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Abstract

In certain tasks such as pursuit and evasion, multiple agesgd to coordinate their behavior to achieve a
common goal. An interesting question is, how can such behd&eé best evolved? A powerful approach is
to control the agents with neural networks, coevolve thesejparate subpopulations, and test them together
in the common task. In this paper, such a method, called Mygént ESP (Enforced SubPopulations), is
proposed and demonstrated in a prey-capture task. Fieshpjproach is shown more efficient than evolving
a single central controller for all agents. Second, codjmras found to be most efficient through stigmergy,
i.e. through role-based responses to the environmengrrtithn direct communication between the agents.
Together these results suggest that role-based coopeiatin effective strategy in certain multi-agent
domains. [ This paper is a revision of Al01-287. ]

1 Introduction

In cooperative multi-agent problem solving, several agevirk together to achieve a common goal. Due
to their distributed nature, multi-agent systems can beerafficient, more robust, and more flexible than
centralized problem solvers. A central issue with suchesgstis how such cooperation can be best estab-
lished. First, should the agents be implemented as a digetsef autonomous actors, or should they be
coordinated by a central controller? Second, if the agemstgatonomous, what kind of communication is
necessary for them to cooperate effectively in the task?

In this paper, these issues are addressed from the machiminkg perspective: A team of neural net-
works is evolved using genetic algorithms to solve a codpergroblem. The Enforced SubPopulations
method of neuroevolution (ESP [10, 11]), which has proveayhlyi efficient in single-agent reinforcement
learning tasks, is first extended to multi-agent evolutiorg method named Multi-agent ESP. This method
is then evaluated in a pursuit-evasion task where a teamvefaepredators must cooperate to capture a
fast-moving prey. The main contribution is to show how dif& ways of encoding, evolving, and coordi-
nating a team of agents affect performance in the task. Twothgses are tested: First, a coevolutionary
approach (using Multi-agent ESP), where autonomous neetalorks are evolved cooperatively to each
control a single predator of the team, is shown to outperfarcentral-controller approach, where a single
neural-network is evolved (using ESP) to control the ertaam. This is because niching in coevolution,

*Present address: Institute for Infocomm Research, Simgdd®613, chyong@i2r.a-star.edu.sg



which is especially strong in ESP [10, 11], can be furtheetaged in Multi-agent ESP to meet the demands
of multi-agent tasks. Instead of searching the entire spaselutions, coevolution allows identifying a set
of simpler subtasks, and optimizing each team member depaead in parallel for one such subtask.

Second, the agents do not even need to communicate direithliyeach other to behave cohesively: It
is sufficient that they coevolve to establish compatiblesahediated through stigmergy, that is, they learn
to react to environmental changes caused by the teammatéasct] when a primitive form of direct com-
munication is available (where each team member broaditeddgation to its teammates), communicating
teams consistently perform worse than teams without doectmunication! Each agent learns to perform
its subtask (or role) reliably, and the task is solved thiotige stigmergic interaction of these roles; direct
communication is unnecessary and only complicates the task

The paper will begin with a brief review of related work in gavative coevolution, multi-agent learning,
and the prey-capture domain. The Multi-Agent Enforced Syofations method is then described, followed
by its experimental evaluation. A discussion of future pexgs of this approach concludes the paper.

2 Background and Related Work

The termcooperationis used in two distinct ways in this paper. The first refers ghanomenon of multi-
agent behavior where agents work together to achieve a congmal, as will be discussed in Section 3.
The second refers to cooperation as a mechanism for leamniiaigwill be discussed in detail in Section 2.1.
Section 2.2 will discuss agent communication through stigyn

2.1 Cooperative Coevolution

Coevolution in Evolutionary Computation means maintagnamd evolving multiple individuals in a com-
mon task, either in a single population or in multiple pogiolas. In competitive coevolution, these in-
dividuals have adversarial roles in that one agent’s loss\@her one’s gain. In cooperative coevolution,
however, the agents share the rewards and penalties ofssescand failures. It is most effective when
the solution can be naturally modularized into componemds interact, or cooperate, to solve the prob-
lem. Each component can then be evolved in its own populatiod each population contributes its best
individual to the solution.

For example, Gomez and Miikkulainen [10] developed a mettadidd Enforced SubPopulations (ESP)
where populations of neurons are evolved to form a neuralar&t A neuron is selected from each popu-
lation to form the hidden layer of the network, which is thealaated on the problem and its fithess passed
back to the participating neurons. In the multi-agent eNmtudeveloped in this paper, ESP is used to evolve
each neural network, but the networks are also requireddpearate. The ESP method and the multi-agent
extension to it are discussed in more detail in Section 4.

Potter and De Jong [31] designed an architecture and pro€essperative coevolution similar to ESP,
focusing on methodological issues such as how to decompegedblem automatically into an appropriate
number of subcomponents and roles. In contrast, the foctliopaper is on understanding cooperation
itself, including the roles of team control and communiadi

In a series of papers, Haynes and Sen [16, 14, 15] exploréalugavays of encoding, controlling, and
evolving predators that behave cooperatively in the papttore domain. In the first of these studies [14],
Genetic Programming was used to evolve a population ofegjied, where each individual was a program
that represented the strategies of all predators in the.t€me predators were thus said to be homoge-



neous, since they each shared the same behavioral stréteigjlow-up studies [16, 15], they developed
heterogeneous predators: Each chromosome in the popwedie® composed df different programs, each
one representing the behavioral strategy of one ofktipeedators in the team. Haynes and Sen reported
that the heterogeneous predators were able to perfornr blette the homogeneous ones. In this paper,
heterogeneity is taken a step further by evolving the ctletofor each predator in separate populations.

In contrast to the advantage found for heterogeneous teaithe iabove studies, Luke [21] observed
that heterogeneous teams could not outperform homogetemus evolved using Genetic Programming in
the soccer softbot domain. However, he conjectured thagngsufficient time, the heterogeneous approach
would have learned better strategies. Such time was ndiqabin his domain, where each evaluation cycle
took between 20 seconds and one minute.

Quinn et al. [32] and Baldassarre et el. [3] evolved teamsoafitgeneous robots controlled by neural
networks, and studied how the role allocations emerge ileale behaviors such as formation move-
ment and flocking. In contrast, this paper shows how rolesboeated in heterogeneous teams of agents,
focusing in particular on the effects of global vs. globahtrol and communication.

Balch [2] examined the behavioral diversity developed yotdeams using reinforcement learning. He
found that when the reinforcement was local, i.e. appligthsgely to each agent, the agents within the
team learned identical behaviors; global reinforcemearesth by all agents, on the other hand, produced
teams with heterogeneous behavior. This result providegfulguideline for evolving cooperating agents:
Rewarding the whole team for good behavior privileges comjm even when some agents do not con-
tribute as much as others, whereas rewarding individudisc@s more competitive behaviors because each
individual tries to maximize its own reward at the expensehefgood of the entire team. The work re-
ported in this paper diverges from Balch’s in focus and imm@atation: The focus is on how global versus
local control and communication affect the diversity anthing of the behaviors that evolve, and instead of
reinforcement learning, the implementation is based otugenary learning of neural networks [11].

