
Coercive  S i n g u l a r  P e r t u r b a t i o n s  

I. - A priori Estimates (*). 

L~o~I]) S. FRAN~: (Nijmegen, The ~etherl~nds) 

Summary.  - We consider general boundary value problems with small parameter e in  the oper- 

ator and boundary co~litione. Both the perturbed and reduced operators are supposed to be 

elliptic. We point out necessary a~d sufficient conditions o/ Shapiro-JSopatinsky type ]or 

the singularly perturbed problem to be coercive, i.e. ]or a two-sided a priori estimate to hold 

]or its solutions uniformly with respect to e. 

I. - Singular perturbations o f  an  ell iptic boundary  va lue  problem. 

The Diriehlet problem for sin~o~larly perturbed differential equations has been 

widely studied in the literature. There are also some attempts to investigate more 

general boundary value problems for operators containing small parameter (see [20], 

[22] for the survey of results and references). 

One of the interesting aspects connected with singular perturbations is asymptotic 

formulas for their solutions so that  the attention of many authors was mainly 

concentrated on this subject. A non-less important problem is related with con- 

vergence of the asymptotic expansions to the corresponding solutions, the latter 

being closely connected with the stability of singular perturbations uniformly with 

respect to the small parameter s. Some stability results concerning singular per- 

turbations were obtained in [6], [8], [13], [16], [23], [25], and others. In [8] the 

author indicates some sufficient conditions on the boundary operators and the 

operator in the domain for a non-adequate a priori estimate to hold uniformly with 

respect to ~ in Sehauder type norms. Some conditions for the Vishik-Lyustcrnik 

procedure (see [28], [29]) to be operative are also mentioned, the latter being nec- 

essary but not sufficient for the stability of singularly perturbed boundary value 

problem. 

We point out necessary and sufficient conditions on the operator in the domain 

and boundary conditions for a two-sided a priori estimate to hold for the solution 

of elliptic singular perturbation uniformly with respect to s. Those conditions are 

algebraic and have a great deal in common with well-known Shapiro-Lopatisky 

coerciveness condition (see [18], [24]), which is necessary and sufficient for an ade- 

quate a priori estimate for the solutions to an elliptic boundary value problem without 

(*) Entr~t~ in Redaziono il 6 luglio 1977. 
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small parameter to hold up to the boundary (see [1], [26] where these conditions 

are used in order to establish the a priori estimates). 

Let us sketch briefly the stability phenomena connected with singular perturbations 

of elliptic boundary value problems. 

An elliptic boundary value problem might happen to be perturbed by another 

one containing small parameter e in its coefficients in such a way that the stability 

of the original problem is destroyed. In other words, the a priori estimate which is 

the basic property of the original reduced problem (with e = 0) does not hold 

uniformly with respect to e for the solutions to inconveniently perturbed problems. 

Being more specific, we illustrate the situation by the following examples. 

EXAMPLE 1. - Consider the Dirichlet problem: 

(0.1) - Au° (x )  = ] ° ( x ) ,  x s U ,  

(0.2) u°(x  ') = O,  x ' ~  ~ U  

in a compact domain U with smooth boundary ~U. 

l~or the solutions of (0.1), (0.2), the a priori estimation holds: 

(0.3) l lu ° h <  ti lt  ° 11- , 

where II" IlK are norms in the Sobolev spaces H~(U). 
Denoting the problem (0.1), (0.2) by  

(- a;{1}) 

consider two singular perturbations for the operator - -A  in U: 

(0.4) 

and 

(0.5) 

with homogeneous boundary conditions: 

~U~ Xr 
(0.6) u~(x ') = ~-~ (x') = 0 ,  e 3 U,  

~V being the inward normal to 3 U. 

The singular perturbation ~ occurs when considering linearized model of thin 

elastic plates. 
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I t  is immedia te  tha t  the a priori  es t imat ion (0.3) holds for the solution u~(x) of 

the problem 92~ with constant  C which does not  depend on e, u*(x). 

On the  other  hand  (0.3) can no t  hold any  longer for  the solutions v*(x) of 2~. 

Moreover,  even some weaker est imation of the  type :  

(o.~) 

does no t  hold with G which does no t  depend on e. 

Indeed,  assuming tha t  (0.7) is t rue  and subst i tu t ing there  for v~(x) the  functions:  

(0.8)  v~(x) = e x p  (ix.~/s) y,(~) 

with ~ e R ' ,  [~] = 1, ~(x) e Co(U), llv21Io = 1, one gets ~ contradict ion,  given t h a t  for 

the funct ions (0.8) the  left  hand  side in (0.7) grows like e -~ and the r ight  hand  side 

is bounded  as e--> 0. 

The instabi l i ty  of singular per turba t ion  might  occur because of an inconvenient  

per turba t ion  of boundary  operator .  

EXA~eLE 2. -- Consider two singular per turbat ions  of the Dirichlet problem 

92 0 = (-- A ; 1) by  Neumann ' s  ones: 

a 
<0.9/ 

and 

(O.lO) =( + 1}) 

where again _AT is the  inward normal  to ~U. 

For  9/~_ the a priori  est imation 

+ 

with [']s the  Sobolev's norm in H,(~U),  holds with constant  C which does not  

depend on e, ue. When  e - > 0  one gets f rom (0.11) the usual a priori  est imation 

for a second order  elliptic par t ia l  differential equation. 

For  the solutions of 92+ the est imation (0.11) is impossible with C which does 

not  depend on e. Indeed,  assuming" (0.11) and subist i tut ing u~(x) of the  form 

(0.12) us(x) = exp (-- x~/e + ix' .~'/e)~p($') 

where (x', x~) are local coordinates re la ted with a point  x' o e ~U, ~' e R '~-1, [~'1 = 1, 

y~(x') has i ts suppor t  in a small neighborhood of J o e  ~U and  [9]o----1, one gets 

a contradict ion,  given tha t  the  lef t -hand side in (0.11) with (0.12) subst i tu ted 

for u~(x) grows as e-+ while the  r ight -hand-s ide  is bounded when e - >  + 0. 
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Therefore, there is a need to classify the singular perturbations of elliptic 

boundary value problems. 

One introduces algebraic conditions of elliptieity and coerciveness for singularly 

perturbed boundary value problems, which are necessary and su]]ieient for the 

stability of the singular perturbation uniformly with respect to the small parameter s. 

Introducing Sobole~r sp~ces H(~) with vectorial subscripts s----(sl, s2, s~)which 
describe the behaviour of function u ~ e H~ when s--> 0 and its smoothness with 

respect to D and eD, where D is the differentiation, one establishes a two-sided a 

priori estimates which are the characteristic property of coercive singular per- 

turbation. 

Let us briefly sketch the contents of the paper. 

In Section 1 we introduce the spaces H(s) with subscripts s e ~8 which are used 

later to establish the a priori estimates. Spaces H~,,,, with two subscripts were 

introduced previously in [4] to investigate Dirichlet problem for singular pseudo- 

differential operators. I t  turns out that  spaces with three subscripts are better 

suited for studying general boundary value problems for singular perturbations. 

In Section 2 we establish two-sided a priori estimates for elliptic singular per- 

turbations in g~" and show the necessity of the ellipticity condition for such an 

estimate to hold uniformly with respect to s. The motivation to include this section 

was mainly to make the paper self-contained. 

In Section 3, which is the central part of the paper, we consider first singularly 

perturbed boundary value problem for ordinary differential equations with small 

parameter s > 0 and large parameter ~'e ~ - ~  and establish a priori estimates uni- 

formly with respect to s and ~'. Afterwards, the results are extended to singular 

perturbations with constant coefficients in g~" +. Further we state the main results 

for singular perturbations with variable coefficients in a bounded domain with 

smooth boundary. I t  is interesting to point out that  for singular perturbations there 

are situations similar to the ones for pseudodifferential operators with negative 

factorization index (see [5]) when solutions to an elliptic pseudodifferential equation 

are not in general sufficiently smooth up to the boundary and there is a need to 

introduce Poisson operators with unknown densities for the solution to be in cor- 

responding Sobolev space. We end the Section 3 by discussing some examples of 

elliptic and non-elliptic and also of coercive and non-coercive singular perturbations. 

The results in this paper are a slight modification of the ones summarized in [10] 

(see also [11], [12] for singularly perturbed ordinary differential and difference 

operators). 

1. - Spaces ~(~), H(~). 

1.1. Spaces ;E~)( ~ ) ,  tt(~)( Y~"). 

Throughout this paper s is a small positive or nonnegative parameter. We consider 

functions u(e, x), s e [0, e0], x e g~ with complex values. Sometimes u(s, x) will be 
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in te rpre ted  as a family of functions of e E [0, So] with values in some topological 

vector  space. 

Le t  u: [0, %] -+  Co(2~ ~) be L°°mapping with respect  to  the topology induced 

by  Co(2~).  We write it  in a short  way:  u ~ Z°°([0, s0]; Co(2~n)). For  such u and 

any  vector  s = (s~, s2, s3)~ 5~3 we define the norms with subscript  s: 

(1.1.1) 

where D = (D~, ..., D.),  DK = - -  i3/3XK, (D} 2 = 1 -[- ]Dp, IDp = --  d ,  A being the 

l~aplacian in £~,  and the norms (1.1.1) being well defined a.e. in [0, e0]. 

We denote  by  J¢(~)(£~) the closure of L~°([0, So]; Co(2~)) with respect  to the norm:  

(1.1.2) l]ul](~) = vrai  ma x  IIull<~) 

I t  is quite obvious t ha t  for non-negat ive integer s2, s3 the norms (1.1.1) are equivalent  

uni formly with respect  to s ~ [0, so] to the following ones: 

X 

PROPOSITION 1.1.1. -- JC(~,(ff~) is a Banaoh space. 

PI~OOF. - According to  the definition of J¢(~>(£") ~ funct ion u ~ JC(~>(ft") iff the 
2 n funct ion v -~ e - ~  ( D }  ~ @D}*"u ~ L°°([0, %] ; L (2%)). Therefore,  the mapping s-8~(D} ~ .  

• (D} *~ maps  isometrically ;E(~>(2~ ") onto Z~([0, Co]; L~(2~)). [] 

For  u eiE(~>(2~") we introduce the seminorm 

(1 .1A)  Iul(~> = lira [[u II~, 
$--e-O 

and  we denote  by  J~(8)(£'*) the set of all functions u ~/E(~>(ft") such tha t  ]u)(~> = 0: 

PROPOSITION 1.1.2. -- ~(s)(9~") is  a closed subspace i n  JC(8)(~"). 

PROOF. -- I t  is quite obvious t h a t  f¢(,>(£-) is a vector  space, given t h a t  for the  

seminorm [. [(,) the tr iangle inequal i ty  holds. For  the same reason it  is a closed set. 

Indeed,  if {u~},>l is a Cauchy sequence in ;E(~)(2~), and [u,~](~> = 0, then,  u being 

the limit of {u,}~>~l in JC~)(fL-), one can write 

(1.1.5) luke,< l u -  + fu.l(8> = ]u--  . 

The left  hand  side in (1.1.5) does not  depend on n and the right hand  side vanishes 

as n - ~ +  ~. • 
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We define the spaces /I(,>(~") to be: 

(1.1.6) 

They are provided with the corresponding factor-norm, denoted again by I" 1(,), 

(1.1.7) I ~1(,, = lira II~ll,,, 
e-+0 

with u any  element belonging to the same equivalency class g.  

Given an L~-mapping u: [0, s,]--> S'(2~) we use the notat ion F ~ u  or 4(~,~) 

for its Fourier t ransform in the sense of tempered distributions. For  u: [0, so]-> 

-->Ll(ff~) it  is defined by the usual  formula:  

(1.1.8) (/%_~ u)(s, ~) =fcxp ( -  ix .  ~) u(s, x) dx . 

- - 1  The inverse Fourier  t ransform is denoted by  ~ .  

The norm t" I(s) is said to be stronger than  I" IO') if there exists a constant  Gs,~, , 

which depends only on its subscripts such tha t  

(1.1.9) IUl,,< c,,,,l~l,,, v~eH(,)(~ ~ ) 

or, equivalently, 

( i . i . i 0 )  [1~]l,,<~'~,,,liull,,, we[o,  sol, ~e:~<,)(~:). 

I t  is immediate  t ha t  the necessary and sufficient condition for (1.1.10) to hold r is 

the inequahty  

(1.:t.11) s-,i <~>,i <s~>'; < 0~,,, e - "  <~>" <e~>", Vs e (o, %], V~ e ~ .  

PRO1)OSZTIO~ 1.1.3. - The inequality (1.1.11) holds if/ 

(1.1.12) 
! f ! 

81 > 81, Sl -F s2/> s[ + s2, s2 ÷ 8~ > s2 + s'~. 

PROOF. - I t  is quite obvious tha t  the  conditions (1.1.12) are necessary for (1.1.11) 

to hold (by taking in (1.1.11) a l ternate ly  e - > 0 ,  I~]----1, afterwards 8-----<~>-1, 

--> co and, finally, s----- 1, ~ -> c~). 

To show tha t  (1.1.12) is sufficient, it  is enough to consider s'-----0. How, 

(1.1.12) with s ' =  0 yields for s0-<l: 

(1.1.13) 8-s~(~)8'(~$) s'= (e<$>)-s~<$>s~+s'<e$>s'><$>s'+s'<e$>s'-s~><~$>s'+s~> I. • 
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For  a given s e 9%8 the  set  of points  s '  e 9%8 sat isfying (1.1.12) is a p y r a m i d  with  

i ts  ve r t ex  loca ted  a t  the  poin t  s. We  use the  no ta t ion  s ' ~  s for wri t ing (1.1.12) 

in a short  way  and  the  no ta t ion  s ' < (  s if there  is a t  least  one str ict  inequal i ty  in 

(1.1.12); th6 sums s l +  s~ and s2 ~-s8 are denoted respect ive ly  b y  Is I and  [s]. 

Wi th  the  relat ions ~ ,  ~<, the  norms ]. I(~'), H" l] (~) and  the  spaces H(~)(9%~), J~(~)(9%') 

become par t i a l ly  ordered,  i.e. 

(1.1.14) H(s)(9% n) C_ H(8,)(9% n) , J~(s) C J~(s,)(9% n) iff s ' ~  s .  

We will need  later  a subs t i tu te  for the in terpola t ion  inequel i ty  in the  usual  Sobolev 

spaces. I t  is convenient  to be able to es t imate  a given no rm of order  s e 9%8 b y  

some s t ronger  one of order 0 a 9%a wi th  small  coefficient and  b y  a weaker  one of 

order Q e 9% 3 wi th  a large coefficient. I t  is easy  to check t h a t  such an  inequal i ty  

cannot  hold for any  0, s, ~ such t h a t  ~ <: s <~ 0. However ,  there  is a useful subs t i tu te  

for the  in terpola t ion  inequal i ty .  

PROPOSITION 1.1.14. - I~et 0, s e 9%8 s ~, a and 

(1.1.15) ~ = s - -  t ( a - -  s ) ,  t > 0 .  

Then  

(1.1.16) 

PROOF. -- I t  is quite obvious t h a t  i t  suffices to show (1.1.16) for s - -  O. I n  t h a t  

case the  inequal i ty  (1.1.16) is equivalent  to the  following one: 

(1.1.17) 

or, whi th  2.----(~2~-'°"1<$)2"<e$>2":, to the  inequal i ty  

(1.1.18) 1 < k ÷ k -~, Vk > 0. • 

For  s e 9%8 we denote  

(1.1.19) r .  = {8'e 9%81s' < s},  F:  = {s'e 9%81s'>  s}. 

The p y r a m i d  F~* is called reciprocal  to /'~. 

CO~OLLAI~V 1.1.5. - Le t  s ~ 9%3 and  o e Iu t /1" .  Then for V~ e P~ there  exists a 

t > 0 such t h a t  (1.1.16) holds. 

Indeed ,  the  condit ion a e I n t F *  means  t h a t  01-- s l >  0, 01 + a2--  (sl -}- s2) > 0, 

a2 + 03-- (s2 -{- s3) > 0. Therefore  there  exists  t > 0 such t h a t  @ :> s - -  t ( o - -  s). 
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For  s e 2~ ~ we denote  by  8/~ the  boundary  of ~he py ramid  F~ which has ~hree 

plane components  : 

(1.1.20) 

f 

l ! 

I ? 

%r'~ = {s'~< sls~ + s~ = s~ + s , } .  

We define ~¢F* to be the component  of ~F:  such tha t  ~iF~ and ~.F* are con- 

ta ined in the same plane passing through s. 

C01~0LLAI~Y 1.1.6. - Le t  s ~ a~.F~ and ~ a I u t  3~r~. Then for V~ a 3~F~ there  exists 

t > 0 such ~hat (1.1.16) holds. 

Indeed,  one uses the  same argument  as in the Corollary 1.1.5. 

1.2. Restriction to a hyperplane. 

For  u eL~°([0, e0]; Co(2J)  ) we deno%e b y  sou its restr ict ion to %he hyperplane  

{x. = 0} and consider the mapping 

c o  ~ - - 1  

(1.2.1) L°°([0, tel ; G o ( ~ )  ) ~ t  -->zo{D~-lu}z<<i<~KeL~°([O, eo]; I I  Co ('~, ).~ , 

where m = (~', ~.) ;  [ZoU](~ ) denotes the corresponding norm of order a E  £3. 

The mapping (1.2.1) is well defined a.e. on [0~ s0]. 

LE~f_~A 1.2.1. - L~t s~  ~ be such that s~=½~ s~> O~ and let ~ = s - - l e ~ -  

= (s~, 0, sa). Then/or u e L~([0,  %]; C o ( ~ )  ) the /ollowing inequality holds: 

(1.2.2) [~oU](~, < ~(1 -I- Ilntl)IIull¢~, • 

PROOF. -- Let  ~(t, ~ , ~ )  F~,~,u  be the par t ia l  Fourier  t rans form of u with 

respect  to v0'= (me, ... ~_~)  e£~ ,  . Now, d(t~ ~) = F z ~ u  being the Fourier  trans- 

form of u with respect  to  z e £~, one can write down: 

(1.2.3) I~(~, 8', o)i ~ < (2=)-~f<~> -1 <t~> ~- ~ d~f<~> <t~> ~ I,~(t, 8)I s as.. 

After  the  change of variable ~ = s-l<s~'>t, the first integral  in the right hand  side 

of the  last  inequal i ty  becomes:  

~<~>-~ <s~> - ~ '  d~,, --- <s~'>-~ff (~  2 <~'>~ <s~'>-~ + t ~) -~  <t> - ~  at .  
:g tg 
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Given tha t  for 0 < q < 1 and  s~ > 0 holds: 

f (q~ -~ t~) -~ (t)-~sdt < C <ln q> 

2;  

one can rewrite (1.2.3) in the following way:  

(~.2.t) 
2~ 

Given tha t  the logari thm in the right hand  side of (1.2.~) does not  exceed 

Ilns[, Yee(0~ ½], one gets (1.2.2) by  integrating (1.2.4) with respect to 2 '~ ~ - ~  

and applying the Pareeval 's  identi ty.  ,, 

Z E ~ A  1.2.2. - Zet  u ~ JE(~)( Pl ") with s~ > l ,  s2 @ s3 > ½. Then  for K <  

< min {s2 + ½, s~ -]- sa ~- ½} the mapping:  

(1.2.5) Je0)(5%~) ~ u -->7~o{D~--tU}I<~<<.KE I I  Je(e~)(~"-l) 
I ~ < K  

with ~ -= (s~, s ~ - - p  @ ½, sa) is continuous linear one. 

P~ooF. - Using the notat ion introduced above in the proof of the Lemma 1.2.1, 

one can write down 

(1.2.6) 

g~ St 

After the change of variable 2. = <2'> t, the first integral in ~he right hand  side 

of (1.2.6) becomes: 

(1.2.7) 
g~ 

f <t>-~qtl~(*-~)(1 + t ~ d <2'> ~ @2'> -~) -". at. 
2~ 

I f  s3>0, then  the integral in the right hand  side of (1.2.7) is bounded by the fol- 

lowing one: 

(1.2.8) f<t>-e~lt[~(~-l)dt< oo for l<~p<s~@½.  
g~ 

- . d n n a l i  d i  M a t e m a t i c a  
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On the other  hand, if s3 < 0, then the same integral in the right hand side of (1.2.7) 

is bounded b y  

(1.2.9) f<t> -2(~+~*~ It]~(~-')at < ~ ,  i < p  < s~ -}- s~ q- ½. 

fit 

Multiplying (1.2.6) by  s-~s~<~?~m-~+½)<s~'>~s% one gets: 

(1.2.10) s-e~' <$'>z('.-~+t)<s}'>~' ID~-I~(s, ~', O)r<Cfs-~"<$>e"<s$>~' la(s, })l~d}, 

fit 

and tha t  along with PareevaPs ident i ty  ends the  proof. • 

LEI~r_~ 1.2.3. - .~et ue3~(,)(~") with s~< ½, s : - i -sa>½.  Then the mapping 

with a = (s~ ~- s~-- ½, O, s~ -Jr- s3-- ½) is eontinuous linear one. 

PI~OOF. - With  the same notat ions ad above~ one e~n write down:  

(1.2.11) la( , o)t < la( , 

Making the change of variables $. ---- e -1 <e~'> t in the first integral in the right hand 

side of (1.2.11), this integral becomes:  

(1.2.12) f<~>-~,, <~>-2,.d~" = ~-i+~,o <~,>i-~,~-~,~ 

f(8 ~ <~'>~ <8~'> -~ + t ~) -~' <t> - ~ '  ~t.  

fit 

The integral in the  right hand side of (1.2.i2) is uniformly bounded  with respect  

to s e  [0, so], ~ 'e 2L ~-~, given tha t  s~< ½ and s~ -~ s3>  ½. 

