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Coevolutionary diversification creates
nested-modular structure in phage-bacteria

interaction networks
Stephen J. Beckett*and Hywel T.P. Williams

Biosciences, College of Life and Environmental Sciences, University of Exeter,
Exeter, UK

S.J.Beckett@exeter.ac.uk , H.T.P.Williams@exeter.ac.uk

Phage and their bacterial hosts are the most diverse and abundant biological en-
tities in the oceans, where their interactions have a major impact on marine ecology
and ecosystem function. The structure of interaction networks for natural phage-
bacteria communities offers insight into their coevolutionary origin. At small phylo-
genetic scales, observed communities typically show a nested structure, in which
both hosts and phage can be ranked by their range of resistance and infectivity
respectively. A qualitatively different multiscale structure is seen at larger phylo-
genetic scales; a natural assemblage sampled from the Atlantic Ocean displays
large-scale modularity and local nestedness within each module. Here we show that
such “nested-modular” interaction networks can be produced by a simple model of
host-phage coevolution in which infection depends on genetic matching. Negative
frequency-dependent selection causes diversification of hosts (to escape phage) and
phage (to track their evolving hosts). This creates a diverse community of bacteria
and phage, maintained by kill-the-winner ecological dynamics. When the resulting
communities are visualised as bipartite networks of who-infects-whom, they show the
nested-modular structure characteristic of the Atlantic sample. The statistical signif-
icance and strength of this observation varies depending on whether the interaction
networks take into account the density of the interacting strains, with implications for
interpretation of interaction networks constructed by different methods. Our results
suggest that the apparently complex community structures associated with marine
bacteria and phage may arise from relatively simple coevolutionary origins.

*Corresponding author.
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1 Introduction

Bacteriophage and their bacterial hosts are the most abundant and diverse repli-
cating entities in the oceans, playing central roles in marine ecology and ecosystem
processes [1, 2, 3, 4, 5, 6, 7]. Fast replication and high mutation rates mean that
bacteria and phage can evolve – and coevolve – rapidly [8, 9, 10, 11], suggesting
that coevolution will influence both ecological dynamics and ecosystem processes.
Yet the basic mode of bacteria-phage coevolution is unclear. Experimental studies
have demonstrated adaptation of resistance and infectivity ranges over just a few
generations of laboratory coevolution [8, 9, 12, 13], often interpreted as a coevolu-
tionary ‘arms-race’ in which hosts evolve to expand their range of resistance, while
phages evolve to expand their host range. Unconstrained arms races are predicted
to result in low diversity [14], with a single dominant host/phage strain, or perhaps
two dominant host types if there is a trade-off between resistance and resource com-
petition [8]. However, the short time intervals involved mean that the experimental
coevolution data can be ambiguous and may sometimes also be consistent with a
‘fluctuating selection’ mode of coevolution in which infection is highly specific, so
that hosts are more resistant to contemporary phage than ancestral or future strains
[15]. Fluctuating selection dynamics are consistent with aquatic viral ecology models
predicting kill-the winner dynamics [16, 17], whereby the most successful hosts (in
terms of resource competition) are prevented from becoming dominant by increased
viral predation. In kill-the-winner ecological dynamics, density-dependent predation
by specialised viruses imposes negative frequency-dependent selection pressure on
hosts, favouring rare phenotypes. Such dynamics are believed to support the main-
tenance of diverse communities of marine bacteria and phage [18, 19]. Recent ge-
nomic studies give empirical support for high natural diversity of marine bacteria and
phage, with high specificity of infection and rapid coevolution [18, 20, 11, 21]. Thus
despite much progress in experimental coevolution and marine microbial genomics,
substantial uncertainties remain about the basic mode of phage-bacteria coevolution.

A complementary source of data about coevolution lies in the structure of natu-
ral phage-bacteria communities. Some recent data compilations have represented
phage-bacteria communities as bipartite networks representing which phage strains
were observed to infect which bacteria strains [22, 23, 24]. Statistical analyses of
these ‘phage-bacteria infection networks’ (most often given in the form of binary ma-
trices of presence(1)-absence(0) of pairwise infection) has so far focused on the ma-
trix metrics of “nestedness” and “modularity” (see inset to Figure 1). Nestedness is a
measure of the extent to which the non-zero elements of each row (or column) in the
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matrix are a subset of the non-zero elements in the subsequent rows (or columns).
In a perfectly nested matrix, the entries in each row (column) are a strict subset of
the entries in the next row (column); thus each row (column) is nested inside the next
row (column). In terms of phage-bacteria interaction, nestedness relates to the differ-
entiation of strains along a gradient from specialist (small range) to generalist (large
range). Here “range” refers, for bacteria, to the number of phage strains against
which it is resistant, and for phage, to the number of bacterial strains it can infect. A
perfectly nested pattern is one where the hosts and phages are each ranked along
the specialist-generalist gradient such that the specialist strategies are subsets of the
more generalised strategies. A modular network structure occurs when nodes can
be partitioned into subsets such that most connections occur within rather than be-
tween the different subsets. For bacteria and phages modularity can be interpreted
as a specialised interaction structure, without transitivity (i.e. where strains cannot be
ranked by increasing range), in which distinct clusters of phage strains preferentially
infect distinct clusters of bacterial strains.