2.2 Agent Communication

The role of communication in cooperative behavior has bégstiexd in several Artificial Life experiments
[41, 5, 29, 19, 37]. These studies showed that communicationbe highly beneficial, even crucial, in
solving certain tasks. However, the cost of communicatiesieh as the energy expenditure in signaling, or
the danger of attracting predators, or the complexity ofipgaratus required—was not taken into account in
most of these studies. In fact, even in domains where conuation does contribute toward solving a task,
communicative traits may still not evolve if they involveigrgficant cost [39]. Other kinds of cooperative
strategies may evolve instead, depending on the nature ¢dsk, how dense the population is, and whether
resources are available.

One particularly interesting form of such cooperation withcommunication is stigmergy, a concept
proposed by Grassé [12] to describe the indirect commtiaitabserved in the behaviors of certain social
insects. Grassé observed that worker termites were sttetito perform certain activities by a particular
configuration of their nest, transforming it into a new couafagion, which would in turn stimulate other
activities. The word stigmergy was coined to describe thie@ss: “The stimulation of the workers by the
very performances they have achieved is a significant ongcing accurate and adaptable response, and
has been namestigmergy [12] (translated by Holland and Melhuish [18]).

Holland and Melhuish [18] examined stigmergy and self-orgation in a group of robots that clustered
and sorted frisbees, and found that the task was solvabig sigmergy-based control without any direct
communication between robots. Franklin [8] proposed thigtrergic coordination may be an advantage
over coordination through direct communication, becausarounication and explicit planning between
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agents require additional architecture, intelligencel @sources. The work presented in this paper further
advances these ideas in three ways: (1) By showing how stignoan emerge in cooperative coevolution
when direct communication between teammates is not al@ild®) by comparing the learning perfor-
mance of communicating teams and those that coordinateighrstigmergy; and (3) by comparing the
emergent behaviors of communicating teams and those tbatioate through stigmergy. As a result, an
effective non-communicating strategy based on stigmexgacdination is identified and termeadle-based
cooperation In certain tasks, this strategy is easier to learn and moweegul than a strategy based on
communication.

In this paper, a most elementary form of communication isleygal. Whereas each non-communicating
agent is completely unaware of its teammates, each comatingcagent continuously broadcasts its loca-
tion to its teammates. Although elementary, such exchamgefarmation is useful communication: In
many real-world applications of software agents or physicatuated robots, it is not possible to sense the
teammates locations directly, because they may be far analyscured or the appropriate sensors may not
be available. A communicative apparatus (such as a radierayss required to obtain this information. On
the other hand, while other, more complex forms of commuitinare possible, broadcasting of locations is
sufficient to demonstrate differences between teams timatemicate and those that do not, and it therefore
forms a suitable experimental platform for this study, dslva described next.

3 The Prey-Capture Domain

The prey-capture task used in this paper is a special caaggfipevasion problems [24]. Such tasks con-
sist of an environment with one or more preys and one or madgbors. The predators move around the
environment trying to catch the preys, and the preys try twlevhe predators. Pursuit-evasion tasks are
interesting because they are ubiquitous in the naturaldyoffer a clear objective that allows measuring
success accurately, and allow analyzing and visualiziagtlategies that evolve. Such tasks generally can-
not be solved with standard supervised learning technitikesackpropagation. The correct or optimal
decisions at each point in time are usually not known, anghémormance can be measured only after sev-
eral decisions have been made. More complex algorithmseqeéred that can learn sequences of decisions
based on sparse reinforcement. Pursuit-evasion taskshallergging for even the best learning systems
because they require coordination with respect to the @mrient, other agents with compatible goals, and
adversarial agents [10].

The prey-capture task in this paper consists of one preylaee predators in a discrete toroidal envi-
ronment (Figure 1). The prey is controlled by a rule-basgdrithm; the predators are controlled by neural
networks. The goal is to evolve the neural networks to forreaart for catching the prey. The different
approaches and techniques are compared based on how lakgstfor the team to learn to catch the prey
consistently, and what kind of strategies they use.

The environment is 400 x 100 toroid without obstacles or barriers (th@0 x 100 area is also referred
to as the “world” below). All agents can move in 4 directioh:S, E, or W. The prey moves as fast as the
predators, and always directly away from the nearest poedttstarts at a random location of the world,
and the predators start in a horizontal row at the bottomclafber (Figure &). All the agents make their
moves simultaneously, and an agent can move into a positicupeéed by another agent. The team catches
the prey when a predator moves onto the position occupietidopriey. If the predators have not caught the
prey in 150 moves, the trial is terminated and counted adwdai

Constrained in this way, it is impossible to consistentlichahe prey without cooperation. First, since
the predators always start at the bottom left corner, balgagieedily would mean that they chase the prey
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Figure 1: The Prey-Capture Domain. The environment is 400 x 100 toroidal grid, with one prey (denoted by
“X™) and three predators (denoted by “1”, “2” and “3"). Figri(a) illustrates a starting scenario: The predators start
in a row at the bottom left corner, and the prey starts in aoanbbcation. Figure (b) illustrates a scene later during
a trial. The arrows indicate a general direction of movem&inice each agent may only move in the four cardinal
directions, a movement arrow pointing 45 degrees northmestns the agent is moving north and west on alternate
time steps. Figure (c) shows the positions of the predatmedime step before a successful capture. Even though the
prey is as fast as the predators, the predators approaafsistently from different directions, and eventually tmeyp

has nowhere to run.

as a pack in the same direction. The prey will then avoid capby running away in the same direction:
Because it is as fast as the predators, and the environméaitoiglal, the predators will never catch it
(Figure 18 demonstrates this scenario). On the other h&wod)dsthe predators behave randomly, there is
little chance for them to approach, circle, and run into theyp The 150 steps limit is chosen so that the
predators can travel from one corner of the world to the otteerthey have enough time to move to surround
the prey, but it is not possible for them to just mill around @apture the prey eventually by accident.

The prey-capture task has been widely used to test multitdgghavior. For example, Benda et al. and
Haynes and Sen [6, 16, 15] used this domain to assess therparfce of different coordination systems,
and Jim and Giles [19] studied the evolution of language eefiect on performance. In their variant of the
task, the predators are required to surround the prey infgppositions to catch it, and the main difficulty
is in coordinating the predators to occupy the proper cepbasitions simultaneously. On the other hand,
the prey moves either randomly or at a slower speed than duafors, thus allowing the predators to catch
up with it easily. In contrast, in the experiments descrilpeithis paper it is enough for one predator to move
onto the prey to capture it. However, the prey moves as fateapredators, and always away from the
nearest predator, and therefore there is no way to catchréyespmply by chasing it. The main challenge
is in coordinating the chase: The agents have to approacpréyefrom different directions so that it has
nowhere to go in the end (Figure 1c). This behavior requis®ldping a long-term cooperative strategy,
instead of coordinating the timing of a few actions accuyads in the previous studies.