After  multiplication b y  el-e8~-e~<e~'> e~+~sa-t the inequali ty (1.2.11) becomes: 

(1.2.13) 81-- 281-- 2s2 <~,>28a+2s.--1 t~(8 ' ~ ,  0)t 2 • G f8 -2s' <~>2s~ <~$>2s. ]~(~)12~n. 

Final ly one has to use the Parceval ' s  identi ty.  • 

REMARK 1.2.4. -- The s ta tements  of the  Lemmas  1.2.1-1.2.3 are valid for the 

spaces H(s)(~ ~) and corresponding H(~)(ff¢~-l). 
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1.3. Spaces Jc(,)(a?~), H(8)(a?~). 

We denote by  ~ the  halfspace {x~ > 0} and  for s~, s3 non-negative integer 

define the  norms ]I" 11(8~, s ---- (81, 82, 83), by  the  formula:  

We denote by  ~ ( s ~ ( ~ )  the  space of all u~Z~([O, e.]; SI(N~)) such tha t  

(1.3.2) I1 u I] +) = vrai  max  t] u II ~ < oo .  
ee[O, eo] 

:For functions u~L°°([O, eo]; (J~°(3~)) we use the  usual  extent ion operator l, defined 

by  the  formula:  

(1.3.3) lU(e, x) : Z(x~) u(e, x) -~- Z(-- x~) ~ C, u(e, x', -- px,) 

where g(x,) is the  Heviside's function and %, l<<.p<s2+sa, satisfy the  system of 

linear equations:  

(1.3.4) Y ( - p ) ~ - ~  = 1,  l < / < s ~ +  s~. 

LEM~_A 1.3.1. - For s~, sa non-negative integers, the operator 1 defined by (1.3.3), 

(1.3.4) can be extended as linear continuous mapping from J~(~)(:~) into JC(8)(2~). 

PRooP. - The Lemma 1.3.1 follows immediate ly  from the  inequalities 

]]D~(lu)]]~.(~)<G~]ID~I[I,~(~), for any  u e  G~°(2~), ( l < j <  s~ -I- s3). • 

:For s e  2~ and ueL~([O,  eo]; S ' ( ~ ) )  the  norms H" ][(s+) are defined as follows: 

(1.3.5) II u It 5) = inf II l u  [I(,). 
1 

We denote by  3C(~)(3t?~) the  space of all t empered  distributions u e L~([0, eo]; S ' ( ~ ) )  
such that 

(1.3.6) [l u I[ ~) = vrai  max  II u 11 ~) < o o .  
• e[0 ,  e o] 

In t roducing the  subspace ;E~)(3t ~) c3C<~)(3t ~) of distribution u(e, x) with their  

support  contained in ~-; = {x~<0}, one has the  isomorphism: 

(1.3.7) J~(s)(:E~ _) _~. j~(a)(:E~)/j~(-~(:E.). 
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l~ow, the spaces H(s)(9~+) and corresponding norms I.](s +) are defined in the same 

way as in the Section 1.1. 

1.~. Spaces ~(~)(~), tt(~)(~). 

Let  G be a compact  domain, G c ~ ,  with boundary  8G which is supposed to 

be C ~ oriented manifold. Denoting by J ~ ,  the subspace of ~¢~)(£~) of all tempered 

distributions u~/~®([0,~o]; S'(£~)), such tha t  their  support is contained in the 

complementary set to G in : ~ ,  one defines the spaces ;E(~)(G) by the formula:  

(1.t.1) 

the spuces J~(~)(G) being provided with the factor-norms induced by  the topology 

of factor-space. 

Again, the spaces H(~)(G) are defined in the same way as it  was done in the 

Section 1.1. 

1.5. Spaces J~(,)(@G), Hc~)(~G ). 

The boundary  8G being an oriented C ~ compact manifold, we denote by  {0~}1<~< ~ 

a finite covering of ~G by open balls {0~-} and by  {~.} the part i t ion of un i ty  sub- 

ordinated to the covering {0~}. 

Using a local diffeomorphism x ~ x(y) in the neighborhood of a point _P~. ~ 8U (~ Oj 

with Jacobian J(y), J (P , ) - - - - I  (I  is ident i ty  in t t o m ( £ " ;  g~")), such tha t  x - . y  

maps the set O~ (~ G into the half-space ~ = {y, > 0}, one can define for a function 

~0(e, x): [0, e0] × ~G-* C the norm with subscript a a  £3 by  the formula:  

(1.5.1) [m](.)= ~: [~m](o) 

~-1 y , =  Y~-I) after application where the norms [y~ ~](~) are computed over 2~. , (yl, ..., 

of the  diffeomorphism x : x(y) above. 

We denote by  J~(o)(~G) the  space of all functions (distributions) ~ e  

eL~([o, e0]; ~ ' (~) )  such that 

(1.5.2) 1[~] I(~) ~ vrai  max [~]¢~)< oo .  

Of course, the norms (1.5.1), (1.5.2) depend upon the choice of the covering {Oj) 

and the subordinated part i t ion of un i ty  {%.}, bu t  the  topology in JC(,)(~G) does not  

and  all the norms thus defined are equivalent each to other uniformly with respect 

to e ~ [0, eo]. 
The definition of the spaces H(~)(~G) can be given by  the procedure, used above 

in the Section 1.1. 
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We restricted ourselves to the min imum of definitions and facts about  the spaces 

5¢(~), H(~) t ha t  will be used later to investigate the boundary  value problems for 

singularly per turbed Differential Operators. 

Of course, it  is possible to develop the theory of spaces ~ ,  H ~ with/~ = #(e, 2) 
family  of weights depending on parameter  s c [07 so], this theory  being in m~ny 

points similar to this  one developed in [30] for # =/ t (~) .  

2. - Singular perturbations in :~ .  

The aim of this section is to establish ~ two-sided a priori est imate for elliptic 

perturbat ions (defined below) in spaces JC(~)(~ ~) and also to show tha t  the ellipticity 

condition is necessary for the val idi ty of such an estimate. To do this one uses 

the classical technique of part i t ion of uni ty .  I t  goes wi thout  saying tha t  one can 

consider ~ more general class of pseudodifferential singular perturbations and develop 

the calculus analogue to the algebras of pseudodifferential and difference operators 

investigated formerly i n  [9], [15], [17]. The main purpose in adding this section 

is to m~ke the  paper self-contained. 

2.1. Classes ~ .  

Zet  ~ be a small non-negative parameter ,  3 e [0, ~o], and Q~(x, 2) a family of 

polynomials in ~ e ff~" with coefficients C ~ functions of x e $~', ~ e (0, 3o], which 

are supposed to be stabilizing to functions of 3 when x is large enough. We assume 

also t h a t  

(2.1.1) deg~ Qt = m ,  V(~ ~ (0, ~o], 4eg~ QO = m~ < m .  

Expanding Q~ in a finite sum of homogeneous polunomials Q~ 
K~ 

(2.1.2) Q~(x, 2) = ~ Q~(x, 2) ,  deg~Q~ = K ,  
O ~ K ~ m  

we assume tha t  Q~(x, 2) can be represented in the form: 

(2.1.3) G(x ,  2) = ~q~(x ,  ~), t~>o, 0 < K < n  

where the homogeneous polynomials q~(x, 2) are supposed to have H61der continuous 

coefficients a t  ~ = 0 and q°(x, 2), O < K < m ,  does not  vanish identically. 

The assumption (2.1.1) upon the degree of Q~ yields: 

(2.1.4) t,,~ = 0 ,  t.~ > 0 ,  for ml < K < m .  
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Denoting m2-----m--ml, we restrict ourselves to the polynomials Qa such that  

(2.1.5) m~tg>t,~(K-- ml), for m l <  K <  m.  

The condition (2.1.5) being fulfilled we introduce a new small parameter e, 

(2.1.6) sin__ ~t~. 

Denoting by Q(x, e, ~) and qK(x, e, ~) the polynomials which are thus obtained 

from Q~ and q~K respectively, one can write down 

(2.1.7) Q(x, e, ~) --- ~ em't~/t~q~c(x, e, ~) -~ r(x, e, ~) , 
mx<~K~m 

where deg~ r(x, e, ~) < ml.  

Introducing the numbers 

(2.1.8) ?K = m~-- K ~- m2tK/t~, m l < K < m ,  

which are non-negative, given the condition (2.1.5), and ?~1 = ?~ = O, we can 

rewrite (2.1.7) in the fashion 

(2.1.9) Q(x, s, ~) = ~_, s ~-"~ q~(x, o, ~) + t~(x, e, ~) 

where the remainder ~(x, e, ~) of degree at most m satisfies the inequality: 

(2.1.10) IR(x, s, ~)[< C((~} ~'-1 + ~ (~}~' (~}~') 

with some positive constants ? and C. 

The polynomial 

(2.1.11) Qo(x, e, ~) --- ~, ~-m~flK(X , O, ~) 
ml~K~m,  Tg=O 

is called principal symbol of Q(x, s, ~). 

Obviously, Qo(x, e, ~) is homogeneous function in (8 -~, ~) of order ml, 

(2.1.12) Qo(x, e, ~) = ~-"'Qo(x, 1, s~) , 

which satisfies the inequality 

(2.1.13) IQo(x, e, ~)i< Cl~l~(s~} ~', Vxe ~ ' ,  V~e 2~', Ye>0.  

The representation (2.1.9) with /~ and Qo satisfying (2.1.10), (2.1.12)~ (2.1.13), 

is called canonical for the ~amily Q~. 
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We will consider a slightly larger class of polynomials Q(x, e, ~) fur ther  called 

symbols whose canonical representation satisfies the  conditions: 

(2.1.I~) Qo(x, e, ~) = e-("+~*)Qo(x, I ,  ~ )  , 

IQo(x, 8, ~)1< 08-', I}1~,<~}> TM, 

l~(z, ~, ~)1 < ~-~'(<~7 '-~ ÷ ~<~Y'<~>") 

with some positive constants y and  C. 

Q(x, a, ~) is supposed also to stabilize to a symbol Q(e, ~) as x -~ c~ in the fol- 

lowing sense: 

(2.1.15) Iq(x, ~, ~ ) -  q(~, ~)l<~o(X)~-~'<~>~*<~>~' 

where (po(x) e S(g¢"). 

The least vector v e ~ such t h a t  (2.1.14) still holds, is called order of the 

symbol Q. 

The class of the  symbols Q(x, e, ~) of order v is denoted by ~ and the class 

of corresponding singularly per turbed Par t ia l  Differential Operators Q(x, e, D) is 

denoted by  Pv. 

2.2. Singular perturbations in the spares JCc~)( gL~), H(~)(~L~). 

For s~  2~ 3 with integer s~>~v~, j ~ 2, 3, it  is immediate  that 

(2.2.1) Q e Horn (JC(o(gL") ; JC(8_~)(2~n)), VQeP~. 

PROPOSITION 2.2.1. - The invlusion (2.2.1) holds /or Vs E 2~ 3 and VQ ~P~. 

PROOF. - If  Q does not  depend on x then (2.2.1) follows immediately.  Therefore, 

it  suffices to show (2.2.1) for Q whose coefficients, as functions of x ~ ~",  belong 

to ~(aD. 
The inclusion (2.2.1) is equivalent to the inequali ty 

where ~ - +  Kv is integral operator with the kerneh 

(2.2.3) K(~, e, fl) = <~>s'-v'<e~>g'-~'e~'~)(~-- fl, e, fl)<~/>-8,<~>-,. 

and the constant  C does not  depend on s and ~. 

Given tha t  Q e S ( ~ )  as function of x, one can write down for Q---F~_+~_nQ: 

(2.2.4) 

with VN > O. 
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Now using the Peetre's inequality (see, for instance, [3]): 

(2.2.5) <$>e<N>-e <21qI<$_ N>lql, V&,~ ~{, 

(2.2.3)-(2.2.5) yield 

(2.2.6) f]K(~, e, fl)]d$< C~vf <~-- fl>-~'d~ < C 

where hr~ = iV--[s~--v~[--]s~--v~[ > n, and C does not depend on s, $, ~. 

The inequMities (2.2.6) show that  the family of operators $ -~ Kv is uniformly 

bounded in L2(g¢~) with respect to ee[0 ,  Co]. [] 

2.3. Singular perturbation and diffeomorphisms on 2~ ~. 

Let x = a(y) be ~ diffeomorphism of ~ onto ~ :  We denote by J(y) the 

Jacobian of a(y) and by tj(y) the transpose of the matrix J(y). 

P~OP0SITION 2.3.1. -- ~Let Q e P, ,  and Qo(x, e, $) be the principal symbol of Q. Then 

after the dif/eomorphism x -~ a(y) the principal symbol of the corresponding singular 

perturbation in variables y becomes Qo(~(y), s, (~J)-~(Y)V). 

P~ooF. - Breaking down the principal symbol Qo(x, e, $) into the sum of hom- 

geneous components: 

(2.3.1) Qo(x, s, ~) = ~ eK-"~-~'q¢(x, ~) 

the statement of the Proposition 2.3.1 follows immediately from the corresponding 

formulu for the principal symbol of differential operator q~(x, D) in variables y. [] 

2.4. Elliptic singular perturbations. 

We start with the definition: 

DEFI~ITI0~ 2.4.1. -- Singular perturbation Q ~ _P~ is called elliptic of order ~ if its 

principal symbol Qo satisfies the condition 

(2.4.1) lq0(x, e, ~) l>¢e- '~<eY ~, r e >  0, v$~9~, Vxe ~ 

with some constant C > 0 which does not depend on o, ~, x, where by 9~ we denote 

the unit s~here in ~ :  9 .  = (~e ~ll~l  = 1}. 
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~ E ~ K  2.4.2. - Introducing reduced principal symbol Qo°(X, ~), 

(2.4.2) Q~(x, ~) = lim e'lQo(x , s, ~) , 
e-~+O 

the condition (2.4.1) is equivalent to the following ones: 

(i) Qo(x, 1, ~) is an elliptic symbol in the usual sense, that  is Qoo being the 

principal homogeneous symbol of order v~-l-v3 to the symbol Q,, the inequality holds: 

Qoo(X, 1, ~) # 0,  Vx e ~-,  V~ e 9n .  

(ii) Q°(m, ~) is elliptic of order v~, that  is 

Q°(x, ~) # o,  Vx e gCn, V~ e Q~. 

(iii) Qo(m, 1, #) does not vanish: 

Qo(x, 1, ~) # o ,  Vx e ~ ,  V~ e ~ .  

I t  is quite obvious that  (2.4.1) involves (i)-(iii) (by taking in (2.4.1) alternately 

--> 0 after multiplication by ~1, afterwards, multiplying (2.4.1) by ~'-~' and letting 

-> + c~ and finally, using the homogeneity of Qo). 

On the other hand, using again the homogeneity and (iii) one gets 

Qo(x, e, ~) ~ o ,  Ve > o, V~ ~ ~ ,  ]~l = ~, Vx ~ ~ .  

Finally~ using (ii) one gets for Q small enough: 

and from (i) one obtains for ~ large enough: 

[Qo(x, e, ~:)l> C'e~'-% V ~  9,,, Vxe 2~. 

Sometimes it will be convenient to use another equivalent definition of ellipticity: 

(2.4.3) IQo(x, e, ~)l>Oe-~llyF,<e~>% vSe ~ ,  vxe  ~-, r e > 0 .  

Its equivalency to (2.4.1) is quite obvious given the homogeneity of Qo in (e-~, ~). 

The class of elliptic singular perturbations of order v is denoted by E. .  

PROPOSITIOI~ 2.4.3. - Elliptiei~y is an invariant property with respect to any dif/eo- 

morphism of 2~ ~ onto itsel/. 
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PI~0oF. - The s ta tement  is an immediate  consequence of the Proposition 2.3.1. 

P]~OPOSlTION 2.4.4. - Zet Q ~ E~ and Q -'- Q(e, ~) does not depend on x. Then for 

eo small enough the ]ollowing a £riori estimate holds: 

(2.4.4) IluII(~) < ~.,.,(llQuil(,-~) + 1[~II(,,)) 

with Ys 'e  a~F~ and a constant Gs, 8, which depends only on its subscripts. 

PI~ooF. - In t roducing 

(2.4.5) Q~o(e, ~) = Qo(e, ~), with ~ = ( ~ ) ~ ,  ~ ' =  ~/l~l, 

one can write down: 

(2.4.6) Q(e, ~) = Q*o (~) + R*(~, ~) 

where R~(e, ~) satisfies the inequali ty:  

(2.4.7) IR~( ~, ~)l< ~-~( (~Y~-~  + d ( ~ y ' < ~ ) " ) .  

The ellipticity condition (2.4.3) and (2.4.5) yield: 

llQ~ulI(,-~) > Cll~ll(~> • (2.4.8) 

Now, 

(2.4.9) llR~ulI(~-,> < ~(llull(~,) + 4 Ilu II<~>) 

with s" = (sl, s ~ -  1, s 3 -  vs). 

Using the interpolation inequali ty for I]ullo°) with convenient t, i.e. such tha t  

s" - t ( s -  s") < s', 

(2x.10) 

(2.4.s)-(2.4.10) yield 

IIQ~II(~-~)> I[Qo% I[<~-~)- flR%II<,_~) > (C-  do- 0)Ilull(~)- ~Ilull<~,), 

which leads to (2.4.4) if eo and 0 are small enough. • 

RE~_AICK 2.4.5. - I f  (2.4.4) holds with some s ' -~s such tha t  s ' l<s  1 then as a 

mat te r  of fact,  Q(e, D) for eo small enough establishes the isomorphism: 

(2.4.11) Q e Iso (~ (~ ) (~ )  i ~(~-~)(~'))  • 

Indeed,  in t ha t  case, II~l[<~,)< ~'<II~ll<~>° 
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Our  a im now is to p rove  the  a priori  es t imate  (2.4.4) for elliptic singular per-  

turba~ion of order  v wi th  var iable  coefficients. To do this  we need several  

l emmas .  

Lv .~v~  2.4.6. - ~or  any s~, sae ff~ and 0 < eo<~ l the /ollowing inequality holds: 

(2.4.~2) 

where 

(2.~.13) 

~o = max ( ]s~-  II ÷ [s~l, [s~] ÷ [s~-  ~1} 

P~ooF.  - I t  is immedia te  that 

(2.4.~4) 

Denot ing  the  left  h a n d  side in (2.4.12) b y  g(e, ~, ~), the  inequal i ty  (2.4.14) and  

Lagrange  fo rmula  for the  difference in the  lef t  h a n d  side of (2.4.12) yield:  

where ~0 ---- ~ ÷ 0(~--  ~) wi th  some O, 0 < 0 < 1. 

Now using Pee t re ' s  inequal i ty  (2.2.5) to e s t ima te  <~0>q'<~> -Q~ ~nd <e~e> q~ <e~> -~ '  

wi th  ~ ----- s~, ~ ----- s~-- 1 and  ~ ---- sa, ~ ---- s~-- 1, one obtains  for  g(e, ~, ~) the  ine- 

qual i ty  (2.4.12) wi th  cons tants  (2.4.13), noticing also t h a t  e<~>~<<e~> for O<e~< 

< e o < l .  • 

L E n A  2.4.7. - Let Re(x, ~, ~) ~ ~ and assume that the coe/]ieients o/ eU' Ro belong 

to L~([0, ~o]; ~(~)). Then /or Vse a~, VueL~([0, Sol; ~ ( ~ ' ) )  ~ol~: 

(2.4.16) e-S'<D>'~<sD)~'2~o(x, ~, D)u(x)  = Re(x, e, D)e-8"<D)~<eD>*'u(x) -~- Ku(x)  

where the operator u---'I K u  satis/ies the inequality 

(2.4.17) H K u  H(o) < C Hu I[(8 +u-e.) 

with e2 ~- (0, 1, O) and a constant C which does not depend on e and u. 

PROOF. -- One finds immed ia t e ly  t h a t  F , ~ ( K u )  is an  integral  opera tor :  ~(~) -+ 

-+ (~:4)(~) wi th  the  kernel :  
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where 

Ro(¢- -  ~, 8, ~) = ~ + ¢ _ , R o ( X ,  8, ~) . 

Introducing ~(})=s-(~+"')<}>~'+z'-~@}>~'+~-~d(}) the inequali ty (2.4.17) is 

equivalent to the following one: 

(2.4.19) 

where we denoted by  ~ integral operator ~-+ S~ with the kernel: 

(2.4.2o) ~(~, 8, v) = [<}>~' <~>~'-  <vy~ <~>8']_~o(}- ~, 8, v) ~"~<v>~-~=-~<en>-',-~. 

Given tha t  /~o(x, 8, ~ ) e  ~ and has coefficients which are in S(2~) as functions 

of x, one can write down for /}(~--,/ ,  8, V): 

(2.4.21) <~- ~>~ IDo(~- ~, 8, ~)l~"'<~>-":<.~>-":< o~, v~ > o 

where the constant  C~v depends only on N. 

)Tow, the formula (2.4.20), the IJemma 2.4.6 and (2.4.21) with N ---- No q- n q- 2 

yield 

(2.4.22) ~1~(~, 8, v) id~< ~ ,  f[~(~, 8, V)id~ < C 

:g~ 5L~ 

where the constant  C does not  depend on e, ~, ~1. 

The inequalities (2.4.22) show tha t  (2.4.19) is vahd,  and, 

holds for K.  • 

therefore (2.4.17) 

L E n A  2.4.8. - Let Q(x, 8, D) ~ E~ and u ~ Z~°([0, %]; Co(G~) ) where diam G~ < ~. 