Assuming that natural interactions between phage and bacteria are ultimately
the product of coevolution, phage-bacteria interaction network structures may of-
fer insight into the coevolutionary processes that produced them. At small phylo-
genetic scales these networks typically show higher-than-expected nestedness and
lower-than-expected modularity [22]. High nestedness is consistent with an arms-
race mode of coevolution, where hosts and phages evolve to increase their range of
resistance/infectivity. However, the largest reported cross-infection assay involved
774 bacterial strains and 298 phage strains isolated from multiple geographically dis-
persed sites across the Atlantic Ocean [25]. Although no explicit genotyping was
conducted in this study, it is likely that this dataset spans a broad phylogenetic scale.
Reanalysis of interactions between 286 host strains and 215 phage strains from this
dataset [23] found that the resulting network showed large-scale modularity, with lo-
cal nestedness within each module. This is visualised in Figure 1, in which bacteria
(rows) and phage (columns) were ordered (following [23]) to maximise statistical mod-
ularity and within-module nestedness. Here we highlight the identified modules by
colour; interactions falling outside any identified module are shown in white. We also
add two inset schematics illustrating perfectly modular and perfectly nested matrix
structures. It is difficult to explain this “nested-modular” pattern as the result solely
of arms race coevolution; the lack of global nestedness and the presence of distinct
modules suggests that some additional mechanism is needed. While models of co-
evolution based on high specificity of infection often predict diversification [14] – and
might thus be invoked to explain formation of distinct modules – such models do not
explain the presence of within-module nestedness.
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Figure 1: Nested-modular interaction structure of 215 phage strains and 286 bacteria
strains sampled from the Atlantic Ocean (adapted from [23]). The plot shows which
phage strains can infect which host strains from the dataset presented by Moebus
and Nattkemper [25]. Flores et al. [23] re-sorted the interaction matrix to maximise
modularity and within-module nestedness. Here we additionally highlight identified
modules by shading; interactions falling outside any module are shown in white. We
also add two inset schematics illustrating perfectly modular and perfectly nested ma-
trix structures.
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Here we explore a simple model of coevolution based on genetic matching [26,
27, 28], which we dub the ‘relaxed lock-and-key model’. The model is mechanistically
justified by reference to coadaptation of (e.g.) phage tail-fibres and host surface re-
ceptors [29]. We show that relaxed lock-and-key coevolution is sufficient to produce
the core structural features of observed phage-bacteria communities: stable high
diversity of bacteria and phage, modularity at large phylogenetic scales, and nest-
edness at small phylogenetic scales. Furthermore, we show that the strength and
statistical significance of the observed nested-modular pattern depends on how the
interaction networks are formed. Here we contrast interaction networks based on
the potential adsorption rate of each phage strain on each host strain with interac-
tion networks based on actual infection rate measured in an ecological context. Our
findings highlight difficulties with comparison of interaction networks constructed by
these different methods.

In the next section, we present the relaxed lock-and-key coevolution model in
the ecological context of a multi-strain chemostat. This is followed by presentation
of results showing the co-diversification of bacteria and phage, the construction of
associated adsorption rate and infection rate interaction networks, and analyses of
network properties over time. Finally we discuss the relevance of the relaxed lock-
and-key model for understanding natural phage-bacteria communities.

2 Model

We model bacteria-phage coevolution by adding mutation to numerical simula-
tions of a multi-strain chemostat. Below we describe the ecological model, the coevo-
lutionary model (including how infection rate is calculated for a given pair of bacteria
and phage), and methods used to analyse phage-bacteria interaction networks. A
description of the parameters used is given in Table 1. The model has been analysed
previously [27, 28]; model sensitivity to key parameters is given in [28]. It is derived
from a similar model [26] (with the principal difference being in how the evolutionary
dynamics are evaluated), which in turn derives from an earlier single-strain ecological
model of bacteria-phage growth in a chemostat [30].
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Symbol Description Value Unit
R Resource concentration Variable µgml−1

