢ =1 the
singularly perturbaed problem becomes just usual elliptic boundary value problem.
Still, o; might be not that easy to guess. There is a connection between ¢; and <,
given by the formula:

(3.2.99) o, =174 (s;—m;— e, e=(1,—1,1).

When s,>f -+ £, then the subscripts become respectively

(3.2.100) s—v+dge, {Ti+Meicicrs  {On<icriin

with Ay = (s,—f— %), e=(1,—1,1).
Finally, when s, <<« -}- %, then the subscripts become respectively

(3.2.101) s—v4die,  {Theicny {0+ dubrcicriin,
with 4, =« 4+ 31— s, ¢,= (1,0, 0), since §, =0, + A, e, r,<j<ry -+ 7.

REMARK 3.2.17. — The condition (3.2.69) can be replaced by the following one:
8y + 83— % i strictly greater than the maximum of order of boundary operators

with respect to the normal derivative D,.

REMARK 3.2.18. — It is immediate that for m, + 4 <s,<m, ., -+ % the estimate
(3.2.77) is two-sided. In other words, the right hand side in (3.2.77) ecan be esti-
mated by C|u|, . with some constant €, which does not depend on ¢, &, 1, @;, .

On the other hand, the estimates (3.2.82), (3.2.89) are not two-sided and the
right hand side in these inequalities cannot be estimated by || . with €, which
does not depend on g, &. To discover the reason of such a lack of adequateness,
consider the following boundary value problem:

(3.2.102) (teD + <eED)ult) = f(t), t>0
(3.2.108) Tt =g.

One seeks solution u(f) to the problem (3.2.102), (3.2.103) such that [u|d) . is
uniformly bounded with respect to ¢e [0, &,], &e K2

Assume that se R? is such that s,> 1, s, 8> 4. Given that the order of
the operator in (3.2.102) is y = (0, 0, 1) and that the trace m,u has the norm [}, 3., ¢
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uniformly bounded with respect to ¢ and &', it is natural to take f() with uniformly
bounded norm |f]ii_, . and ¢ with uniformly bounded norm [¢],_y,, . It turns out
that in the case considered solution u(f) with uniformly bounded norm |u|f .. does
not exist and there is a need of somewhat compatibility conditions between ¢ and
the behaviour of f(f) when ¢ — - 0. Tor instance, if f(f) = 0, a solution «(f) with
property above exists iff [@li (s~ 18 uniformly bounded with respect to e, &,
which is a stronger condition than just the uniform boundness of [¢],_;,, . When
8,>% (Recall that ¢ = (1,—1,1), &, = (0,1, 0)).

Therefore to get an adequate two-sided a priori estimate for the solution
to the problem (3.2.3), (3.2.4) in the case, when s,>m, ,, -+ % and Sy <m, + %
respectively there is a need to modify in a convenient way the problem itself.

From now on we drop the assumption (3.2.1), namely, that m, <m, ., and we
assume only that the orders m,; of the boundary operators b, in (3.2.4) are non-
decreasing:

(3.2.104) My KM <o KMy, KMy e e KWy g -

To have a proper modification to the problem (3.2.3), (3.2.4) there is a need
to introduce Poisson operators (see [2], [27 1)-

For our purposes it is enough to consider Poisson operators with symbols rational
funetions in &,.

Let Ly(e&', 1) be elliptic principal symbol of order o€ R and a,(e, &, 1) be
principal symbol of order « € R®. For v = y(e, &) we define the following Poisson
operator:

(3.2.105) = exp (ith)dd, >0,

r

&y 1 (e, él, A yle, &)
7o trxo0) =g [ 5

where [ is contour in the upper half plane which encloses all the zeros of the poly-
nomial 1 — L (s, &, A), L; being the factor of A — Ly(g, &, 1) which corresponds
to its zeros contained in the upper halt of the complex A-plane; here §(f) is the
d-funetion of Dirac. If

ayle, &, 1) = ayle, &, A{mod Ly (e, &,2), deg,a,<deg, L]

then the definition (3.2.105) can be given another equivalent form

L) 1 fat{:(ey élyén)"/)(ea &)

(3.2.106) A (wx @) = 5 Toe. £, £) exp (ité,) d&, .

Levmma 3.2.19. — Let the order o of L, be either (0, m, 0) or (0,0, m) with m>1.
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Then the following estimates hold:

(3.2.107) 1Ly ™) ag(w X 8®) |y e < Clksy, for o= (0,m,0),
HLg ™) ag(9 X 8®) | e < CTwlisy,  for o= 1(0,0,m).

where 4 =8+ a—c-+%e, and =44 (s, +az—m + L)e, with e = (1,—1,1).
PROOF. — Using the representation (3.2.106), the Parceval’s identity and making
the ehange of variables &, — (&> &, for o = (0, m, 0) and the change of variables
&, — &1 e HE, for @ = (0,0, m), one gets immediately the estimates (3.2.107).
Now, coming back to the problem (3.2.3), (3.2.4) with m; satisfying (3.2.104),
consider first the case when

(3.2.108) Sa>m, 4%
Let j, >, be such that
(8.2.109) M a+ 5>8>m; + 5.
If there is no such a subscript j,, we set
Jo=71y 15,
Let Ly(&', &,) be elliptic polynomial symbol of order
(3.2.110) o = (0, 2(jo— 5), 0)

and consider the following modification of the problem (3.2.3), (3.2.4):

(3.2.111) Qols, é', Dy)u(t) = f(¢) 4 ﬁ 1<.<2 B As0(e, é', -Dt)('/)ix 5@)) y >0
(3.2.112) bioley &y Dyu=g;,  1<j<ry+ o

where the orders of a;, and b; are respectively «; e R® and u; = (y;, m;, p;) € R3,
the orders of additional boundary operators being supposed to satisfy the condition:

(3.2.113) m,+ 1>s,, Je<<j<rs-+is.
Besides, as previously, we assume that the condition:

(3.2.114) S2+ 8> max {m;+p;}+ 3%

1<5<73+5o

is fulfilled.
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We seek «(f) and y; such that [u|g »and (9}, 14, o +13ea),¢ aT€ uniformly bounded
with respect to ¢ € [0, &] and &' € R, under the condition that so it is for [f|}_,, .,
[@ideng s 1<i<bo and [@leers Jo<J<TsJo-

Any decreasing at - oo solution of (3.2.111) is also solution of the equation

(3.2.115) LJ(E’, D,)Qy(s, E,y D,) u(t) = LJ'(&‘, él; Dyft)y, >0,

where A ->L; (€, 1) is the factor of Lo(£’, 2) which corresponds to its zeros con-
tained in the upper half of the complex Ai-plane.

