
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 4, AUGUST 2019 587

Coevolutionary Particle Swarm Optimization With

Bottleneck Objective Learning Strategy for

Many-Objective Optimization
Xiao-Fang Liu , Student Member, IEEE, Zhi-Hui Zhan , Senior Member, IEEE, Ying Gao ,

Jie Zhang, Sam Kwong , Fellow, IEEE, and Jun Zhang , Fellow, IEEE

Abstract—The application of multiobjective evolutionary algo-
rithms to many-objective optimization problems often faces
challenges in terms of diversity and convergence. On the one
hand, with a limited population size, it is difficult for an algo-
rithm to cover different parts of the whole Pareto front (PF)
in a large objective space. The algorithm tends to concentrate
only on limited areas. On the other hand, as the number of
objectives increases, solutions easily have poor values on some
objectives, which can be regarded as poor bottleneck objectives
that restrict solutions’ convergence to the PF. Thus, we propose
a coevolutionary particle swarm optimization with a bottleneck
objective learning (BOL) strategy for many-objective optimiza-
tion. In the proposed algorithm, multiple swarms coevolve in
distributed fashion to maintain diversity for approximating dif-
ferent parts of the whole PF, and a novel BOL strategy is
developed to improve convergence on all objectives. In addition,
we develop a solution reproduction procedure with both an elitist
learning strategy (ELS) and a juncture learning strategy (JLS)
to improve the quality of archived solutions. The ELS helps the
algorithm to jump out of local PFs, and the JLS helps to reach
out to the missing areas of the PF that are easily missed by the
swarms. The performance of the proposed algorithm is evaluated
using two widely used test suites with different numbers of objec-
tives. Experimental results show that the proposed algorithm
compares favorably with six other state-of-the-art algorithms on
many-objective optimization.

Manuscript received July 01, 2017; revised November 24, 2017, May 02,
2018, and August 13, 2018; accepted September 28, 2018. Date of publica-
tion October 11, 2018; date of current version July 30, 2019. This work was
supported in part by the Outstanding Youth Science Foundation under Grant
61822602, in part by the National Natural Science Foundations of China under
Grant 61772207 and Grant 61332002, in part by the Natural Science
Foundations of Guangdong Province for Distinguished Young Scholars under
Grant 2014A030306038, in part by the Project for Pearl River New Star in
Science and Technology under Grant 201506010047, in part by the GDUPS
in 2016, and in part by the Fundamental Research Funds for the Central
Universities. (Corresponding authors: Zhi-Hui Zhan; Jun Zhang.)

X.-F. Liu, Z.-H. Zhan, Y. Gao, and J. Zhang are with the School of
Computer Science and Engineering, South China University of Technology,
Guangzhou 510006, China, and also with the Guangdong Provincial Key
Laboratory of Computational Intelligence and Cyberspace Information,
South China University of Technology, Guangzhou 510006, China (e-mail:
zhanapollo@163.com; junzhang@ieee.org).

S. Kwong is with the Department of Computer Science, City University of
Hong Kong, Hong Kong.

J. Zhang is with the School of Information Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, China.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2018.2875430

Index Terms—Bottleneck objective learning (BOL), coevolu-
tion, many-objective optimization problems (MaOPs), particle
swarm optimization (PSO).

I. INTRODUCTION

D
URING the past two decades, multiobjective evolution-

ary algorithms (MOEAs) have shown efficiency in find-

ing well-diversified and well-converged nondominated solu-

tions in multiobjective optimization problems (MOPs) [1].

However, when dealing with many-objective optimization

problems (MaOPs) that involve more than three objectives, the

“curse of dimensionality” in MaOPs has brought challenges in

both diversity and convergence to traditional MOEAs [2], [3].

The first is the diversity challenge. As the objective space

enlarges in MaOPs, it becomes more difficult for an algo-

rithm to maintain population diversity so as to find solutions

well distributed along the whole Pareto front (PF). On the one

hand, as the dimensionality of the objective space increases,

the number of solutions that are required for approximat-

ing the whole PF increases exponentially [1]. Therefore, an

MOEA that uses only one population with a limited pop-

ulation size tends to concentrate only on a limited area of

the large objective space [4]. On the other hand, due to the

difficulty of distance evaluation in high-dimensional objective

space [5], many existing solution diversity maintenance mech-

anisms developed for traditional MOPs may not work well on

MaOPs. For example, the crowding distance (CD) measure for

density estimation in NSGA-II fails in MaOPs [6], [7]. Thus,

the population may lose diversity to distribute solutions on

the whole PF and can approximate to only a limit part of the

PF [8].

The second is the convergence challenge. As the number of

objectives increases, it becomes more difficult for an algorithm

to pay the same attention to all the objectives. Therefore, the

evolution in different objectives may be imbalanced, causing

some objectives to perform well while other objectives per-

form poorly. That is, a solution may have very good values

on some objectives but very poor values on some other objec-

tives. On the one hand, Pareto dominance fails to distinguish

such solutions and consequently most of these solutions tend

to be mutually nondominated and will be preserved. On the

other hand, the loss of proper guidance on the poorly perform-

ing objectives will likely aggravate the evolution imbalance

1089-778X c© 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8137-4201
https://orcid.org/0000-0003-0862-0514
https://orcid.org/0000-0002-8925-8192
https://orcid.org/0000-0001-7484-7261
https://orcid.org/0000-0001-7835-9871


588 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 4, AUGUST 2019

of different objectives in solutions during the evolutionary

process. Thus, the population tends to be far away from the

desired areas, leading to poor convergence to the PF [9].