Then  given s E 5L 3 and Vs' E ~IF~, there exists a constant Cs,s, , such that ]or (~ and go 

small  enough the a priori  estimate holds: 

(2.4.23) lIuIl(,) < ¢8,+(ilQuI[<~-~) ÷ liull(,,)) • 

P~ooF. - With  Xo any  point in Go and introducing the notat ions:  

Qo(x) = Qo(x, 8, D) , Q(x) = Q(x, 8, D) , Ro(x) = Q o ( x ) -  Qo(Xo) , R(x) = Q(x) - Qo(x) 

one can write down: 

(2.4.24) Q(x) = Qo(xo) -~- -Ro(x) ~ _R(x) . 
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By (2.1.1Q and the Proposition 2.2.1 the following inequali ty holds for the oper- 

ator R(x): 

(2.~.25) 

with e~ = (0, 1, 0), e3 = (0, 0, 1). 

~ o w  let, 0~ c G~, d iam0o < 26 and  9~ e Co(O~) such tha t  ~(x)  ~ 1 for x ~ G~. 

Denote /~o~(X)=%(x)l~o(X ). Using the Zemma 2.4.7 one can write down: 

(2.4.26) e ~-8~ ( .D)~-~(eD)~-~ l~o(X)  u ~-- ~ - s~  ( D ) ~ - ~  (~D)S.-~.t~o(x) n -~ 

-~ R~o(X) e ~-s '  ( D )  ~*-~ ( e D )  ~'-~ u ÷ K ~ u 

where the operator u - - ~ K ~ u  satisfies the inequali ty 

(2.4.27) II K ~  f](o)< ~ I] u ][(~_~,) 

with some constant  C~ t h a t  depends only on ~. 

The coefficients of /~o~(x) being smooth with their  support in 0~, diam 0 ~ 2 0  

and R~(Xo) - -O,  one gets immediately:  

(2A.28) 

where C does not  depend on 6, s and u. 

By  the Proposition 2.4.4 one has 

(2.4.29) ]I ull<:)< C(llQo(mo) ~ ]1<~-+) ÷ llu]l<~¢ 

with Vs'e ~F(~) and C which depends only on s, s'. 

l~inally (2.4.24)-(2.4.29) ~nd the interpolation inequali ty (1.1.16) with 0~ instead 

of 0 applied to the te rm l]uIl(.~_~) yield: 

(2.4.30) 

the last inequali ty leading to (2.4.23) for So and 0~ sufficiently small. • 

RE~A~K 2.4.9. -- I f  Q ( x , ~ , D ) ~ E ~  and ueL~°([O,%];C~(G~))  where G ~ :  

: (x I Ix I > r~  then  for r large enough and eo sufficiently small (2.4.23) still holds. 

Indeed~ the fact  tha t  the supp u is smaller thun 0 was used in the proof of the 

Lemma 2.4.8 only to est imate the te rm Ro(x). l~low denoting by  Ro(m) the difference 

(2.4.31) Ro(x) = Qo(x) - Qo( ~ )  , 

e~IRo(X) has its coefficients in Z~([0, Co]; S ( ~ ) ) .  Therefore for r ~ 0 -1 and 0 small 

enough the inequali ty (2.4.28) still holds. 
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Tm~o~v.~ 2.4.10. - Zet Q e E, .  Then ]or eo su]/ieiently small the a priori estimation 

holds: 

(2.4.32) 1faiL) < e(HQuH(~_,) + [lull(J, w e ~(~)(~), 

]or Vs e ~ ,  Vs'e ~IP, where the constant C does not depend on e and u. 

PRooP. - Le t  B~ be a ball with radius r ----- ~-1 and let {G~}I~<~<N be a finite cover- 

ing of the ball B~ such t h a t  d i a m G , <  ~, so tha t ,  denoting GB,----G~+I, the col- 

lection of open sets {Gj}I<j<~+ 1 is a finite covering of ~ .  Let  {~)l<~<N+l be the 

part i t ion of ident i ty  subordinated to the covering {G~}I<~<N+I, so t ha t  for 

Vue.5°°([O, Co]; (7~°(2~)) one has 

(2.4.33) u : ~ ~vtu. 
I~[~iV+I 

Now by  IJemma 2.4.8 and the Remark  2.4.9 one obtains 

(2.4.34) [lull(,)< Z II~ull(,)<v Z (llQ(~u)ll<~-~)+il~ull(~,)). 
l~<i~<hr+l 1~<i~</V+ 1 

Applying again the Lemma 2.4.7, and the interpolation inequality (1.1.16), one can 

write down 

(2.4.35) IIQ(~¢ u)II(,-,)< [[Qull(,-,) + ~l[uli(,o 

il~ nil(,,> < ~liulL,), 

where the constant  G depends only on s, s', v, 0 and 8o. 

This ends the proof of the Theorem 2.4.10. • 

Tn~EO~E~ 2.4.11. - I /  /or Q e P ,  the a priori estimation (2.4.32) holds /or some 

s e 2~ a and s' e ~I I'~, s' < s, then Q e E~. 

P~00F. - Wi th  ~ e ff~ and ~(x)e  G ~ ( ~ ) ,  we will substi tute into (2.4.32) the 

functions u(e, x) 

(2.4.36) u(e, x) ---- exp (it -1 x.~) ~(x) . 

I t  is immediate  by  the Leibnitz 's formula tha t  for such functions u(e, x) holds 

(2.4.37) Q(x, e, D) n = 8-(~+~')exp (i8 -1 x-~/)[Qo(x, 1, ~)q(x) + tv°v/¢(t, x)] 

where ~v,(s, x) e L~([0, to]; Go(ff~)), supp ~ _c supp ~ and ~o -= rain {1, 7}, 7 being the 

same in (2.1.14). 
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I t  is easy to check tha t  for Vg~ ~3, Vtp~L~([O, Co]; Co(~t~)) holds 

(2.4.38) Hexp(i~-lx.~/) VII(q) = 8-(q'+Q')[~l~<v>"[II%OH(o)+ c~8] 

where G~ depends on 10 but  is bounded uniformly with respect to ~ e [0, so] and  

with 1'/I > ro > O. 
Indeed,  

(2.4.39) Hexp (i8-1 x.~)1oil(Q)= I]8-ql<~ q- e-l*]>q'<e~ q- V>~'!a(~) l](o) = 

: 8--(qz+q'){[]Sq'<8--1V>g~<~>@'~)(~)if(O) "-~ [HS~z< ~ -If- 6-1 ~>e'< 8~ "]I- ~>~'~-)(~)H(O)- 

- IT8"<8 -1,~>~'<,~>~'i,(~) I]](o)} • 

Denoting ~he difference within the  brackets in the r ight  hand  side of (2.4.39), 

by g(8, ~/) using the triangle inequali ty for the  norms and the Lemma 2.4.6, one gets: 

(2.4.40) It(8, n) l< ~8 [l 8~,-~ <8 -1 ~>~,-1 <n>~,<~>~.+~(~)[I(o) • 

)Tow, noticing tha t  for Irl]>ro> 0 holds: 

(2.4.41) [88< e-* rJ> e -- ]r/] ~ I< 6'8lV l ~-1, V e e ~ ,  

one obtains (2.4.38) with 

(4.4.42) o,, < v <~ >-  ~ ]I < & '~° +~ ,)(~:)II (o) 

where the constant  C does not  depend on 6, ~, ~ and W. 

Applying (2.4.38) to both  the  left and right hand  sides of (2.4.32) and taking into 

the consideration (2.4.37), one gets af ter  the  multiplication by  e'+~"]~l "'-8' <~>..-s. 

(2.4.43) Iv I"<v> ~" tlq [I(o) < C ]]Qo(x, ~, v) q II(o) H- c~ 8 

where C is the  same as in the  right hand  side of (2.4.32) and Cv does not  depend 

on e and is uniformly bounded when ]~/l >to  > O. 

Let t ing e - + 0  in (2.4.43), one gets: 

(2.4.44) t~ I ~°<~y' ll~ o [l(o)< UllQo(x, 1, v) ~ II(o) 

and tha t  shows the ellipticity of Q, given tha t  (2.4.44) holds for V~0 e Co(~"),  and C 

does not  depend on ~ e :~". • 
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3. - Coercive boundary value problems for elliptic singular perturbations. 

The aim of this section is to investigate boundary  value problems in a compact 

domain for elliptic singular perturbations.  We will point  out  necessary and suf- 

ficient algebraic condition, called coerciveness condition, on principal symbols of 

the operators for a two-sided a priori est imate for the solutions to the singularly 

perturbed boundary  value problem to hold in corresponding spaces ;E(~). Some 

applications and examples will also be discussed. 

3.1. Algebra@ preliminaries. 

We prove in this section some auxiliary s ta tements  t ha t  will be fur ther  used for 

establishing a priori estimates for singular boundary  value problems. 

L E ~  3.1.1. - Zet Qo(s, $) be elliptic principal symbol o] order v, Qoo(~) the principal 

homogeneous part of Qo(1, ~) el order v2 -~- v3 and 2(@, co') zero el the equation: 

(3.1.1) Qo(@, co', 2) : 0 

where @ > O, co' ~ ~n-~. 

Then Im 4(@, o)') # 0, 

and C(co') V= 0 such that 

@ > O, Vco'e Y2._~ and there exist a rational number q < 0 

(3.1.2) 2(@, co') = 2co(co') ÷ @fie(co') ÷ o(1)],  @ -+ ÷ ~ ,  

where 2co(co') is zero o/ the equation 

(3.1.3) qoo(co', 4) = 0 ,  

and o(1)-+0 uni]ormly with respect to co'e Y2~_1 as @-~ ~ c~. 

PROOF. -- The coefficients of the family of polynomials 

2 -~ g~-~'Q0(@, co', ;~) 

are continuous functions of @ e (0, c~] and co' e Y2v_l and approach the ones of the 

polynomial 

2 -+ qoo(co', 4) 

uniformly with respect to o)' e .O._~, as @ ~ + c¢. 

Besides, given the ellipticity of Qoo(~) in the usual Petrovsky 's  sense, the 

leading coefficients of both polynomials 2-->@~'-~'Qo, A-->Qoo do not  depend on 

eo'e tP. and are non-vanishing constants. 
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Therefore,  according to the  theorem on continuous dependence of roots of poly- 

nomials on parameters ,  one obtains:  

l im k ( q ,  co') = 2co(co') • 
Q--> + co  

Now, k(~, co') being an algebraic funct ion of ~, it  follows f rom the  theory  of 

Puiseux's  series (see, for  instanc% [3]) t h a t  there  exist a ra t ional  number  q < 0 

and  C(co') =~ 0 such t ha t  (3.1.2) holds, the  number  q being ra t ional  and  continuous 

funct ion of co'~ ~2~_1, it  follows t h a t  q does not  depend on co'. [] 

LE~VfA 3.1.2. - _Let Qo(s, ~) be elliptic principal symbol o/ order v, QO(~) the homo- 

geneous part of Qo(1, ~) el the lowest degree, degQo°= ~ ,  and ~(~, co') zero of the 

equation (3.1.1). 

Then there exist rational numbers q~ > 0, q, > --  1 and Cj(¢o') ~ 0, j = 1, 2, such 

that either 

(3.1.4) k(~, co') = ,~o(co,) _~_ ~ql[Cl(co,)._[ - o(1)], ~ -+0  

with k°(co ') zero of the equation: 

(3.1.5) o , Oo(co, ~) = o 

o r  

(3.1.6) k(q, co') = ~ - ~  + e~[C~(co ') + o(1)], q -+o 

with tt a non-vanishing zero el the equation 

(3.1.7) Qo(1, 0, ~) = 0 .  

PROOF. -- Again, since k(~, co') is an algebraic funct ion of ~o, it can be expanded  

into Puiseux's  series. 

Fi rs t  assume t ha t  k(~o, co') is bounded  when ~ -> 0, co' e ~2~. Then, as i t  follows 

f rom the theory  of Puiseux 's  series, 2(~o, co') has the  following behaviour :  

(3.1.8) k(q, co') ~ ~,°(~o') ~ ,  e -~  o ,  

with some ~ >  0. 

The number  ~ being rat ional  and depending cont inuously on co'e tPn, one gets 

the  conclusion t ha t  ~ does not  depend on co'. Subst i tu t ing  (3.1.8) into (3.1.1) one 

finds out  t h a t  the  following relations have  to hold: 

(3.1.9) 0 ! = o ,  Qo(co,  4°(°, ' ))  = o .  

5 - . d n n a l i  d i  M a l e m a t ~ c a  
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Again, the  theory  of Pulseux's  series asserts t ha t  there  exist  a ra t ional  number  qz 

and C~(w')# 0 such t ha t  (3.1.4) holds. 

~Tow assuming t ha t  X(@, co') -+ co when @ --~ 0, writ ing down 

(3.1.10) A(~, co') --, e-t~/~(~,), #(e ' )  # 0 ,  co'e D., 

and subst i tut ing (3.1.10) into (3.1.1) one gets the  conclusion t h a t  necessarily 

(3.1.11) # = 1 ,  q0(1, 0 ,# )  = 0 .  

~inally,  one more use of the  Puiseux series theory  leads to the  formula (3.1.6). • 

REMARK 3.1.3. -- The ellipticity of Qo(e,~) guarantees  t h a t  Im2°(eo ') # 0 ,  

:REMARK 3.1.4. -- I t  fOllOWS f rom the  Le mma  3.1.2 tha t  there  are precisely v~ 

zeros (with their  multiplicity) of (3 1.1) satisfying {3.1.4), (3.1.5) and precisely va 

zeros (with their  multiplicity) of (3.1.1) satisfying (3.1.6), (3.1.7). Those zeros are 

fur ther  called respect ively of the first and second type.  

We assume fur ther  t ha t  Q00(~) is proper ly  elliptic polynomial  of order v~ + va 

in the usual  sense (see for instance, [19]). 

DEFI2~ITIO2~ 3.1.4. - An elliptic principal symbol Qo(s, ~) o] order v is called properly 

elliptic principal symbol, if Qoo(~) is properly elliptic polynomial o] order v~-~ v3. 

I m ~ A  3.1.5. - .5et Qo(e, ~) be properly elliptic principal symbol of order v. Then 

the reduced symbol Q°o(~ ) is properly elliptic too. 

P~oo~. - I t  follows f rom the  definition of the  ellipticity (i)-(iii) of singular per- 

tu rba t ion  t ha t  QO(~) is elliptic homogeneous polynomial  of order ~ .  For  n > 3  the  

class of Pe t rovsky ' s  elliptic symbols coincides with this one of proper ly  el l ipt icpoly-  

nomials. Therefore,  there  is a need to prove the  lemma only for n = 2. 

The principal  symbol Qo(e, ~) being elliptic, the inequal i ty  (2.4.3) with t instead 

of @ holds, and it  can be rewri t ten  as follows: 

(3.1.12) i'=qo(e, ~)I> ~I~:I"'<~V=, v~:, e > o .  

In  fact ,  the  last inequal i ty  has to be val id also for e < 0, given t h a t  s*'Qo(e, ~) is 

homogeneous in (s -1, ~) of order  v2 ~ vs. 

Wi thou t  restr ict ing the  general i ty  one can assume tha t  vl : 0. In t roducing  a 

new paramete r  ~o : e -1 and denoting 

V 8 - -  1 

(3.1.13) %(~o, ~) = ~o Qo(~o , ~ ) ,  
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the  polynomial  qo(~o, ~) in (~o, ~) satisfies the  inequal i ty  

(3.1.1~) 

Besides, qo(~o, ~) is homogeneous of order v2 + va. 

Consider now the polynomial  ~o --> [~]-~'qo(~o, ~) t ha t  is a homogeneous funct ion 

in (to, ~) of order  va which does not  vanish when (~o, ~)e  :Ka\{0}. 

I f  A(~) is zero of the equat ion:  

(3.1.15) [$l-~qo(A, ~) = o 

such t ha t  I m  A > 0, then  the complex number  # ---: --  A(-- ~) is a zero of the same 

equat ion such t ha t  I r a #  < 0. When  $ e ~ \ { 0 } ,  bo th  A(~) and --  A(-- ~) cannot  

meet  the real  line. Given t ha t  the  circle I~1 = 1 is a connex set in g~2\{0}, one can 

deform - - ~  to ~ along this circle, so t h a t  ~ does not  vanish. Therefore,  the root  

/z(~) = --  A(-- ~) will be t rans formed into some other  zero of the equat ion (3.1.15), 

say fi(~). Consequently,  to  any  root  of (3.1.15), say A(~), conta ined in the  upper  

half  plane corresponds a root  fi(~) contained in the lower one, which shows t h a t  v3 

has  to  be an even non-negat ive  integer.  Qoo(~) being proper ty  elliptic in the  usual  

sense, the  number  v2-4-v3 is also even, and, consequently,  so it  is for v~. 

Denote :  v~ = 2r~. Qo@, ~,  A) being proper ly  elliptic in the  usual sense for any  

fixed e e (0, to], i t  has precisely r2 ~-r3 roots  in bo th  upper  and lower half  planes. 

None of these roots can mee t  the  real  line if ~1 # 0, so t h a t  the  polynomial  

Q°(~l, A) ---- limoQo(e , ~1, A) of order  v~ = 2r~ must  have  the  same number  of roots  in 

bo th  upper  and lower half-planes, given t h a t  precisely r3 roots of Qo(e, ~ ,  A) in bo th  

upper  and lower half  planes go to infinity as e--> 0. • 

COROr.LAX¢¥ 3.1.6. - I f  Qo(e, ~) is proper ly  elliptic principal symbol  of order v, 

then  vA, v3 are even non-negat ive integers:  

(3.1.16) vj = 2r j .  

Le t  A-+Qo+(e, ~', A) be the  factor  of the polynomial  A-+Qo(e, ~', 4) t h a t  cor- 

responds to the zeros of Qo contained within ~he upper  half  of the  complex X-plane, 

when ~ 'e  5L~-1\{0), ~ > 0. Besides, 2-+Qo + being well defined up to a coefficient 

depending on e, ~', the  la t ter  is supposed to be chosen in such a way tha t  

(3.1.17) l.~m A-(~+r,)Q+(e, ~r, A) = e% 
~--> oo 

L E n A  3.1.7. - Let Qo(e, ~) be properly elliptic o/ order v and A -->Q+(e, ~', A) the 

/actor o1 A-->Qo as described above. Then Q+(e, ~', 4) is homogeneous function in 
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(e -~, ~', 2) of order r~ which satisfies the inequalities 

(3.1,18) c-~([~'l + I21)"(1 + ~1~'I + ~121)" -.< 

< IQo+(~, ~', 4)1--.< ~(1~'1-I- 121)"(1 + ~1~'1 + ~141)" 

for any ~'E ~ - ~ ,  any 4 ~ C such that I m  2 ~< O; here the constant C does not depend on 

ee[O, oo)~ ~'e2~ ~-~, and 2 e C ,  I m d < 0 .  

Besides, for e e [0, col (with eo sufficiently small) and [~'[ < 2  the polynomial 2--> 

-->Q+(e, ~', 2) can be split into the product 

(3.1.19) Q+ (e, ~', 2) ---- Q+(¢, ~', 2) Q+(e, ~', 2),  ~ e [0, %], J~'l < 2 ,  

where the zeros of the polynomial 2 -+ Q+ are contained within a compact domain in 

the ~tpper hal/plane uniformly with respect to e ~ [0, ~o], ]~'l < 2  and the zeros of 4 -+ Q+ 

multiplied by 8 also are contained in a compact domain in the upper half plane uniformly 

with respect to e e [O, col, [~'l~<2i the functions (e -1, ~', 4) --->Q+, (e -1, ~', 2) -->Q+ can 

be extended as homogeneous functions o/ (¢-1, ~, 4) E (0, c¢) × ~ 1  ×C respectively 

of orders r2 and O. 

The leading coefficients of 2 ~ Q+ 4 ---> Q+ being respectively 1 and e ~, the following 01 ,  

inequalities hold: 

(3.1.2o) IQ~(~, ~', 4)I> ~(l~'l + 141) ~, 

IQo%(~, ~', 2)1> ~(1 + ~1~'1 + ~141) ~, 

for any ~'~2~ ~-~, any 2 ~ C ,  Im2<~0. 

PI~OOF. - I t  is immediate  tha t  the roots 2~(~, ~') of the  equation 

qo(e, ~', 4) = o 

are homogeneous functions of order 1 in variable (~-1, ~,), given tha t  the polynomial 

2-+Qo is homogeneous function in (e -~, ~', 4). 

Therefore one can write down with @----siC'I, o)'----~'15'i-1: 

(3.1.21) 4~(e, ~') = I~'12@, ~') 

where A~(@, w') satisfies the  equation (3.1.1). 

According to the  Lemma 3.1.2 either (3.1.4), (3.1.5) or (3.1.6), (3.1.7) holds for 

2j(@, o)') as @ -+ -[- 0, and there are precisely r~ roots 2~, l<~j<~r~ of (3.1.1) satisfy- 

ing (3.1.4), (3.1.5) with Imdo°(Co')~>Co>O, Y to ' e~  "-1, [co']=l,  and precisely ra 

roots 4j, r ~ < j < r 2 ~ r 3 ,  of (3.1.1) satisfying (3.1.6), (3.1.7) with I m / z j > 0 .  
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Therefore, one has with some constant C0 > O: 

(3.1.22) Im 2~(s, 4:')> Gt~'I, 

and 

(3.1.23) Im ~¢(~, ~') > Go e -x, 

Vse [0, oo), V~'e ~ - ~ ,  when l < j < r ~ ,  

V~'e ~ - ~ ,  Vee [0, c~), when r~<j<r~ + r~. 