4 The Multi-Agent ESP Approach

The Enforced SubPopulations Method (ESRO, 11]) is an extension of Symbiotic, Adaptive Neuro-
Evolution (SANE; [26, 27, 25]). SANE is a method of neuro-ewion that evolves a population of neurons
instead of complete neural networks. In other words, in SA&ldéh chromosome represents the connections
of a single neuron instead of the structure and weights oféireenetwork (analogous to the “Michigan”
method of evolving rule-based systems, where each chrammsepresents a single rule [17], versus the
entire rule set as in the “Pitt” method [36]). Neurons arecskd from the population to form the hidden
layer of a neural network, which is then evaluated on the lprob The fitness of the network is passed

*ESP neuroevolution software is available at http://notesas.edu/soft-list.php
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Figure 2: ESP architecture. Each subpopulation of neurons contributes one neuron (itmput and output
connections) to form the hidden layer of the neural netwaithich is then evaluated in the domain. The fitness is
passed back to the participating neurons. This schemedsags®olve the central-controller neural network (Figuye 4
that controls all three predators simultaneously. Theresits to multiple controllers is shown in Figure 3.

back to all neurons of the network equally. ESP extends SANBIlbcating a separate population for

each hidden-layer neuron of the network; a number of neuopuilptions are thus evolved simultaneously
(Figure 2). ESP is thus a cooperative coevolution methodhB&uron population tends to converge to a
role that results in the highest fitness when the neural n&tigcevaluated. In this way, ESP decomposes
the problem of finding a successful network into several Enalbproblems, resulting in more efficient

evolution [10, 11].

In several robot control benchmark tasks, ESP was compareithér neuro-evolution methods such as
SANE, GENITOR [42], Cellular Encoding [13, 43], as well astber reinforcement learning methods such
as Adaptive Heuristic Critic [4, 1], Q-learning [40, 30],dBAPS [23]. Because of its robust neural network
representation and efficient search decomposition, ESfeduout to be consistently the most powerful,
solving problems faster, and solving harder problems [11,The above properties of ESP also allow it
to be extended efficiently to multi-agent systems evolutiorthis paper, ESP is extended to simultaneous
evolution of multiple agents, called Multi-agent ESP.

Three approaches of evolving and controlling agents atedeghe central controller approach, the
autonomous communicating approach, and the autonomousammunicating approach. In the central
controller approach, all three predators are controlledalsingle feedforward neural network, imple-
mented with the usual ESP method (Figure 2). Multi-agent ESksed in both the communicating and
non-communicating autonomous controllers approachesyemach predator is controlled by its own feed-
forward network, evolved simultaneously in separate patns (Figure 3). Each network is formed using
the usual ESP method. These three networks are then evhlogtther in the domain as a team, and the
resulting fitness for the team is distributed among the n&utibat constitute the three networks.

In all three approaches, the agents are evolved in a seriesrementally more challenging tasks. Such
incremental evolution, or shaping, has been found to fat#lilearning in complex domains, where direct
evolution in the goal task would result in inadequate, maid# strategies such as running around in circles
[10, 34, 7, 38]. Evolution proceeds through six stages: éndfisiest task the prey is stationary, and in each
subsequent task it moves at a faster speed and with a greabeabdity of heading away from the nearest
predator, until in the final task it moves as fast as the poedaaind always away from the nearest predator.
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Figure 3: Multi-agent ESP architecture. Each predator is controlled by its own neural network, fairfrem its

own subpopulations of neurons. The three neural netwoeks\aiuated in the domain at the same time as a team, and
the fitness for the team is passed back to all participatingams. A detailed architecture for the individual networks
is shown in Figure 5.

Task | Prey Speed (Relative to Predators’ Speeds) Prey Probability of Moving Away from Nearest Predator
1 0 0
2 0.45 0.45
3 0.63 0.63
4 0.77 0.77
5 0.89 0.89
6 1 1

Table 1:The sequence of incrementally more difficult tasks.

Table 1 gives the speeds and evasive probabilities of thefpreeach of these tasks; small variations to
this schedule lead to similar results. When a team managsste the current task consistently, the next
harder task is introduced; the team can thus utilize whatstdiready learned in the easier task to help guide
its learning in the new, harder task. In the pursuit-evaslomain, incremental evolution is particularly
useful because it allows the predators to learn early on baatch the prey at close proximity. Placing the
predators into the final task right from the start fails beeatiney do not get close to the prey often enough
to learn to catch it. Incremental learning is therefore usegive evolution more experience in the necessary
skills that would otherwise be hard to develop.

The fitness function consists of two components, dependinghether the prey was captured or not:

. { dol—ode if the prey was not caught
= —de .
200 - if the prey was caught,

wheredy is the average initial distance of the predators from thg,@edd, is the average final distance.
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This fitness function was chosen to satisfy four criteria:

1. If the prey is caught, the starting scenario (i.e. theahdistance from the prey) should not bias the
fitness. Instead, teams should be rewarded if their endisifignos are good—that is, if all predators
are near the prey.

2. If the prey is not caught, teams that covered more distainoeld receive a higher reward.

3. Since a successful strategy has to involve sandwichiagtly between two or more predators, at
least one predator must travel the long distance of the wswldhat two predators can be on the
opposite sides of the prey. Thus the time taken for each m&paithin the 150 step limit) tends to be
about the same, and should not be a factor in the fitness @umcti

4. The fitness function should have the same form througleudlifferent stages of incremental evolu-
tion, making it simple and convenient to track progress.

The neuron chromosomes are concatenations of the readmlaights on the input and output connec-
tions of the neuron (Figure 2). As is usual in ESP, burst nartahrough delta-coding [44] on these weights
is used as needed to avoid premature convergence: If peoigresolution stagnates (i.e. the best solution
25 generations earlier outperforms the current best solytthe populations are re-initialized according to
a Cauchy distribution around the current best solution.sBonutation typically takes place in prolonged
evolution in difficult tasks [10, 11].

5 Evolution of Cooperative Behavior

In this section, two experiments are presented, testindvibemain hypotheses of this paper: First, that
cooperative coevolution of autonomous controllers is rmedfective than evolving a central controller in
this domain (Section 5.2), and second, that the agentsatieotiby autonomous neural networks can learn
to cooperate effectively using stigmergy without any direemmunication (Section 5.3). These behaviors
and conditions under which they arise are then analyzedtal de Sections 6 and 7.

5.1 Experimental Setup

The following parameter settings were used for ESP and il§-amgent extension. Each subpopulation of
neurons consisted of 100 neurons; each neuron (or chromn®)segas a concatenation of real-valued num-
bers representing full input and output connections of adédn unit. During each evolutionary generation,
1,000 trials were run wherein the neurons were randomlyarhfsith replacement) from their subpopula-
tions to form the neural network(s). In each trial, the teaas wvaluated nine times to match the number
of evaluations in the test benchmark suite (to be describedlg). The prey started in a random location
each time, while the predators always started in the botedhcorner (Figure &). The consistent starting
location gives the different trials a common structure thakes it easier to analyze and compare results;
Section 7.3 shows that similar results are obtained whedapoes start at random locations. The fithnesses
over the nine evaluations are averaged, and assigned teealleturons that constituted the network. After
the trials, the top 25% of neurons were recombined usingpai- crossover. The offspring replaced the
bottom 50% of the neurons, and they were then mutated witlolzapility of 0.4 on one randomly-chosen
weight on each chromosome, by adding a Cauchy-distribitedam value to it. Small changes to these
parameters lead to similar results.
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Figure 4. Central controller network for a team of three predators. This network receives the relativeandy
offsets of the prey from the perspective (i.e. location)lbftaee predators, and outputs the movement decisions for
all three predators. This way it acts as the central comtrédr the whole team. There are nine hidden units, and the
chromosomes for each hidden layer unit consist of 21 relaledanumbers (six inputs and 15 outputs).