Therefore, it is crucial for an algorithm to achieve good

diversity and impartial convergence to the PF when solv-

ing MaOPs. Many approaches have recently been devel-

oped for MaOPs, such as NSGA-III [2] and MOEA/D-based

approaches [10], [35]. Most of them consider all objectives

as a whole by one population. However, as discussed above,

it is often difficult to maintain diversity for exploring all

objectives by using only one population. Alternatively, stud-

ies have shown that coevolutionary mechanisms with multiple

populations can effectively enhance algorithm diversity and

improve optimization efficiency [11]. Among them, the multi-

ple populations for multiple objectives (MPMO) framework is

a coevolutionary technique and has shown good performance

on MOPs [12]. Since there are many objectives in MaOPs, it

is intuitive to treat each objective as a subproblem and adopt

the MPMO framework to optimize different objectives in dif-

ferent populations. The optimization of different objectives in

different populations helps to locate different parts of the PF

and to avoid neglecting some objectives. Therefore, in this

paper, we study the application of the MPMO framework [12]

for solving MaOPs. Furthermore, as particle swarm optimiza-

tion (PSO) [13] is simple but efficient in solving optimization

problems, it is a good choice to be adopted for each population.

Since each swarm concentrates on one objective in the

MPMO framework, we name the corresponding objective as

the population objective (PO) of each swarm. By sufficiently

exploring the POs in all swarms, the MPMO framework

maintains diversity efficiently so as to obtain solutions well

distributed along the whole PF. Moreover, in order to pro-

mote the cooperation among swarms, we maintain an archive

to aggregate the information of all swarms. The archive stores

the nondominated solutions from all swarms for information

sharing. Furthermore, as mentioned above, a solution (i.e., par-

ticle) may have very poor values on some objectives. These

poorly performing objectives are indeed the bottleneck objec-

tives (BO) that limit the convergence rate of the particle toward

the PF. Thus, paying more attention to BO optimization will

help to push the particle toward the PF gradually. In fact, the

archive can be used to complement BO optimization since dif-

ferent nondominated solutions in the archive often have good

information in different POs. Therefore, we propose a bottle-

neck objective learning (BOL) strategy to optimize a particle’s

BO with the help of the solutions from the archive. In the

BOL strategy, a particle first determines its own BO and then

updates itself by learning from a solution, which is selected

from the archive according to the dominance relation on two

objectives, i.e., the PO and the BO of this particle. Hence,

the BOL strategy enables the particle to optimize its PO and

BO simultaneously and thereby the particle is able to better

converge to the PF.

Incorporating the MPMO framework with the BOL strat-

egy, we develop a coevolutionary PSO (CPSO) for MaOPs.

The cooperation of the MPMO framework and the BOL strat-

egy promotes the swarms to converge to different parts of

the PF. In addition, a solution reproduction (SR) procedure

with an elite learning strategy (ELS) and a juncture learn-

ing strategy (JLS) is performed to improve the quality of

archived solutions. Since the number of nondominated solu-

tions increases rapidly, a solution preservation (SP) procedure

is carried out for archive updates to update the archived

solutions.

Therefore, the contribution of the proposed CPSO is mainly

in maintaining diversity by using a multipopulation coevo-

lution technique and to accelerate convergence by steadily

optimizing the BO of the solutions. Specially, three compo-

nents are developed to deal with the challenges of MaOPs.

First, the MPMO component with BOL strategy not only helps

to generate diverse solutions to different parts of the PF, but

also improves solution convergence on all objectives. Second,

the SR component with ELS and JLS operators helps to jump

out of local PFs and reach out to the areas of the PF that

are easily missed by the swarms. Third, the SP component

keeps the good solutions found by the swarms during the

search process in an archive, such that the archive can facili-

tate communications among the swarms. In order to evaluate

the advantages of the proposed CPSO, two widely used test

suits are adopted and six state-of-the-art algorithms are com-

pared. The experimental results show that the proposed CPSO

is promising in dealing with MaOPs.

The rest of this paper is organized as follows. Section II

discusses the background. Section III develops the proposed

CPSO algorithm for MaOPs. Section IV presents the experi-

mental results in comparison with other MOEAs for MaOPs,

and makes a detailed analysis of CPSO. Finally, the conclu-

sions are summarized in Section V.

II. BACKGROUND

A. PSO

PSO is a simple yet efficient swarm intelligence algo-

rithm proposed by Kennedy and Eberhart [13]. In a D-

dimensional space, each particle i is associated with a

position vector Xi = (Xi1, Xi2, . . . , XiD) and a velocity Vi =

(Vi1, Vi2, . . . , ViD), where i = 1, 2, . . . , N and N is the popu-

lation size. Each particle i stores its historically best position

as pBesti = (pBesti1, pBesti2, . . . , pBestiD). The best of all

pBesti is denoted as the globally best position gBest =

(gBest1, gBest2, . . . , gBestD). At the beginning, each particle

randomly initializes its position according to a uniform distri-

bution in the search space [Xmin,d, Xmax,d] for each dimension

d and initializes its velocity to 0 or a random value in the range

of [−Vmax,d, Vmax,d] for each dimension d, where Vmax,d is

a predefined positive value and is usually set as 20% of the

search space size, i.e., Vmax,d = 0.2×(Xmax,d−Xmin,d). In each

generation, each particle i updates its velocity and position

with the guidance of pBesti and gBest by

Vid = ωVid + c1r1d

(

pBestid − Xid

)

+ c2r2d

(

gBestd − Xid

)

(1)

Xid = Xid + Vid (2)

where ω is the inertia weight and is suggested to decrease

linearly from 0.9 to 0.4 during the search process [14], c1 and

c2 are acceleration coefficients [15], and both r1d and r2d are



LIU et al.: CPSO WITH BOL STRATEGY FOR MANY-OBJECTIVE OPTIMIZATION 589

random numbers in the range of [0, 1.0] for the dth dimension.

After the update, if some dimensions of the velocity or the

position violate the boundary constraints, they will be set as

the bound values of the corresponding dimensions. The pBesti
and gBest will be updated if the new position has a better

fitness value.

B. MaOPs

A minimization MaOP can be defined as

minimize F(X) = (f1(X), f2(X), . . . , fM(X))T (3)

subject to X ∈ SD (4)

where X = (X1, X2, . . . , XD) is a decision vector in the

D-dimensional search space SD, M is the number of objec-

tives (M > 3), and F(X) = (f1(X), f2(X), . . . , fM(X))T is the

objective function vector.