For the reciprocal statement to be true, obviously, it is necessary and sufficient
that any solution of the homogeneous equation

(3.2.116) L&, D)vt)=0, t>0

to be represented as

1 gr
THE, Dy 1<i% ., ajoley &'y D) (p; X 8(t)) =

— _]_~__ ‘ajo(&'a él’ ;[')
20t ) 1<iSGo—r Vs L& 2)
v

(3.2.117)  #(t) =
exp (itd)di, t>0

with some y; = yile, &').
The last formula holds for the general solution »() of (3.2.116) iff the polynomials

A = @ole, 5’3 Ay 1<G<Go— 12,

are linearly independent modulo Lj (¢', D), for any ¢ and &'.
More precisely, we assume that the polynomials A — a;, 1<j<jo— r, satisfy
the following condition:

(@), The polynomials
A—=>aplo, 0, ), 1<j<j—"
are linearly independent modulo Lj (w’, 1), for any 9> 0, any w'€ Q,_;.
(B), The polynomials
A—aplwyd), 1<j<jo—1
are linearly independent modulo Lj (w'y 2), for any o'c Qq_;.

() The polynomials
A= a0y ), 1<j<jo— 12

are Linearly independent modulo Lj (w', 2), for any o'e Q,_,;.
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Under the condition (a);-(¢);, the problem (3.2.111), (3.2.112) is equivalent to
(3.2.115), (3.2.112).

Now, considering the problem (3.2.115), (3.2.112) we find ourselves precisely in
the same situation as previously while investigating the problem (3.2.3), (3.2.4)
with the condition m, 4§ <8, <m, ,;+  fulfilled.

Therefore, assume the following coercivemess condition:

(i), The polynomiéls

A *b?o(wlf A, 1<i<ljo

are linearly independent modulo Q3* (o', 2) L (o', 2), V'€ Q,_;.

(ii), The polynomials

A=>bi(A),  Jo<<j<ri-+jo,

with b;(A) = b;y(1,0, 2), are linearly independent modulo Q+(1), where QH(1) =
= A" QJ_ 1,09, l)-

(iii), The polynomials

A —=byge(wy A) 1<j<rs+ o,

are linearly independent modulo Qgy(w’, A) L (', A), Yoo'e 2,_;.

(iv), The polynomials
A —bylg, @'y 1), 1<i<rs+ oo

are Uinearly independent modulo Qy (o, ', 1) L (o', 2), Yo (0, + o0) Vo'e 2,-,.
The Theorem 3.2.12 (with « 4+ 3 <s,<<f -+ 1) and the estimate (3.2.77) being
applicable in the considered case, one gets the following result:

THEOREM 3.2.20. — The condition (1.2.114) being fulfilled, the polynomial Q, being
elliptic of order v, the Poisson operators (Lg ) 'a;, 1<j<jo— r, and the boundary
operators by, 1<j<r; -+ jo, satisfying the coerciveness condition (a)-(¢)y, (1),-(iv),, the
problem (3.2.111), (3.2.112) has unique solution w(t), {y,}, 1<j<jo— 7, which satisfies
the a priori estimaite:

(3.2.118) "“”(:-)E‘I“ 2 [Yiduape<

1<i<dg—re

< G(”f le-ne+ 2 . [Pdene+ 2 . [%](a,),s') <G (H%U(";),s' + 2 [%](A:,E')) :

my<s— my>gg— ISISHh—Te

where A;= (s— v+ a;— 0 -+ 36) € R® with o defined in (3.2.110), 7,6 R® and o;€ R?
are as defined above in (3.2.61) and the constants C, O; do not depend on &€ [0, &,
e Rty uy yy, f, @i
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REMARK 3.2.21. — One has to use the first of the inequalities (3.2.107) to esti-

mate [9;]4,,-
Consider now the case when

s,<m, +%.
Again, let j,<r, be such that
(3.2.119) my 3 <s<my .+ 3.
If there is no such subscript j,, we put
Jo=0.
Let Ly(c&', e£,) be elliptic polynomial of order:
(8.2.120) o= (0,0, 2(r,— j,)) € R

and congider the following modification on the problem (3.2.3), (3.2.4)

1
Liy(c€'y eDy) lsiszra-—a'o

(3.2.122) Tobiole, &, D)= @;, Jo— 1 <j<ry-t73,

(3.2.121)  Qi(e, &, Dult) = f(t) + asn(e, &' D) (ps X 8(1) , >0,

where the orders of a; and b;, are respectively o; = (otj1, ®sa, %ss) € R3 u; =
= (y;, m;, p;) € R* and the orders of additional boundary operators b,, are supposed
to satisfy the condition

(3.2.123) m+§<8s, J<lo.

To be able to satisfy (3.2.123) and the (given further) coerciveness condition
one has to admit also boundary conditions b;, with m; negative integers, in other
words, some b,, for j <0 might be pseudodifferential operators with symbols rational
functions of &,.

Assume that it is possible to complete the boundary conditions (3.2.4) by bj,
jo— 7, <j<0, with polynomial symbols in such a way as to satisfy the following
coereciveness condition:

(i), The polynomials
A —>b,90(a)', Ay Jo—ra<j<jo

are linearly independent modulo Qg (o', A), for any w'e€ 2, ;.
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(ii), The polynomials
}-’—>b5(1)7 jo<j<7'2+r3

with by (A) = by(1, 0, 4), are lnearly independent modulo @A), where Q+A) =
= A""Qf (1,0, ) L;(0, A).

(iii)y The polynomials
A—=>bolew’y ),  Jo—1a<<j<rat 75,

are linearly independent modulo Qgo(w’, 1) Liy(w', 1) for any o'c 2,_;.
(iv)y The polynomials
A—=>bjlo, 0y 4),  Jo—1a<j<ri+ 73,
are linearly independent modulo Qf (o, @', 1) L (oo, 1), for amy o€ (0, + oo), any

w'eER, ;.
Besides, assume that a;o, jo— 7. <j<j, satisfy the condition:

(a); The polynomials
A—a5(0, 0, 2), 1<j<ra—Jo

are linearly independent modulo Lj (o', A), Vo> 0, Yo'e 2,_,.
(b), The polynomials

A—=apw’y d), 1<j<r,—j,

are linearly independent modulo Lj(w', 1), Yo' 2,_,.