The environment is stochastic only in the prey’s startingatmn, and this location is the only factor that
determines the course of action taken by the predatorsdbr to test these team strategies comprehensively,
a suite of benchmark problems was implemented. The worlddiveded into nine33 x 33 subsquares; in
each trial, each team was tested nine times, with the prefingtaat the center of each of these squares
in turn. Such an arrangement provides a sampling of therdiifesituations, and allows estimating how
effective each team is in general. A team that manages tb thécprey in all nine benchmark cases is
considered to have completely solved the task, and indegdateam usually has a 100% success rate in
random, general scenarios.

Before running the comparisons, an appropriate numberdafem units was determined for each of
the three approaches. Since small networks typically gdimerbetter and are faster to train [20, 33], the
smallest number of hidden units was found that allowed sglthe task reliably. More specifically, for
each of the three approaches, ten evolution runs were peztbon the prey-capture task, initially with two
hidden units. Should any of the ten runs fail to learn to stheetask completely, the number of hidden
units was increased by one and another ten runs were triedn &vas deemed a failure if it stagnated ten
consecutive times, that is, if its fithess did not improvepitesten burst mutations in 250 generations.

Through this procedure, the appropriate number of hiddets wvas determined to be nine for the
central controller, eight for each of the autonomous conipatimg controllers, and three for each of the
autonomous non-communicating controllers (Figures 4¥6¢ comparisons were run with these architec-
tures, as described below.

5.2 Standard Evolution of a Central Controller vs. Cooperatve Coevolution of Autonomous
Controllers

This section tests the first hypothesis, i.e. that it is easiecoevolve three autonomous communicating
neural networks, each controlling a single predator (FKidi); than it is to evolve a single neural network
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Figure 5:Controller for each autonomous communicating predator. This network autonomously controls one of
the predators; three such networks are simultaneouslyedah the task. The locations of this predator’s teammates
are obtained, and their relativeandy offsets are calculated and given to this network as infoionatbtained through
communication. It also receives thendy offsets of the prey. There are eight hidden units, and thersbsomes for
each hidden layer unit consist of 11 real-valued numbexsr{puts and five outputs).
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Figure 6:Controller for each autonomous non-communicating predata This network receives the preyisand

y offsets as its inputs. Therefore, it controls a single pt@daithout knowing where the other two predators are (i.e.
there is no communication between them). There are threkehidnits, and the chromosomes for each hidden layer
unit consist of seven real-valued numbers (two inputs amddistputs).

that controls the entire team (Figure 4). The number of ¢imiary generations needed to learn to solve the
task, that is, to be able to catch the prey in all nine benckrmoases, are compared for the two approaches.
Ten simulations with different random number seeds werermr@ach case.

Figure 7 shows a clear result: On average, the three autarooumtrollers were evolved almost twice
as fast as the centralized controller. The conclusion isttlecooperative coevolution approach is more
powerful than the centralized approach in this task.

Figure 8 shows how long it took each approach to solve eackrimentally more difficult task during
evolution. While the centrally controlled teams requirstjslightly more time to learn the easier tasks
than the autonomous controllers, as the tasks become nfticeiltli the differences in performance grow
significantly. This result suggests that the autonomousgralier approach should scale up better to harder
tasks.
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Figure 7:Learning performance for each approach.The average number of generations, with standard devijation
required to solve the task is shown for each approach. Theadlgrncontrolled team took 50% longer than the au-
tonomously controlled, communicating team, which in turak over twice as long as the autonomously controlled,
non-communicating team to learn the task. All differenaesstatistically significant witlp > 0.95.
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Figure 8:Progress of evolution through incrementally more difficult tasks. Number of generations required for
each approach to solve each task in the sequence is showrhod® $n Table 1, in Task 1 the prey is stationary,
whereas in Task 6 it moves at the same speed as the predatdralvaays away from the nearest predator. The
centrally controlled teams took only slightly longer théwe tautonomously controlled communicating teams to learn
the easier tasks; with more difficult tasks, though, theedéfhices in performance become significant. On the other
hand, the autonomously controlled, non-communicatingitebearn to solve all the tasks substantially faster than
either of the two other approaches.
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5.3 Cooperative Coevolution With vs. Without Communicatio

The conclusion from the first comparison is that separativeg dontrol of each agent into disjoint au-
tonomous networks allows for faster evolution. The coigrsino longer receive direct information about
what the other agents see; however the domain is still cdeipleepresented in each predator’s inputs,
which include the relative locations of the teammates argthy. In this section the available information
is reduced further by preventing the predators from knovaagh other’s locations. This way the agents
will have to act independently, relying on stigmergy for mtination. The objective is to test the second
hypothesis, i.e. that cooperative behavior based on stgymaay evolve more efficiently than cooperation
based on direct communication.

The network architecture for such non-communicating adletrs is shown in Figure 6. The predator no
longer receives the relativeandy offsets of the other predators, only the offsets of the pFéyese networks
were evolved with the same coevolutionary multi-agent ESfhod as the communicating networks of
Figure 5. Again, ten simulations were run and the resultsages.

The non-communicating teams learned to solve the entikentese than twice as fast as the commu-
nicating teams (Figure 7). Furthermore, the non-commtinigdeams learned to solve each incrementally
more difficult task significantly faster than the commurnimgtteams (Figure 8).

These results show that direct communication between tedests not always necessary: Cooperative
behavior can emerge even when teammates are unaware ofteachk tocations. In fact, since commu-
nication is not necessary, it is more efficient to do away witntirely. In the next section examples of
evolved behaviors will be analyzed to gain insight into whig tis the case, concluding that the agents rely
on stigmergy. In Section 7, a series of further simulatioilkb& presented to demonstrate that this result is
robust; in particular, Section 7.1 shows that this resuttosdue to the relative differences in search space
between the two approaches.

6 Analysis of Evolved Behaviors

In this section, the behaviors evolved in the three appremetne analyzed in two ways: First, the degree
to which each predator’s actions depend on those of the ptledators is measured quantitatively; second,
examples of evolved behaviors are analyzed qualitatividlis analysis leads to the characterization of team
behaviors in two extremes: those based on role-based aimpemwhere interaction between different roles
take place through stigmergy, and those based on direct comnoation.

6.1 Measuring Dependency

A predator’s actions are independent of its teammates {fith@ator always performs the same action for the
same prey position, regardless of where its teammates areeely, the predator’s strategy is dependent
on its teammates if its actions are determined by both thgspaad the teammates’ positions.

The team of autonomous, non-communicating predators ncugdependently: Since the neural net-
work for each predator cannot see the locations of its tedassntheir positions cannot affect its actions. A
more interesting question is whether dependent actiorigeeirothe communicating team. The agents could
evolve to simply ignore their communication inputs; on thieen hand, they could learn to use communi-
cation to develop a coordinated strategy. Also, it is irdeng to observe whether the actions of a centrally
controlled team are more dependent than those of an autarsoomenmunicating team, since its control
architecture is more tightly coupled between teammates.
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Figure 9: Action dependence in teams evolved using each approacfihe centrally controlled and autonomous
communicating teams both evolved behaviors in which eaehtactions were highly dependent on its teammates
(the difference is not statistically significant, with= 0.84). The non-communicating team evolved behaviors that
were independent (the difference between the dependerice nbn-communicating team and those of the other two
approaches is statistically significantat-> 0.99).