Definition 1 (Pareto Dominance): Given two points Z and

Y in the objective space. Z dominates Y, denoted as Z�Y , if

and only if ∀j ∈ {1, 2, . . . , M}, Zj ≤ Yj, and Z �= Y .

Definition 2 (Pareto Optimal Solution): A solution X∗ ∈ SD

is called Pareto optimal if and only if F(X*) is not dominated

by F(X) of any solution X ∈ SD.

Definition 3 (Pareto Set): Pareto Set (PS) is the set of Pareto

optimal solutions: PS = {X ∈ SD|X is Pareto optimal}.

Definition 4 (PF): PF is the set of the corresponding

objective vectors of the solutions in PS: PF = {F(X)|X ∈ PS}.

C. Related Work for MaOPs

In the literature, various techniques have been pro-

posed to obtain well-diversified and well-converged solutions

for MaOPs. The methods can be loosely classified into

four categories, i.e., Pareto-based approaches, indicator-based

approaches, preference-based approaches, and decomposition-

based approaches. First, Pareto-based approaches adopt new

dominance relationships or diversity maintenance mechanisms

to distinguish the nondominated solutions, including relaxed

dominance, e.g., the ǫ-dominance [17] and θ -dominance [18],

and convergence and diversity management mechanisms, e.g.,

elaborate density estimator in GrEA [19], shift-based den-

sity estimation strategy [20], reference-point-based method

in NSGA-III [2], knee points driven method in KnEA [21],

direction- and convergence-based selection method [22], and

objective space reduction method in MaOEA-R&D [8].

Second, indicator-based approaches use different performance

indicators to assess the quality of solutions, such as the ǫ-

indicator [24] and the hypervolume (HV) indicator [25], [26].

Among them, the HV indicator has proven to be strictly

equivalent to Pareto dominance [27]. However, the high calcu-

lation cost of the exact value limits its application [28], while

inaccurate estimation may degrade its performance [18]. The

Two_Arch2 adopts a quality indicator for fast convergence and

Pareto dominance for diversity maintenance [5]. In [23], mul-

tiple indicators are used to combine their advantages. Third,

preference-based approaches introduce preference informa-

tion into the optimization process for SP. For example,

PICEAs [29] archive the PF by coevolving solutions and

the decision maker’s preferences. Fourth, decomposition-based

approaches decompose the problem into multiple subproblems

and optimize them simultaneously by different strategies, such

as reference vector guided strategy [30] and aggregation-based

strategy [10], [31]. The performance of decomposition-based

algorithms greatly relies on the setting of weighting vectors

and the selection of aggregation functions [32], [33]. A recent

local weight sum setting method is designed in MOEA/D-

LWS [34]. An adaptive scalarizing method is also developed

in MOEA/D-PaS [35]. MOEA/DD combines the advantages

of dominance and decomposition methods [43].

Different from the aforementioned approaches using only

one population, we solve the MaOPs by the coevolutionary

framework MPMO [12], [16]. Due to its good performance

on MOPs, the MPMO is believed to be a promising method

for MaOPs. Besides, applications of PSO on MaOPs have

recently attracted attention. Multiple PSO algorithms with dif-

ferent learning strategies have been developed for MaOPs.

For example, MaOPO/2s-pccs [36] randomly employs solu-

tions with good convergence or good diversity for learning,

but the performance of the algorithm needs to be improved;

and in NMPSO [37], convergence and diversity are combined

by weights to evaluate solutions for learning exemplar selec-

tion, but the performance of the algorithm is sensitive to the

weight setting. Multiswarm algorithms with different archiving

methods and communication topologies have also been pro-

posed for MaOPs [38]–[40]. However, continuous restarting

or overlapping of search areas in different swarms may cause

computational waste [41], [42]. Thus, there is still room for

the design of PSO for MaOPs.

D. MPMO

To deal with the issues of fitness assignment and diversity

maintenance in MOPs, Zhan et al. [12] proposed the coevo-

lutionary technique MPMO. For an M-objective problem, M

populations are created and each population optimizes one

different objective concurrently. Each population can adopt

any single-objective optimization algorithm and the individ-

uals compete to survive based on the corresponding PO, e.g.,

fj in the jth population. The nondominated solutions discov-

ered by all populations are stored in an archive for population

communication. Using the archive, the multiple populations

coevolve toward the PF.

III. CPSO FOR MAOPS

In this section, the algorithm framework, the search process

of each swarm, and the archive update process of CPSO are

presented in detail.

A. Algorithm Framework

CPSO adopts the MPMO technique and uses multiple

swarms to coevolve toward the PF. Given an MaOP with M

objectives, each objective is optimized by a population (swarm

in CPSO) and it is denoted as a PO. The M swarms adopt

PSO with BOL strategy to optimize their POs concurrently.

For swarm communication, an external archive A with fixed

size NA is used to store the nondominated solutions from all



590 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 4, AUGUST 2019

Fig. 1. Framework of CPSO for solving M-objective optimization problems.
Between swarms and objectives, the solid lines with arrow represent the cor-
responding optimization objectives of the swarms, and the dashed lines with
arrow represent the BO of different particles.

swarms. At the end of each generation, an SR procedure is per-

formed to improve the quality of the archived solutions. Then

an SP procedure is adopted to update the archive using the

reproduced solutions, the solutions in the archive, and all posi-

tions and pBests of particles in all swarms. The final archive

is regarded as the solution set found by the algorithm. In gen-

eral, the MPMO component with BOL strategy is the basis of

the CPSO algorithm, the SR component is an auxiliary oper-

ator, and the SP component is for information storage. They

complement each other as a complete system as shown in

Fig. 1.

B. Search Process of Each Swarm

Without loss of generality, we take the jth swarm as an

example to describe the search process, as it is comparable

to the other swarms. The PO of the jth swarm is objective j.

In every generation, each particle in the jth swarm updates its

velocity by the BOL strategy.