(¢)}a The polynomials
A=a,d), 1<j<r,—7,

with a;(A) = a3(1, 0, 1) are linearly independent modulo L (0, 1).

The condition (a),-(¢), guarantee that any decreasing at - co solution of the
equation

(3.2.124) L (&', eD,) Qg (e, &', D) u(t) = L (&', eD)ft), >0

to be also a solution of (3.2.121), so that the problem (3.2.121), (3.2.122) is equivalent
to the problem (3.2.124), (3.2.122).
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Again, for the problem (3.2.124), (3.2.122) the Theorem 3.2.12 (with o« 4 § <
<8< fB -+ %) and the estimate (3.2.77) are applicable, and we get the following
result:

THEOREM 3.2.22. — The condition (3.2.114) being fulfilled, the polynomial Q, being
elliptic of order v, the Poisson operators (Lf) ‘@i, 1<j<ts— jo, and the boundary
operators by, jo— Yo <<j<rs |- 1y satisfying the coerciveness condition (a)y-(¢)s, (1)e=(iv)e,
there exists unique solution u(t), {y;}, 1<j<ry— jo, to the problem (3.2.121), (3.2.122),
which satisfies the a priori estimate:

{3.2.125) el (1:),&' +~ > _{Wf}(ﬁz),§'< g (Hf H(-:—-v),é' +m 3_1{995]@),5' + 3 [%1(6,),5') <

1<is<re—de my>sg—3%

<G(lulde+ T W)

1<igre—io

where B;=8— v+ o;— o L3+ (S3— v+ osn -+ ) €€ R, with o defined in (3.2.120),
7;, 0; are as defined above in (3.2.61), ¢ = (1, — 1, 1), and the constants C, C; do not
depend on ¢, &, u, v;, f, @;.

REMARK 3.2.23. — One has to use the second of the inequalities (3.2.107) to esti-
mate [y;lg)e-

If the additional boundary operators by, j,— 7. <<j<0 cannot be chosen as
polynomials and such a requirement conflicts with the coerciveness condition (i),-(iv)s,
then these boundary conditions can be given as pseudodifferential operators with
rational symbols. In that case the coerciveness condition is formulated in terms of
some determinants which are supposed not to vanish uniformly with respect to the
parameters ¢ > 0 and o'e 2,_,. Of course, one can consider more general Poisson
and boundary operators a,, and b; than the ones introduceed aobve. Again, the
coerciveness condition is formulated in fterms of some determinants which are sup-
posed not to vanish uniformly with respect to the parameters ¢ >0 and o'e £2,_,.

3.3. Singular Wiener-Hopf equations in HR .

‘We will sketch briefly the extension of the results given in the previous section
to pseudodifferential equations in R, with symbols rational functions of &e R~
The statements below with slight obvious modifications are also true for pseudo-
differential operators with transmission property (see [2], [271).

Let Qoe, &) and Gy(e, &) be two properly elliptic principal symbols of orders
respectively » and 7. Let »,= 27, and #, = 2F,, j = 2, 3, with #;, 7, non-negative
integers.

We introduce the vector

(3.3.1) R= (0, 1y— Fy, ry— o) ERXZXZ
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called index of the rational function
Lo(e, &) = Qule, &)[Qule, &) .

The polynomials Q,, @, being elliptic principal symbols the function IL(e, &) is
smooth in ee (0, o), V&& R\ {0}, homogeneous in (¢, £) of order

(3.3.2) p|— p| =+ v.— H— %,

and does not vanish for Vee (0, oo), V&€ R\ {0}:

(8.3.3) Lo(e, &) 0, VYee (0, o0), V&€ R\{0} .
It is natural to call the vector

(3.3.4) p=r—7Fec R

order of the rational funection Z(e, &).
Besides, it is quite obvious that I,(e, & satisfies the following two-sided ine-
qualities:

(3.3.5) O e Cek ™ < | Tole, &)| < O™ [E [ (e ).

A symbol satisfying (3.3.5) is called elliptic singular perturbation of order w.
First assume that vector (%,, #,) has non-negative components: #;=r,— #,,

(3.3.6) R>0, j=2,3.
Let Ly(e, &), 1<j<Xy + %, be rational functions in (e, &), with vectorial orders
(3.3.7) = s, My, PERXZXZ, 1<j<%B—+ %,
which are supposed to be homogeneous in (g7, &) of order
(3.3.8) lws| = 5 + m;

and smooth for £ (0, oo), £& R\ {0}.
Using again the notation & for

(3.3.9) =o', o =FFre,,
we consider the following Wiener-Hopf singularly perturbed problem in R, :

(3.3.10) 7, Lo(e, &, D) u (t) = f(t) ,
(3.3.11) 7o L, (e, él, D)) “+(t) =@, 1<j<%:+ %,

7 = Annali di Matematica
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where u,(f) is defined for € R and has its support in R, the operator L,u L 18
defined in the usual way:

Lo(e, &, DYuy(t) = Fy LeLi(e, &', &) Fpg

7, is restriction to the half-line R, and m, is restriction to the point {t = 0}, as
defined above in the Section 3.2.

The boundary operators L, are supposed to be ordered in such a way that the
sequence of their orders {m;}, 1<j<%, + %, is a non-decreasing one, and, moreover,
we assume at this stage that

(3.3.12) My <My <o <M, < Mg, 1 <o <Mg, 1 g,
We denote further mg, and mg ., respectively by o and 8.

We describe the coerciveness condition on the boundary operators Ljy(e, &).
It is immediate that the rational function 4 — Ly(e, &, 1) admits the factorization:

(3.3.13) Ly(e, &'y 2) = L (e, &, A) L (e, &', 2)
where
(3.3.14) L (e, &, 2) = Qg (e, &, DD (e, &', 2)

has all its zeros and singularities within the npper A-half plane and L; (e, &, 1) has
all its zeros and singularities within the lower A-plane, when & € (0, co), &'e R\ {0}.

Besides, it is quite obvious that the vectorial order of LS (s, &, 1) is &=
== (0, #,, &,), and it is homogeneous function in (&1, &, 1) of order %, which satisfies
the two-sided inequalities:

(3.3.18)  O2(|&'| + [A)P(1 4 &g’ + elA)* < |L (e, &, D)<
<O(IE']+ A1 + el&'| + ela))*®

when &'e R*-N\{0}, 1eC, Im1<0, £>0.
One checks easily, using the representation

Ly = Q5 105,

that L (g, o', A) for Yo 0,> 0, Yo'e 2,_, has its zeros and singularities enclosed
within a compact domain in the upper half-plane. We denote the boundary of this
domain by I'; I" does not depend on g, @' for 9>0,>0, w'€ 2,.