Action dependence can be measured in the following way: &ohn @redator in the team, a sample is
taken of possible relative prey positions. For each of tlegsapled positions, possible configurations of
teammates’ locations are then sampled. Each such casesenped to the predator’s control network, and
the predator’s resulting action observed. The percentbgetions that differ for the same prey position (but
different teammate positions) is a measure of how depertlenpredator’'s actions are on its teammates.
The team’s dependence is obtained as the average of thdsdtokie predators.

The dependences of the centrally controlled, communigaind non-communicating teams are com-
pared in Figure 9. As expected, the non-communicating poeslact independently. In contrast, over 90%
of the actions of the centrally controlled and communigateam members depend on the other predators.
On average, the centrally controlled teams were slightlyemtependent than the communicating teams;
however, this difference is not statistically significant.

These results demonstrate that indeed the communicatimstéearn a distinctly different behavior
than the non-communicating teams. Even though the weightsedcommunication inputs could evolve to
0, they do not. Apparently, given a starting point where aights are random, it is easier for evolution
to discover an adequate communicating strategy than imEanmunication altogether. An interesting
issue is whether a different starting point would bias etiofuto discovering non-communicating solutions
instead,; this question is addressed in Section 7.4.

6.2 Characterizing Sample Behaviors

Dependence measurements demonstrate that the beha¥iershiit to understand how, actual examples
need to be analyzed. In this section, example behaviorsah epproach are described and compared
in detail. The main results are that without communicatiewglution produces specific roles for each
team member, and these roles interact only indirectly gnostigmergy, that is, by causing changes to
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Figure 10: A sample strategy of a non-communicating team.In frames 1 and 2, the predators are in setup
mode, maneuvering into an appropriate chase configuratiorframe 3, they switch to chase mode: Predators
2 and 3 chase the prey toward predator 1, which acts as a blodkds strategy is effective and does not re-
quire direct communication. Animated demos of this strgt@md others discussed in this paper, are available at
nn.cs.utexas.edu/keyword?mesp-demo

the environment that affect the other teammates’ roleshéumore, these teams utilize a single effective
strategy in all cases. On the other hand, evolution with camioation produces agents with more variable
(although less effective) behaviors, able to employ two orexdifferent strategies at different times.

A typical successful strategy for the non-communicatiragres illustrated in Figure 10. This strategy
is composed of two stages, tBetupstage and thehasestage. In the setup stage, illustrated in the first
two frames, the predators maneuver the prey into an apptepconfiguration for a chase: In frame one,
predators 2 and 3 move eastward, causing the prey to flee isathe direction, while predator 1 moves
westward. When the prey detects that predators have clogedt$ south, it starts fleeing northward (frame
two). In frame three, the predators detect that the preyrectly to their north, and the chase stage of
the strategy begins. This stage involves two differents,atbasersandblockers Predator 1, the blocker,
moves only in the haorizontal direction, staying on the saredical axis as the prey, while predators 2
and 3, the chasers, pursue the prey northward (frames thiedoar). Eventually, the prey is trapped
between the blocker and the chasers, who move in for the reaptdiotice that this strategy requires no
direct communication between predators: As long as theapoesi get the prey into a chase configuration,
and the blockers and chasers execute their roles, the plieglways be caught. Moreover, it is reliable for
all starting locations of the prey, even when the predatorsat all switch from setup to chase modes at the
same time.

From the above description, itis clear that some form of dimation is taking place, even without direct
communication. When the prey is not directly above (or bglavpredator, the predator is in setup mode,
moving either east (predators 2 and 3), or west (predatorti3. action causes a change in the environment,
i.e. a specific reaction on the part of the prey: to flee eastestwBecause of this reaction, each of the
predators will eventually find the prey directly above ordveit, triggering a second activity: They either
chase the prey north (predators 2 and 3), or remain on thésprestical axis (predator 1). This activity in
turn causes a change in the prey’s behavior, to flee north,itisteventually trapped between chasers and
blockers. This sequence of events is a clear example of stgym Each agent’s action causes a change in
the environment, that is, a reaction on the part of the phéy;reaction in turn causes a change in the agent’s
and its teammates’ behaviors.

Sample behavior of a communicating team is illustrated gufg 11. Two different strategies are shown
because this team actually displays both of them, and aéspbdbmbinations and variations, depending on
the relative locations of the prey and the other predatoeaah timestep. The first strategy, Figure:,11
illustrates behavior similar to the chaser-blocker sgat& he first frame is a snapshot of the starting posi-
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Figure 11:Two sample strategies of the same communicating teaniThis team employs the two strategies shown
above, as well as their variations and combinations. In tisg fia), the chase starts with two chasers and a blocker,
but ends with opposite chasers. In the second, (b), therblacier and two chasers throughout, but the movement is
horizontal. In this manner, the same team utilizes diffestrategies, depending on the starting position of the.prey

tion. Predators 1 and 2 are the chasers, and they start pgrha prey upward. Predator 3 is the blocker,
and it moves left onto the prey’s vertical axis. At this poimbwever, it starts chasing the prey downward,
in Frame 2, until the prey is trapped between all three poedah Frame 3. Already this strategy is more
varied as those of the non-communicating teams, as a cotidrirg blocking and opposite chasers.

Another strategy employed by the same team in a differematsiin is shown in Figure 31 In the first
frame, predators 1 and 3 start moving toward the prey didiyonpward and downward, while predator 2
moves upward until it is horizontal with the prey. By the setdrame, predators 1 and 3 are chasing the
prey horizontally, until it is trapped between them and pted?2 in frame 3. This strategy is again similar
to the chaser-blocker strategy, except this time the prefiased horizontally instead of vertically, and the
chase includes diagonal movement as well.

Although each strategy is similar to those of non-commuitigateams, in this case they are employed
by one and the same team. This team occasionally also std@binations of these strategies, for example
by starting with one and finishing with another. Thus, eaddator does not have a specific, fixed role, but
modifies its behavior depending on the situation. Througmroanication each predator is aware of its
teammates’ relative locations, and its behavior depent®my on the prey’s relative position, but also
directly on what the other predators are doing. In this wag,dommunicating strategies are more variable
and flexible. On the other hand, they are less efficient tovev@ection 5.2), and less robust (Section 7.2).
In a sense, the non-communicating teams resemble playamséti-trained soccer team, where each player
knows what to expect from the others in each play, whereadehavior of the communicating teams is
similar to a pickup soccer team where each player has toaathstnonitor the others to determine what to
do. Such players can perhaps play with many other kinds gepga but not as efficiently.

The centrally controlled teams exhibit behavior nearlynitel to those of the communicating au-
tonomous teams. In particular, the more tightly couplediéecture does not translate to behavior that
is visibly more coordinated in this domain.
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Of course we have to be careful not to attribute undue igetice and intention to neural networks that
simply manage to adapt to each other’'s behavior. Howeverdifferences in behavior are striking: The
non-communicating teams employ a single, efficient, fadlgb strategy in which each team member has a
specific role, while the communicating and centrally coigtbteams employ variations and combinations
of two or more strategies. These two forms of cooperativeatieh can be distinguished asle-based
cooperationand communication-based cooperatiofRole-based cooperation consists of two ingredients:
Cooperation is achieved through the combination of theouarioles performed by its team members, and
these roles interact indirectly through stigmergy. On tfeeohand, communication-based cooperation may
or may not involve roles performed by its team members, baittélam members are able to synchronize
through direct communication with each other.