1) BOL Strategy: The BO of a particle can be a set of

objectives possessing poor values. In this paper, we only take

the worst-performed objective as the BO of the particle. To

determine the BO, we define an optimization degree (OD) to

indicate the performance of each objective in the particle. The

OD is calculated as follows. For an objective l, we normalize

the fitness value of objective l in the particle to obtain the OD,

using the best and the worst values of objective l in all the

nondominated solutions of last generation, denoted as f best
l and

f worst
l , respectively. Assume the particle is indexed by i and the

objective vector of its position Xi is F(Xi) = (fi1, . . . , fiM). For

a minimization problem, the OD odil of objective l of particle

i is calculated by

odil =

{

fil−f best
l

f worst
l −f best

l

, if f worst
l > f best

l

0, otherwise.
(5)

Note that in the first generation, f best
l and f worst

l are set as the

best and the worst values of objective l in the pBests of all

particles in all swarms, respectively. Then, the objective with

Algorithm 1 Archive Solution Selection Procedure for Particle

Update

Input: number of solutions in archive (n), archive A = {A1, A2, . . . , An}, PO,
BO

1. AP = A1

2. For k = 2 to n

3. If Ak Pareto dominates AP on PO and BO then

4. AP = Ak

5. Else if Ak and AP are nondominated by each other on PO and BO
then

6. If CPk ≤ CPP then

7. AP = Ak

8. End
9. End
10. End

Output: AP

the worst (maximal) OD value is selected as the BO bi of

particle i

bi = arg max
1≤l≤M

odil. (6)

Next, particle i updates its velocity by learning from pBesti
and an archive solution Archive

j,bi

i as

Vid = ωVid + c1r1d

(

pBestid − Xid

)

+ c2r2d

(

Archive
j,bi

id − Xid

)

(7)

where Archive
j,bi

i is selected from archive A according to

the dominance relation on two objectives, i.e., the PO(j) and

the BO(bi). The detailed selection procedure of Archive
j,bi

i

is shown in Algorithm 1 and described as follows. At the

beginning, Archive
j,bi

i is set as the first solution in A. Then

Archive
j,bi

i is compared with the solutions in A sequentially.

In each comparison, if Archive
j,bi

i is Pareto dominated by the

solution in A on the PO and the BO, it is replaced by the

solution in A; otherwise, if the two solutions are not domi-

nated by each other, then Archive
j,bi

i will be updated only if

the solution in A has a smaller or the same convergence per-

formance (CP) value. The CP value is calculated by the sum

of OD of all the objectives as

CP =

M
∑

l=1

odl. (8)

If archive A is empty, Archive
j,bi

i is temporally set as the

gBest of a randomly selected swarm. Given the number of

solutions in the archive n, since the domination comparisons

are performed in only (n − 1) times, it cannot ensure that

the best nondominated solution on PO and BO is always

selected. However, this kind of pairwise comparison reduces

time consumption as well as introduces randomness. An exam-

ple of archive solution selection in a 3-objective problem is

illustrated in Fig. 2. Assume that a particle in swarm 1 has

fitness values X(2,3,4) and pbest(1,4,5), and that archive A is

{A1(3,5,1), A2(3,1,5), A3(5,3,1), A4(1,2,3)}. Then the PO of

swarm 1 is f 1 and the BO of the particle is f 3. According to

the dominance relation on f 1 and f 3, A4 will be selected.

The selection of archive solution based on PO and BO takes

effect on two sides. On the one hand, using only PO and BO



LIU et al.: CPSO WITH BOL STRATEGY FOR MANY-OBJECTIVE OPTIMIZATION 591

Fig. 2. Example of archive solution selection for a particle based on the PO
and particle’s BO.

for dominance comparisons reduces the number of objective

comparison dimensions. This consequently enhances selection

pressure and helps to distinguish solutions. On the other hand,

using both PO and BO for dominance comparisons allows the

selection of an archive solution with better values on PO and

BO. Thus, the selection helps avoid the possible negative effect

caused by an unsuitable archive solution with poor value on

PO and is also beneficial to the optimization of BO. With the

BOL strategy, the particle is able to optimize the PO and its

BO and hence it converges to the PF gradually.

2) Update of pBests and gBest: The pBest of particle i

is updated if the new position has a better or equal fitness

value on objective j. Likewise, the gBest of the swarm will

be updated if the updated pBest in the swarm has a better or

equal fitness value on objective j.

C. Archive Update

At the end of each generation, the archive is updated. First,

a new set P is initialized by the pBests and positions X of all

particles in all swarms, as well as the solutions in the archive.

Later, two operators, the ELS and JLS, are performed on the

solutions in the archive for SR. Then, all the new reproduced

solutions are also added into the set P. Finally, according to

the dominance relation on all objectives, the nondominated

solutions in P are stored in the archive A.

1) Solution Reproduction:

Elitist Learning Strategy (ELS): To jump out of possible

local optima, we adopt the ELS proposed in an adaptive

PSO [15]. In CPSO, ELS is performed on the first 0.9n solu-

tions in archive A. For a solution, one dimension d is randomly

selected to move with a step size which is generated by

Gaussian distribution as

Xid = Xid +
(

Xmax,d − Xmin,d

)

Gaussian
(

0, σ 2
)

(9)

σ = 0.5 − (0.5 − 0.1)
fes

FES
(10)

where Xmin,d and Xmax,d are the lower and upper bounds of

the dth dimension, respectively; fes is the already-consumed

function evaluations; FES is the maximum available function

evaluations; and Gaussian(0, σ 2) is a Gaussian distribution of

mean 0, and its standard deviation σ decreases from 0.5 to

0.1 as fes increases. The new solutions are then added into

the set P.

JLS: Since different swarms focus on different objectives,

they move toward different areas especially the margins of the

PF. Thus, the approximated fronts from all swarms may lose

their juncture areas, such as the center of the PF. Therefore,

we introduce an operator JLS to generate new solutions in

the juncture areas by learning from different swarms. In JLS,

a crossover and mutation process is performed to inherit differ-

ent dimensions from different solutions. Two parents are ran-

domly selected from the archive and then perform simulated

binary crossover (SBX) and polynomial mutation (PM) [2].