Ni Density of host strain i Variable cellsml−1

Vj Density of phage strain j Variable virionsml−1

Ninit Initial host density 4.6× 104 cellsml−1

Vinit Initial phage density 8.1× 105 virionsml−1

ω Chemostat dilution rate 0.0033 min−1

R0 Resource supply concentration 2.2 µgml−1

ε Resource conversion rate 2.6× 10−6 µg cell−1

γ Maximum resource uptake rate 0.0123 µgmin−1

K Half-saturation constant 4 µgml−1

δi Growth scaling for host hi Range [δmin, δmax] scalar

δmin Min. growth scaling factor 0.8 scalar

δmax Max. growth scaling factor 1.2 scalar

φ Maximum adsorption rate 0.104× 10−8 ml(min virion)−1

θij Ads. scaling for vj on hi Range [0, φ] scalar

β Burst size 71 virions cell−1

hi Genotype of bacteria i Range [0, 1] scalar

vj Genotype of phage j Range [0, 1] scalar

ĥi Resistance phenotype of bacteria i Range [0, 1] scalar

v̂j Infection phenotype of phage j Range [0, 1] scalar

hinit Initial bacteria genotype 0.2 scalar

vinit Initial phage genotype 0.2 scalar

S Specificity of phage 100 scalar

µN Host mutation rate 10−6 cell−1

µV Phage mutation rate 10−5 virion−1

σN Std. dev. of host mut. range 0.01 scalar

σV Std. dev. of phage mut. range 0.01 scalar

MN Bacterial mutation size Random variable scalar

MV Phage mutation size Random variable scalar

∆t Integration timestep 10 min

T Simulation duration 5× 107 min

ρ Resolution of genotype diversity 0.001 scalar

L Chemostat volume 1 ml

Table 1: Model parameters and variable definitions. Variables can change during
a simulation. Numerical values are parameters fixed for the duration of a simulation.
Range values are deterministically calculated from other variables/parameters.

2.1 Multistrain chemostat model

The ecological model represents the interactions between multiple strains of bac-
teria and phage in a single-resource chemostat. Resource concentration R and den-
sities of the ith strain of bacteria Ni and the jth strain of phage Vj are governed by
the system of equations below:
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dR

dt
= −ω(R−R0)−

∑

i

ε
γδiRNi

R +K

dNi

dt
= −ωNi +

γδiRNi

R +K
−

∑

j

φθijNiVj

dVj

dt
= −ωVj +

∑

i

βφθijNiVj (1)

Resource concentration is affected by the chemostat washout rate ω, the supply
concentration R0, and uptake by all bacterial strains. Bacterial resource uptake is
governed by Monod kinetics [31] with half-saturation rate K and maximum uptake
rate γ, adjusted for each bacterial strain i by a genetically encoded scaling coeffi-
cient δi. Bacterial strain density is a function of washout, population growth and lysis.
Resource uptake is converted directly into bacterial population growth via resource
conversion constant ε. Each bacterial strain is potentially susceptible to infection by
every strain of phage, depending on genetic match. Phage strain density is deter-
mined by washout and the sum of production on all available hosts. Adsorption of
phage j to host i is the product of the maximum adsorption rate φ and a scaling coef-
ficient θij. Every adsorption event leads to infection and instantaneous cell lysis (we
assume no latent period) creating new phage with burst size β.

2.2 Relaxed lock-and-key coevolution model

We model evolution in the multi-strain ecological model by adding a mutation pro-
cess that introduces new variants of existing bacteria and phage strains. Uncompet-
itive strains are eventually removed by chemostat dilution. Thus we have a simple
model in which bacteria and phage phenotypes can evolve by natural selection. We
do not separate the evolutionary and ecological timescales, but instead assume a
fixed probability of mutation per new cell/phage and allow evolutionary dynamics to
play out in our numerical simulations. We ran our simulations for 5 × 107 minutes,
sufficient for the dynamics to reach a quasi-stable equilibrium. This timescale is cho-
sen to allow a relatively slow evolutionary dynamic in the context of faster ecological
dynamics, and is not intended to accurately reflect analogous timescales in natural
systems.

Bacterial h and phage v genotypes are modelled as single values in the range
[0, 1] (binned at resolution ρ = 0.001). Bacteria and phage have mutation rates µN

and µV respectively, applied stochastically for each new cell/phage. Mutation cre-
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ates a single cell/phage with a genotype created by adding a normal deviate to the
parental genotype, with standard deviation (mutation range) of σN or σV for bacte-
ria and phage respectively. If the density of any population falls below 1 cell ml−1

or 1 virionml−1 (possible due to the continuous nature of the mathematical abstrac-
tion), that population is assumed to be lost and is removed from the system. Any
simulations where genotypes reached the edges of the permitted range [0, 1] were
discarded; however parameters were chosen to ensure this did not occur.

The relaxed lock-and-key coevolution model is created by enforcing a depen-
dence of adsorption rate on the genetic similarity of host and phage. The relative
adsorption rate θij of phage j on host i is given by:

θij = e−S
(

ĥi−v̂j
)

2

(2)

where ĥi is the bacterial resistance strategy for the ith host encoded by genotype
hi, v̂j is the phage infectivity strategy for the jth phage encoded by genotype vj and
S represents infection specificity. This function has Gaussian form, with specificity
governing the width of the infection curve, i.e. high specificity indicates narrow host
range, whilst low specificity indicates wide host range. Hence the closer the numeri-
cal values of strategies ĥi and v̂j are, the greater the rate of adsorption between host
i and phage j.