Now if <e~') = ~ --> 0% one gets by  Lemma 3.1.1 and (3.1.21) 

(3.1.24) Im~;(a, ~')>Coe-l<e~') ,  V~'e 2~ ~-1, V~e(0, co], l < j < r ~ + r 3 .  

The formulas (3.1.22)-(3.1.24) yield 

(3.L25) ImX~(~, ¢)> CoI¢l, for l< j<r2 ,  

Im A~(~, ~') > Co e-~ <e~'), for r2<j<r~+r~,  

for any ~'e :~-~, any e ~ (0, oo) 

Now, obviously, one has 

(3.1.26) Qo+.(~, ~', ,~) = H (,~- ~J(~, ¢)) H (~,~- ~,~(~, ¢ ) ) ,  
l<J~r2 r~j~<r2+r~ 

where the factors in the right hand side are repeated according to the multiplicity 

of the corresponding zero i ; .  

Therefore, (3.1.25), (3.1.26) yield: 

(3.1.27) c(I¢1 + IXl)"(1 + ~1¢1 + ~I;~1)"> IQo+(~, ~', ,X)l> 

> ~-'(1~'1 + I,~1)"(1 + ~I~'l + ~1~1)", 

for any ~'e :R ~-~, any e e (0, co) with some constant C >  0. 

The homogeneity of Q+ in (e -1, ~', ~) of order r2 follows immediately from the 

fact that  1~(~, ~') are homogeneous in (e -1, ~') of order 1. 

Moreover, for e e(0,  co], with eo small enough and I~'[<2 the zeros t~(e, ~'), 

l<<j<r2, of the first type and the zeros ij(e, ~'), r2<j<.<r2-F ra of the second one 

can be separated each from others by  two Jordanian carves contained in the upper 

half of the complex A-planes so that  the breaking down (3.1.26) into the product 

of two polynomials: 

(3.1.28) Q2(e, ~', t) = Qo~(e, ¢,  Z)Q&(~, ¢,  z) 

with Q+ and Q+ having respectively the zeros 1j, l<j<r~,  and r~<j<r2 + r~, is 

a smooth one with respect to the parameters ~'e ~'-~, ]~']<2, and ~e(0, So]. 



70 .LEOEID S. I~I~ANK: Coercive singular perturbations, I 

I t  goes wi thout  saying t h a t  the  splitting (3.1.28) is smooth in ~' for So sufficiently 

small whenever I~'I~<C. Of course, so depends on C in tha t  case. 

I t  is quite obvious tha t  Qo +, j = 1, 2, satisfy (3.1.20). [] 

I~v.MA~K 3.1.8. -- In  fact,  given the inequalities (3.1.25) and also the obvious 

inequalities: 

(3.1.29) 

[dj(e,~')l<<. Ce-~<e~'>, r~<j<<.r2-{-ra, 

with C which does not  depend on (e, ~'), there exists a contour / ' ,  

(3.1.30) F =  {41Im4>0,  [l~ed] = ~ I m d )  

such tha t  inequalities (3.1.18), (3.1.20) hold for 4e_N. 

I~E~A~K 3.1.9. -- The function Q+(e, ~', 2) in (3.1.19) being homogeneous in 

(e -I, ~', 4) of order 0, one concludes immediately,  taking into account (3.1.5), (3.1.6), 

tha t  the zeros of the polynomial 

are contained in a compact domain within the  upper half  of complex 4-plane, when 

co'e ~ _ 1  and ~ ~ [0, Qo] with ~o sufficiently small. 

3.2. Singular perturbations in 2%. 

We will consider here a boundary  value problem for singularly per turbed ordinary 

differential equation containing two parameters:  e~ (0, e0] and ~'e ~ - 1 .  

Let  Qo(e, ~', ~)  be properly elliptic principal symbol with constant  coefficients 

of order v e  ~ and let v j =  2r~, j = 1, 2, rj being non-negative integers. 

Let  b~o(e, ~', ~.) be principal symbols of orders # j e  2~ a, ttj = (TJ, mj, pj), l<~j<~ 
~<r2 + r3, where, of course, ms, p~. are non-negative integers. Besides, we assume 

t h a t  bj0 are ordered in such a way t h a t  the  sequence {me}, l~<j~<r~ + r3, is non- 

decreasing and, moreover, we assume tha t  

(3.2.1) 

We denote 

(3.2.2) 

m: < m 2 <  ... <m~, < m~,+: < ... < m~,+~,. 

~ ' =  <~'> ¢o' with ¢o'= 

so tha t  l~'l = <~'>. 
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The following boundary  value problem on ~ half  line fit+ = {t > O} is basic in 

investigating boundary  value problems for singularly perturbed Part ial  Differential 

Equat ions:  

(3.2.3) 

(3.2.~) 

Qo(s ~', Dr) u(t) --'-/(t), t e ~+ 

zco(bjo(s, ~', Dr)u(t)) = q~¢, 1 < j  <r~ + r3 

where by  ~ we denote the restriction of function v(t) to the point  t = 0. 

Our first step is to s tudy  t h e  homogeneous problem (3.2.3), (3.2.4), i.e. when 

](t) =--O, which we rewrite in the following fashion: 

(3.2.5) 

(3.2.6) 

s~'Qo(s, ~-', Dr) u(t) -~ O, t ~ :K+ 

=o(~,,b,o(~, ~', 9,)u(t)) = ~-~o~, : t < j < r ~  + r~. 

The solution u(t) of (3.2.5), (3.2.6) is sought in the class of functions on 2% decreas- 

ing as t - ~  q- c~. 

Wi th  2 ->Q+(s, ~', 2) the polynomial  in the factorization of 2 --->Qo(s, ~', 2) 

defined above in the previous section, the general solution of (3.2.5) in the class of 

functions decreasing as t--> + c% can be writ ten in the following fashion: 

1 (M(~, $', 2) exp (its) d2 u(t) = ~ ~ 
J qo(S, ~,  4) 

where F is a,ny Jordanian contour, which encloses all the roots of Q+(s, ~', 2) and 

2 ~ M(s, ~', 2) is a polynomial in 2. 

Introducing a new variable 2 --> <~'> 2 and denoting ~ ~ s<~'> ,the last formula 

becomes 

(3.2.7) 
1 (M(s ,  Q, e)', 2) 

1" 

where 2 -+  M(s, p, co', 2) is again some polynomial. 

The advantage of using the formula (3.2.7) is t ha t  the contour F can now be chosen 

independently on p > ~ o > 0  and o~'e/2, if ~o is any  positive constant.  Indeed, 

according to the Lemma 3.1.1 the zeros of 2-+Q+(~,oY, 2) are contained within 

a compact  domain in the upper half plane and they  have as limits the corresponding 

zeros of the polynomial  2--~Q+(eo ', 2), where 

q- ! 
qoo(O~, 2) = l im e-~.q+(e, o~', 2) .  

0---> + oo 

We will consider first the case when ~< ~o0 where ~o is sufficiently small. 
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In  this case, as asserts the Lemma 3.1.7, the polynomial 4-+Q+(@,~o', 4) can 

be broken down into the product  of two polynomials Q~(@, eo'~ 4), j = 1, 2, the 

factors in the product  being smooth in @, ¢o'. Besides, the zeros of Q+(@, ¢o', 4) can 

be enclosed within compact gordanian curve contained in the upper half plane 

say /"1, which does not  depend on @e[O,@o] and  o)'~$4 ~-1, [ co ' [= l ,  while the 

zeros of Q+(@, co', 4) grow as 1/@ when @-+ 0 and have imaginary parts growing 

to ~- oo in the same fashion. 

Using the splitting (3.1.19) one can rewrite the formula for general decreasing 

at  infinity solution of (3.2.5) in the following way:  

(3.2.8) ~(t)  - 1 ( ~ , ( ~ ,  e. ~,__'; ~) 
-2~z / . J  Q~l(@,(o', 4) exp (i<~'>td) ddq- 

/'1 

i (M2(s, ~ o ' , ~ ) e x  P(ie_,t~)d~ 
2:ri.) Q+odl, e~o', 4) 

where the contour /'5 is also a compact gordanian curve in the upper half plane, 

which contains all the roots of 4--+Q+(1, @¢o', ~) and does not  depend on Q, ¢o'e 

e [0, ~o] × 9._1. 
Now, the polynomials Z -> Ms(e, @, ¢o', 4) of orders r j - -  1 at  most,  j = 2, 3 in 

the right hand side of (3.2.8) have to be found in such a way for the boundary  con- 

ditions (3.2.6) to be satisfied. 

Besides, it  is quite obvious t ha t  there exist limits 

(3.2.9) lira Q+I(@, co', ~) : Qo°+(¢o ', Z) 
~--~0 

(3.2.10) lira Q+dl, @¢o', 4) = Q+dl, 0, 4) 
@-->0 

where 4 o+ , -+ Qo (~o, 4) is the polynomial  in the factorization to the reduced symbol 

Qo(o), 4) contained in the upper 4-->Qo°(W',4), which corresponds to the roots of o , 

half plane when w'etP~_l.  

We will also denote: 

(3.2.11) Q+(4) = @&(1, 0, 4). 

One finds immediately t ha t  Q+(~) is the factor in the factorization for the poly- 

nomial Z-+ 4-~'Qo(1, 0, 4) which corresponds to the roots of 4-~Qo(1, 0, 2) contained 

in the upper half plane. Of course, the ellipticity (2.4.1) of Qo(e, ~) guarantees tha t  

all the zeros of Z-*'Qo(1, 0, 4) are non-real numbers and the proper ellipticity says 

tha t  the number  of zeros contained in the upper and lower half planes is r~. 

Now we will restrict the class of boundary  operators in (3.2.6); the restrictions 

below will enable us to establish a two-sided a priori estimate for the solutions 

of (3.2.5)-(3.2.6). 
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Denoting by  b°o(} ', 2) the  reduced symbols for b~o(S, }): 

(3.2.12) b°o(~ ', 2) = lim s~b~o(e, ~', 2), 
6 - + 0  

and by  bj(2) the  symbols: 

(3.2.13) ba(2) ~-- b~o(1, 0, 2), 

we put  the conditions: 

CO~DITIO~ 3.2.1. - The polynomials 

(3.2.14) 2-+b°o(~ ', 2) , l < j  <r~ 

are supposed to be linearly independent modulo o+ . , Qo (~, 2), Vo~'e t2~_~. 

CONDI~Io~ 3.2.2. - The polynomials 

(3.2.15) 2 -->b~(2), r~<j<r2-J-ra 

are supposed to be linearly independent modulo Q+(2). 

Let 

(3.2.16) B~o(e, ~', 2) = eVJbjo(e, ~', 2) 

With  the notat ion (3.2.16) and the Conditions 3.2.1, 3.2.2 being fulfilled, the poly- 
nomials 

(3.2.17) 2 -+ B~o(q, o9', 2) ,  l < j < r 2  

are linearly independent  modulo Q+(~, oy, 2), as well ~s the polynomials: 

(3.2.1S) 2 ~ bj0(1, qco', 2),  r, < j < r~ + r3 

are linearly independent  modulo Q+(1, ~o~' 2), for Vo)'e ~ ' -~,  [a)'] = 1, Vee[o  , eo], 

if ~o is sufficiently small, given the continuous dependence of all these polynomiMs 

on the parameters  e ~ [0, Co] and ¢o'~ ff~-~, Io)' I = 1 and the  compactness of the  set 
f2._1 × [0, qo] in ~ ' .  

Consequently, there exist polynomials 

(3.2.19) 2 -+ Mj(q, (o', 2),  

of order < r~, and the polynomials 

(3.2.20) 

1 <j<.<r, 

2-+M~(qo/ ,2) ,  r~<j<<.r,+r~, 
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of order < r~ which depend continuously on the parameters (~, co')e [0, eo]×Q,-~ 
and satisfy the orthogonality relations (see, for instance [19]): 

(3.2.21) 2ztil f B,0(~, Q+~(~,c°" ~) co',M~(q'X) co', ~) d2 

T~ 

and 

(3.2.22) --1 ~" b~o(1,_ ~co" 2)_ -.-TM~(~co"-- 2) d2 = ~ 
2gi  J Qo2(-.,,..,~, Qco, 2) 

T, 

where 8,, = 1 and (~,~. = 0 otherwise. 
We seek the solution to the problem (3.2.5), (3.2.6) in the form: 

1 ~" M,(q, o)', Z) exp 
(3.2.23) u(t) = ~ ~ j Q 0 + ( ~  ,co,, 

-/'s 

1 f M¢(~co', 2) exp (ie-~t2)d2 
+ ~ ~5~/ Q0+,0, eco,,~) 

/'2 

where ~p~ = ~p~(0, co') have to be found. 
Substituting (3.2.23) into the boundary conditions (3.2.6), using the homogeneity 

and the orthogonality conditions (3.2.21), (3.2.22), one gets: 

1 f bko(1, 50/, 2)M~(qco r, 2)d)~ =ev*<~'>-m*q, 
(3.2.24) YJk + ~ - ~  ~ ~vJ 2-~ / Q+~(1, ~co', ~) 

rz 

for 1 < k < r2, and 

1 1" B~.(e, co', 2) M~(e, co', 2) d~. ,w+~9~ 

for r~ < k < r~ + r3. 
In~rodueing the notations: 

(3.2.26) 

and 

(3.2.27) 

1 fb o(1, eco', Z) M (qco', 2) 42 a'°~(°' co') = ~ Qo+~( 1, oco', ~) ' 
r ,  

1 fB o(e, l<<.j<~r2<k<r~+r3. ak~(q, co') = ~ Q~l(e, ~ ' ,  2) ' 
r l  

the system of linear equations (3.2.24), (3.2.25) for ~v~ can be rewritten in the follow- 
ing fashion: 

(3.2.28) ( /~ ' '  diag(q-m~)~*A12(e' oJ)~ /diag(er~<~'>-~*);~ 
\diag (q~)~:++~.A2~(O , co'), /..1 ~ = ~ diag (er~+~)~++~.) ~ 



LEO~]) S. ~I~A~K: Uoervive singular perturbations, I 75 

where I,~ is ident i ty  in ]tom(CrJ;  CrJ), diag(%)~ is diagonal matr ix  having the 

complex numbers  cj, l < j < m ,  on its principal diagonal, and the  matrices AI~(@ co') 

with the elements (3.2.26) and A~I(@ o ' )  with the  elements (3.2.27) depend con- 

t inuously on (@,o ' )~[0 ,@0]×~,_1  with their values in t tom(C~,;C ") and 

I t e m  (C ' ;  C'*) respectively.  

Let  us denote b y  3"q,~,, (e, co')e [0, @0] × 9 , ,  the class of matrices of the  form: 

+ [0, e-~A,~(e, o')~ 
(3.2.29) ~'~,o' = / \ e~A~(@, o)'), 0 ] '  

where ~-e,o' e t I om (C~'+~'; Cr'+r'), A~(@, o'), A2~(@, o ' )  ure continuous functions of 

@, ~o'e [0, ~0] × ~ - ~  with values respectively in H e m  (C~'; C ~') and H e m  (C~; C~'). 

LElVi~r~ 3.2.3. - I f  0 <~¢ < fl then for @0 sufficiently small there exists the inverse 

~J'~, to the matrix (3.2.29) which has the form: 

(3.2.30) J'~.~, I + -~-~ [B~(@, o'), O~ ~0, @-~B~(@, eo')~ 
-1 = e ~o, B~(O, o')} + \ q~B~@, ,o'), 0 ] 

where B~-~(@, w') ang B~(@,w') are continuous /unetions of @, o ' e [O ,  @0]Xf2,,_~ with 

values respeetivdy in I t e m  (C r~+' ; C  '~+') and I t e m  (C~+~; C~+'), H e m  (C~+~; C~+~). 

I)~ooF. - Fi rs t  of all, it is immediate  tha t  

det3"~,~, = det  (I~ -- @~-~A~(@, o ' )  A2~(@, co')) = 1 + 0(@~-~), e -+ 0 

and, consequently,  the  inverse mat r ix  ~'/.~, exists for 0o sufficiently small. Let  us 

denote b y  K(@, o') the  matr ix  with the  block structure 

= [0, e-~A~,(e, o')\ 
(3.2.31) K(@, ~o') \ @0A~I(q, o ' ) ,  0 )"  

Given tha t  for matrices with block structure the  multiplication is performed as 

though the corresponding block-matrices were numbers  (see, for instance, [7]), one 

finds easily, for any integer p > 0: 

(3.2.32) K~(@, ~o') = ~(~-~)[(AI~A~)~' O~ 
~" \0, (Az~A~)v]" 

Therefore the  Neumann 's  series for 5~-~.~,. 

5r~,2, = ( I  + g(@, o')) -~ = I + ~ (-- K(@, eo'))~ 
5>~1 

converges uniformly with respect  to (@, o ' )  e [0, @0] x ~ _ ~  if @0 is sufficiently small, 

which leads us immediuntely  to the  form (3.2.30) for the  inverse matr ix  ~,-~,(*). • 

(*) Another argument which can be used in order to prove the Lemma 3.2.3 is the 
multiplication of :~e.~, by I--/i:(@, ~o') and the use of (3.2.32) with p = 1, so that 
~-~,~, = I--K(@, 0/) + 0(@~-~), O --~0, with K(@, o) defined in (3.2.31). 
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With 9-~  (9'~ 9"), 9 '~ C", qg"6C ~* we introduce the notat ions:  

(3.2.33) X ' =  aiag (g~<~'>-~O? ~ ', M ' =  { M ~ ) ? e C  ~' 

g" dia~ td  '+m~'+'amu M,t f~r  ~,o+,, = ~,,  

Applying the Lemma 3.2.3 (with ~ = mr~ , fl = m~+l ) and using the notations (3.2.33) 

one can write down the following formula for the solution u(t) to the problem (3.2.5), 

(3.2.6) valid for 9~ co'e[0, ~0] ×Q,-~ with ~o sufficiently small: 

(3.2.34) u(t) = ~ [ (g '+  ~a-aBaaz' ) • M ' +  9-~Ba~z"" M'](Q+x) -~ exp (i <~'> t~) d2 + 

1 f "~-~B ~'r~'Mr~-t'- + 2-~ [ (g"+ u ~ , . ~B~az"M"](Q+~) -~ exp (ie-~t2)d2 
a t  
/ ' e  

where ~ =  m~,~ f l=m~,+l and a . b ~ - ~ a k b k ,  with a ~ b e C ~  tefft+. 

~ o w  our purpose is to est imate the following norms with parameters  of the  

solution u(t) given by  (3.2.34): 

(3.2.35) + = i~f 

where (lu)(0 is an extention of u(t) on the whole line t a £ ,  (/4)(~,) = Y~_+~ lu and  

the infin~m is taken over all possible extent ion operators 1. 

I t  is well known tha t  the norm in the right hand  side of (3.2.25) is equivalent 

to the  following one (see, for instance, [5] or [21]) 

lluIl(8), , + (3.2.36) + = i(#'>)",(s#. + 

where loU(t) = 0 for t < O, lou(t) -~ u(t) for t > 0, a n d / / +  is Fourier t ransform of the 

multiplication operator by  the characteristic function of g¢+. 

For  v e S(~,,)~//+ is Cauchy integral type  operator which can be writ ten in this 

case in the following fashion: 

(3.2.37) ll+v( , )=limlf an.= f ,,(n.)dn° 

I t  projects functions from L~(ff¢~) onto the subspace of those functions in this space" 

t ha t  can be extended ad analytic function onto the lower complex half plane- 

I m p . <  0. 

Taking the Fourier t ransform of lou(0 with u(t) given by (3.2.3~) for t e  2%, 

we will have to compute (or to estimate) the following projections (*): 

(3.2.38) 

(*) We recall ~hat~ l 0 is extension by zero for t < 0. 
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an4  

(3.2.39) w=(~) =//+(#~ + i<~'>)',(~& + i<8~'>)'.(~:~- a~-~)-, 

where ~ is contained within F1 or F:  and, therefore,  I m 2 > C o > 0 ,  I~[<C with 

some posit ive constant  Co, C. We s ta r t  wi th  the  project ion (3.2.38). 

For  s3 < ~ ~, s~ ÷ sa < 1 the  funct ion in the  r ight  hand  side of (3.2.38) under  the  

/ /+  sign belongs to L~(:R~.). Therefore,  

(3.2.40) 

< C<~'>~.-~@~'>~.< ¢~ <~:'>~- ~, 

where C~ does not  depend on s e [ 0 ,  so], ~'eff¢ ~-1, ~e [0 ,  ~o]. 

~ o w  assume t h a t  s~ = n~ ÷ ~ ,  s~ ÷ sa = na ÷ ~a, where n~, na are integer m = 

= max{n~, na} > 0, and a~< 1. 

Using the  formula 

(3.2.41) 
1 

- ~ (~.+i<~,>)~÷, + 

and noticing t h a t  

(3.2.42) ~÷(~ + i<~'>)~.-~-~(~, + i<~,>)'. = 0 

for Vk, s~, sa (because the funct ion in (3.2.42) is analyt ic  in the upper  half  plane and,  

consequently,  its inverse Fourier  t ransform is a distr ibution whose support  is con- 

ta ined in ~ _  = {t<0}),  one can wri te  down for w~(~) the  following expression: 

(3.2.43) w~(~) =/ /+($,  + i <~'>)~-~(8~, ÷ ~ <~'>)'.(~ ÷ ~)~ <~'>~(&- ~ <~'>)-~. 