In every generation, the JLS is performed to generate 0.1n

new solutions and these new solutions are then added into the

set P.

2) Solution Preservation: The next step is to choose the

nondominated solutions from P to update A. First, all the dom-

inated solutions are deleted from P. Then, the best and the

worst values of each objective among the nondominated solu-

tions are denoted as f best
j and f worst

j for objective j. Meanwhile,

archive A is emptied and the size of archive n is set as 0. If

the size of P is equal to or less than NA, the solutions in P

are stored in A, and n is updated as the size of P. Otherwise,

only NA solutions that maximize the diversity of the nondom-

inated solutions will be chosen to store in A. The solutions

are selected based on reference points, which are generated

by double-layer method [2]. Different from NSGA-III [2], the

number of reference points is allowed to be larger than NA.

Among the reference points, we select NA reference points

with maximal diversity for solution selection. In addition, we

also introduce the metric CP into solution selection procedure

to improve convergence. The reference-point-based solution

selection procedure is described as follows.

The best values of all objectives form the ideal point

(f best
1 , . . . , f best

M ) of set P. The objective vector of each solution

in P subtracts the ideal point to form a new objective vector.

Then in set P, M extreme points in M objective axes are identi-

fied by minimizing the corresponding achievement scalarizing

functions [2]. Next, these extreme points are used to construct

a hyperplane. Then the interception points of the hyperplane

and the axes are determined to normalize the solutions in

set P. Note that if the M extreme points cannot construct a

(M−1) dimensional hyperplane or the obtained interception

points are nonpositive, the interception points of each axis are

set as (f worst
j − f best

j ) corresponding to objective j. Later, each

normalized solution is associated with a reference line accord-

ing to its perpendicular distance from the reference line. The

reference lines are constructed by joining each reference point

with the origin. Finally, a niche preservation operation is per-

formed to select NA solutions in NA steps. Each reference line

owns a count to calculate the number of already selected solu-

tions associated with it. A set R stores the reference lines with

minimum count and an additional set K records the visited ref-

erence lines. In each step, the reference line with minimum

count is first selected. If there are multiple reference lines hav-

ing minimum count (the size of R is larger than 1), then the

one r with the largest distance dr to the visited reference lines

in K will be selected by

r = arg max
q∈R

dq (11)

dq =
∑

k∈K

dis
(

wq, wk

)

, q ∈ R (12)



592 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 4, AUGUST 2019

dis
(

wq, wk

)

=

M
∑

j=1

∣

∣wqj − wkj

∣

∣ (13)

where dq is the total distances of reference line q to the vis-

ited reference lines in K, wq and wk represent the normalized

weights of reference lines q and k, respectively. If K is empty,

a random reference line is selected from R. After that, the r

is added into K, and one solution associated with r will be

selected and added into archive A. If the count of r is 0, the

solution with minimum perpendicular distance to r is chosen.

Otherwise, the solution with smallest CP value defined as (8)

is selected. The step of reference line and solution selection

repeats until n becomes NA.

The overall flowchart of CPSO is shown in Fig. 3.

D. Computational Complexity of One Generation of CPSO

Given an MaOP with M objectives in a D-dimensional deci-

sion space. Assume that the population size of each swarm is

S, the number of reference points used in the SP component

is H, the maximum archive size is NA, and the current archive

size is n ≤ NA. The computational complexity of one gener-

ation of CPSO includes that of the MPMO, the SR, and the

SP components.

First, in the MPMO component, the calculation of CP val-

ues requires O(M×n) computations for all archived solutions.

In the BOL strategy, the determination of BO requires O(M)

computations, archive solution selection requires O(n) compu-

tations, and particle update requires O(D) computations. Thus,

the complexity of the BOL strategy is O(M+n+D). Therefore,

the complexity of the MPMO component, including the search

process of M swarms of size S, is O(M × S × (M + n + D) +

M × n), that is O(M × S × (M + n + D)).

Second, in the SR component, the ELS requires O(n)

computations and the JLS requires O(n × D) computations.

Therefore, the complexity of the SR component is O(n × D).

Third, in the SP component, the nondominated sorting of

a set P of size (M×S×2+n×2) requires O((M×S+n)2×M)

computations. The identification of the ideal point requires

O(M × (M × S + n)), the calculation of new objective vec-

tors requires O(M × (M × S + n)), and the determination of

the extreme points requires O(M2 × (M × S + n)) compu-

tations. Then hyperplane construction and intercept identifi-

cation require O(M3) computations. Next, the normalization

of the solutions requires O(M × (M × S + n)) computations.

Thereafter, associating all solutions to reference lines requires

O(M×H×(M×S+n)) computations. In the niche preservation

operation, the calculation of the CP values of all solutions in

set P requires O(M×(M×S+n)) computations. The distances

between any two reference lines (13) only need to be calcu-

lated one time [with complexity of O(H2 × M)] and can be

stored at the beginning of the algorithm, so it is not included

in each generation. Similarly, by using a memory of size H

to store and accumulate the total distances of each reference

line to the visited reference lines (12), the selection of refer-

ence line only requires O(H) computations and the selection of

a solution associated with the selected reference line requires

O(M×S+n) computations. Once one reference line is selected

and becomes visited, the total distances of each reference line

TABLE I
SETTING OF THE DTLZ AND WFG PROBLEMS

to the visited reference lines are updated, which requires O(H)

computations. Hence, the niche preservation operation requires

O(NA × (H + M × S + n + H) + M × (M × S + n)) com-

putations to preserve NA solutions. Thus, the SP component

requires O((M × S + n)2 × M + M2 × (M × S + n) + M3 +

M × H × (M × S + n)+ NA × (H + M × S + n)) computations.

In our simulations, we have used H ≈ NA, n ≤ NA, and usu-

ally NA > M. Thus, the complexity of the SP component is

O(NA2 × M + M3 × S2 + M2 × S × NA).