Bacterial genotype also specifies a growth-rate scaling trait δ ; where each bacte-
rial genotype hi maps to a growth rate δi. Here we impose a simple growth rate fitness
landscape with a singular peak of δmax = 1.2 at h = 0.5, falling linearly to a minimum
of δmin = 0.8 at the edges of the range (i.e. for h = 0 and h = 1). The growth rate trait
δ is a coefficient that affects population growth rate by scaling the rate of resource
uptake by bacteria (see Equation 1). It is important to note that there are no inherent
differences in bacterial resistance (that is, all bacteria have the same size of range
of resistance); thus there are no costs of resistance and no explicit trade-offs be-
tween growth rate and infection rate. Ecological trade-offs between bacterial growth
and susceptibility to infection can emerge [28], but these depend on the density and
composition of the contemporary phage and bacterial communities.

2.3 Infection network analysis

Interactions between bacteria and phage strains (i.e. who-infects-whom) can be
represented as a network [24]. Such networks are bipartite graphs with interactions
between two types of node (bacteria and phage). We use two forms of interaction
network to visualise our model phage-bacteria communities. The first type is formed
from the adsorption rate φθij of phage j on host i , which gives a pairwise interaction
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matrix for all strains present in the community irrespective of their abundance. The
second type of interaction network is formed from the actual infection rates for phage
j on host i in the current ecological context, calculated as φθijNiVj from the adsorp-
tion rate and the current densities of each strain, giving a more ecologically relevant
measure of interaction.

Since both adsorption rate and infection rate are quantitative metrics, we create
binary interaction matrices by applying threshold filters. The resulting binary ma-
trices consist of 1s where the pairwise interaction is strong and 0s elsewhere. The
binary matrices can be analysed using standard metrics for nestedness and modular-
ity. They can also be compared to reported interaction networks, which are typically
given in binary form. We used the package BiWeb [32], which utilises the LP-BRIM al-
gorithm to find the partition that best maximises Barber’s modularity ( Qb ) for bipartite
networks [33, 34]. Since the LP-BRIM sorting algorithm is sensitive to initialisation,
we repeated the modularity assessment 5 times for each measurement, taking the
maximum score returned. We measured nestedness using the deterministic NODF
(nestedness metric based on overlap and decreasing fill) algorithm [35], which re-
turns a score in the range [0, 100] (where 100 indicates a perfectly nested structure).
NODF normalises for matrix size, allowing matrices of differing sizes to be compared.

To quantify the statistical significance of the nestedness (NODF) and modularity
(Barber’s Qb) scores measured for a particular binary matrix, we calculate statistical
significance p as the likelihood of achieving a score greater than or equal to the score
for the input matrix in a sample of M matrices from a null distribution of random
matrices. Where this method returns p = 0 we conservatively assign p < 1

M
. We use

a null model in which matrix size (number of rows and columns) and fill (number of 1s)
are conserved, but where adjacency (position of 1s) is randomly reassigned. Thus we
maintain the numbers of host and phage strains, and the total number of host-phage
interactions, but reassign the pattern of who-infects-whom. We estimate the null
distribution using a sample of M matrices generated using a stochastic algorithm with
pseudo-random numbers. For significance of NODF scores, we create the sample
in two sets, adding matrices to both sets until the mean NODF scores for both sets
converge within a tolerance bound of 0.01. The sample used to estimate the null
distribution is then formed as the union of both sets. Thus for NODF, the sample size
M varies according to how many null matrices are needed to achieve convergence
of the means, with a minimum sample of 500 null matrices computed in each case.
This method gives reliable estimation of the underlying distribution while retaining
computational efficiency. For the modularity scores, we used M = 100, assigning
each null matrix the highest Barber’s modularity score from 5 random initialisations of
the LP-BRIM algorithm. A free software package including these methods is currently
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in preparation [36].

3 Results

In previous work [28] we have shown that in the absence of phage, resource limita-
tion leads to competitive exclusion of slow-growing bacteria by fast-growing bacteria.
Faster-growing populations draw down resource concentration to a limiting level at
which slower-growing populations cannot be sustained against losses from washout
and are lost from the community. Thus in the absence of phage, bacteria evolve to
the fastest-growing genotype permitted by the simple unimodal growth rate fitness
landscape (here located at h = 0.5 - see Section 2.2). In the presence of phage, host
evolution is affected by the additional coevolutionary selection pressures imposed by
phage predation.