Besides, by the Lemma 3.1.2 the rational function i — Lg (e, &, 4) admits for
[§'|< O and ¢, sufficiently small the factorization

(3.3.16) L (e, 8, 2) = Lii(e, &, 4) ZLoin(e, &'y A)
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with £y (g, &, 1) homogeneous in (¢, &', 1) of order %, and satisfying the inequalities:
(3.3.17) C(IE'] -+ 1A)* < | Zile, & DI< O8]+ |2)™,

Vee (0, oo), V&' R-1N\{0}, YiecC, ImAi<0, and Lj(e, &, 1) homogeneous in
(e~ &, A) of order 0 and satisfying the inequalities:

(3.3.18) C(L + elé'| + elA)* < | Lol &, DI< O + &l€'| + A%,

Yee (0, oo), Y&'e R-1\{0}, VicC, Im1<0.

Using the representation of L; by polynomials 2 — @, , 4 — @, it is immediate
that there exist the limits:
(3.3.19) lim Lo, &, A) = L&, 2),

g->+0

where LJ* (&, 2) is homogeneous funetion in (&', ) of order %,, given by the formula:
Lg+(5’7 }*) = Qg+(5’5 2)/ g+(§’7 ).

One checks easily that all the singularities and zeros of L™ (o', 1) for Yo'e 2, 4,
are enclosed within a compact domain in the upper half plane. We denote the
boundary of this domain by I3, I does not depend on w'e ,.

We denote by L*(A) the rational function

(3.3.20) LY () = ZH1,0,2),

and by I, the Jordanian curve in the upper half-plane which encloses all the zeros
and singularities of L+t(1).
Finally, L (o, &', A) having the growth like ¢% as ¢ — -4~ oo, we introduce
(3.3.21) Li (&, 2) = lim o~%+Qt(p, &, A) -
e—>+ oo

It is quite obvious that
Lo(&'y 2) = Quol&', DIQoy(&s 2)

and it is homogeneous function in (£, 1) of order %, + %,.

Again, all the zeros and singularities of Ljj(w’, 1) for o'e 2,_, are enclosed
within a compact domain in the upper half plane, whose boundary is denoted by I%.
I'; does not depend on w'e 2, ;.

The boundary operators L;, are supposed to satisfy the following coerciveness
condition:

(1) Let Ljy(8) be the reduced symbol for Ly(e, &),
(3.3.22) I2,(&) = lim &7 Lz, &) .

&0
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Since Ly(&) does not vamish for £ Rr\{0}, the zero and singularities of the rational
fundtion A —LYy(w', 2) for o'e€Q,_, are contained within two disjoint compact
domains respectively in the upper and lower halves of the complex A-plane. Therefore,
we can assume thot the euwrve I'y, defined above, additionally to the zeros and singularities
of A—Ld" (', 1), encloses also those zeros and singularities of Ljy(w', A), 1<j<%,,
which are located in the upper half of the complex A plame.

Introduce

0 !
(3.3.23) (") = é% f %g—’z—g,’k—%ﬂ—ldz, 1<k, j<%&,.

ry

The matriz |g3(w')]| is supposed to be non-singular for any w’'e 2, 4:
(3.3.24) det ”ngo'(a’/)”1<k,a‘<9zz# 0, VYo'e, .

(i) Let L;(A) = Lyu(1, 0, ). Again we can assume that the contour Iy defined
above, additionally to the zeros and singularities of Lt(1), encloses also those zeros and
singularities of L; (1), By <j<Rs -+ A5, which are located in the upper half of the
complex A plane. Introduce

_ 1 ()

Ty

(3.3.25) Qri

MRl Ry<k, j<Ty+ By

The matriz || ts supposed to be non-singular:

(3.3.26) det(qe; [, < i<+, = O -

(iii) Let L,eo(&) be the principal homogeneous symbol of order m; - p; for Lj(1, &),
1<j<P#, + % so that:

(8.3.27) L'y A) = lm 721 L,(0, o'k A) .
e>+oo
The zeros amd singularities of A — Lje(w’y A), for Yo'€ Qu_y, 1<j<%s+ &5, being
contained within two disjoint compact domains located respectively in the upper and
lower halves of the complex A-plane, we can assume, that those in the upper half plane
are enclosed within the curve I'; defined above.
We introduce the matriz:

0y = - [ L@y 4) 4, ,
(3.3.28) qr (@) =5t ) Taw’ D) Ardd, 1<k, <%+ %, .

The matriz |qo (o')] is supposed to be non-singular:

(3.3.29) det]gry(@) l1<rica,rm, 70y VO'€Q, .
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(iv) The zeros and singularities of 2 —bulo, 0’y A). 1<j<Zy + %y, for Yo
>0,>0, Yo'e 2,_;, being contained within two disjoint compact domains located
respectively in the upper and lower halves of the complen i-plane, we can assume that
those in the upper half plane are enclosed within the contour I defined above. Of course
the contour I' depends on g,.

Introduce the matriz:

_ 1 971—ﬂ1+ﬂ3bi0(@’ w'y A)
 2mi @0y o'y )
r

(3.3.30)  Qulo,w') Ardd 1<k, j<P+ K.

The matriz |Q.{o, »)|| is supposed to be non-singular:

(3.3.31)  det|Qu(e, @) |rcrseam, # 0,5 Vo, @) (0, + 00) X 20y

THEOREM 3.3.1. — The conditions (3.2.114) and mg - § < s, <mg ., + % being
fulfilled, L,(e, &) being elliptic singularly perturbed rational symbol of order p, the
boundary symbols Lj(e, &), 1<j<%; + %; satisfying the coerciveness condition (i)-(iv),
the problem (3.3.10), (3.3.11) has unique solution wu(t) which satisfies the a priors esti-
mate (3.2.77) where r; should be replaced by Z;, j = 2,3, and v by u, the vectorial
order of Ly(e, &).