Therefore, the overall worst-case complexity of one gener-

ation of CPSO is O(M × S × (M + n + D) + n × D + NA2 ×

M + M3 × S2 + M2 × S × NA), which can be reduced to

O(M3 ×S2 +M2 ×S×NA+NA2 ×M +NA×D+M ×S×D).

Define the total size of all swarms as N = M × S. In all of

our simulations, we have used NA = N. Thus, the worst-case

complexity of one generation of CPSO can be simplified to

O(N2×M+N×D). That is, the larger one between O(N2×M)

and O(N × D). This shows that the complexity of one genera-

tion of CPSO is dominated by the nondominated sorting with

O(N2 × M) and solution generation with O(N × D) like many

other algorithms for MaOPs. Therefore, the added operators

are light and do not increase the overall algorithm complexity.

IV. EXPERIMENTS AND COMPARISONS

A. Experimental Design

1) Benchmark Problems: Two widely used test suites,

DTLZ problems DTLZ1-DTLZ7 [44], and WFG problems

WFG1-WFG9 [45] are used to evaluate the algorithm per-

formance. These challenging problems have different char-

acteristics. The DTLZ problems possess features, such as

nonuniform, disconnected, multimodal, and nonconvex; while

the WFG problems have properties of scalable objective, non-

separable, deceptive, mixed shape, degenerated, and dependen-

cies between position- and distance-related parameters. In the

experiments, two instances with 5-objective and 10-objective

for each problem are tested. The settings of decision variable

dimension D, position parameter k, and distance parameter l

for each problem are listed in Table I following the suggestions

in [44] and [45].

2) Performance Metric: Two widely used performance

metrics, inverted generational distance (IGD) [46] and

HV [47], are adopted to evaluate the performances of the

solutions. In each problem, a large number of reference

points (i.e., 100 000 samples) are generated for IGD metric

following [8], [55]. For the PFs of DTLZ1-4 and WFG4-9 that

are regular as hyperplanes or hyperspheres, we sample refer-

ence points randomly from the PFs. Since random sampling

may give nonuniform reference points [56], we propose a two-

step strategy to sample points in this paper. Based on the



LIU et al.: CPSO WITH BOL STRATEGY FOR MANY-OBJECTIVE OPTIMIZATION 593

TABLE II
PERFORMANCE COMPARISON BETWEEN CPSO AND OTHER ALGORITHMS IN TERMS OF IGD VALUE ON DTLZS AND WFGS

symmetry and correlation of the PF, we first randomly generate

the values of different objective dimensions within their maxi-

mum available ranges sequentially, and then randomly shuffle

different objective dimensions to form a reference point. In

this way, each point on the PF has an equal probability to be

sampled. With a large number of samples, we can obtain well-

distributed reference points. For example, given a 5-objective

problem with PF of f1 + f2 + f3 + f4 + f5 = 0.5. To gen-

erate a point (r1, . . . , r5), r1 is first randomly generated in

the range of [0, 0.5], then rj (2 ≤ j ≤ 4) is randomly gen-

erated in the range of [0, 0.5 −
∑ j−1

k=1 rk] sequentially, and

at last r5 is set to 0.5 −
∑4

k=1 rk. After that, the values of

r1, . . . , r5 are randomly shuffled to form a reference point.

Note that for WFG4-9 with scale objectives, we first sam-

ple points on normalized PFs and scale them afterward. With

regard to DTLZ5-7 and WFG1-3 problems that have irregu-

lar or degenerated PFs, we first randomly sample points in

their PSs and then use their corresponding objectives as ref-

erence points following [22]. The reference points for all the

problems are archived as supplemental data of this paper. To

calculate HV, the reference point for the DTLZ problems is set

at 22 in each objective dimension [8]. Since WFG are scaled

problems, we set the jth objective value of the reference points

as 2j + 8 [45].

3) Competitor Algorithms: Six state-of-the-art algorithms

are taken for comparisons to verify the CPSO, i.e., θ -

DEA [18], NSGA-III [2], NMPSO [37], MOEA/D-PaS [35],

HypE [28], and PICEA-g [29]. They are typical methods

from different categories with different techniques (as defined

in Section II). Among them, θ -DEA is a recent relaxed

dominance-based approach. NSGA-III and NMPSO are

diversity and convergence improvement methods. NSGA-III

adopts a reference point-based method for solution diver-

sity maintenance. NMPSO considers convergence and diver-

sity simultaneously for solution selection. MOEA/D-PaS is

a decomposition-based algorithm with Pareto adaptive scalar-

izing method. HypE adopts the HV indicator to evaluate

solution quality. PICEA-g is a preference-based coevolution

approach. These representative algorithms make the compar-

isons more comprehensive and convincing.

4) Parameter Setting: The common settings for the algo-

rithms are given as follows. The SBX and PM are used in all

the algorithms. The crossover probability is set as 1.0 and the

mutation probability is set as 1/D, where D is the dimension of

the decision space. The distribution index for mutation is set

as 20. The distribution indices for crossover ηc are different

in different algorithms. For θ -DEA, NSGA-III, NMPSO, and

CPSO, ηc is set to 30. For HypE, ηc is set to 20. For MOEA/D-

PaS and PICEA-g, ηc is set to 15. Among all the algorithms,

if not otherwise stated, a population size N = 100 is adopted.

In θ -DEA and NSGA-III, since the population size is related

to the number of reference points, we adopt the integer closest

to 100 as the population size, i.e., 86 and 66 for 5- and 10-

objective problems, respectively, following [8]. The number of

reference points are set as 85 and 65 for 5- and 10-objective

problems, respectively. In CPSO, the population size of each



594 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 4, AUGUST 2019

TABLE III
PERFORMANCE COMPARISON BETWEEN CPSO AND OTHER

ALGORITHMS IN TERMS OF HV VALUE ON DTLZS AND WFGS

swarm is set as 100/M. The number of reference points used in

CPSO is set as 85 and 110 for 5- and 10-objective problems,

respectively.