The relaxed lock-and-key coevolution model robustly produces diversification of
bacteria and phage. Figure 2 shows a simulation run initialised with a single bacterial
strain and perfect-match phage strain (with h = v = 0.2). In the first stage (until
t ≈ 0.5×107min) bacteria evolve to increase growth rates, while phage evolve to track
their hosts through genotypic space. Once the bacteria reach the maximum growth
rate genotype at h = 0.5, they can no longer improve fitness by increasing growth
rate (and would remain at this fitness peak indefinitely in the absence of phage [28]).
However, phage create a strong selective pressure for host diversification due to
density-dependent predation, which favours host mutants with a lower genetic match
to dominant phage strains. This causes an evolutionary branching event to occur
between t ≈0.6 × 107min and t ≈ 1.1 × 107min. Further evolutionary branching
events occur until t ≈ 2.5× 107min. After this period of coevolutionary diversification
the distribution of strains settles down to a quasi-stable state for the remainder of the
simulation. At this stage there are 5 clearly identifiable clusters of similar genotypes
for both bacteria and phage, where each cluster (hereafter “species”) represents an
ecologically similar (but genetically diverse) sub-population. Each phage species is
attracted towards its two flanking host species, while each host species is repelled by
its flanking phage species; this process of attraction and repulsion sometimes results
in transient oscillatory dynamics (this effect is clearly seen for t ≈ 2− 3× 107mins).

Figure 3 visualises community structure for a timeslice from the simulation taken
at t = 3.5×107min. There are 64 bacterial strains and 97 phage strains present in the
community. Densities of the different strains vary widely and are unevenly distributed,
but 5 clearly identifiable species of similar genotypes in both the bacteria (lower left)
and phage (lower right) populations are visible. For ease of reference we label the
host species H1-H5 and the phage species P1-P5.
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Figure 2: Coevolutionary diversification of bacteria and phage strains with relaxed
lock-and-key model. Plot shows phage-bacteria community composition over time
for a simulation run initialised with a single host strain and perfectly matched phage
(initial genotypes h = v = 0.2). Genotypes with non-zero density for bacteria, phage,
or both bacteria and phage are highlighted. The fastest-growing bacteria genotype
is located at h = 0.5. The cross-section of the community at time t = 3.5 × 107 is
examined in figure 3. Horizontal dotted lines indicate time points for which interaction
matrices are presented in figures 4 and 5.
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Figure 3: Snapshot of phage-bacteria community structure and interaction during the
case study simulation (measured at t = 3.5 × 107min). Upper left: Adsorption rate
matrix plot showing pairwise adsorption rate (φθij, values scaled×10−10) for each
host (i) and phage (j) strain present in the current community. Upper right: Infec-
tion rate matrix plot showing actual infection rate in the context of the community
(ln | φθijNiVj |) for each host-phage pair. Lower left: Current density of all bacterial
genotypes (ln | Ni |). Lower right: Current density of all phage genotypes (ln | Vj |).
For ease of reference, labels H1-H5 and P1-P5 are manually attached to identify
bacteria and phage “species”.

We visualise interactions between phage and bacterial strains in Figure 3 by plot-
ting the (density-independent) adsorption rate matrix (upper left) and the (density-
weighted) infection rate matrix (upper right). These matrices represent a snapshot
of the coevolving interactions between phage and bacteria - note that the matrices
include all strains that are present, but do not cover the whole genetic space (i.e. ab-
sent strains are not plotted). Each host species interacts strongly with a single phage
species, as indicated by the modular structure apparent in the adsorption rate matrix
(e.g. P1 is specialised on H1, P2 on H2, and so on). However, there are also weaker
interactions with adjacent phage species (e.g. H2 is also weakly affected by P1 and
P3). The infection rate matrix gives a different view of the community; whereas the
adsorption rate shows a potential interaction, the infection rate shows the interaction
in terms of actual mortality of the host caused by the phage in ecological interaction.
The infection rate matrix shows that most of the potential interactions shown in the
adsorption rate matrix are ecologically insignificant, since only a few strains in each
species are present at sufficient density for a strong interaction to occur. Also there
is a many-many interaction structure, with each bacterial strain infected by multiple
phage strains, and each phage infecting multiple bacteria. Interestingly, the infec-
tion rate matrix also suggests a degree of modularity, though module membership
appears different to that seen in the adsorption rate matrix.
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Figure 4: Coevolutionary formation of the adsorption rate interaction network over
time. Colour shows pairwise interaction strength (φθij) for bacterial strains (rows)
and phage strains (columns). Network size (number of bacterial strains x number
of phage strains) is shown as the x-axis label for each plot, timepoint (×107min) is
shown as the y-axis label. Plots show timepoints corresponding to the dotted grid-
lines shown in Figure 2, with time increasing down each column, from top-left to
bottom-right.
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Figure 5: Coevolutionary formation of the infection rate interaction network over time.
Grayscale shows pairwise interaction strength (ln | φθijNiVj |) for bacterial strains
(rows) and phage strains (columns). Network size (number of bacterial strains x num-
ber of phage strains) is shown as the x-axis label for each plot, timepoint (×107min)
is shown as the y-axis label. Plots show timepoints corresponding to the dotted grid-
lines shown in Figure 2, with time increasing down each column, from top-left to
bottom-right.