In the following section, these cooperative strategiebheilcharacterized further by testing how robustly
they evolve and how robustly the evolved agents perform uvatéous extreme conditions.

7 Robustness of Strategy Evolution and Performance

Section 5 showed that when minimal neural-network archites are used for each approach, the coevo-
lutionary approach learns faster than the centralizedcgabr, and the team without communication learns
faster than the team with communication. It is importanteafy that these results hold when equivalent
neural-network architectures are used across all appesachlso, since the evolved non-communicating
strategies include fixed roles, it is necessary to demdedtnat they are robust against changes in the prey’s
behavior. It is also important to show that evolution carco&r non-communicating strategies robustly
even when the predators are initially placed randomly. Aeointeresting issue is whether communicating
teams can be biased by design to learn role-based, rathecdinamunication-based cooperative behavior.
Finally, it is important to demonstrate that coevolutiorheterogeneous agents is indeed necessary to solve
the task. Each of these issues is studied in a separate mgntiin this section.

7.1 Do the results hold across equivalent network architecires?

When the network architectures were optimized separatelgdch approach, the coevolutionary approach
learned faster than the centralized approach (Section &) teams without communication faster than
teams with communication (Section 5.3). However, it is aaclhow much of this result is due to the
different search-space sizes (i.e. different number oghisithat need to be optimized), and how much is
due to the centralized vs. distributed control strategffiter to the availability of communication.

In the centralized approach, the neural network had 9 hiddés and 21 connections per unit for a total
of 189 weights (Figure 4), whereas the network used in theatogonary approach (with communication)
had 8 hidden units and 11 connections per unit for a total o8@jhts (Figure 5); such a smaller search
space may allow learning to progress significantly fastee Jame issue arises in comparing communicating
Vs. non-communicating networks: The latter approach hasldeh units and 7 connections per unit for a
total of 21 weights (Figure 6).

Of course, such small search spaces are possible precessdyde the approaches are different, but it
is still interesting to verify that the results are not coatply due to search complexity. To this end, the ex-
periments in Sections 5.2 and 5.3 were repeated with iddmigtwork architectures across all approaches.
Specifically, all approaches use the architecture of th&aered approach, with 9 hidden units, 6 inputs,
and 15 outputs. When some inputs are not part of the apprcach @s teammate locations in the non-
communicating approach), random noise values are usedhdaon;toutputs that are not used are simply
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Figure 12: The large-network versions of the communicating and non-cmmunicating controllers. (a) The
network used in the autonomous communicating approachpftéme outputs are ignored. (b) The network used in
the autonomous non-communicating approach; ten of theutaigye ignored, and four inputs are fed random noise.
In both cases, there are nine hidden units, and the chronessfuneach hidden layer unit consists of 21 real-valued
numbers (six inputs and 15 outputs), which is the same a®inghtral-controller approach.

ignored (Figures 12 b). The learning performance of the coevolutionary appreachith such large net-
works is compared against that of the original centralizepr@ach, providing a comparison of the three
different approaches given a uniform search space.

Figure 13 presents the results for these experiments. Umiggr neural networks did not significantly
change the number of required generations to learn the taskither of the coevolutionary approaches
(with or without communication). As a result, the relatiifetences in learning time between the three
approaches are preserved. Therefore, the better perfoer@nthe coevolutionary over the centralized
approach, and that of the coevolutionary non-communigativer the coevolutionary communicating ap-
proach, are indeed due to the approaches themselves, asidpdt a consequence of being able to search
in a smaller space.

7.2 Are the strategies robust against novel prey behavior?

Although the non-communicating networks work togethee kkwell-trained soccer team, soccer (like most
interesting real-world tasks) is unpredictable. For examnp player from the other team may intercept
a pass, in which case the team members will have to quickiptattieir strategy to cope with the new
situation. To determine how the non-communicating teamdesat with such unpredictability, three further
experiments were conducted where the ten teams were pgtedsh a prey that behaved differently from
those encountered during evolution. For comparison, theedasts were also run for the communicating
teams. Since the non-communicating teams’ predators aotding to rigid roles, they might not be able
to adapt as well as the communicating teams’ more appariexiple agents.

In the first experiment, the prey moved three times fastar tlsual (by moving three steps each time)
and in a random direction 20% of the time; in the second thstettimes faster than usual and in a ran-
dom direction 50% of the time; and in the third, the prey alsvayoved right. The results, summarized in
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Figure 13:Learning performance for each approach with equivalent netvork architectures. The average number

of generations, with standard deviation, required to stheetask is shown for each approach. The performance is
about the same as with minimal architectures, and the velae&rformance between approaches is preserved. The
differences between the approaches are statisticallyfisigmt with p > 0.95.

Figure 14, are surprising: The non-communicating teamsrame robust against unpredictable preys than
the communicating teams. Apparently, the first two prey tigins, which are noisy versions of the original
behavior, are still familiar enough so that the rigid roles effective: The teams still catch the prey about
50% of the time. The agents only have to track the occasiarai®@ movement, otherwise their strategy is
effective as is. The communicating teams, however, haverawmer range of adaptable situations, particu-
larly because their agents tend to switch strategies aed based on the current state of the world, and thus
get easily confused by the unexpected prey actions. In ite ¢hse, where the prey always moves right,
both teams are unable to adapt. This behavior is consigteotkel, and the agents are evolved not to expect
it.

In sum, teams that have delegated rigid and specific rolelseio inembers may be more tolerant to
noisy or unusual situations, as long as the basic strategjyfligalid.

7.3 Are the strategies robust with random deployment?

In all experiments so far, the predators always startedeabtittom left corner of the world, and only the

prey’s initial position was varied. Such a limitation makepossible to analyze the resulting behaviors
systematically. However, it is important to demonstrate gimilar behavior evolves in the more general
case when the predators’ positions are initially randorre iShue is, will the non-communicating networks
be able to establish effective roles even when the predatrdom initial positions make the initial state

uncertain during learning?

The experiment was set up as described in Section 5.1, eluagippredators were placed randomly
in the world during both evolution and benchmark tests. lrhore, the number of evaluations per trial
during evolution was increased from 9 to 45, in order to abtasufficient sample of the different starting
positions. The number of evaluations during benchmarls tests increased from 9 to 900 for the same
reason (whereas relatively sparse sampling is sufficiegiie evolution, the benchmarks need to measure
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Figure 14:Robustness of communicating and non-communicating teamsyainst novel prey behavior. In the

first test, the prey moved three steps each time and in a raditention 20% of the time; in the second, three steps
and randomly 50% of the time; and in the third, always righte Tesults were averaged over the ten runs of each
approach. Surprisingly, the non-communicating teamsoperéd significantly better than the communicating teams
(p > 0.99 for all three tests), even though the communicating strasagere more flexible. The non-communicating
teams tolerate the occasional novel behavior well as lortheasbasic strategy is valid; however, even they cannot
cope if the prey employs a consistently different strategy.

performance more accurately). A network was deemed suatési caught the prey in 750 of the 900
tests.