Besides the parameters mentioned above, θ -DEA, NMPSO,

MOEA/D-PaS, HypE, PICEA-g, and CPSO have their own

parameters. The penalty parameter in θ -DEA is set at

5 following [18]. In NMPSO, the inertia weight ω is set in

the range of [0.1, 0.5] and the acceleration coefficients c1, c2,

and c3 are randomly generated in [1.5, 2.5] following [37].

In MOEA/D-PaS, the neighborhood size T is set as 0.1 × N

and the replacement size is set as 0.2 × T [35]. In HypE, the

number of sample points for HV value estimation is set as

10 000 following [18]. In PICEA-g, the number of goals is

set as M × 100 [29]. In the proposed CPSO, we adopt the

common configurations that ω linearly decreases from 0.9 to

0.4 and c1 and c2 are set to 1.49 [12], [48]–[54]. The archive

size NA is set as 100.

In the experiments, NSGA-III adopts the widely used imple-

mentation jMetal (http://jmetal.github.io/jMetal/) and all the

other compared algorithms adopt the source codes provided

by the original authors. For fair comparisons, all results

reported are obtained based on 30 independent runs with

100 000 function evaluations (FEs).

B. Experimental Results

In this section, detailed results are presented and compared.

Tables II and III report the experimental results on IGD and

HV metrics. In order to provide a statistical conclusion, we

use Wilcoxon’s rank-sum test between CPSO and each com-

petitor algorithm at a 0.05 significance level on each problem

instance. Three symbols +,=, and −, indicate that CPSO

is significantly better, equivalent to, or significantly worse

than the competing algorithm, respectively. The number of

instances on each significance case (+/ = /−) is summarized

at the last three rows of the tables. For clarity, the results of

the best algorithm are marked in boldface and the results of

the second best algorithm are marked with italic.

1) DTLZ Problems: Table II presents the IGD results of

different algorithms on the 14 DTLZ problems with 5 and

10 objectives. We can see that CPSO performs the best or sec-

ond best on most cases. Both CPSO and NSGA-III rank the

first on 3 out of 14 instances, and MOEA/D-PaS obtains the

best value on 4 instances. Therefore, the performance of CPSO

is comparable with these algorithms and it is much better

than θ -DEA, NMPSO, PICEA-g, and HypE, for that θ -DEA,

NMPSO and PICEA-g scale the best on only one instance,

while HypE does not perform the best on any instance. If tak-

ing both the best results (indicated by boldface) and the second

best results (indicated by italic) into consideration, both CPSO

Fig. 3. Flowchart of the CPSO.

and θ -DEA do well on 6 out of the 14 instances, outperform-

ing all the other 5 competitors. Moreover, from the results of

the significance test, CPSO is significantly superior to θ -DEA,

NSGA-III, NMPSO, MOEA/D-PaS, HypE, and PICEA-g on

9, 8, 7, 5, 14, and 11, while worse than them on 5, 6, 6, 6, 0,

and 3 instances, respectively. Therefore, CPSO has an overall

better performance than these competitors in terms of the IGD

metric.

In details, Table II shows that the proposed CPSO gen-

erally performs well for all the problem instances. First,

DTLZ1 is a difficult MaOP with many local PFs that trapped

many existing MaOP algorithms. Both of NSGA-III and θ -

DEA perform well on the 10-obejctive instance due to the

strong guidance of the reference points in these two algo-

rithms. However, CPSO performs the best on the 5-objective

instance and ranks third on the 10-objective instance. This

shows that CPSO is able to jump out of local PFs and find the

global PF. As for DTLZ2 with spherical PF and DTLZ4 with

nonuniform distributed PF, CPSO works the best on their

10-objective instances. This shows that CPSO has a strong

search ability on different PF shapes, owing to the coevo-

lution of the multiple swarms. In contrast, MOEA/D-PaS

presents poor performance on both DTLZ2 and DTLZ4 since

it wastes computational resources on finding a suitable scalar-

izing method. Similarly, PICEA-g performs poorly due to the

lack of proper preference goals. For DTLZ3 with many local

PFs, CPSO shows a mediocre performance. However, CPSO

still performs better than PICEA-g on the 5-objective DTLZ3

and HypE on both 5-objective and 10-objective instances.

For DTLZ5 and DTLZ6 with degenerate PFs, PICEA-g, and

MOEA/D-PaS perform well since they can adapt to the PF

geometry of the problems. In contrast, both θ -DEA and

NSGA-III perform poorly since the reference points con-

sider a higher-dimensional approximate front as the obtained

front and wrongly depict the PF geometry. However, although



LIU et al.: CPSO WITH BOL STRATEGY FOR MANY-OBJECTIVE OPTIMIZATION 595

CPSO also uses reference points, CPSO ranks second for

both DTLZ5 and DTLZ6 except the 5-objective instance of

DTLZ5 because the swarms in CPSO coevolve under the

guidance of not only the archive but also their own POs.

Hence, CPSO can deal with the redundant information and

ease the misdirection of the reference points on the PF

geometry in degenerate cases. For the DTLZ7 with 2M−1 dis-

connected Pareto-optimal regions in search space, θ -DEA and

NSGA-III work poorly especially on the 10-objective instance.

In contrast, CPSO ranks third for the 10-objecitve instance of

DTLZ7. This shows that CPSO can maintain diversity on dif-

ferent PF regions. In summary, CPSO can effectively solve

different kinds of DTLZ problems, and can even achieve bet-

ter performance on the instances with a larger number of

objectives.

The detailed results of HV metric are reported in Table S.I,

in the supplementary material, due to space limit and the sig-

nificance test results are summarized in Table III. The results

show that CPSO is significantly better than or equivalent to

all the other algorithms on DTLZ1, DTLZ2, and DTLZ4.