The proof of this theorem is absolutely similar to this one of the Theorem 3.2.12.
Indeed, using the Wiener-Hopf method one represents the general solution to (3.3.10)
decreasing at - co in the form (3.2.8) with %, instead of Qg; when ¢ = e{&'> <,
with g, sufficiently small, and in the form (3.2.7) with L instead of @, when p> g,.
Substituting these expressions into (3.3.11) one finds out the coerciveness condi-
tions (i)-(iv) and gets the a priori estimates in the same way as it was done in the
previous section.

Now, if the condition mg, - L<s,<<mg ., -+ § is not fulfilled or one of the
numbers %,, %, is negative integer, then introducing into the equation (3.3.10) Poisson
operators with unknown densities, one gets a well posed boundary value problem
in this cage too and establishes a two-sided a priori estimate of the same kind as
in the previous section.

3.4. Singular perturbation in R" .

We congsider here coercive singular perturbations with constant coefficients in R",
and establish the basic a priori estimate for its solutions.

Let Q(s, &) be elliptic singular symbol of order » = (v, »,, ;) with prineipal
symbol Qy(s, &) and b,(g, &), 1 <j< 7, -+ 75, singular symbols of order u; = (y;, m;, p,)
with prinecipal symbols b,(e, &), satisfying the coerciveness condition (i)-(iv).

Consider the singularly perturbed boundary value problem in R” :

(3.4.1) Q(e, D)u(@) =f(»), weR"
(3.4.2) obi(e, D)u(x') = pi(x'), a'€eRr, 1<j<rt+rs.
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The orders m; of the operators b; are supposed to satisfy the condition (3.2.1).
The solution to the problem (3.4.1), (3.4.2) is sought in H(R") under the
assumption (3.2.69).

THEOREM 3.4.1. — The problem (3.4.1), (3.4.2) being elliptic coercive singular per-
turbation and the conditions (3.2.1), (3.2.46), (3.2.69) being fulfilled, the following a
priori estimate holds for the solution w: (for &, small enough)

343)  Julp<O(Iflion+ I Wkt 3 ok +luld) <0ilulf

1<i<r, 7a<i<r41s
with any 8'€ 0, I, and the constants C, C, which depend only on s and s'.

Proor. — Noticing that the polynomials

&, —>Q(e, &8, En—>Qule <§,7 )
and

En —> bi(ey EI’ En) ’ §n = bio(£7 ?7 gn)
have the same principal symbols, applying the Fourier transform with respect to '
in (3.4.1), (3.4.2), one gets (3.4.3) using the a priori estimate (3.2.77) obtained in

the previous section for the solutions to singularity perturbed boundary value prob-
lem for ordinary differential operators with parameters ¢ and &. m

Consider now the case when s,>m, ., + 3. We now no longer assume that
m, <m, .,. Let j, be such a subscript that

(3.4.4) my, -+ F<sa<<my -+ %
If there is no such a subscript j,, we put
Jo=1a+75.
Consider the following modification to the problem (3.4.1), (3.4.2):
(3.4.5) Q(e, D)ulw) = f(z) + L(e, D) 1<§<5 ai(e, D)(ypi(@') X 6(ws)), weR,
(3.4.6) 7wy bs(e, D) u(w') = @), 1<j<rs+ Jo,
~where Q(e, D) is elliptic singular perturbation of order »e R? L(s, D) is elliptic

singular perturbation of order ¢ = (0, 2(jo—r ), 0), a,(¢, D) and b,(e, D) are singular
perturbations of orders a; = (0t;y, %2, ats3) and u; = (y;, m;, p;) respectively, satisfying
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the ecoerciveness condition (a}-(¢);, (i);-(iv}), in the Section 3.2, and the Poisson
operators L-(D)as(e, D) are defined by the formula (3.2.105) with y,(&') = F,, v
instead of (e, &').

THEOREM 3.4.2. — The problem (3.4.5), (3.4.6) being elliptic coercive singular per-
turbation and the conditions (3.2.114), (3.4.4) being fulfilled, the following a priori
estimate holds for its solution w, {y;}, 1<j<jo— 75 (for & small enough)

@47 Julh+ 3 [w,-](a,)<0(ﬂfﬂ<§_v)+ > %[99,-]<1,>+m >§_%[¢a~]<un+li“il(?>)<

1<i<do—re my<sg—

<O (lulh+ 3 wkay)

1<i<ip—re

where A;, t;,6,€ R are the same veciorial subscripts as in (3.2.61), (3.2.118), s’ is
any vector in 0,1 and the constants C, C, depend only on s, §'.

Proor. —~ The inequality (3.4.7) is an immediate consequence of the Theorem 3.2.20
given that for any singular perturbation S(e, D) the polynomials

E. =858, E), &8s &8

have the same principal symbol Sy(e, &, £,).

Besides, the estimate (3.2.118) being two-sided, one gets first (3.4.7) with some
§"<s, s"e0,I',. Using afterwards the interpolation inequality (1.1.16), one obtains
the estimate (3.4.7) for any s’ 0,I,. =

Assuming now that s, <m, 4 } and choosing j, <, such that
(3'4:'8) mio+ %<82<mjn+1 + %

(if there is no such a subscript j, we put j, = 0), consider the following modification
to the problem (3.4.1), (3.4.2):

(3.49) Qe D)ul@) =f(@) + L e, D) 3 aye, D)(pia) X0(x,), weR}

1<iSry~d,

(3.4.10) o bi(e, DYyw(w') = @Aa') y  Jo—ta<<j<ra+ 1y

where again @(e, D) is elliptic singular perturbation of order » € &3, L(e, D) is elliptic
singular perturbation of order o= (0,0, 2(r,— j,)) € R?, the operators a;(e, D),
bi(e, D) of orders a; = (wsq, otia, %s5)y s = (¥, M;, 0;) Tespectively satisfy the coer-
civeness condition (a);-(b)s, (i)s-(iv), in the Section 3.2 and the Poisson operators
L, D)a;(e, D) are defined as above.
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THEOREM 3.4.3. — The problem (3.4.9), (3.4.10) being elliptic singular coercive per-
turbation and the conditions (3.2.114), (3.4.8) being fulfilled, the following a priori
estimate holds for its solution wu, {p;}, 1<j<ra— jo: (for & small enough)

3.411)  Julb+ 3 [wley<C (ﬂfﬁ(}?—vﬁ 2 wlpy+ 2 %[%](aﬁrﬂ"”(%k

1<i<ra—do my<8g—3% my>8g—

<0, (]|u]|g)+ > '["/’i](ﬂj))’

1<i<re—4,

where 7;, 6;, B,€ R* are the same as in (3.2.61), (3.2.125), s’ is any vector in 0,13,
s' < s, and the constant C, O, depend only on s, §'.