Figures 4 and 5 show how the adsorption rate and infection rate interaction net-
works respectively change over time as bacteria and phage coevolve. Initially there is
low diversity and the matrices are small, but over time matrix size increases as hosts
and phage diversify. At later timepoints, matrix size reduces somewhat, reflecting
an overall drop in diversity as competition excludes weaker strains and the system
converges to a quasi-stable state. Matrix sizes show trends in strain diversity, with
host diversity rising to a stable level around 60-65 strains and phage diversity ini-
tially rising, then falling, during the course of the simulation. This trend is reflected at
smaller scale in the sizes of the modules in the adsorption rate matrix. Modular inter-
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action structure is always apparent in the adsorption rate matrix, though the number
of modules varies over time. Structure in the infection rate matrix is harder to discern
visually, though some modularity seems to be apparent at later timepoints.

We converted our quantitative interaction matrices into binary matrices using a
threshold filter (see Section 2.3), to give matrices suitable for comparison with re-
ported phage-bacteria interaction networks [22, 23]. The resulting binary networks
are a coarse-grained representation of the underlying data, but can be used with the
LP-BRIM and NODF algorithms to quantify modularity and nestedness respectively.
Figure 6 shows the effect of different thresholds. The size and fill of the resulting
binary matrix depends on the threshold used. The importance of choosing an appro-
priate threshold is well illustrated by the adsorption rate matrices, where choosing
too low or too high a threshold results in binary matrices that do not capture the mod-
ular structure apparent in the raw data; setting too low a threshold gives overlapping
modules, setting too high a threshold may result in loss of some modules. For the
remainder of the analysis, we use an adsorption rate threshold of 0.8φ and an infec-
tion rate threshold of 0.0083 cells (mlmin)−1, which typically gave good agreement
with visual interpretation of the raw data. The results presented below for adsorption
rate matrices are weakly sensitive (but qualitatively robust) to the choice of threshold
(data not shown). Results for infection rate matrices are robust to choice of threshold.

The order of rows and columns in the binary matrices can be permuted without
changing the underlying network structure. Figure 7 shows binary networks formed
from the adsorption rate and infection rate matrices for the timeslice (t = 3.5×107min)
shown in Figure 3. Different row and column re-orderings are applied in each panel.
The upper binary matrix shows a random re-ordering that removes the phylogenetic
ordering that arises from model formulation (whereby hosts and phages are ordered
by genotype), thus representing how unsorted results of an experimental infection
assay might appear. The middle binary matrix is sorted to maximise modularity us-
ing the LP-BRIM algorithm, with identified modules highlighted in colour. The lower
binary matrix is sorted to maximise nestedness using the NODF algorithm.
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used for all subsequent analyses.
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Figure 7: Comparison of binary interaction networks formed by applying a threshold
filter to (left column) adsorption rate and (right column) infection rate matrices, for a
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phage strains in columns. Top panel: quantitative interaction data. Lower 3 panels:
binary matrices formed using a threshold filter of the quantitative data, sorted for (up-
per) random permutation, (middle) maximisation of modularity, (lower) maximisation
of nestedness.

For the same case study, we used binary interaction matrices to study the tem-
poral dynamics of nestedness (from the NODF algorithm) and modularity (using Bar-
ber’s modularity score returned by the LP-BRIM algorithm). Figure 8 shows mean
values across an ensemble of ten simulations with identical parameters. The ensem-
ble runs differ only in the pseudo-random numbers used in the stochastic mutation
process. This stochastic variation leads to different timing and order of evolutionary
branching events, but the quasi-steady state reached is similar in all simulations (data
not shown). Host strain diversity rises over time before levelling off, while phage strain
diversity is highest during the diversification phase and decreases as quasi-steady
state is approached.
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Figure 8: Timeseries of matrix metrics for nestedness and modularity of binary in-
teraction networks during coevolutionary simulations. Data shown are mean values
(solid lines) ± 1 std. dev. (dashed lines) from an ensemble of ten simulation runs
with identical parameters but different stochastic mutations. Top: Number of bacterial
and phage strains. The following panels show metrics for adsorption rate matrices
(left column) and infection rate matrices (right column). Upper-middle: Number of
modules detected (left axis) and Barber’s modularity score Qb (right axis). Lower-
middle: NODF nestedness score of the whole network (global) and mean within-
module NODF nestedness score (local) in each simulation. Lower: Proportion of
NODF nestedness scores in each simulation that were statistically significant at a
level of p < 0.05 for the whole network (global) and within-module (local).