The minimum effective network sizes were determined as ¢ti@e5.1. In this more challenging task,
they were found to be 13 hidden units for the centrally cdlgdoand communicating autonomous networks,
and 5 hidden units for the non-communicating networks.

Figure 15 shows how long it took each approach to solve tlke tagraged over 10 runs. Although this
task was much harder, the conclusions are the same as bEfrepommunicating autonomous teams were
easier to evolve than central controllers, and the non-conicating networks easier than the communicat-
ing networks. The strategies learned were also similardselhwith fixed initial placement of predators.

7.4 Can evolution be biased toward role-based cooperation?

As discussed in Section 6, the communicating networks coupginciple evolve non-communicating be-
havior by learning zero weights on the connections fromehnoput units that specify the other predators’
positions. It does not happen, and the reason may be thadiffisult for evolution to turn off all such
connections simultaneously; it is easier to instead discavcompetent communicating solution, utilizing
those inputs and weights as well.

An interesting question is whether evolution would discawde-based cooperation if it was biased to
do so from the beginning. Such an experiment was run by gedtinthe communicating weights to zero in
the initial population; the other weights were initializexshdomly as usual. Evolution only had to keep the
communicating weights at zero while developing the reshefrtetwork to solve the task. As a comparison,
networks with all weights initially zero were also evolveahd the results compared to normal evolution of

19



700

600 -1

500

400

300

Generations

200

100

Centrally Autonomous Autonomous
Controlled Communicating Non—-Communicating

Figure 15: Learning performance of the three approaches when the predars start at random locations. In

this harder task, evolution took longer than with fixed adiplacement of predators in all cases. Moreover, as before,
the non-communicating teams were significantly easier édvevthan communicating teams & 0.99), which were
slightly easier than central controllegs { 0.90). The team behaviors were also similar to those evolvedeearl

communicating networks.

The action dependencies that evolved are shown in Figuréh&@esults were averaged over 10 runs.
The results show that such an initial bias does have an eftealution discovers behaviors where the
actions depend significantly less often on the positionstioéropredators. With communication weights
initially at zero, 14% of the actions depend on them, and alittveights initially zero, 48%; in contrast, the
earlier evolved networks with all randomly-initialized igbts exhibit 91% dependency. Qualitatively the
behaviors of the initially biased networks consist of mpstle-based cooperation, with occasional switches
or deviations in the roles of the predators.

The performance in terms of number of generations needegato the task is shown in Figure 17.
Teams with communication weights initialized to 0 show anigant improvement in evolution time: The
number of generations required, compared to the normal eoniwating teams, dropped by a factor of three,
making it as fast as the non-communicating teams. When adjhigeare initialized to 0, the improvement
in evolution time was found to be insignificant.

These results show that evolution can indeed discoveraded cooperation, and the number of gener-
ations required can be comparable to that needed by anexthi#é that forces role-based behavior (i.e. the
non-communicating networks); however, the initial stateds to be biased the right way, and the role-based
cooperation discovered may not be perfect. In other wotds still important for the designer of a multi-
agent system to recognize whether role-based cooperatidd work in the task, and utilize the appropriate
architecture to evolve it.

7.5 Is Coevolution Necessary?

Although the performance of cooperative coevolution loo&avincing, it does not necessarily mean that
coevolution is essential for the task. Perhaps it is possdevolve good predators individually, and just put
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Figure 16:Degrees of dependence of communicating teams biased to exotole-based cooperationThe com-
municating teams with communication weights initialized0t evolved behaviors that were 14% dependent on the
positions of teammates; with all weights initialized to i0e tevolved behaviors were 48% dependent. In both cases,
the evolved behaviors were significantly less dependenéammates compared to those of the normal (randomly-
initialized) communicating teams, which was 91% dependateammates (all differences are statistically significan
with p > 0.99).
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Figure 17:Learning performance of communicating teams biased to evee role-based cooperationThe com-
municating teams with communication weights initialized0t learned the task significantly faster than the normal
communicating team(> 0.99), taking about the same number of generations as the nomaoainating teams

(»p = 0.68). On the other hand, with all weights initialized to O, leagqwas as slow as with normal communi-
cating teamsy = 0.89), and significantly slower than with communicating weigimitialized to 0 as well as with
non-communicating teamg ¢ 0.90).
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them together into the domain? This subsection demonstexgerimentally that such an approach is not
sufficient, and the agents indeed must be evolved togettsaive the task.

A single predator without communication inputs (as showRigure 6) was evolved alone in the prey-
capture domain with incremental learning, using the stah@&SP method as described in Section 4 and
Figure 2. The predator was allowed to evolve until it couldarmer improve its fithess. This process was
repeated three times, each time with a new predator, to peotifiee independent but competent predators.
These three predators were then put into the same envirdrandrevaluated in the prey-capture task.

The results clearly support coevolution. When a predatotveg alone, it is never able to catch the
prey, since the prey moves at the same speed as the predd&arnk to chase the prey but is never able
to reduce the distance between them, and is only able to mgréve prey from increasing it. When the
three individually evolved predators are put together rgjahe prey, they all chase the prey in the nearest
direction, and are unable to catch it at all—the prey keepsing and maintains the distance (Figure 18).
In other words, coevolution is necessary in this task toweveliccessful cooperative behavior.

7.6 Are Heterogeneous Agents Necessary?

Even though a team of individually evolved predators canatth the prey, it is possible that a homogeneous
team, i.e. one where all predators are controlled by idahtietworks, could. Such a team can be successful
only when the agents communicate; otherwise they wouldnafiley the same behavior, and fail like the
team in the previous section.

In a separate experiment, communicating networks werevestdhrough the standard ESP method.
Each network was evaluated by making three copies of it, eantrolling one of the three predators in a
team; the fitness of such a homogeneous team was then takkenrestwork’s fithess. Networks of different
sizes were evolved, from 6 hidden units up to 16, with 10 ruresaah size.

The success rate was extremely low: The homogeneous teamsable to solve the task only 3 times
out of the 100 total runs. Apparently, it was difficult for éwtion to discover a way to establish the roles
initially in the beginning of the chase. In the heterogerseoommunicating teams all agents are different
and their behaviors diverge in the beginning, and the agemiasmmediately adopt a strategy that fits the
situation. In the homogeneous team, all predators injtipdirform the same actions, and it is difficult to
break the symmetry. A more effective form of communicatioighm be to signal roles rather than simply
sensing teammates’ locations; each predator in turn waditld on a distinct role (such as chase northward,
or block horizontally), and communicate that to its teamgmatAlternatively, evolving heterogeneous net-
works allows symmetry breaking to occur naturally, resigltin effective heterogeneous behaviors without
a negotiation phase.
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8 Discussion

In Section 5.2, a central controller was found to take ovét kdhger to evolve than autonomous cooperating
controllers to solve the pursuit-evasion task. Coopegatiwevolution is able to decompose the task into
simpler roles, thereby making it easier to discover sohgio

Such decomposition is a special case of speciation in égohny systems. Speciation has been widely
used to maintain diversity in evolution. Using techniquestsas islands and fithess sharing [35, 28, 22],
separated populations are encouraged to diverge, raguitimore efficient search of the solution space. If
these separated populations are further evaluated j@intdyrewarded with a global fitness, they tend to con-
verge to heterogeneous policies that work well togetheis iBithe driving mechanism behind cooperative
coevolution and also behind ESP and its multi-agent exten€tSP preserves diversity across populations
of neurons and networks, because these populations aoetlisy design. Although diversity is gradually
lost within each population as evolution focuses on a smiytiiversity is maintained between subpopula-
tions, and diverse and complementary roles result. Thesoliserved cooperation between predators is a
conseguence of cooperation between populations duridgtewa