PrROOF. — One argues like in the proof of the previous theorem using the
Theorem 3.2.22.

REMARK 3.4.4. — If the boundary operators b,, 1<j<#, + 7, cannot be completed
by b; jo— 7, <j<O0 with polynomial symbols in such a way as not to conflict
with the coerciveness condition (i),-(iv),, then they may be given as pseudodif-
ferential operators with rational symbols. As it was mentioned above, the coerci-
veness condition in this case i stated in terms of determinants which are supposed
not to vanish uniformly with respect to the parameters ¢, &, those conditions being
similar to (i)-(iv) in the Section 3.3.

3.5. COoercive singular perturbations in bounded domain.

We state in this section two-sided a priori estimates for gingular perturbations
with smooth variable coefficients in a bounded domain with smooth boundary.

Let U c R be bounded domain with boundary 8T which is supposed to be €
oriented manifold.

A singular perturbation Q(z, e, D)eP,, e U, c€(0, 5], is called elliptic in U
it (2.4.3) holds for any ze U.

Let B,(w, ¢, D)€ Pu;, u; = (y,, m;, p,) and denote by bz, & D), principal non-
homogeneous symbol of B;, here w'€oU, 1<j<ty+ 13, 2r =, k=1, 2.

Assume that the orders m; satisfy the condition (3.2.1).

As usual, let ¥ and & be respectively the inward normal and the cotangential
variables at the point o' 0U. We denote by Q5 (', &, &+ AN), Qoy(@'y & -+AN) and
Q%% (#', &+ AN) respectively factors of the polynomials A= Q' &y E'+-AN), A —
— Qool@’y &, &+AN), A —~ QY2 &, &--AN), which correspond to their zeros contained
in the upper half of the complex A-plane when £'e Rr-\{0}, 2'€0U, e€(0, &),
where Q,(#', &, & +AN), Qoo(@’, &+ AN), Qo(x', & +AN) are respectively the prineipal
non-homogeneous symbol of Q(«', ¢, &+ AN), the principal homogeneous symbol of
order v,-+v, of Q,(#', 1, &+ AN) and the reduced homogeneous symbol of order
for Qq(a', &, & +AN) defined above in the Section 3.2.
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The operators B;, 1<j<r,47r;, are supposed to satisfy the following coerciveness
condition:

1) The polynomials
A=ty o'+ ANy,  1<i<ry,
with b}’o(a;’, &+ AN) reduced symbols for B;, are linearly independent modulo
QSt (@', '+ AN), for any o'e 2., any ¥’'€0U.
2) The polynomials

A=bi@,2), r<j<rs+rs,

with by(@', A) = b(@'y, AN) are linearly independent modulo Q@+, ), for any '€ 0U
where Q+(x', A) is the factor of the polynomial 2 — A7 "*Q.(x’', AN), which corresponds
to its zeros contained in the upper half of the complex A-plane.

3) The polynomials
A=>big(@y o'+ AN), 1<j<ra—+7s.

are linearly independent modulo QF(#', '+ AN), for any w'e Q,_;, any x'c0U.

4) The polynomials

A —=>by(@, 0, 0" AN), 1<j<r+7s,

are linearly independent modulo Qg (¢', o, ' AN) for any o€ (0, + o), any w'€Q,_4,
any ¥'€ol.

REMARK 3.5.1. — As a simple consequence of the Proposition 2.3.1, one gets the
conclusion, that the coerciveness condition 1)-4) is invariant with respect to any
local diffeomorphism which preserves the inward normal to the boundary 9T.

Congsider the following singularly perturbed boundary value problem:

(3.5.1) Q, e, Dyu(») = f(x), weclU,
(3.5.2) lim Bz, &, D)u(x) = @,(&'), 2'€oU, 1<j<r,+ ;.

2>’

THEOREM 3.5.2. — Singular perturbation (3.5.1), (3.5.2) being elliptic and coercive,
the conditions (3.2.1), (3.2.46), (3.2.69) being fulfilled, the solutions to the problem (3.5.1),
(8.5.2) satisfy the following a priori estimates:

658) ulo<O(fle-nt 3 Wlat 3 ok + vlo) <Ol

my<Sg— my=> 33—
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provided that €< (0, &] with e, sufficiently small; here s’ is any vector in o.I,, the
vectorial subseripls 1;, 0; € R*® are the same as in (3.2.61) and the constants C, O’ depend,
only on s, 8’ and &.

ProoF. — Using the standard argument by partition of unity for U and also
the estimates (2.4.23) and (3.4.3) one gets (3.5.3), given that both (2.4.23) and (3.4.3)
are two-sided a priori estimates. m

Now we drop the assumption: m, <m, ,,. Let s,>m, ., 4 } and denote by j,,
jo > 13, such a subscript that (3.4. 4) holds. Consider the following modification to
the problem (3.5.1), (3.5.2):

(3.5.4) Q(&, &, D)ufw) = f(@) + L2, &, D) z a;(z, & D ("l)i )X 6(wn)) welU,

1<i<io—rq
(3.5.5) lim B,(w, &, D)u(z) = (@'}, 1<j<rs-+Jo, ¥'€0U,
a—ra’
where L(z, ¢, D) is elliptic order ¢ = (0, 2(jo—7,),0), L(z, ¢, §) #0, Yee U, Yee(0, 5],
Vée R, as(w, €, &'+ AN)e P,,, a;€ R3, and By(x, ¢, &'} AN) e &, satisfy the coerct-
veness condition (a)-(¢)y, (1)-(iv), at any point 2’ 0U.- The solumon (@), {p;(a")},
1<j<jo— 12y is sought in Ky (T)x [T 3, (0U) with 4; defined in (3. 2 118).
1<i<io— 1y

THEOREM 3.5.3. — Singular perturbation (3.5.4), (3.5.5) being elliptic and coercive,
the conditions (3.2.114), (3.4.4) being fulfilled, the following a priori estimates hold
for its solutions:

658) Julo+ 3 Wlay<O(flunt 3 Wlyt 3 e+ lule)<

1<§<o~1s my<83—% mj>8a—

<O (ot 3 vl

1<i<i—1s
provided that & € (0, &,] with &, sufficiently small; here s’ is any vector in 0,I%, v, 0y,
A; are the same as defined above, and the constants O, C' depend only on s, s’ and &.