Given t ha t  s~ -- m < ½, s~ ~ sa-- m < 1, one gets again the est imate  (3.2.40) for w~, 
in this  case, too. 

Now we will es t imate  w~(~). 

Again for s2>--½, s~÷sa<½ the  funct ion in the r ight  hand  side of (3.2.39) 

(under the  H + sign) being in I 2 ( ~ j ,  one can write down: 

(3 .2 .4~)  ]]W2HL~(I~,n)< H(~n -~- i<~'>)s2(8~n -~- i<8~'>)ss(~ n - -  ~:--1)--1 t[L2(~,.) < C8 ½-sa, 

where C does not  depend on e e [0, ~0], ~ 'e  g¢~-1, ~ e [0, ~0]. 

I f  s ~ ÷ s 3 = m ÷ ~  with integer m > 0  and  ~ < ½ ,  then  using again the  for- 

mula (3.2.41) with s -1 instead of <~'>, one gets for w~(~) the  same est imate (3.2.44) (*). 

(*) The same argument can be used when s~ < -  ½. 
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The inequalities (3.2.40), (3.2A4) and  (3.2.34) yield: 

(3.2A5) + --8~ ! 8~t--½ ? 
llull(,),~,<o[~ <e> (Izl+e-~Iz"l) +~-"-"(oelz'l+ Iz"l)]< 

< o( y. t?,-s,<e'>',-~,-%l + y. t'-~+~'<e'Y'-~-~ I%1 + 

÷ X g'-"+a-"+~<~'>a-'~'l%l + X t"-"+~'-~'+~ I%1) 

where the constant  C does not  depend on t ~ [0, to], ~'e ~ - ~ ,  ~ ~ [0, ~o] and u, ~0~. 

For  s, satisfying the inequalities: 

(3.2.46) ~+½<s~</~+ ~ 

the last est imate can be rewri t ten in a simpler equivalent form, given tha t  the 

second and the thi rd  sums in the r ight  hand  side of (3.2.45) can be es t imated 

respectively by  the fourth and the first ones. In  this case, when (3.2.46) holds, the 

est imate (3.2.45) becomes: 

(3.2.47) 

where the  constant  C does not  depend on e e [0, to], ~'e ff~"-~, ~ ~ [0, ~o], u and 9J. 

We have proved the following s ta tement :  

LEPTA 3.2.4. -- I] Qo(s, ~) is elliptic prineipal symbol o/ order v and principal 

symbols bjo(t, ~) o] orders I& = (~,  mj, pj) satis]y the Conditions 3.2.1, 3.2.2, then 

/or ~ = s(~ r) <. ~o with Ps su]/ieiently small there exists a unique solution to the prob- 

lem (3.2.5), (3.2.6) which satis/ies the a priori estimate (3.2.45). I f  in addition s~ 

satisfies (3.2.46), then/or the solution u(t) to the problem (3.2.5), (3.2.6) the a priori 

estimation (3.2.47) holds. 

I~.~AgK 3.2.5. -- Given tha t  1 < (e~'} 2 < 1 +  q~, one can rewrite the est imate (3.2 A7) 

in the following equivalent form: 

(3.2.48) 

5Tow we will investigate the case when p>  ~o where ~o is the positive number  

fixed above in the Lemma 3.2.4. 

In  this case the roots of the first and  second type  to the polynomial  ,t --> Q+ (p, co', 2) 

cannot  be separated from each others and the solution to the problem (3.2.5), 

(3.2.6) has to be sought in the form (3.2.7) wi th  p > p o > 0 .  
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~ore  precisely, according to (3.1.18) Qo+(~, oY, 2) grows like Q~' as ~--~ c~. 

Therefore, we seek the solution u(t) to the problem (3.2.5), (3.2.6) in the form 

if u(t) = ~ /  

/ ,  

M(~, e, ~' ,  2) exp (it <~'> 2) d2 
e-~.Qo+(e, ~/,  2) 

where the polynomial 2 --> M(s, ~, a~', 2) has to be found, and the contour F does 

not depend on ~e[~0, + c¢], w ' e ~ _ ~ .  

The roots of the polynomial Q+(~, o~', 2) being of the form (Lemma 3.1.1) 

(3.2.49) 2@,  ¢o') = ~-12@¢o') = 2Joo(¢O') + O(e-~), ~) ~ + 

with some 7 > O, the contour F can be chosen independently on ~e [~0, oo], o~'e/2~_1. 

I t  turns out from (3.1.18) that  there exists the limit 

(3.2.50) + ! 
lira ~-~,Q+(~, co', 2) -- Qoo(CO, 2), 

Q--a- + 0o 

where 2 -+ Q+(oJ, ~) is the polynomial ia the factorization for 2 --> Qoo(eo', 2), which 

corresponds to the roots of Qoo(a)', 2), contained in the upper half of the complex 

2-plane, when e o ' e ~ _ l .  

Denoting by b~oo(~', 2) the homogeneous symbol of bjo(1, ~', 2) of the highest 

order mj + pj one gets immediately 

lim QT,-~b~o(~  , ~o', 2)  ~ b,oo(~O', 2) , 
q-->+ c~ 

l<j~<r2 + r3 • 

We restrict the class of boundary operators in (3.2.6) by putting the following 

conditions: 

CO~DITIO~ 3.2.6. - The polynomials 

(3.2.51) 2 -> bjo(Q, co', 2), 1 < j  < r2 + r3 

are supposed to be linearly independent modulo Q+(~, w', 4), Qe(0, + c~), Vto'eQ._~. 

CO~:DI~rlO~ 3.2.7. - The polynomials 

(3.2.52) 2 --> bjoo(oY, 2) , 1 <j~<r2 + r3 

are supposed to be linearly independent modulo Q+(eo', 2), Ya)'E ~,_I. 

As a consequence of the conditions 3.2.6, 3.2.7, there exist poltnomials 

(3.2.53) 2 --> Mj(~, o)', 2), 1 <j  <r~ + r3 
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of order < r~ -{- r3, which depend continuously on ~ e [~0, + oo), eo'e/2._~ andhave 

a finite limit when ~ --> + co, the latter being continuous functions of co' e f2,_~ 

such that  the orthogonality conditions are fulfilled uniformly with respect to 

ee[eo, + co], ~'e~,,: 

I f ~ - ~ b ~ o ( ~ , o / , t ) M ~ ( ~ , w ' , l ) d t = O ~  ' l<k, ]<r~+r~ 
(3.2.54) ~ ~-"q+(0, co', 4) 

F 

W/e ~4_~, Vee[0, 4- oo]. 

I~E~A~K 3.2.8. - As it was mentioned above, one has 

(3.2.55) lim £-v~+r~b~o(~, ~o', 4) = b~oo(~O', 4) • 

Therefore, for 0-= -~ oo the orthogonality condition is this one for the poly- 

nomials (3.2.52). 

We seek the solution u(t) to the problem (3.2.5), (3.2.6) in the form: 

(3.2.56) u(t) ---- 
i: 

F 

Mj(e, ~o', 4) 

where %0~ have to be found from the boundary conditions. 

Substituting (3.2.56) into (3.2.6) one gets using the orthogonality conditions (3.2.54) 

and the homogeneity of s~bko(e, $', l) in (e -~, $', 4) of order m~: 

(3.2.57) 

Hence, the formula for u(t) takes the form: 

(3.2.58) i f  v . M  ~(t) = ~ ~ e x p  (it <~'> 4) dZ 

/1- 

with vectors ~ ---- {yJj} and M ---- {Mj} defined by  (3.2.57), (3.2.54). Besides, M(~, co') 
depends continuously on ~, o)'e[~0, ~- oo)X~9,_1 ~ncl is uniformly bounded for 

q, m'e k,0, + oo]x~._~. 
We stress again & a t  the contour Prices  not depend on ~e[£0, -}- oo] and ~0'e ~2._~. 

U + Estimating the norm I[ II(~),~' as we did it before for w1($~), when we had 

e [0, £o], one finds out 

(3.2.59) 
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with a constant  C which does not  depend on e e [0, So], ~'e ~"-~, ~>  ~o > 0 with @o 

fixed above. 

Given tha t  for ~ = e<~'>>Qo > 0 and s ~ (0, so], (so<l) ,  there is the equivalency 

(3.2.60) <$'>~<~-~<~'5~<(i + eta) <$'5, 

(3.2.61) 

with v~, ~ e gCa, 

one can rewrite the est imate (3.2.59) in the following fsshion: 

v~ = s -  # s - -  ½ e~, e~ = (0, 1,  O) 

a s =  vs~-(s2--ms--½)  c,  e = ( 1 , - - 1 , 1 )  

~nd the following notat ion:  

(3.2.62) [~](,).~, = ~ - ~ < ~ ' > ~ < ~ ' 5  °' [~[, a - -  (q~, ~ ,  ~ )  e y~. 

Therefore we have proved the following s ta tement :  

LEM:~ 3.2.9. -- Qo(e, ~) being elliptic symbol of order v and principal symbols 

b~o(e, ~) of orders #j ---- (~5, mj, pj) satisfying the conditions (3.2.6), (3.2.7), there exists 

for ~ > ~ o > 0  unique solution u(t) to the problem (3.2.5), (3.2.6) which satisfies the a 

priori estimate (3.2.61) with a constant C which might depend on ~o (]ixed above in the 

Lemma 3.2.4) but not upon ~ [0, eo], ~'e ~ - ~ ,  q~ and u. 

LE~I~A 3.2.10. - Both solutions to the problem (3.2.5), (3.2.6), constructed for 

0 < ~<~o and 0>~o coincide for ~ = ~o and are continuous functions of the para- 

meters ~ > O, ~'~ ~ - ~ ,  e~ (0, So]. 

P~ooF. - Immedia te ly  follows from the uniquess of the solution to the prob- 

lem (3.2.6), (3.2.7) for ~<~o and ~>~o, and  from the theorem on continuous depen- 

dence of solutions to ordinary differential equations on purameters.  [] 

Therefore, when a + 1 < s 2 <  fl @ ½ with ~ = m,., fl = m**+l , the a priori esti- 

mate  (3.2.61) holds for the solutions to the problem (3.2.5), (3.2.6) uniformly with 

respect to the parameters  ~ E [0, + co], e ~ [0 ,eo], ~'~ ~ - 1  given t h a t  for ~<  ~o the 

est imate (3.2.61) coincides with (3.2.48). 

Now let s~>fl + ½, fl = m~+l. Then the est imate (3.2.45) curt be rewrit ten in 

the following equivalent form: 

(3.2.63) i[uH(s+),~,<C( ~ eW-8~+~-~,+½<~'>~-m~]%I~- 

6 - A n n a l i  d i  M a t e m a t i c a  
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given t ha t  in this case holds: 

(3.2.6~) ~ - , ,  <~,>,,-~,-~ < e~ .-~-* ~-~,+~-~,+ ~ <$,>~-~. 

On the other  hand  the est imate (3.2.59) for ~>¢o can be rewr i t ten  in the fol- 

lowing way:  

(3.2.65) llu]l(,),~,< (~.<~.<~, Ff;I(o,>,~,+ 

with 

e, = ~:¢ + ( s , -  f l -  ½)e, e = (~, - l ,  ~ ) ,  

the  vec tor  subscript  T~, aj,  e being the  same as in (3.2.61) and the  norms [~](~),~. 

defined by  (3.2.62). 

Given t h a t  for  ~ ~ [0, ~o] the  factor  <e~'} ~ for any  s e ff¢ is uni formly  bounded  

with respect  to  e ~ [0, sol, ~'e £~-~, one gets the  conclusion t h a t  (3.2.65) holds for 

any  ~ ~ [0, + c¢] with a constant  C which does not  depend on e e [0, co], ~ e [0, -~ c~], 

~'~ £~-~, u and ~j, the  constant  ~o being fixed in the L e m m a  3.2A. 

Le t  s2,<a-~-~, a - - - -m, .  Then the est imate  (3.2.45) can be rewri t ten  in the 

following equivalent  form: 

(3.2.66) ]lu H<+),~, < C [ ÷ 

+ ~ ~-'~+~'-~<~'Y~-~-~I~I], o < ~ < a ,  

given t ha t  in this case holds: 

(3.2.67) s~-'~+ ~,-'~+~ < eo -~ +~ 8~,-,,+ ~-~ <~,y,-~-~. 

Rewrit ing the est imate  (3.2.59) in the  convenient  form one gets:  

(3268) IluIl(:.<c( z + z 
l ~ r 2  r~<j~v2+r~ 

with 

~ = a~ + ( ~ -  s, + ½) e ,  

the  vector  subscripts Tj, aj,  e being the  same as in (3.2.61) and the norm [V](,),~" 

defined by  (3.2.62). 

Again the constant  C in the r ight  hand  side of (3.2.68) does not  depend on 

e~  [0, So], ~'~ 9L ~-~, u, ~oj, the  constant  ~o > 0 being fixed in the  L e m m a  3.2.4. 

We will combine the conditions 3.2.1, 3.2.2, 3.2.6, 3.2.7 and la ter  call t hem the 

coerciveness condition. 
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COEI%CIVENESS CONDITION : 

(i) The polynomials 

k -->b°o(eO ', 1), l < j < r ~  

which are homogeneous symbols o/ (the highest) order m~ to the reduced boundary con- 

ditions, are linearly independent modulo ~4o~°+'(°)', t), Vo' e Y2,_~, where Q°o+ is the 

/actor in the/actorization o/ the reduced symbol QO which corresponds to the roots o/Q° o 

contained in the upper hal~ o~ the complex 1-plane, when eo'e t~._~. 

(ii) The polynomials 

2--->b~(2), r ~ < j < r z - ~ r ~ ,  

b~(1) ~ b~.o(l~ O, 1), are linearly independent modulo Q+(1), where Q+(~) is the /actor 

o/ the polynomial t-~Qo(l~ o~ ~) which corresponds to the roots o/t-~Qo(l~ 0, 1) con- 

tained in the upper hal~ o~ the complex t-plane. 

(iii) The polynomials 

k -~b,oo(~', ~), ~<j<r~+r~ 

which are homogeneous parts o/the highest order m~-~p~ o/the polynomials b~o(1, co', 2) 

are linearly independent modulo Q+(co', ~), Veo'e Y2~_x, where Q+(eJ, t) is the /actor 

o~ the homogeneous polynomial Qoo(~o', 1) o/ the highest order ~,~ -~ ~,~ to the polynomial 

Qo(eo', 1), which corresponds to the roots o/Qoo(eo', t) contained in the upper hal/ o/ the 

complex ,~-plane. 

(iv) The polynomials 

1-->bjo(~,oY, 2), l < j < r 2 ~ r 3 ,  

are linearly independent modulo Q+(~,w',~)~ V ~ e ( 0 , ~ ) ,  V~o'eD~_l, where 

Q+ (~ co', k) is the/actor o~ Qo(~, e)', i) which corresponds to the roots o/Qo contained 

in the upper hal/ o/ the complex 2-plane. 

Finally, we have proved the following main s ta tement :  

THEOI~E~ 3.2.11. -- The polynomial Qo(s~ ~) being elliptic o/ order ~, and the poly- 

nomials b~o(s, ~'), o/ orders #j~ 1 <j  < r2 ~- r3~ satis/ying the coerciveness condition (i)-(Lg, 

there exists unique solution to the singularly perturbed boundary value problem (3.2.5)~ 

(3.2.6), which satisfies alternately the a priori estimate (3.2.61) when c¢ -~- ~ < s~ < fl -~- ½~ 

the a priori estimate (3.2.65) when s ~ f l  -~- ½, and the a priori estimate (3.2.68) when 

s~<~ -Jr- ½~ with a constant C which does not depend on s e [0, So], ~ 'e  ~ , -1  and ~ ,  u. 



84: LEONID S. FI~ANK: Coervive singular perturbations, I 

~ o w  our aim is to est imate the norm I[" + [1(~),~' of the solution u(t) to the problem 

(3.2.3), (3.2.4) with second member  ]{t) which will be supposed to have a finite norm 

][. the norms ]]. being defined (3.2.35) (or, (3.2.36)). ll(~),~" b y  equivalently,  b y  

We have to pu t  some restrictions on s~, s~ for the  traces of u(t) and its derivatives 

up to the  highest order in the boundary  conditions (3.2A) a t  the point t = 0 to exist. 

F rom now on we assume tha t  the following condition is fulfilled: 

(3.2.69) s2 + s~ > max {me + p~} -'t- ½. 
1 ~ < ~ ' ~  +~" a 

According to the definition (3.2.35), there exists an extention lf(t) for ](t) with 

the finite norm [[" I[(~),~', 

(3.2.70) 

where 1 / =  Ft_~l] .  

We define v(t) to be 

(3.2.71) (s, 

so t h a t  v(t) is the solution of the equation (3.2.3), such tha t  

(3.2.72) 

with some constant  C~ which does not  depend on se [0 ,  sol, ~ 'e 5~ "-~. 

Of course, (3.2.72) holds iff Q0(s, ~) is elliptic of order v. 

Looking for the solution to the problem (3.2.3), (3.2.4) in the form: 

(3.2.73) u(t) = v(t) + w(t) , 

and denoting 

(3.2.74) h~(t) = b~o(s, ~", Dt)v(t) , 

we will have to est imate go(h~(t)) multiplied by  suitable function of s, ~'. 

Fi rs t  let a d- ½ < s2 < fl d- ½. Using i(1.2.10) (with/9 = 1 and s --/z~ instead of s 

one finds out  for l < j < r 2 :  

(3.2.75) [Zto(hj)](~,), ~, = sv~-s~ (~e'>~rm~-½ @~'>s'-*~lZlo(h¢) ] < C[lh~]I(8_,~),~,< clIvU(8),~, • 

2qow using (1.2.13) (with s - - # j  instead of s), one gets for r ~ < j < r 2  q-rs:  
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Consequently, assuming (3.2A6), we obtained for ~he solution u(t) to the prob- 

lem (3.2.3), (3.2.4) the a priori est imate:  

(3.2.77) + ( + ) ll~II(,)z<v + ]~ [%7<.),~.+ ~ [%3<:,),+,, 

with v~, a~e £~ the same as in (3.2.61) and  a constant  C which does not  depend 

on e a [0, e,], ~'e £"-1, u and  ~. .  

~Tow, let s~>/7 + ½. Given tha t  /7--tn~ > 0 for l < j < r ~  one gets using (1.2.10) 

(with p = 1): 

where we denoted:  

(3.2.79) Aa = (~ , -  f l -  ½). 

We use here the fact  t ha t  the order of b~0 is #~. and tha t  ~ -]- I~ -}- ½e2 =- s -{- A~e. 

Using again (1.2.13) (with s ~ =  0) one gets for ~'2 Jr-1 <j<<.r~ + ra: 

(3.2.80) 

li ( , : )  = ~11~II( ,+~,) .~. .  

Consider now the te rm j = r2 -t- 1, mj -~/7. 

Using (1.2.4), one can write in this ease: (with q :  e (~ ' ) ( s~ ' )  -1) 

\ / h ( ~ )  ~ 

Therefore, for s~>fl-Jr-½, the following a priori est imate holds for the solutions to 

the problem (3.2.3), (3.2.4): 

with A~ ~ (s2-- f l--  ½), e = (1, -- 1, 1), q = e(~ ' ) (s~ ' )  -~. 

We point  out  t h a t  s-}-Aal ~> s if A~ ~ O. 

Finally,  consider the case s~ < ~-t-½. 
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Assume first t h a t  82-- mj - -  ½ > 0 and est imate the corresponding term. We will 

have, using (1.2.10) (with (p ~ 1): 

(3.2 8 3 )  ff~o(h~)](=,).a. < C II h~ II,-~, ).~. < e tl~ II,).~. • 

~ow,  let s~ - -m~- -½<0 and l < j < r ~ .  We can write in this case: 

(3.2.84) [~o(h~)](~j),~, = e -"+~<~'>s ' -m~-~  <~'>"-~q~o(~j) [  < 

<~-~+~ <~'>s'+~'-m -~ -~i~o(h~)l • 

Using (1.2.13) with s - - # j  instead of s, the  last  inequali ty becomes: 

where we denoted:  

(3.2.86) zJ~ = (c¢ ~- ½-- s~), e~ ---~ (1, 0, 0) .  

I f  s~ -- mj - -  ½ < 0 and  r~ < j < r~ ~- r3, we can write:  

(3.2.87) [~o(h~)](~j),~,----- e-"+~+~J-~<~'>s'-~-½ <s~'>~'-~J-mJ+~[~o(hj)] < 

Using again (1.2.13) with s - - # j  instead of s, one gets: 

with A~ defined in (3.2.86). 

I t  is easy to check tha t  0¢ = a~ + A~e. 

Therefore for sz < ~ + ½, the following a priori est imate holds for the solution 

to the problem (3.2.3), (3.2.4): 

with vj, ~ the same as in (3.2.61) and  zJ~ defined in (3.2.86). Of course~ the constant  C 

does not  depend on e~[O, eo]~ ~'~ ff~-a, u, ] and ~..  

We have proved the following main result:  

TJ~_EOI~EZa 3.2.12. - The polynomial Qo(e, ~) being eUiptie o] order v and the poly- 

nomials b¢o(e, ~') of orders tt~, 1 <~j <~ r~-~r3, satis/ying the coerciveness condition (i)-(iv), 

there exists unique solution to the problem (3.2.3), (3.2.4), which satis/ies alternately 
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the a priori estimate (3.2.77) when o~ + ½ < s~ < fl + 5, the a priori estimate (3.2.82) 

when s~>fl + 1, and the a priori estimate (3.2.89) when s~ < o: + 5, with a constant C 

which does not depend on s ~ [0, So], ~'~ 9~ "-~, /, ~ and u. 