Section 5.3 presented the result that predators withowvlatlge of teammates’ relative locations evolve
to cooperate and solve the task more than twice as fast tlemlators with such knowledge. This result
is interesting because such knowledge from communicatlowseach predator to make decisions based
directly on where the other predators are, as well as whengrty is; on the other hand, non-communicating
predators do not have such knowledge, and have to learn tdinate using stigmergy. At first glance, this
result seems attributable to three factors. First, allgngommunication usually requires more structure
(the minimal communicating autonomous controllers haghteneurons with 11 weights each, while the
minimal non-communicating autonomous controllers haveemeurons with seven weights each), which
translates to a larger search space. However, this differeurns out to be unimportant: As discussed in
Section 7.1, when the same architecture is used acrosgatlaghes, the non-communicating approach still
outperforms the communicating approach substantially.

The second potential factor is that communication presewte information for evolution to under-
stand and organize, which might take more evolutionary gioms. While it is theoretically possible for
evolution to learn to discard the unnecessary informatiettion 7.4 demonstrated that evolution instead
attempts to make use of it. On the other hand, Section 7.1edhdwat it takes evolution virtually no time
to learn to discard random noise fed into the extra inputi®fon-communicating approach: The number
of generations taken to solve the task is the same as witloisiy mputs. The conclusion is that it is easy
for evolution to discard noisy, random activations givenrgmits, but difficult to discard inputs such as
teammates’ relative positions that “make sense,” evereif eire marginally useful at best.

The most important factor in explaining the better perfanoe of the non-communicating over the
communicating approach lies in the different behaviorsned in each approach, and their relationship
to the powerful decompositional property within ESP itselhs was discussed in Section 6, the non-
communicating team always employed a single strategy wéeeh agent had a specific role, whereas the
communicating team tended to utilize variations and comtimns of two or more strategies with roles that
were not as well delineated. During evolution, each nonfoomcating subpopulation converges toward
optimizing specific functions such that, as long as each tagerorms its role right, the team solves the
task successfully, even though the team members are indiepieof one another. Evolution without com-
munication thus places strong pressure on each predaterfarm its assigned role well. These roles are
assigned through simultaneous adaptive niching: As onetdiggins to converge to a particular behavior,
the other agents that behave complementarily are rewaateldthemselves begin to niche into such roles;
this adaptation in turn yields a higher fitness, and all pi@dabegin to converge into cooperative roles. In
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this way, a stigmergic form of coordination between team Imersis fast to emerge.

Franklin [8] pointed out that communication abilities itw® non-trivial costs, and suggested that in
some cases coordination without communication may be aardalge over communication-based coordi-
nation. Our findings suggest that this is indeed true: Fomtpmunication presents extra information that
ESP takes time to learn to organize and utilize, even if sofdrmation is not crucial in solving the task;
second, communication raises the structural requirenténitee communicating controller in terms of num-
ber of hidden units and weights. Even if this does not causie@ease in the number of generations to
solve the task, it increases the computational resourasdendeo store, evaluate and operate upon the larger
structures. On the other hand, stigmergy is simpler anéifést ESP to learn due to the powerful decom-
positional properties of the algorithm, and is utilized mbeneficially in the task to find a rigid, efficient
solution.

In general, the results in this paper suggest that it is b&itese the most parsimonious architecture
possible to solve a task, rather than an architecture witlcépabilities and the hope that evolution will
guide learning to discard the unnecessary capabilitiest, ki is usually faster to evolve simpler architec-
tures. Efficiency becomes important especially with difficaal-world problems, which tend to be noisy
and unpredictable. For example, Section 7.3 showed thah wredators start in random initial positions,
the number of generations required to learn the task inedesignificantly, and each generation took longer
because more sampling was required. Furthermore, Secdatlerhonstrated that evolution may not learn
to discard extraneous capabilities, but rather learnsedhem in less efficient and less robust solutions. In
domains that are completely role-based, a particularlgiefit way to simplify a system’s architecture is to
discard communication between agents; the system will lkeenm the task faster, and learn more efficient
and robust solutions.

Of course, not all multi-agent domains may be as efficierdlyesd through role-based cooperation. For
example in the prey-capture domain where a capture confignrs necessary (as used by Benda [6] and
Haynes and Sen [16, 15]) it would be very difficult for the agaio guess the exact locations of the other
agents to achieve successful capture. In contrast, if thietagan let other agents know where they are, they
can coordinate their positions. Just as team behaviorsalassified as either role-based or communication-
based in Section 6.2, it may be useful to classify multi-agkmmains likewise: Role-based cooperative
domains can be solved more efficiently by teams employingtibalsed cooperation without direct commu-
nication, while communication-based cooperative domedagliire some degree of direct communication
between teammates to be solved efficiently. The prey-camtamain in this paper is role-based, in that
direct communication is not necessary at all.

Given a multi-agent problem, it is then extremely usefulderitify it as a communication-based or
role-based domain (or equivalently, determine whetharctlicommunication between teammates is useful
or not), so that one can choose an appropriate learning agipfor it. As discussed above, employing a
communicating team in a role-based domain may not give th& efoicient or most robust solution, while
a non-communicating team may not even be able to solve a haskst communication-based. While it
may not be possible to identify the type of domain in evenec#isere are a few observations that are likely
to be helpful. First, in a task that requires temporal syogtmation, communication between teammates
is likely to be essential, and the domain is therefore comoation based. An example is a prey-capture
domain where all predators have to move to occupy a capturiggooation simultaneously. Second, in a
task where essential, non-redundant roles may not alwayplete, communication is likely to be required
so that agents can seek assistance form teammates, orfyctinein that a subtask cannot be completed. For
example, if the prey-capture domain included irregulgigeed obstacles, stigmergic coordination might be
insufficient to solve the task. On the other hand, there kedylio be several real-world domains where role-
based cooperation is effective. For example, in contrglinbank of elevators in a building, each agent’s
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role could be to serve a specific range of floors; in coordngatigents to search the web for information,
each agent could cover a separate web region. In such dgroamsunication may turn out to be a source
of noise that diverts teams from the best solution. Systeaibt identifying such tasks and applying role-
based cooperative coevolution to them constitutes a mtesesting direction for future work.

9 Conclusion

The experiments reported in this paper show that coevolsewgral autonomous, cooperating neural net-
works to control a team of agents can be more efficient andstahan evolving a single centralized con-
troller, and that Multi-Agent ESP is an efficient and naturathod for implementing such multi-agent
cooperative coevolution. Furthermore, a class of domaess identified, called role-based cooperative do-
mains, where direct communication is not necessary foress;cand may actually make evolution less
effective. Instead, a team of non-communicating agent$easvolved to utilize stigmergic coordination to
solve the task more efficiently and robustly. Many real woakks appear to fall in this category of domains.
Recognizing such tasks and applying the cooperative cogonlapproach to them, as well as studying the
limits of stigmergic coordination in dealing with novel aoldanging environments, are the main directions
of future work in this area.
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