Assume now that s, <<m, - } and let j, be such a subseript that (3.4.8) holds.
Consider the following modification to the problem (3.5.1), (3.5.2):

(3.8.7) Q(x, & D)u(x) = f(») + L=, & D) z a;(®, &, D)(Wi(w’) X 6(5”1;)) ’

1<3<ra—do
(3.5.8) lim By(w, &, D) u(@) = @,(#"), fo—1a<j<ry+15, ¥'€0U,
2>
where L{z, ¢, D) is elliptic singular perturbation of order o = (0, 0, 2(ra— jo)) »
L@, & & #0, VYoelU, Yee(0, )], Ve R,
and
a@ e &+ AN)eP,,, ou€RY  Bix,e, &+ AN)EZ,,,

satisfy the coerciveness condition (a),-(¢)s, (i)-(iv); at any point #'€0U.
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THEOREM 3.5.4. — Singular perturbation (3.5.7), (3.5.8) being elliptic and coercive,
the conditions (3.2.114), (3.4.8) being fulfilled, the following a priori estimates Hhold
for its solutions:

859 Julg+ 3 [9le,<C (Hf le-n+ 2 Wlpy+ 2 %[99,-}(65)+H%H<y))<

1K<~ mj<sz—% my> 83—

<C'(H“U(s>+ 2 W"](ﬁ”)’

1<i<ra—d,

provided that e (0, ] with &, sufficiently small; here s'€ 0,1, B;, v;, a; are the same
as above and the constants C, O’ depend only on s, s’ and ¢,.

The proof of (3.5.6), (3.5.9) can be done using the same partition of unity argu-
ment as above, given that the estimates (2.4.23), (3.4.7) and (3.4.11) are two-sided.

REMARK 3.5.5. — Using the partition of unity for U and the estimates for singular
perturbations with constant coefficients in R” and R”, one can prove by the standard
argument existence of left and right- quasi-inverse operators to singular perturba-
tions (3.5.1)-(3.5.2), (3.5.4)-(3.5.5) and (3.5.7)-(3.5.8) respectively. Of course, as a
simple consequence of the existence of quasi-inverse operator one gets again the a
priori estimates (3.5.3), (3.5.6) and (3.5.9) respectively.

3.6. Necessity of coerciveness condition.
We show here that the coerciveness condition 1)-4) is necessary for (3.5.3) to hold.

THEOREM 3.6.1. — If the a priori estimate (3.5.3) holds for the singular perturba-
tion (3.5.1), (3.5.2), then it is elliptic coercive singular perturbation, i.e. (3.5.1), (3.5.2)
satisfies the ellipticity condition (2.4.3) for any & € U and the coerciveness condition 1)-4)
for any 2’ 0U.

PROOF. — Taking in (3.5.3) the function % to be with compact support in U,
one gets immediately, using the Theorem 2.4.11, that Q(z, ¢, £) has to be elliptic
singular perturbation for any zec U.

Now, let ;€ 0, and U, be a small neighborhood of , in R" such that there
exists a diffeomorphism, mapping U, N U onto a half ball V' = {yeRr, Wy|<r}
and the point m(', into the origin: y = 0. Here y = (¥, y,) are local coordinates
related with the point :17,',, such that the portion of the boundary o0U N U, is given
by the equation: ¥, = 0.

First assume that the ellipticity condition (*) is violated at the point , € 0U. If the
condition (i) is not fulfilled then taking in the a priori estimate (3.5.3) ¢ to be 1,
one gets a contradiction given that the ellipticity condition for Qoolz, &) is necessary
for the a priori estimate (3.5.3) with ¢ = 1 to hold, as it follows from the classical
elliptic theory. It follows also from the classical elliptic theory, without small
parameter that the condition 3) should also be satisfied if (3.5.3) holds for some

(*) See page 57.
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e> 0. Now, assuming that the reduced symbol Q(z,, &) does not satisfy the con-
dition (ii); taking in (3.5.3) u to be: u(w, &) = £ w(x) with w(z) € C(U) and letting
g —>0, the a priori estimate (3.5.3) becomes nsual a priori inequality for the reduced
problem to (3.5.1), (3.5.2).

Therefore, the condition (ii) should necessarily hold for @3(z, &) along with the
condition 1). Assume now that the condition (iii) is violated at the point 2, 2U.
Using the local coordinates y, denote by V, the ball {|y| < 7} and let v(y) e C2(V,)
such that vy >0. With #, real zero of the equation:

(3.6.1) Q@,1,7p) =0,

we introduce the functions:

(3.6.2) (e, y) = expliey n,) v(y) .

Substituting u(e, y) into the estimate (3.5.3) one finds easily, given (3.6.1) that

(3.6.3) Nl ~e """ vlo

[Qu]l sy~ ™" ol

[Bj /u’](rj) ~ 6—81—-Sa+%[n0 ”](0)

[B;w]s,y~ &7 vy
as & —>0, where |v]q and [m,v]y are just L2norms of v(y) and v =v(y’, 0)
respectively in R» and R»-1,

The formulas (3.6.3) lead to a contradiction with (3.5.3) as ¢ — 0.

Now, assume that the condition 4) is violated at a point @y € 0U, and let g, > 0,
wg € 2,_, be such that the polynomials 1 — bio(@os 00y Wo -+ AN), 1<j<ry -+ 14, are
linearly dependent modulo Q7 (), g, ws + AN). Denote by b(0o, o A Qa (Gos @y A)
these symbols rewritten in the local coordinates y.

Given the assumption above, the boundary value problem for ordinary dif-
ferential equation on the half-line R,:

(3.6.4) Qo(00s wgy DYw(t) =0, t>0

7o byo(00; @o, DYw =0, 1<j<ry+ 7,
has a non-trivial decreasing at -4 oo solution.
Introduce
(3.6.5) u(e, y) = exP (igy e ey y') w0 €2 Ya) v(y’, 0)

where again ve C3(V,), [m,v],> 0, and w(t) is non-trivial solution to (3.6.4).
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Substituting u(e, y) defined by (3.6.5) into (3.5.3) and using (3.6.4) one gets con-
tradiction as ¢ — 0, given that the left hand side in (3.5.3) is of order O(g~*~%*%) at
least while the right hand side is O(¢™* ") at most.