Figure 8 (upper-middle row) shows that the interaction structure shown by ad-
sorption rate matrices converges on five clearly identifiable modules that are well-
detected by the LP-BRIM algorithm. Module identification is less reliable early in the
simulation, when the algorithm sometimes produces false positives (e.g. by identify-
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ing “modules within modules”), giving large variances in module number early in the
simulations. Fewer modules are detected in the infection rate matrices and there is
greater variance in the number detected throughout the simulations. Barber’s modu-
larity metric is significantly higher for the adsorption rate matrices than for the infection
rate matrices throughout the simulations, confirming the visual suggestion (e.g. Fig-
ure 3) of a stronger modular structure for this form of interaction. We also performed
significance tests against Barber’s modularity for the adsorption rate and infection
rate matrices for all simulations at t = 2.5 × 107min and t = 5 × 107min, finding that
modularity for all matrices tested was significant at a level of p < 0.01.

The lower half of Figure 8 shows timeseries for nestedness (measured by NODF)
and statistical significance of nestedness (here we assume statistical significance at a
level of p < 0.05). Global nestedness of the whole adsorption rate matrix is typically
low and rarely statistically significant. In contrast, global nestedness of the whole
infection rate matrix is relatively higher and (after the initial diversification phase of
the coevolutionary dynamics) almost always statistically significant.

For each simulation, we also calculated nestedness for the modules identified by
the LP-BRIM algorithm. Figure 8 (lower four panels) shows the mean within-module
NODF score across all modules detected in a particular simulation, as well as the pro-
portion of modules which were statistically nested. Mean within-module nestedness
is typically higher than global nestedness for both forms of interaction matrix. Mean
within-module nestedness of adsorption rate matrices is typically low and statistically
insignificant for most of the timeseries, but rises and shows a higher frequency of
statistical significance approaching the mid-point of the simulation runs, when phage
diversity is highest. Visual inspection of the adsorption rate matrices showed that
a large proportion of identified modules were completely filled (all 1s). These cases
give NODF= 0 at a significance level of p = 1. For the remaining minority of non-filled
modules, mean within-module nestedness was typically strong and statisticially sig-
nificant. Mean within-module nestedness of infection rate matrices is typically high
and in most cases statistically significant.

Overall there is a mixed signal from our statistical comparison of binary interac-
tion networks formed from adsorption rates and from infection rates. Both forms of
interaction network show a multiscale nested-modular interaction structure to some
extent. For adsorption rate matrices, global modularity is very strong while within-
module nestedness is often weak and statistically insignificant; however, there is a
minority of modules which are strongly and significantly nested during the middle sec-
tion of the simulations when phage diversity is highest. For infection rate matrices,
global modularity is weaker, but identified modules are typically significantly nested.
Interestingly, the infection rate matrices are also typically significantly globally nested.
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4 Discussion

Here we have shown that a parsimonious ‘relaxed lock-and-key’ coevolution model
based on genetic matching is sufficient to reproduce several core structural fea-
tures of observed natural communities of bacteria and phage. Negative frequency-
dependent selection from phage drives host diversification, which is then mirrored
by phage diversification to track their hosts. At steady state, a diverse community
of hosts and phage is maintained by kill-the-winner ecological dynamics. Two forms
of phage-bacteria interaction network representing the coevolved communities show
similar multiscale structural patterns to those observed for natural communities; mod-
ularity at large phylogenetic scales and nestedness at smaller scales.

We have aimed with our theoretical study to show that a very simple coevolution-
ary model can produce nested-modular structures and have selected the chemostat
formalism as one of the simplest models in which coevolutionary dynamics can be
studied. We do not rule out the possibility that other processes, including spatial
structure or multiple resources, might affect observed natural patterns. However,
such processes lie beyond the scope of our current study, which aims to show what
might occur due to coevolution alone, in the absence of any other (possibly con-
founding) additional processes. We believe that the most useful models are often
the simplest and argue that the use of the chemostat formalism does not affect the
generality of our results.

An important caveat is that there is currently only a single dataset [25, 23] showing
the macroscale nested-modular interaction structure that the relaxed lock-and-key
model produces. Thus it is possible that we are over-estimating the importance of
this dataset and hence misjudging the capability of the relaxed lock-and-key model
to explain natural community structures. However, there are multiple observations
of stable high diversity in natural phage-bacteria communities (e.g. [3, 5, 18, 20]),
as well as many examples of nested interaction networks at smaller phylogenetic
scales [22]. At larger phylogenetic scales, there are good arguments to support the
specificity of infection needed to produce a modular network structure; for example,
phage target particular receptors which may only be present in a small number of
bacterial lineages, limiting their potential host range [18, 29]. Thus we cautiously
suggest that the nested-modular structure should be robust at large phylogenetic
scales and propose that additional large-scale cross-infection studies would be a
fruitful area for further research.