I ~ E ~ K  3.2.13. -- When  s2 = e + 5, there  is a logari thmic coefficient which 

multiplies + ][]]t(~-,+z~,),~' alike to  the  corresponding t e rm in (3.2.82). By  the  way, 

the  assumption t h a t  s~ > fl + 1 does not  help to remove  the  logarithmic coefficient 

in (3.2.82). 

I~E~XK 3.2.14. -- Taking s = 1 in (3.2.77), (3.2.82), (3.2.89) one gets, af ter  the  

integrat ion with respect  to ~'~ ~"-~ the usual  a priori  est imates for coercive elliptic 

boundary  value problems wi thout  small pa rame te r  in usual Sobolev spaces. Indeed,  

for the  vectora l  subscripts z~., a~., ~ ,  ~j, the  sum of the two last coordinates equals: 

(3.2.90) [z~] = [a~] = [~] = [a~-] = s~ + s ~ -  m~- -p~- -  5 ,  1 < j  <r~ @ r~ 

while the sum of the  two last coordinate  for s - - v ,  s - - v  + A~, s - - v  + A~ equals: 

(3 .2 .91)  I s - -  v] ----- [s - -  v + zl~e]  = I s - -  v -[- A~e ] ~ s2 + sa--  v~-- v3. 

I~E~AnK 3.2.15. -- Assume again tha t  the  functions of s ~ [O, sol, ~'~ :~-~ in 
~ 2  n--  1 the  r ight  hand  side of (3.2.77), (3.2.82), (3.2.89) are contained i n £ ~ ( [0 ,  %]; (2~, )). 

Le t  e + l < s ~ < f l + 5 .  Denote  

(3.2.92) 

O = + 

and  assume tha t  there  exist the limits 

(3 .2 .93)  l i m  [ y ~ - -  o F~J(o,,,-mj-½,0),~' = 0 , 
$-->0 

l im [~o~](,j),~, -= 0 ,  
~-+0 

l im IIg - -  o * g Jr (o,~..-~,,o),~" = o ,  
e--~O 

l im I[v - -  v° II~o,,~,o) = O,  
6--~0 

l< j<~r2  

where ~, eHs,_m_½(9~ ~, ), l < j < r e ,  ~OeH8,_~(5¢~) ' ~0e/~s,(:R~) ' / ~ ( g ~ - l ) ,  / ~ ( ~ )  

being the spaces of Four ie r  t rans form of functions respect ively  f rom the  usual 

Sobolev spaces ~-1 ~ , ( ~ ,  ), R ~ ( ~ ) .  
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Then for ~ ->  0 the  est imate (3.2.77) becomes (after integrating with respect  

to ~'~ 5~-~ and applying the Parceval 's  identi ty)  the usual a priori es t imate  for v °, 

solution *o the reduced coercive elliptic boundary  value problem, in usual  Sobolev 

sp~ces. 

I f  s~>fl + ½, then introducing 

(3.2.94) ~v~.: e-~+r~-s~+~+½<~'>[~-s~+½<e~'>~+*~-~'~-~-½q~, l < j < r ~  

= ~ - ~ , H + ( ~ 8 ~  + i<s~:'>) s'~u 

assuming tha t  there  exist a.e. the  limits: 

(3.2.95) lim [~v~- ~°](o,8,_~j_½,o),¢, = 0 ,  
~-'+0 

lira [9~](~),~" = 0 ,  
*'-+0 

lim IIg--g°ll~o,~,_ ,,o),v = O, 
$'-->0 

lira ]]v - -  v° I]~,s~,o) = O, 
$--->0 

l < j < r , ~  

with ~o e R~,_~j_½(2~,-x), l < j < r ~ ,  #o e/t,~_~(:R~), ~0 c / ~ , ( ~ ) ,  as above,  and let t ing 

e ->  0 one obtains ~rom (3.2.82) the  usual  a priori est imate for the  coercive elliptic 

reduced problem. 

Finally, if s ~ < x + ½ ,  then introducing tvj, l.<<j<r~, like above in (3.2.92), 

pu t t ing  

(3.2.96) 

assuming tha t  there exist the  limits 

(3.2.97) lira [ ~ - -  o ~v~](o,s~-~-½,0),~' : 0 , 
e - + 0  

lira [9~](~),,, ---- 0 ,  
~-->0 

lim []g - -  gO l] + (o,s~-v~,o),~" = 0 , 
~-->0 

lim ]Iv o + - v II(o,s~,o) = o ,  
e'-->O 

l < j < r ~  

r~ < j < r2 + r~ 

and let t ing e-->O, one obtains f rom (3.2.89) the  usual  a priori est imate for the  

reduced elliptic problem (see, for instance, [19]). 
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I~E~A~K 3.2.16. -- I t  is convenient to point out  the connection between the 

vectorial subscripts in the estimates (3.2.77), (3.2.82), (3.2.89). When ~ + ½ < s~ < 

< /3  ~- ½, then  the subscripts are respectively: 

(3.2.98) s -  ~, {~}~.<~.<~,, (~},,<~.<,,+,. 

One should expect the subscripts (3.2.98) to show up given tha t  for e = 1 the 

singularly per turbaed problem becomes just  usual  elliptic boundary  value problem. 

Still, a¢ might  be not  tha t  easy to guess. There is a connection between a~ and v~. 

given b y  the formula:  

(3.2.99) o'j = ~ -1- (S2 - -  m ~ - -  ½) e ,  e = (1 ,  - -  1 ,  1). 

When s2>/3+ ½, then  the subscripts become respectively 

(3.2.1o0) 

with A~ = (s~-- f l--  ½), e = (1, -- 1, 1). 

Finally,  when s2< :¢-}-½, then  the  subscripts become respectively 

(3.2.1ol) 

with A~ = a + ½-- s,, el = (1, 0, 0), since ~s = aj -~ J~e, r2<j<r ,  + ra. 

I~E~A~K 3.2.17. -- The condition (3.2.69) can be replaced by the following one: 

s~ + Sa--½ is str ict ly greater t han  the maximum of order of boundary  operators 

with respect to the normal  derivative Dr. 

I~E~AI~K 3.2.18. - I t  is immediate  t ha t  for m,~ ~ ½ < s2 < m**+~ -}- ½ the est imate 

(3.2.77) is two-sided. In  other words, the r ight  hand  side in (3.2.77) can be esti- 

mated  by  C~[]u][(+),~. with some constant  C~ which does not  depend on e, ~ ' , / ,  ~0~, u. 

On the other hand,  the estimates (3.2.82), (3.2.89) are not  two-sided and the 

r ight  hand  side in these inequalities cannot  be est imated by  C~lluI[(+).~. with C~ which 

does not  depend on s, ~'. To discover the reason of such a lack of adequateness,  

consider the following boundary  value problem: 

(3.2.102) 

(3.2.103) 

(i~D~ + <~'>) u(t) = / ( t ) ,  t > 0 

One seeks solution u(t) to the problem (3.2.102), (3.2.103) such tha t  + I] ~ 1I(8),~' is 
uniformly bounded with respect to s e [0, sol, ~'~ ~g,-1. 

Assume tha t  s e £3 is such tha t  s2 > ½, s2-{-s3 > ½. Given tha t  the order of 

the operator in (3.2.102) is v = (0, 0, 1) and  tha t  the trace zou has the norm [ZoU](~_½e~),~, 
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uniformly bounded  with respect  to s and ~', i t  is na tura l  to take  ](t) with uniformly 

bounded  norm ][fll~-~),~" and ~ with uniformly bounded  norm [~0](~_½~),~,. I t  turns out  
+ t h a t  in the  case considered solution u(t) with uniformly bounded  norm []uIl(~).~, does 

not  exist  and  there  is a need of somewhat  compatibi l i ty  conditions between ~ and 

the  behaviour  of ](t) when t -> ~- 0. Fo r  instance,  if ](t) =_ O, a solution u(t) with 

p rope r ty  above exists iff [~0](~+(~,_½)~).~, is uni formly  bounded with respect  to  s, ~', 

which is a s tronger condition t ha n  just  the  uni form boundness  of [~](~_½~,),~, when 

s~ > ½ (Recall t ha t  e -~ (1, -- 1, 1), e~ -~ (0, 1, 0)). 

Therefore  to get  an adequate  two-sided a priori  es t imate  for  the  solution 

to  the  problem (3.2.3), (3.2.4) in the  case, when s~ > m~.+l q-½ and s ~ < m ~ - ½  

respect ively  there  is ~ need to modify  in a convenient  way the problem itself. 

F r o m  now on we drop the assumption (3.2.1), namely,  t ha t  m~. ~ m~+~ and we 

assume only t ha t  the  orders m~ o~ the  boundary  operators  b~.o in (3.2.4) are non- 

decreasing: 

(3.2.1o4) ml < m2 <~ .. <~ mr <~ m~.+ ~ <... < m~+~. . 

To have a proper  modification to  the problem (3.2.3), (3.2A) there  is a need 

to in t roduce Poisson operators  (see [2], [27]). 

Fo r  our  purposes it  is enough to consider Poisson operators with symbols ra t ional  

functions in ~ .  

Le t  Lo(e~ ~, 2) be elliptic principal  symbol  of order  ¢ ~  9~ a and  no(e, ~', 2) be 

principal  symbol of order  e ~ :g3. For  ~p = ~(s~ ~') we define the following Poisson 

operator :  

ao 1 f no(e, ~', 2) ~p(s, ~') exp (it2) d2 t > 0 
(3.2.~05) K (9 x 0(t)) = ~ ,  Lo(~, g', 2) ' ' 

/ -  

where F is contour  in the upper  half  plane which encloses all the zeros of the  poly- 

nomial  2 --->L+(e, ~'~ 2), L + being the  factor  of 2 -~No(e~ ~', 2) which corresponds 

to its zeros contained in the  upper  half  of the  complex k-plane; here  3(t) is the 

0-function of Dirac. I f  

ao(~, $', 2) -~ %(~, ~', 2)(mOdLo+(~, $, 2)), degj0 < deg~o + 

then  the definition (3.2.105) can be given another  equivalent  form 

(3.2.106) 1 f a~(~, $', ~)~(~, ~') ex- (it~) d~  ~ (~X ~(t)) = ~  ~--j~, ~ ,  ~ , • 
:g 

L E ] ~  3.2.19. - Zet the order a o/ Lo be either (0, m, O) or (0, O, m) with m ~ l .  
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Then the /ollowing estimates hold: 

(3.2.107) i[(Lol) ao(y~ × (~(t)) + /or (0, m, , [1(,),~, < c[~]<~), a = 0) 

II (L; 1) a~(v × ~(t))II<~+),~, < 0[~3(~), /or ~ = (0, o, m) .  

where A = s  + a - - a  + ½e~ and f l =  A + (s2 + a2--m + l) e, with e = ( 1 , - - 1 , 1 ) .  

P~ooF.  - Using the representat ion (3.2.106), the  Parceval ' s  ident i ty  and making 

the change of variables ~ - +  <~'> ~, for a----(07 m, 0) and the change of variables 

~ -->s-I<s$'>$~ for a = (0, 0, m), one gets immedia te ly  the  est imates (3.2.107). 

Now, coming back  to the  problem (3.2.3), (3.2.4) with mj satisfying (3.2.104), 

consider first the  case when 

(3.2.108) 32 > mr,+1 + 1 .  

Le t  jo > r, be  such tha t  

(3.2.109) mjo+a + 1 > sz > mj. + 1 .  

If  there is no such a subscript  jo, we set  

jo  = r~ + r ,  . 

Let  Lo(~', ~n) be elliptic polynomial  symbol  of order 

(3.2.110) a = (0, 2(jo-- r~), O) 

and consider the  following modification of the  problem (3.2.3), (3.2.4): 

1 
(3.2.111) Qo(8, $', D,)u(t) = ](t) + I~o(~', D,) ~ a;o(e, J ' ,  D~)(~v; x ~(t)),  t > 0 

l</<io--r~ 

(3.2.112) zo b,.o(e, $', D,) u = 9~, 1 < j  < r3 + jo 

where the orders of ajo and b;o are respect ively ~j e tL 3 and /~j = (~ ,  m~, loj) e 9L 3, 

the  orders of addit ional  boundary  operators  being supposed to satisfy the  condition: 

(3.2.113) m, -{- ½ > s~, jo < j < ra -l- jo.  

Besides~ as previously,  we assume tha t  the  condition: 

(3.2.114) 32 + sa > max  {m~ + p~.} + ½ 

is fulfilled. 
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We seek u(t) and ~. such tha t  lIul](~+),a,~nd EWj](~_~+=,_~+~=),a, are uniformly bounded 

with respect  to ~ e [0, ~o] and ~' ~ :~-~, under  the condition tha t  so it is for + [I/ll(~-.>,~., 
[%](,,).~., 1 < j  <Jo and [%](o,),~,, Jo < J < r~ + Jo. 

Any  decreasing at  ~- c~ solution of (3.2.111) is also solution of the equat ion 

(3.2.115) Z + ($', D,) Q0(e, ~', D,) u(t) ---- J5 + (e, ~', Dr)/( t) ,  t > 0,  

where 2 - ~ Z + ( $  ', 2) is the  factor of Zo(~', t)  which corresponds to its zeros con- 

ta ined in the upper  half of the  complex 2-plane. 

For  the  reciprocal s ta tement  to be true,  obviously, it is necessary and sufficient 

tha% ~ny solution of the  homogeneous equat ion 

(3.2.116) ~+(~', D~)v(t) = O, t >  0 

to be represented as 

1 
(3.2.117) v ( t ) =  + ^, 

f a~o(~, ~', 2) = 1 ~ ~ exp (it2) d2 t > 0 

with some yJ~ = v/~(e, ~'). 

The last formula holds for the general solution v(t) of (3.2.116) iff the polynomials 

-~ a~o(8, ~', 2) ,  1 < j  < j o -  r~, 

are linearly independent  modulo L+(~ ', Dr), for any s and ~'. 

More precisely, we assume tha t  the  polynomials 2 ->a jo ,  l < j < j o - - r ~  satisfy 

the  following condition: 

(a)l The polynomials 

2 ---> ajo(O, 09', 2) ,  1 4 j  4 j o - -  re 

are linearly independent modulo J5+ (09'~ 2), for any ~ > O, any 09'aI2~_~. 

(b)l The polynomials 

2 -~ a~o(09', i ) ,  1 < j  < j o -  r~ 

are linearly independent modulo + ' Z o (09 , 2), ]or any 09'~ ~ _ 1 .  

(e)~ The polynomials 

2 -> a~oo(09', 2) ,  1 < j  < j o -  r~ 

are linearly independent modulo + ' I~ o (09 , 2), /or any 09' c ~2~_1. 
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Under the condition (a)~-(eh, the problem (3.2.111), (3.2.112) is equivalent to 

(3.2.115), (3.2.112). 

Now, considering the problem (3.2.115), (3.2.112) we find ourselves precisely in 

the same situation as previously while investigating the problem (3.2.3), (3.2.4) 

with the condition m~ + ½ < s z < m~,+~ + ½ fulfilled. 

Therefore, assume the following coerciveness condition: 

(i)~ The polynomials 

2 --> b°o(eO ', 2), 1 < j < j o  

are linearly independent modulo Oo+ (co', A) L + (oY, ~), Vo~' e [2~_~. 

(ii h The polynomials 

2-->b~(2), j o < j < r ~ + j o ,  

with b~(~)= b~o(1, O,~t), are linearly independent modulo Q+(~), 
--r~ + 

---- ~ Qo (1, o, ~). 

(iii), The polynomials 

7, --> b~oo(~O', ~), l < j < . r ~ + j o ,  

are linearly independent modulo Qo+o(W ', ~)I~+o (OY, ~), VoYe ~2._~. 

(ivh The polynomials 

where Q+(~)= 

-~ b~o(e, ~ ' ,  ~),  ~ < j  < r~ + jo,  

are linearly independent modulo Q+(~, co', 2)Z+(co ', ~), V~e (o, + c~) Vco'eQ~:~. 

The Theorem 3.2.12 (with a + ½ < s~ < fl + 1) and the estimate (3.2.77) being 

applicable in the considered case, one gets the following result: 

THEO~E~ 3.2.20. -- The condition (1.2.114) being fulfilled, the polynomial Qo being 

elliptie of order v, the Poissonoperators (L+)-la~o, l < j<jo- - r~  and the boundary 

operators b~o, l <j<r3 + jo, satisfying the coerciveness condition (a)~-(eh, (i)~-(ivh, the 

problem (3.2.111), (3.2.112) has unique solution u(t), {~vj}, 1 <j  <%--  r2 which satisfies 

the a priori estimate: 

(3.2.118) + IIulL),~, + ~ E~j](~,)#< 

m~ <s--½ m~> s~--½ l~<~<~--r~ 

where A~ = (s-- v + ~j-- a + ½e~) ~ ~¢a with a defined in (3.2.110), ~je 2~ a and aje ~ 

are as defined above in (3.2.61) and the constants C, U1 do not depend on ~ e [0, eo], 

~'e g¢"-~, u, ~j, f, ~. 
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Rv,~_ARK 3.2.21. - One has to use the first of the inequalities (3.2.107) to esti- 

ma te  [~,~](,j~),~,. 
Consider now the case when 

s ~ < m , . +  ½. 

Again, let jo < r~ be such tha t  

(3.2.119) m~. + ½ < s~ < m~.+~ + ½. 

I f  there is no such subscript jo, we pu t  

jo ---- 0 .  

Let  Zo(e~', e~,) be elliptic polynomial  of order: 

(3.2.120) 6 ---- (0, 0, 2(r~-- jo)) e ff~3 

and consider the following modification on the problem (3.2.3), (3.2.4) 

1 
(3.2.121) Q+(~,$',D~)u($)=](t)~-~o(~,,~D~ ) ~ aso(e,~',D~)(~pj×(5(t)), $ > 0 ,  

(3.2.122) zobjo(e~ ~'~ Dr)u = ~j~ j o -  r2 ~ j ~ r  2 ~-  r 3 

where the orders of aso and bso are respectively ~. = (~Jl, gJ~, ~s3)E 2~ 3, #s = 

= (Ts, ms, p~) e ~3 and the orders of addit ional  boundary  operators bso are supposed 

to satisfy the condition 

(3.2.123) ms + ½< s~, j<jo .  

To be able to satisfy (3.2.123) and the (given fur ther)coerciveness  condition 

one has to admit  also boundary  conditions bso with mj negative integers, in other 

words, some b,o for j ~< 0 might  be pseudodifferential operators with symbols rational 

functions of ~ .  

Assume tha t  i t  is possible to complete the boundary  conditions (3.2.4) by  bso, 

j o - - r ~ j < O ,  with polynomiul symbols in such a way as to satisfy the following 

eoereeiveness condition: 

(i)~ The polynomials 

-~ b°o(w ', ~) , jo-- r~ < j <jo 

are linearly independent modulo Q+ (eo'~ ~), for any eo'e T2~_1. 
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(ii)~ The polynomials 

2 ---> bd~), jo < j<r2  -{- r3 

with b~(~)= bjo(1,0,~), are linearly independent modulo Q+(~), where Q+(~)= 

= ~-'~ Qo+(1, o, ~ ) L : ( o ,  ~). 

(iii)~ The polynomials 

~ --> bjoo(~', ~),  j o - - r 2 < j < r ~ + r 3 ,  

are linearly independent modulo Qo+o((o ', 2)Lo+o(CO ', ~) for any oJe Q~-I. 

(iv)2 The polynomials 

~->b~o(~,eo',~), j o - - r2<j<.r2+r~ ,  

are linearly independent modulo Qo+ (~, co ', ~) Lo+ (~eo ', ~), ]or any ~ ~ (0, + oo), any 
CO t E Q n - - 1  • 

Besides, assume tha t  ajo, jo--r~<j<-<jo satisfy the condition: 

(a)2 The polynomials 

-+ ajo(e ,  co', ~) , l <j  <<. r2-- jo 

are linearly independent modulo L+(eeo ', ~), V e >  O, Vo)'eQ~_x. 

(b),~ The polynomials 

-+ ajoo(~o', ~) , l <j  < r~-- jo 

are linearly independent modulo L+(oY, ~), Vw'~Q~_x. 

(c)2 The polynomials 

-+a~(2) , l <j<r2-- jo  

with aj(~)= a~.o(1, O, ~) are linearly independent modulo L+(O, ~). 

The condition (a)2-(e)~ guarantee  tha t  any  decreasing at + ~ solution of the 
equation 

(3.2.124) L + (e~', eDt)Q+ (e, ~', D,)u(t) = L+(e~ ', eDt)/(t), t > 0 

to be also a solution of (3.2.121), so tha t  the  problem (3.2.121), (3.2.122) is equivalent 

to the  problem (3.2.124), (3.2.122). 
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Again, for the  problem (3.2.124), (3.2.122) the Theorem 3.2.12 (with ~ ÷ ½ < 

< s~ < fl ÷ ½) and the  est imate  (3.2.77) are applicable, and we get the following 

result :  

TttEOI~E~ 3.2.22. -- The condition (3.2.114) being/ulfilled, the polynomial Qo being 

elliptic of order v, the Poisson operators (Z+)-~a¢o, l <~j<~r~--jo, and the boundary 

operators bto, jo --  r2 <<. j <~ r~ ÷ ra satisfying the coerciveness condition (a)~-(e)2, (i)2-(iv)2, 

there exists unique solution u(t), {~}, l <~j<~r~- jo, to the problem (3.2.121), (3.2.122), 

which satisfies the a priori estimate: 

(3.2.125) 

IluIl(,,)e,÷ Y. 

where fit = s -- v ÷ ~t--  ~ ÷½e2 ÷ (s2-- rz ÷ ~t~ ÷ ½)e ~ Yt a, with (~ defined in (3.2.120), 

vt~ at are as de]ined above in (3.2.61), e ~ (1, -- 1, 1), and the constants C, C~ do not 

depend on e, ~'~ u, yJ~, f, q~j. 