Finally, assuming that the condition 2) is violated, and denoting by b,(1), r, <
<j<ry+rs, Q1) the symbols of corresponding ordinary differential operators
rewritten in the loeal eoordinate y = (y',y,) (with cotangent coordinate 3'= 0),
one can find a non-trivial deereasing at +- oo solution to the problem on the half-
line R.,:

{3.6.6) QD) wity=0, t>0

b D)w =0, r<j<r,+r.
Define
(3.6.7) ule, ¥) = w(ey,) v{y’, 0)

with w(f) solution to (3.6.6) and »(y’, 0) as above.
Substituting (3.6.7) into (3.5.3) one gets once more a contradiction as & — 0,
and that ends the proof of the Theorem 3.6.1. m

REMARK 3.6.2. — Similar argument making use of asymptotie solutions to the
singularly perturbed boundary value problems (3.5.4), (3.5.5) and (3.5.7), (3.5.8)
shows that the coerciveness condition (a);-(¢);, (i):-(iv); and (a)y-(€)s, (i)e-(iv), are
necessary for the a priori estimate (3.5.6) and (3.5.9) to hold uniformly with respect
to g€ (0, &].

3.7. Ezamples.
Some examples of singular perturbations are discussed in this section.

ExampLr 1. — Consider the singular perturbation:

(8.7.1) (At —Mu=fx), =eU,
(3.7.2) u(@') = @y(2'), % (') =@ (@), a'€oU.

One finds immediately that it is an elliptic coercive singular perturbation. Here 7, =
=r=1, 4,={0,0,0), u = (0,1, 0) and » = (0, 2, 2). The Theorem 3.5.2 asserts
that for s = (s, 85, 8;) With s, + s, > % and s, satisfying the inequalities:

(3.7.3) 1<s<}

the following a priori estimate holds for the solutions of (3.7.1), (3.7.2):

(3.7.4) ”“H(s)< G(Hf”(s—v) + [‘.‘01](7) + [‘Pe](a) + ”“ﬂ(s'))
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with s’ < s, s’e 0,1, and
(8.71.8) r=38—3%6, 0‘=8'—%32+(82'—'%)63 e=(1,—1,1), ¢=1(0,1,0).
Actually, the term |u[,, can be deleted, given that the solution to (3.7.1), (3.7.2)
is unique.

If s, does not satisfy (3.7.3) there is a need to introduce Poisson operators with

unknown densities to have a well posed problem uniformly stable with respect
to £€(0, &].

ExAMPLE 2, — The problem
(3.7.6) (—a2d2—Myulz) =flz), =xeU

(3.1.7) o) = ple), @) =), o/€dT

is not an elliptic singular perturbation, given that
Q1 &) = — [E1* + [

vanishes for [§|=1.
As a consequence of this fact even the estimate

(3.7.8) fuli<O(If ]2+ o)

for solutions to (3.7.6), (3.7.7) with ¢, = @, = 0 does not hold with constant €
which does not depend on &.
Indeed, substituting into (3.7.8) ul(e, #) of the form

(8.7.9) u(e, #) = exp (ix nfe) y(x)
with ne R*, |n| = 1, and pe O (U), [y], = 1 one gets a contradiction as ¢ —0, given
that the left hand side in (3.7.8) grows at least like ¢~* while the right hand side is
bounded when & —0. Here |-, is usual Sobolev norm in H,(U).

Exampre 3. — Consider the singular perturbation:
(3.7.10) —Au(w) =f(x), =l

(3.7.11) (—s a%v -+ 1) wlz') =plx’), a'cel.

Here » = (0,2,0), r,=1, r, =0, u = (0,0, 1).



Luonip 8. Frawk: Coercive singular perturbations, I 111

One checks easily that it is an elliptic coercive singular perturbation and for
8 = (84, 83, 83) With s, -} 8,> 2, and s, satisfying the inequality:

(3.7.12) 8> %

the following a priori estimate holds for the solution «# to (3.7.10), (3.7.11):
(3.7.13) 1< O(If le—n + [P)ny + I0ls))
where
=§—Uu— te,,

and s'<s, 8’0, [,

Again, actually the term [u]., can be removed given that the problem (3.7.10),
{3.7.11) has unique solution.

ExAMPLE 4. ~ Consider the singular perturbation:
(3.7.14) —du(x) =fx), =2eU
(3.7.18 —a—]—l u(z') = p@’) a'eolU

.7.15) Sy z') = @), .

It is not coercive: the condition 4 fails to be fulfilled for p=1, 0’2, ;.
Even an a priori estimate of the type

(3.7.16) Jula< O(If | -1+ [1; + [ o)

cannot hold for the solutions to (3.7.14), (3.7.15) with a constant ¢ which does not
depend on e.
Indeed, assuming (3.7.16) and substituting there for u(e, #) the functions:

(3.7.17) ule, @) = exp(— zafe 4 i’ [e) pla), B0,

with (2, #,) local coordinates in the neighborhood of a point w(', € oU and y(z') e
e 05 (R#1), [w], > 0, one gets contradiction as & —0.

EXAMPLE 5. — It is easy to check that the singular perturbation:
(3.7.18) (—e2d -+ Dul@)=flz), U

(3.7.19) (5%7 -+ sA’) w(@') = @@), a'colU
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with A’ Laplace-Beltrami operator on the manifold 90U, is coercive singular per-
turbation, while the same equation (3.7.18) with the boundary condition

(3.7.20) (%-ell’)u(w’) =), ool

is not (again, the condition 4 fails to be fulfilled in this case).
Here v =(0,0,2), r,=0, r;=1, p=(0,1,1).
ExAmpie 6. — The singular perturbation
(3.7.21) (242 — Mu(x) =flx), =xelU
(3.7.22) w@') = @z), Adu@)=gqz), «'coU

is elliptic coercive with v=(0,2,2), ro=1;=1, u = (0,0,0), u, = (0, 2, 0).
For s, + s> %, 1 <s,<$ the following a priori estimate holds for its solutions:

(3.7.23) Il < Ol + [92deey + [22)iy + [#]is)
where
T=8—m—}e, O=8—y—F6+ (8— 3)e
and s'<s, s'€ 0,15,
If s, is not included between 1 and $ then there is a need to introduce Poisson

type operators with unknown densities to have a uniformly stable problem with
respect to € (0, &).

ExAMPLE 7. — The singular perturbation:

(3.7.24) (e2A2—Mu(e) =fx), zcU
(3.7.25) u(x') = @ (a') , (A ——82;1;—4) w(@') = @y(2'), &'€dlU

is non coercive: the condition 2 fails to be fulfilled.
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