In the adsorption rate matrices, the nested-modular pattern is most clearly ob-
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served when the system is still in the transient diversification phase, i.e. before the
system reaches an evolutionary steady state and while the species in the system are
still adapting. This section of the coevolutionary dynamics is also where the phage
diversity is highest. Since the adsorption rate network includes interactions irrespec-
tive of the density of the bacteria/phage strains involved, it likely includes many in-
teractions between low-density strains which are in process of being out-competed
and excluded from the system by fitter mutants. This may have implications for ob-
servations of natural communities, where overlapping ecological and evolutionary
timescales for bacteria and phage [10, 11] imply that many natural communities may
not be at evolutionary steady state. We hypothesise that nested-modular structures
in density-independent interaction networks will be most obvious when overall adap-
tation rates within the community are high, for example, in communities adapting to
a changed or dynamic environment.

A note of caution must be raised about the methodological grounding for compar-
isons of model output to empirical observations. The two forms of interaction net-
work that we studied (based either on adsorption rates or on infection rates) showed
different statistical features. In this study, adsorption rate networks showed higher
global modularity and lower within-module nestedness, while infection rate networks
showed lower global modularity and higher within-module nestedness. While both
forms of interaction network studied here showed broadly similar multiscale structure,
in general the fit to empirical data will depend both on which form of model network
was chosen and also on the method by which the empirical network was produced.
With theoretical models, all information is accessible - thus our model networks accu-
rately reflect the full diversity of the model community. However, methods for the more
difficult task of constructing interaction networks for natural communities inevitably in-
troduce different kinds of bias into the network structure that is output. A common
experimental method for determining interaction networks for natural phage-bacteria
communities appears to be to collect a sample from the natural environment, isolate
as many strains as possible, then use a plaque assay to test for infection of each
potential host by each phage. However, sampling inevitably carries a bias towards
collecting only the more numerous strains, of which only a small fraction will be cul-
tivable [37, 38]. Thus while empirical studies reporting natural interaction networks
may aim to present a complete record of all strains present in the community (i.e.
to produce something similar to our model adsorption rate networks), they may ac-
tually (without any failure of the experimental method) be presenting networks more
akin to our infection rate networks, which only include interactions between abun-
dant strains. Thus it is not clear which of our binary interaction networks should be
compared to the networks reported for natural communities.

21



Another methodological issue surrounds the comparison of weighted and binary
interaction networks; here we have converted quantitative networks to binary net-
works to aid comparison with empirical data. Infectivity assays commonly only mea-
sure presence-absence of infection, rather than the messier rate/affinity data that
indicate the quantitative strength of interactions, which are harder to measure [39,
40, 24]. Thus empirical data is often given in binary form and analysed using statis-
tical tools developed for binary matrices. Conversion of quantitative data into binary
form loses information and inevitably introduces bias that will accentuate some fea-
tures and mask others. A challenge for empirical researchers is to develop methods
for measuring interaction strengths between phage and bacterial strains, rather than
just presence-absence of interaction [40]. A challenge for theoretical researchers is
to develop better statistical tools for analysing the weighted phage-bacteria interac-
tion networks that will thereby be produced.

The original kill-the-winner model of aquatic virus ecology [16] describes one-to-
one interactions between viruses and bacteria, such that no cross-infections occur.
In that scenario, specialised infection leads to negative density-dependent predation
from viruses, which favours rare bacteria phenotypes and acts to maintain diversity.
This contradicts available data for real phage-bacteria systems [22, 23]. The relaxed
lock-and-key model allows for cross-infection based on genetic similarity, while pro-
ducing a stable diverse community maintained by kill-the-winner dynamics. Obser-
vations of natural kill-the-winner dynamics [19] are thus consistent with the relaxed
lock-and-key model. We note that several alternative coevolution models are un-
likely to capture nested-modular interaction structures and kill-the-winner ecological
dynamics. Gene-for-gene genetic models are consistent with arms race dynamics
[41] and transitive range expansion, but do not permit stable high diversity without
the addition of explicit trade-offs [14] (and even then diversity is typically limited to
dimorphism [8]). Matching-alleles genetic models can drive diversification [14, 41],
but do not produce the modular structure or within-module nestedness.

There remain other mechanisms that will affect the interactions between bacteria
and phage and several of these could potentially produce high diversity and nested-
modular network structures. The relaxed lock-and-key model is perhaps most easily
interpreted as representing coevolution of phage tail-fibres and bacterial cell-surface
receptors. However, the real infection process is multi-stepped and coevolution may
occur at different stages, including initial adsorption to extracellular surface receptors
[42] and also subsequent intracellular defence mechanisms [43, 29, 44, 45, 46]. Ad-
ditionally our model does not take into account non-mutational processes of genetic
variation, such as gene loss and horizontal gene transfer [40, 18], or the possible role
of environmental heterogeneity and/or spatial localisation [23]. Any of these factors
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can affect natural community structures and could in principle have produced the pat-
terns created here by coevolution. The strength of the relaxed lock-and-key model
is by appeal to Occam’s razor; it offers a parsimonious and sufficient explanation of
multiple observed phenomena.
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