I~E~__~K 3.2.23. -- One has to use the second of the inequalities (3.2.107) to esti- 

ma te  [~]@),v" 

If  the  addit ional  bounda ry  operators  bto, jo--r2<j<<.O cannot  be chosen as 

polynomials  and such a requi rement  conflicts with the  coerciveness condition (ih-(iv)2 , 

then  these boundary  conditions can be given as pseudodifferential  operators  with 

rat ional  symbols. In  t ha t  case the coerciveness condit ion is formula ted  in te rms of 

some de terminants  which are supposed not  to vanish uniformly with respect  to the  

parameters  @ > 0 and  co'e ~2n_~. Of cours% one can consider more general Poisson 

and  boundary  operators a~o and  b j0 than  the  ones in t roduceed aobve. Again, the 

coerciveness condition is fo rmula ted  in terms of some de terminants  which arc sup- 

posed not  to  vanish uniformly with respect  to the parameters  @ > 0 and  co'e ~ _ ~ .  

3.3. Singular Wiener-Hopf equations in 2%. 

We will sketch briefly the extension of the results given in the previous section 

to pseudodifferentia] equat ions in ~+ with symbols ra t ional  functions of ~ ~ ~n. 

The s ta tements  below with slight obvious modifications are also t rue  for pseudo- 

differential operators  with transmission p rope r ty  (see [2], [27]). 

Let  Qo(~, ~) and Qo(e, ~) be two proper ly  elliptic principal  symbols of orders 

respect ively  v and ~. Le t  vt ~ 2rj and ~j ~ 2~ ,  j = 2, 3, with rt ,  ~j non-negat ive 

integers.  

We in t roduce  the  vector  

(3.3.3_) ~2 --. (0, ra-- ~3, r3-- ~)  ~ ~I, x Z x Z 
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called index of the rational function 

L.(~, 2) = Q # ,  ~)I0o(~, ~). 

The polynomials Qo, (~0 being elliptic principal symbols the function /~o(e, 2) is 

smooth in e e (0, oo), V~e N~\{O}, homogeneous in (e -1, 2) of order 

(3.3.2) Iv l - [vl = v, + v~-- gl-- 32, 

and does not vanish for Vez(O, c~), g~z Y¢"\{O}: 

(3.3.3) L0(e, 2) =/: O, Ye z (0, ~) ,  g~ e 2~\{0}.  

I t  is natural to call the vector 

(3.3.4) # = v-- ~ ~ ~3 

order of the rational function Zo(e, 2). 

Besides, it is quite obvious that  Lo(e, 2) satisfies the following two-sided ine- 

qualities: 

(3.3.5) C-1 e-"ll$lz'<e~>'~ < [Lo(e, 2) 1< Ce-ml~[~<e~> "'. 

A symbol satisfying (3.3.5) is called elliptic singular perturbation o/ order #. 

First assume that  vector (~2,~a) has non-negative components: N¢----r~--~j~ 

(3.3.6) /~j>O, j = 2, 3 .  

Let L~o(e~ ~:), l< j<~22  + :~8, be rational functions in (e, ~), with vectorial orders 

(3.3.7) # ~ =  (Vj, m ~ , p ~ ) ~ f f ¢ x Z x Z ,  l < j < ~ z  + ~3,  

which are supposed to be homogeneous in (e -~, 2) of Order 

(3.3.8) [kt,[ = r ;  + me 

and smooth for e ~ (0, c~), ~ N"-~\{O}. 

Using again the notation ~' for 

(3 .3 .9 )  ~' ---- <$'> w', o)' = 2' It' I -a e ~Q._~ 

we consider the following Wiener-Hopf singularly perturbed problem in ~+: 

(3.3.10) ~+ Lo(e, ~', Dr) u+(t) = J(t) , 

(3.3.11) 7~0 Z~o(e, ~', Dr)u+(t) = ~o~, 1 < j  <~2 @ ~a 

7 - A n n a l i  d i  M a l e r a a l i e a  
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where u+(t) is defined for t ~ ~ and has its support in £+,  the operator /5oU+ is 

defined in the usual way: 

Zo(~, $', D,)u+(t) = ~bZo(~, $", ~)~+~ou+, 

a+ is restriction to the half-line ff~+, and ~. is restriction to the point {t = 0}, as 

defined above in the Section 3.2. 

The boundary operators Z~. are supposed to be ordered in such a way that  the 

sequence of their orders {m~.}, 1 < j  < ~  ~- ~ ,  is a non-decreasing one, and, moreover, 

we assume at this stage that  

(3.3.12) mi ~ ~}~i ~"" ~ m~ <~ m~ + i ~'-" ~ 'I,~ +~. 

We denote further m~, and m~+~ respectively by a and ft. 

We describe the coerciveness condition on the boundary operators Z~o(e, ~). 

I t  is immediate that  the rational function 2 -> Zo(e, ~', 4) admits the factorization: 

(3.3.13) 

where 

(3.3.14) 

Lo(~, ~', 4) = L : ( e ,  ~', 2 )L ; ( e ,  ~', 2 ) ,  

z~+ (~, ~', 4) = qo+(e, : ' ,  2)/(}0+ (~, ~', 4) 

has all its zeros and singularities within the upper k-half plane and 15 0 (e, ~', 4) has 

all its zeros and singularities within the lower k-plane, when e e C 0, ~) ,  ~'e fft"-~\{0}. 

Besides, it is quite obvious that  the vectorial order of Lo+(e, ~', 4) is ~ = 

= (0, ~ ,  ~8), and it is homogeneous function in (e -~, ~', 4) of order ~ which satisfies 

the two-sided inequalities: 

(3.3.15) ~-~(la'l + I~1)~'( 1 + ~la'l + ~121)~=< I~+( ~, ~r, 4)1< 

< o(I~:'1 + t21)'~'(1 ÷ g~"l + ~121) ~= 

when ~re:g~-l\{0}, 2~C,  I r a 2 < 0 ,  e > 0 .  

One checks easily, using the representation 

~r: = Q:/~o +, 

that  L+(~, co', 2) for V~>~o>0,  Veo'el2,_l has its zeros and singularities enclosed 

within a compact domain in the upper half-plane. We denote the bmmdary of this 

domain by  / ' ;  F does not depend on ~, ~o' for ~ > ~ 0 ~ 0 ,  o)'eT2~. 

Besides, by  the Lemma 3.1.2 the rational function 2-->/5+@, ~', 4) admits for 

l~'l < G and eo sufficiently small the factorization 

(3.3.16) L~(~, ~', 2) = ~ ( ~ ,  ~', ~) ~o~(~, ~', ~) 
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with .Lf+(e, ~', 2) homogeneous in (~-1, ~,, 2) of order ~ and satisfying the inequalities: 

(3.3.17) G-~([~'i + 12t)~'< I~o~(e, ~', 2)1< ~(15'1 + 12l) ~', 

Vee(O,o~), V~'a~=-~\{O}, V2eC, I m 2 < O ,  and 5¢+(e,~',~) homogeneous in 

(e-l~ ~', 2) of order 0 and satisfying the inequalities: 

(3.3.18) c(1 + ~1~'1 + ~12t)~,< I~+(~, a', 2)1< c ( 1 +  ~1~'1 + ~121) ~, , 

Ve e (0, oo), V~'a ~ -~ \{0} ,  V2 e C, Im 2 < O. 

Using the representation of £+ by polynomials 2 -+ Q+, 2 -+ t~ +, it is immediate 

that  there exist the limits: 

(3.3.19) lim ~cP+l(~, }', 2) -=-- £o°+(} I, 2), 
~---~+ 0 

where £o+ (},, 2) is homogeneous function in (}', 2) of order Ms, given by the formula: 

O +  t £~ (~, 2) °+ ' = Oo (~, x)/O~+(~', 2). 

One checks easily that  all the singularities and zeros of £°+(eo', 2) for VoYe Q~_I, 

are enclosed within a compact domain in the upper half plane. We denote the 

boundary of this domain by /'1, F1 does not depend on oYEQ~. 

We denote by £+(2) the rational function 

(3.3.20) Z+ (2) = .£f+(1, O, 4), 

and by / ' 2  the gordanian curve in the upper half-plane which encloses all the zeros 

and singularities of £+(2). 

~'inally, £+(Q, ~', 2) having the growth like ~ as ~-+-~  c~, we introduce 

(3.3.21) £+0(~', 2) = lira ~-~.Q+(~, ~', 2). 
~--~+ ¢o 

I t  is quite obvious that  

£o+o(~ ', 2) = q:o(~', 2)/4~7o(~', 2) 

and it is homogeneous function in (~', 2) of order ~2 + ~3. 

Again, all the zeros and singularities of £+(co', 2) for oJ'e/2._1 are enclosed 

within a compact domain in the upper half plane, whose boundary is denoted b y / 3 .  

1"8 does not depend on eo'e f2._1. 

The boundary operators £~o are supposed to satisfy the following coerciveness 
condition: 

(i) Zet £°o(~ ) be the reduced symbol /or Z~o(e , ~), 

(3.3.22) £~o(~) = lim en£~o(S , ~). 
t~--+O 
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Since Z°o(~ ) does not vanish for ~ ~ :~'*\{0}, the zero and singularities of the rational 

function ~-->Z°o(W ', 2) for 0)' ~ ~2._~ are contained within two disjoint compact 

domains respectively in the upper and lower halves of the complex ~-plane. Therefore~ 

we can assume that the eurve F~, defined above, additionally to the zeros and singularities 

of ~---> L°+(eo ', ~), encloses also those zeros and singularities of L°o(co ~, ~), 1<~j<~.2, 

which are located in the upper hal/ of the complex ~ plane. 

Introduce 

( Z~o(~', ~) 
(3.3.23) q°~(c°') = 2 - ~  J ZoO(co k--~) ~-~ d~ , l~<k, ~ < ~ .  

The matrix [lq~¢(o)')I[ is supposed to be non-singular for any co'ef2~_x: 

(3.3.24) o , W ' e  ~ . _ ~  det ]Iq~(o) )][1<~,~<~ # O, 

(ii) _Let _~().) = Ljo(1, 0, ~). Again we can assume that the contour F~ defined 

above, additionally to the zeros and singularities of Z+(~), encloses also those zeros and 

singularities of L+(~), ~ < j < < . ~ - ~  ~ ,  which are located in the upper half of the 

complex ~ plane. Introduce 

(3.3.25) 

The matrix [lq~II is supposed to be non-singular: 

(3.3.26) 

(iii) Z~et ~oo(~) be the principal homogeneous symbol of order mj ~- pj for Ljo(1, ~), 
l < j < ~  -[- ~a so that: 

(3.3.27) Zjoo(O)', ~t) ~ lira ~r~-~JS~o(~, elk 2) . 
~--->+ ~ 

The zeros and singularities of 2--~L~oo(og', ~), for Yco'~Q~_~, l < j < ~ +  ~2~, being 

contained within two disjoint compact domains located respectively in the upper and 

lower halves of the complex ~-plane, we can assume, that those in the upper half plane 

are enelosed within the curve Fa defined above. 

We introduce the matrix: 

1 f Zjoo(co', ~)2k_~d 2 l < k ,  j < ~  + ~ 3  (3.3.28) q°°(of) = - ~ ,  Z+o(w, ' ~) , I 

The matrix co , ]lqkj( c° )H is supposed to be non-singular: 

(3.3.29) detlfq°°(o;)lIl<k,~<~,+~.# O, W o ' e ~ _ l .  
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(iv) The zeros and singularities of 2 --~bjo(~, ~', A). l <~j<~ 2 2[- ~3, for Y ~  

> ~ o > 0 ,  Y c o ' ~ _ l ,  being contained within two disjoint compaot domains located 

respectively in the upper and lower halves o/ the complex A-plane, we can assume that 

those in the upper half plane are enclosed within the contour F defined above. Of course 

the contour F depends on ~o. 

Introduce the matrix: 

1 f q~-~,+~.b~o(q, ~o', A) ,V-ld~ l < k ,  j < ~  + ~ .  
(3.3.30) Q~¢(e, ~o') = ~-~ O~-(e, oY, X) ' 

/ I  

The matrix HQ~(q, co')]l is supposed to be non-singular: 

(3.3.31) det ][Qk~(e, to')I[1-<<k,~<ce~+~. =/= O, V(e, to') e (0, + c~) ×/2,~_~. 

Tm~ogE~ 3.3.1. - The conditions (3.2.114) and m~, + 1 < s~ < m~+l + ½ being 

fulfilled, .Lo(s , ~) being elliptic singularly perturbed rational symbol of order tt, the 

boundary symbols Zip(s, ~), l < j ~  + ~3 satisfying the coerciveness condition (i)-(iv), 

the problem (3.3.10), (3.3.11) has unique solution u(t) which satisfies the a priori esti- 

mate (3.2.77) where r~ should be replaced by ~ ,  j = 2, 3, and v by #, the vectorial 

order of Zo(s, ~). 

The proof of this theorem is absolutely similar to this one of the Theorem 3.2.12. 

Indeed, using the Wiener-ttopf method one represents the general solution to (3.3.10) 

decreasing at + co in the form (3.2.8) with Lfo~ instead of Q0~ when ~ = e<~'}<~o 

with 0o sufficiently small, and in the form (3.2.7) with L + instead of Q+ when ~> ~o. 

Substituting these expressions into (3.3.11) one finds out the coerciveness condi- 

tions (i)-(iv) and gets the u priori estimates in the same way as it was done in the 

previous section. 

~ow, if the condition m ~  + 1 <  sa < m~+~ -]- ½ is not fulfilled or one of the 

numbers ~ ,  ~3 is negative integer, then introducing into the equation (3.3.10) Poisson 

operators with unknown densities, one gets a well posed boundary value problem 

in this case too and establishes a two-sided a priori estimate of the same kind ~s 

in the previous section. 

3.4. Singular perturbation in 2~+. 

We consider here coercive singular perturbations with constant coefficients in : ~  

and establish the basic ~ priori estimate for its solutions. 

Let  Q(e,~) be elliptic singular symbol of order v = (vl, v2, v3) with principal 

symbol Qo(e, ~) and bj(8, ~), l <j<r~ + r3, singular symbols of order ttj = (yj, ms, p~) 

with principal symbols bjo(e, ~), satisfying the coerciveness condition (i)-(iv). 

Consider the singularly perturbed boundary value problem in 2 ~ :  

(3.4.1) Q(~, D) u(x) = f (x ) ,  x e ~+ 

(3.4.2) ~obj(e, D)u(x') = q)j(x'), x'~ ~ - 1 ,  l ~ j ~ r ~  + r~. 
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The orders m+ of the  operators b~ are supposed to satisfy the  condition (3.2.1). 

The solution to the  problem (3.4.1), (3.4.2) is sought in H o ) ( : ~ )  under  the 

assumption (3.2.69). 

TH~01~:E~ 3.4.1. - The problem (3.4.1), (3.4.2) being elliptic coercive singular per- 

turbation and the conditions (3.2.1), (3.2.46), (3.2.69) being ]ul]illed, the ]ollowing a 

priori estimate holds ]or the solution u: (/or eo small enough) 

(3.4.3) llull(:+)<a(ll]ll~-:)-t - 2~ [~A~,)+ ~ [~o;]<+)-l-llull<+,>)<O:liu[I(: +) 
l<~t<<.rl ~'2<9< ~'z +¢'~ 

with any s'E ~1I'~ and the constants C, 01 which depend only on s and s'. 

PROOF. - ~ot ie ing tha t  the  polynomials 

and 

#. ~Q(e,  ~', &),  

~. ~ b~(e, ~', #.) ,  

~. -+ Qo(*, $', ~:.) 

~. -+ bjo(e, ~', ~.) 

have the  same principal symbols,  applying the Fourier  t ransform with respect  to x' 

in (3.4.1), (3.4.2), one gets (3.4.3) using the a priori es t imate  (3.2.77) obta ined in 

the  previous section for the  solutions to singularity per tu rbed  boundary  value prob- 

lem for ordinary differential operators with parameters  e and  ~'. • 

Consider now the case when so > m~,+l + ½. We now no longer assume tha t  

m~,< m~,+~. Let  jo be  such a subscript  tha t  

(3A.4) ~n;. + ½ < s~ < m~.+, + ½. 

I f  there  is no such a subscript  jo, we pu t  

Consider the  following modification to the problem (3.4.1), (3.4.2): 

(3.4.5) Q(~, 1)) u(x) = / ( x )  + L-l(e, D) ~ a~(~, D)(~,~(x') × O(x.)), 
l < ~ < J o  

(3.4.6) ~ob~(e, D)u(x') : 9~(x'), l < j < r 8  + j o ,  

x e : ~  , 

where Q(e, D) is elliptic singular per turba t ion  of order v e ,~3, L(~, D) is elliptic 

singular per turba t ion  of order a = (0, 2(jo-- r ), 0), aj(e, D) and b~(e, D) are singular 

per turbat ions  of orders ~ = (~Jl, :¢~, ~J3) a n d / ~  = (y¢, m~, p~) respectively,  satisfying 
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the coerciveness condition (a)~-(e)t, (ih-(iv)~ in ¢he Section 3.2, and the Poisson 

operators .5-~(D)a~(c, D) are defined by  the formula (3.2.105) with ~ i (~ ' )=  ~:,_.~,~p 

instead of ~(c, ~'). 

T~IEORE~I 3.4.2. - The problem (3.4.5), (3.4.6) being elliptic eoereive singular per- 

turba$ion and the vonditions (3.2.114), (3.4.4) being fulfilled, the following a priori 

estimate holds ]or its solution u, {~p~}~ l <j<jo--r~:  (/or eo small enough) 

(3.4.7) lluil . +, + X :X Evil,,+ Z 
l <~J<~io--r~ mj<sa--½ mj>sa--½ 

l<t<Jo--¢, 

where Aj, ~ ,  a~e 2J are the same vectorial subscripts as in (3.2.61), (3.2.118), s' is 

any vector in ~F~ and the constants G, C~ depend only on s, s'. 

PROOF. - The inequality (3.4.7) is an immediate consequence of the Theorem 3.2.20 

given that  for any singular perturbation S(c, D) the polynomials 

have the same principal symbol So(C, ~', ~) .  

Besides, the estimate (3.2.118) being two-sided, one gets first (3.4.7) with some 

s"<( s, s"e ~IF~. Using afterwards the interpolation inequality (1.1.16), one obtains 

the estimate (3.4.7) for any s ' e  ~F~. • 

Assuming now that  s~ < m,~ ÷ ½ and choosing jo < r~ such that  

(3.4.8) m~,+ ½ < s~< m~.+~ + ½ 

(if there is no such a subscript jo we put  jo = 0), consider the following modification 

to the problem (3.4.1), (3.4.2): 

(3.4.9) 

(3.4.10) 

Q(c, D) u(x) = / (x )  + L-I(c, D) ~ aj(c, D)(~p¢(x') × ~(x~)), x e 2~ + 

zob~(c, D)u(x') = 9j(x'), jo-- r~<j<r2 ÷ r3 

where again Q(e, D) is elliptic singular perturbation of order v E ~ ,  L(e, D) is elliptic 

singular perturbation of order a =  (O,O, 2(r~--jo))e ~8, the operators aj(c, D), 

bj(c,D) of orders aj = (aj2, :¢j~, aj3), /~----(~, m~, ~j) respectively satisfy the coer- 

civeness condition (a)~-(b)2, (i)~-(iv)2 in the Section 3.2 and the Poisson operators 

Z-I(e, D)a~(c, D) are defined as above. 
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TId:EOI~EM 3.4.3. -- The problem (3.4.9), (3A.10) being ell@tie singular coercive per- 

turbation and the conditions (3.2.114), (3.4.8) being fulfilled, the following a priori 

estimate holds for its solution u, {y~-}, 1 <j<r~-- jo:  (for eo small enough) 

(3.t.11) 

where v~, ~ ,  f l ~  2~ ~ are the same as in (3.2.61), (3.2.125), s' is any vector in ~IF~, 

s'-~ s, and the constant C, C~ depend only on s, s'. 

P~ooF. - One argues like in the proof of the previous theorem using the 

Theorem 3.2.22. 

I~.~ZA~K 3.4.4. - If the boundary operators b,, 1 <~j<~r2 ~ r~ cannot be completed 

by bj j o -  r~ ~ j~<0 with polynomial symbols in such a way as not to conflict 

with the coerciveness condition (i)2-(iv)2, then they may be given as pseudodif- 

ferential oper~ors with rational symbols. As it was mentioned above, ~he coerci- 

veness condition in this case is stated in terms of determinants which are supposed 

not to vanish uniformly with respect to the parameters s, ~', those conditions being 

similar to (i)-(iv) in the Section 3.3. 

3.5. Coercive singular perturbations in bounded domain. 

We state in this section two-sided a priori estimates for singular perturbations 

with smooth variable coefficients in a bounded domain with smooth boundary. 

Let U c SL ~ be bounded domain with boundary ~ U which is supposed to be C a 

oriented manifold. 

A singular perturbation Q(x, e, D) ~P~, x ~ U, e ~ (0, So], is called elliptic in U 

if (2.4.3) holds for any x e U. 

Let B~(x, e, D)~P#j ,  # j =  (y,, m~,p~) and denote by bjo(X', e, D), principal non- 

homogeneous symbol of Bj, here x 'e  ~U, l <j<~r2 ~ r~, 2r7~ = ~'k, 1¢ -~ 1, 2. 

Assume that  the orders mj satisfy the condition (3.2.1). 

As usual, let N and ~' be respectively the inward normal and the cotangential 

variables at the point x ' e  ~U. We denote by Q+(x', e, ~'-~25V), Q+(x', ~ ' - ~ N )  and 
0 +  t Qo (x, ~'~-Z5 T) respectively factors of the polynomials Z --> Qo(m', e, ~'~Z~'), Z --> 

-+ Q0o(X', s, ~'~-ZN), Z -* Q°o(X', e, ~'~-2N), which correspond to their zeros contained 

in the upper half of the complex k-plane when ~'e2~-1~{0}, x'eOU, se(0,  eo], 

where Qo(x', e, ~' @ 2N), Qoo(x', ~' @ ~N), Q°(x', ~'-~AN) are respectively the principal 

non-homogeneous symbol of Q(x', e, ~'@).N), the principal homogeneous symbol of 

order v,@~a of Qo(x', 1, ~'-[-A£V) and the reduced homogeneous symbol of order r, 

for Qo(x', e, ~ ' ~ 2 ~ )  defined above in the Section 3.2. 
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The operators B~, 1 <~j <~r~-ra, are supposed to satisfy the following coerciveness 

condition: 

1) The polynomials 

2--> o , l < j < r ~  b~o(x , oY-~- )~ )  , 

with b°o(x',~'~ - 2~) reduced symbols for B~, are linearly independent 
O+ Qo ( x , o ) ' ~  21g), for any oYe~._~, any x ' ~ U .  

2) The polynomials 

~ -> b~(x', 2),  r ~ < j < r ~ r a ,  

modulo 

with bj(x', 2 ) ~  bjo(X', )AV) are linearly independent modulo Q+(x', ~), /or any x ' e  ~U 

where Q+(x', ~) is the factor of the polynomial ~ --> 2-~Qo(x', 2~), which corresponds 

to its zeros contained in the upper half of the complex 2-plane. 

3) The polynomials 

-+ b~oo(~ ~, ~ ' +  ~1¢), 1 < j  < r~ ÷ r~. 

are linearly independent modulo Q+(x', oY ~-2N),  for any oyE D._~, any x 'e  ~U. 

4) The polynomials 

->bjo(x', ~, co'-~ 2N) ,  l < j < r 2  -~ r~, 

are linearly independent modulo Q+(x'~ o~, oY-~ ~N) for any ~ E (0, ~- ~) ,  any oYeQ~_~, 

any x' ~ ~ U. 

I~E~A~K 3.5.1. -- As a simple consequence of the Proposition 2.3.1, one gets the 

conclusion, that  the coerciveness condition 1)-4) is invariant with respect to any 

local diffeomorphism which preserves the inward normal to the boundary 3U. 

Consider the following singularly perturbed boundary value problem: 

(3.5.1) Q(x, ~, D) u(x) = / ( x ) ,  x~ U,  

(3.5.2) l imB~(x,e ,D)u(x)=q~,(x ' ) ,  x ' e~U,  l ~ r ~ @ r 3 .  

TI~EORE~ 3.5.2. -- Singular perturbation (3.5.1), (3.5.2) being elliptic and coercive, 

the conditions (3.2.1), (3.2.46), (3.2.69) being fulfilled, the solutions to the problem (3.5.1), 

(3.5.2) satisfy the following a priori estimates: 

(3.5.3) lluil<s><o(flfll<~_~)+ ~ E%]<,,)+ ~ [%](~>+]lul]<s,>)<O'lIull<,> 
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provided that e E (0, t0] with eo sufficiently small; here s' is any vector in ~IF~, the 

vectorial subscripts ~j, (~ e ~ are the same as in (3.2.61) and the constants G, C' depend 

only on 8, s r and eo. 

PI~ooF. - Using the standard argument by parti t ion of uni ty for U ~nd also 

the estimates (2A.23) and (3A.3) one gets (3.5.3), given tha t  both (2A.23) and (3A.3) 

are two-sided a priori estimates. • 

l~ow we drop the ~ssumption: m~, < m~,+l. Let s~ > m~,+l ~- ½ and denote by jo, 

jo > r~, such a subscript tha t  (3.4.4) holds. Consider the following modification to 

the problem (3.5.1), (3.5.2): 

(3.5.4) Q(x, e, D) u(w) ----/(x) + L-~(x, e, D) ~ a~(x, e, D)(~pj(x') × O(x.)) ,x e U,  
l ~ < ~ < J o - - r ~  

(3.5.5) lira B~(x, e, D) u(x) : qoj(x'), 1 < j < r3 q- ~o, x'~ b U,  
~-.->X t 

where I(x ,  e, D) is elliptic order a :  (0, 2(jo-- r~), 0), L(x, e, $) v~ 0, Vx~ U, Ye~(0, eo], 

V~ e 2~ ~, aj(x, e, ~' ~ 2N) e ~ ,  ~j e ~a, and Bj(x, e, ~' ~- 25V) e ~,~ satisfy the coerci- 

veness condition (a)~-(e)~, (i)~-(iv)~ at any point x ' ~ U . ~  The solution u(x), {~o~(x')}, 

1 <j  <jo-- r~, is sought in JCo) (U) × H J~(A~)(~ U) with A~ defined in (3.2.118). 

THEOEE~ 3.5.3. - Singular perturbation (3.5A), (3.5.5) being elliptic and coercive, 

the conditions (3.2.114), (3.4.4) being fulfilled, the following a priori estimates hold 

for its solutions: 

(3.5.6) IluII++ Z [v+](~,)<¢(]lfi](,-~)+ Z [%](,,)+ Z [~A+)+ilull(+))< 

+ Z 

provided that e e (0, eo] with eo sufficiently small; here s' is any vector in ~F~, v~, (~, 

A~ are the same as defined above, and the constants C, C' depend only on s, s' and co. 

Assume now tha t  s~ < m~,-~ 1 and let jo be such a subscript that  (3.4.8) holds. 

Consider the following modification to the problem (3.5.1), (3.5.2): 

(3.5.7) Q(x, e, D) u(x) = f(x) + L- '(x,  e, D) ~ a~(x, e, D)(v~(x') × O(x.)) , 

(3.5.8) l imB~(x ,e ,D)u(x)  = ~o,(x ' )  , j o - - r ~ < i < r 2 + r ~ ,  x ' e ~ U ,  

where L(x, e, D) is elliptic singular perturbation of order ~ = (0, 0, 2(r~--jo)), 

L(x, e, ~) ~ 0 ,  Vx e U, Ve e (0, eo], V$ e :~", 

and 

aj(x, e, $ ' +  42V) e ~=,, ~ e  ~3, B~(x, e, ~ '+  ~N) ~ ~ , , ,  

satisfy the coerciveness condition (a)~-(e)~, (i)2-(iv)~ at any point x'~ ~U. 
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Tm~OREM 3.5.4. -- Singular perturbation (3.5.7), (3.5.8) being elliptic and coercive, 

the conditions (3.2.114), (3.4.8) being fulfilled, the ]ollowing a priori estimates hold 

]or its solutions: 

(3.5.0) 11 1l(,)+ 5 5 5 
l~<l~<r=--;~o m.~<s2--½ m~,>s=--½ 

< e' (llull. + 

provided that sE (0, ~o] with eo su]]iviently small; here s ' e  8~F,, fl~, ~ ,  ~j are the same 

as above and the constants C, C' depend only on s, s' and Co. 

The proof of (3.5.6), (3.5.9) can be done using the same part i t ion of un i ty  ar'gu- 

ment  as above, given tha t  the estimates (2.4.23), (3.4.7) and (3.4.11) are two-sided. 

R E ~ R K  3.5.5. -- Using the  part i t ion of un i ty  for U and the estimates for singular 

perturbations with constant  coefficients in 2~" and  2~" + one can prove by  the s tandard 

argument  existence of left  and right- quasi-inverse operators to singular perturba- 

tions (3.5.1)-(3.5.2), (3.5A)-(3.5.5) and (3.5.7)-(3.5.8) respectively. Of course, as a 

simple consequence of the existence of quasi-inverse operator one gets again the a 

priori estimates (3.5.3), (3.5.6) and (3.5.9) respectively. 

3.6. ~Teeessity o/ coerciveness eondition. 

We show here t ha t  the coerciveness condition 1)-4) is necessary for (3.5.3) to hold. 

THE01~E~ 3.6.1. - I] the a priori estimate (3.5.3) holds/or  the singular perturba- 

tion (3.5.1), (3.5.2), then it is elliptic eoervive singular perturbation, i.e. (3.5.1), (3.5.2) 

satis]ies the elliptieity condition (2.4.3) for any x e U and the coerciveness condition 1)-4) 

/or any x '  e ~ U. 

PROOF. - Taking in (3.5.3) the function u to be with compact support  in U, 

one gets immediately,  using the  Theorem 2.4.11, t ha t  Q(x, e, ~) has to be elliptic 

singular per turbat ion for any  x e U. 

Bow, let xro e ~ U, and  U~ be a small neighborhood of xo in 2~ ~ such tha t  there 

exists a diffeomorphism, mapping Uj n ff  onto a half  ball F + = {ye~-~+, [y]<r} 
! 

and the point  x o into the origin: y----0. Here y----(y', Yn) arc local coordinates 
? 

related with the point x0, such tha t  the port ion of the boundary  ~U(~ U~ is given 

by  the equation:  yn ~ 0. 
l 

First  assume tha t  the ellipticity condition (*) is violated at  the point x 0 e ~ U. I f  the 

condition (i) is not  fulfilled then  taking in the a priori est imate (3.5.3) s to be 1, 

one gets d contradiction given tha t  the elliptieity condition for Qoo(X, ~) is necessary 

for the a priori est imate (3.5.3) with e ---- 1 to hold, as i t  follows from the classical 

elliptic theory.  I t  follows also from the classical elliptic theory,  wi thout  small 

parameter  t ha t  the condition 3 ) s h o u l d  also be satisfied if (3.5.3) holds for some 

(*) See page 57. 
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13 ! 
s > O. Now, assuming tha t  the  reduced symbol  Qo(xo, ~) does not  satisfy the  con- 

dition (ii); taking in (3.5.3) u to be:  u(x, s ) :  eS~w(x)with w(x)e  C ~ ( U ) a n d  let t ing 

-~ 0, the a priori est imate (3.5.3) becomes usual a priori inequal i ty for the  reduced 

problem to (3.5.1)~ (3.5.2). 

Therefore, the  condition (ii) should necessarily hold for Q°o(x , ~) along with the  

condition 1). Assume now tha t  the  condition (iii) is violated a t  the  point  x' o ~ ~ U. 

Using the local coordinates y, denote  b y  V~ the ba l l  {lY] < r} and let v(y) ~ Co(V~ ) 

such tha t  UvlI(o)>O. With  ~]o real zero of the  equation:  

(3.6.1) Q(xo, 1, ~o) = o ,  

we introduce the  functions:  

(3.6.2) u(s, y) = exp(ie-ly'~o) v(y). 

Subst i tu t ing u(s, y) into the est imate (3.5.3) one finds easily, given (3.6.1) tha t  

(3.6.3) 11+ II(,> ]Iv It<o> 

H@u II<:-:) ~ ll+ H<o) 

[B+ : :  + V]<o) 

[B~ u](~)--, s - ' ' - ' ' ++  [~oV](o) 

as s ~ O ,  where nv[I<o) and [zov](o) are jus t  Z2-norms of v(y) and z~ov=v(y' ,O) 

respectively in ~n and :~-1. 

The formulas (3.6.3) lead to a contradiction with (3.5.3) as s - +  0. 
[ 

Now, assume tha t  the  condition 4) is violated at  a point  x o ~ 8 U, and let  5o > 0, 
t t [ 

o~ o E D,-1 be such tha t  the  polynomials ~ -+ b~0(~o, 50, wo ~- 2N), l < j < r ~  ~ rs, are 
+ I r i + t 

l inearly dependent  moduloQo (xo, 5o, °~o + XN). D e n o t e b y  b~o(5o , O)o, X), Qo (5o, °~o, 4) 

these symbols rewri t ten  in the  local coordinates y. 

Given the assumption above,  the  boundary  value problem for ordinary dif- 

ferential  equat ion on the half-line $¢+: 

(3.6.4) Qo(5o, ¢O'o, Dr)w(t) -~ o ,  t > o 
t 

~rob~o(5o, wo, D t ) w = O ,  l < j < r ~ r 3  

has a non-trivial decreasing at  + c~ solution. 

In t roduce  

(3.6.5) " 1 r u(e, y) : exp (~5o e- %" y') W(5o ~-1 yn) v(y', O) 

where again v ~ C~(V~), [z0V]o> 0, and w(t) is non-trivial solution to (3.6.4). 
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Subst i tu t ing u(e, y) defined by  (3.6.5) into (3.5.3) and using (3.6.4) one gets con- 

t rad ic t ion  ~s e ->0, given t ha t  the  left  hand  side in (3.5.3) is of order  O(e -~-s~+i) at  

least  while the  r ight  hand  side is O(e -8'-'~+1) a t  most .  

Finally,  assuming t ha t  the condit ion 2) is violated, and denot ing by  b~(2)~ r~ 

~ j < ~ r ~ + r a ,  Q(~) the  symbols of corresponding ordinary  differential  operators  

rewr i t t en  in the  local coordinate  y : (y', y~) (with co tangent  coordinate  ~ ' ~  0)~ 

one can find a non-tr ivial  decreasing at  -~ c~ solution to the prob lem on the  half- 

line gO+: 

(3.6.6) 

Define 

(3.6.7) 

Q(D ) w(t) = o ,  

7rob~(D~)w ~ 0 , 

t > O  

r~ < j <~ r2 + rs . 

u(e, y) -~ w(e-~y~)v(y ', O) 

with w(t) solution to (3.6.6) and  v(y', 0) as above.  

Subst i tu t ing (3.6.7} into (3.5.3) one gets once more  a contradict ion as e - +  0, 

and  t ha t  ends the  proof of the  Theorem 3.6.1. • 

R E ~ R K  3.6.2. -- Similar a rgument  making use of asympto t ic  solutions to  the  

singularly pe r tu rbed  bounda ry  value problems (3.5.4), (3.5.5) and  (3.5.7), (3.5.8) 

shows t ha t  the  coerciveness condit ion (a)~-(e)~, (i)l-(iv)1 and  (a)~-(e)~, (i)~-(iv)~ are 

necessary for the a priori  es t imate  (3.5.6) and (3.5.9) to hold uni formly  with respect  

to e ~ (O, eo]. 

3.7. Examples. 

Some examples of singular per turba t ions  are discussed in this section. 

EXAMPLE 1. - Consider the singular pe r tu rba t ion :  

(3.7.1) ( e 2 A ~ - - A ) u  = ](x) ,  x ~  U ,  

~u, ,, 
(3.7.2) u(x') : ~ (x ' )  , ~-~ (x)  ---- ~,(x') , x '~  ~U.  

One finds immedia te ly  t ha t  i t  is an elliptic coercive singular per turba t ion .  Here  r2 

ra ~ 1, /it ---- (0, 0, 0), /~2 ~ (0, 1, 0) and  ~ -~ (0, 2, 2). The  Theorem 3.5.2 asserts 

t ha t  for s ~-- (31, 32, s,) wi th  s~ + ss > ~- and s~ satisfying the inequalit ies:  

(3.7.3) ½ < 32 < 

the following a priori  es t imate  holds for the  solutions of (3.7.1), (3.7.2): 

(3.7.4) [lull( >< U 2]<a  + Iluil< ,)) 
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with s' <: s, s' e ~/ '~ ,  and  

(3.7.5) z = s - - ½ e 2 ,  a = s - - ½ e ~ + ( s 2 - - ½ ) e ,  e = (1 , - -  1 , 1 ) ,  e2 = (O, 1, O). 

Actually,  the  t e rm  llull(,,) can be deleted, given tha t  the solution to (3.7.1), (3.7.2) 

is unique.  

I f  s~ does not  satisfy (3.7.3) there  is a need to  in t roduce Poisson operators  with 

unknown densities to have  a well posed problem uni formly  stable with respect  

to 8 e (0, co]. 

:ExAlvn'T.E 2. -- The problem 

(3.7.6) ( - - e 2 A ~ - - A ) u ( x )  = ](x) ,  x e  U 

~q* r (3.7.7) u(x') --- ~ ( x ' ) ,  ~ ( x  ) = q~(x'), x '~  ~U 

is not  an elliptic singular per turba t ion ,  given t h a t  

Q00, ~ ) = -  I~1'+ 1~1 ~ 

vanishes for  I$1 - -  a- 

As ~ consequence of this fact  even the  es t imate  

(3.7.8) [tull~< ~(11111-~ + IP*Ilo) 

for  solutions to  (3.7.6), (3.7.7) with 9 1 -  ~02 = O does not  hold with cons tan t  C 

which does no t  depend on , .  

Indeed,  subst i tu t ing into (3.7.8) u(e, x) of the  form 

(3.7.9) u(~, x) - -  cxp ( ix .~/e)  ~;(x) 

with ~/~ ~n, [~1 = 1, and ~ e O~(U), t[FIlo = 1 one gets a contradict ion as e -> 0, given 

t ha t  the  lef t  hand  side in (3.7.8) grows at  least  like s -1 while the  r ight  h a n d  side is 

bounded  when s - + 0 .  Here  I] ' I ,  is usual  Sobolev norm in H,(U) .  

EXAMPLE 3. - Consider the singular pe r tu rba t ion :  

(3.7.10) - -  Au(x) = ](x) ,  x ~ U 

(3.7.11) - - e  ~--~ + 1 u(x')  = f ( x ' ) ,  x ' e  ~U.  

Here  v = (O, 2, 0), r, -~ 1, r3 = 0, /, = (O, 0, 1). 
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One checks easily t h a t  i t  is an elliptic coercive singular per turbat ion and for 

s-----(s~ s2, s,) with s~ ~-s .  > ~, and  s~ satisfying the inequal i ty:  

(3.7.12) s~ > ½ 

the following a priori est imate holds for the solution u to (3.7.10), (3.7.11): 

(3.7.13) 

where 

liu]l(,)< c(lllll( -,> -I- -F 

and s' ~ s, s' ~ 0~/'~. 

Again, actually the te rm HUH(,.) can be removed given tha t  the problem (3.7.10), 

(3.7.11) has unique solution. 

EXAMPLE 4. - Consider the singular per turbat ion:  

(3.7.14) - -  An(x)  : f(x) , x ~ U 

0 
(3.7.15) (~-~-~ . ] ) u ( x  ) = ~(x') , x '~  ~U . 

I t  is no t  coercive: the condition 4 fails to be fulfilled for ~ : - 1 ,  co'E~9~_1. 

Even an a priori est imate of the type  

(3.7.16) ilulll< c(lllll_l + + IluHo) 

cannot  hold for the solutions to (3.7.14), (3.7.15) with a constant  C which does not  

depend on e. 

Indeed~ assuming (3.7.16) and  subst i tut ing there for u(e, x) the functions:  

(3.7.17) u(e, x) = exp(--  x~/e -~ ix'.~'/e)~v(x') , x~>~O , 

t 
with (x', x~) local coordinates in the neighborhood of a point x o ~ ~U and ~v(x') 

C~(g¢~-1), [~v] o > 0, one gets contradiction as ~->0.  

EXAMPLE 5 .  - -  I t  iS easy to check tha t  the singular per turbat ion:  

(3.7.18) ( - - ~ A  ÷ 1)u(x) = f (x) ,  x ~  U 

(3.7.19) (~÷~A')u(x')=~(x'),~'~lY 
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with A' I~aplace-Beltrami operutor  on the  manifo ld  ~U, is coercive singular per-  

tu rba t ion ,  while the  same equat ion  (3.7.18) wi th  the  b o u n d a r y  condit ion 

) (3.7.20) - ~ - -  cA'  u(x')  = q~(x'), x '~  ~ U 

is no t  (again, the  condit ion 4 fails to be  fulfilled in this case). 

t t e r e  v---- (0, 0, 2), r~ = 0, rs = 1, ~ = (0, 1, 1). 

EXAMPLE 6. -- The  singular pe r tu rba t i on  

(3.7.21) (e~A ~ - -  A) u(x) = ] (x) ,  x ~ U 

(3.7.22) u(x')  = ~ ( x ' ) ,  zlu(x') = ~ ( x ' )  , x '~  ~U 

is elliptic coercive wi th  v = (0, 2, 2), r~ = r3 = 1, /~ = (0, 0, 0), /z2 = (0, 2, 0). 

For  s2 + s3 > 5 ½ < s2 < ~ the  following a priori  e s t imate  holds for its solutions: 
2 ,  

( 3 . 7 . 2 3 )  

where 

z = s -  # , -  ½ e~, ~ = s -  # ~ -  ½ e~ + ( s ~ -  5) e 

and  s'-< s, s' ~ ~IF, .  

I f  sz is not  included be tween  ½ ~nd { then  *here is a need  to in t roduce  Poisson 

type  opera tors  wi th  unknown  densities to have  ~ un i formly  stable p rob lem with  

respec t  *o e e (0, Co]. 

EXAMPLE 7 .  - The singular pe r tu rba t i on :  

(3.7.24) ( ~ 2 A ~ - - A ) u ( x )  : ] (x ) ,  x e  U 

(3.7.25) u(x')  = ~x(x') , u(x')  = q)2(x') , x '  e ~ U 

is non coercive: the  condit ion 2 fails *o be fulfilled. 
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