Moreover, CPSO performs significantly better than θ -DEA,

NSGA-III, NMPSO, MOEA/D-PaS, HypE, and PICEA-g on

5, 5, 6, 1, 12, and 13 instances, while performing worse on 3,

3, 3, 8, 2, and 1 instances, respectively.

The results on IGD and HV metrics show that CPSO

presents both strong diversity and good convergence on the

DTLZ problems. To intuitively illustrate the performance of

each algorithm, Fig. 4 shows the distributions of the solu-

tions obtained by CPSO and the six compared algorithms

on the 10-objective DTLZ1. The solutions in each figure are

obtained in one random run out of the 30 independent runs.

Due to the high objective dimensions, we plot each solution

by connecting the values of each objective. On the PF of

DTLZ1, each objective can reach a maximum value of 0.5.

From Fig. 4(a)–(c), it can be seen that CPSO, θ -DEA, and

NSGA-III are able to converge to the PF and find solutions

well distributed along the whole PF. This is because the mul-

tiple swarms of CPSO can approximate different parts of the

PF to maintain diversity and the BOL strategy improves con-

vergence to the PF; the θ -dominance simultaneously considers

convergence and diversity and thus it enables θ -DEA to find

well-converged and well-diversified solutions; and the refer-

ence points in NSGA-III provide a strong guidance for the

population toward the PF. In contrast, NMPSO approximates

only some areas of the PF. The reason may be that a single

population is very likely to concentrate only on some areas.

Likewise, MOEA/D-PaS obtains optima only on some sub-

problems and converges to some parts of the PF. Similarly,

the solutions of HypE and PICEA-g only bias toward a few

objectives. The poor performance of HypE may be due to

the inaccurate estimation of HV value for solution selection.

In PICEA-g, the preferences may make negative effect on

guidance and cause diversity loss.

2) WFG Problems: The IGD results of all algorithms on

the WFG problems are presented in Table II. We can see that

CPSO performs the best on 7 instances, followed by PICEA-

g with 5 instances. NSGA-III and MOEA/D-PaS work the

best on 3 and 2 instances, respectively. θ -DEA performs the

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 4. Distributions of the solutions obtained by seven algorithms on
DTLZ1 with ten objectives. (a) CPSO. (b) θ -DEA. (c) NSGA-III. (d) NMPSO.
(e) MOEA/D-PaS. (f) HypE. (g) PICEA-g.

best on only one instance, while NMPSO and HypE do not

obtain the best IGD value on any instance. Moreover, accord-

ing to the significance test, CPSO performs significantly better

than θ -DEA, NSGA-III, NMPSO, MOEA/D-PaS, HypE, and

PICEA-g on 11, 13, 15, 12, 15, and 8 out of 18 instances, while

worse than them on only 3, 4, 3, 5, 1, and 8 instances, respec-

tively. Thus, CPSO is significantly better than other algorithms

in terms of IGD metric.

For more detail from Table II, CPSO performs well on

almost all problems. More importantly, the performance of

CPSO becomes better when the number of objectives increases

from 5 to 10. This shows the strong global search capacity of

CPSO in high-dimensional objective space of scaled problems.

For WFG1 and WFG7 with separable and unimodal character-

istics, CPSO is beaten by MOEA/D-PaS on WFG1 with mixed

PF but outperforms MOEA/D-PaS on WFG7 with regular PF

and ranks first on the 10-objective WFG7. For nonseparable

and unimodal problems WFG3 and WFG6, PICEA-g performs

the best on WFG3 with a degenerate PF due to its adaptation

ability to PF geometry but fails on WFG6 with regular PF. In

contrast, CPSO not only ranks second or third on different

instances of WFG3 but also works well on WFG6. For the hard

nonseparable problem WFG8, CPSO performs the best on the

10-objective instance. These show that CPSO is able to deal

with both separable problems and nonseparable problems. For

the deceptive problem WFG5, although PICEA-g performs the

best on the 5-objective instance, CPSO works the best on the

10-objective instance. For WFG2 and WFG4 with multimodal

characteristics, there are many local PFs. CPSO is beaten

by PICEA-g and MOEA/D-PaS on WFG2 but outperforms

them on WFG4 which has larger “hill sizes.” For example,



596 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 4, AUGUST 2019

(a) (b)

Fig. 5. Average IGD values on 30 runs of DTLZ1 with (a) five objectives
and (b) ten objectives.

CPSO ranks second and first on the 5-objective and 10-

objective instances of WFG4, respectively. Therefore, CPSO

has stronger ability than others to jump out of local optima.

For the difficult problem WFG9 combined with nonseparable,

multimodal, deceptive, and bias characteristics, CPSO still per-

forms the best. In summary, CPSO is able to solve not only

simple problems, but also difficult problems with different

characteristics.

For WFG4-WFG9 with regular PFs, θ -DEA, and NSGA-III

perform well on most cases due to the strong guidance of

the reference points toward the PFs. However, for WFG1-

WFG3 with irregular PFs, NMPSO, MOEA/D-PaS, and

PICEA-g perform better due to their adaptive abilities to the

PF geometry. It is interesting to find that θ -DEA and NSGA-III

also perform well on WFG1 since the PF of WFG1 are regu-

lar in each segment and the reference points can provide good

guidance for the population toward the PF. In contrast, CPSO

not only performs the best on most 10-objective instances of

WFG4-WFG9 but also ranks second or third on WFG2 and

WFG3. The coevolution of multiple swarms enables CPSO to

ease the misdirection of the wrongly depicted PF geometry

caused by the reference points on problems with irregular PFs

while following the guidance of the reference points well on

the problems with regular PFs. In addition, the SR component

also enhances the global search ability of CPSO.

For the HV metric, Table S.I, in the supplementary material,

shows that CPSO performs the best on 4 out of 18 instances.

Meanwhile, NSGA-III, NMPSO, and MOEA/D-PaS work the

best on 5, 5, and 2 instances, respectively, while both θ -DEA

and PICEA-g perform the best on only 1 instance. Among

all the 18 WFG instances, CPSO performs significantly bet-

ter than or is equivalent to all competitors except NSGA-III

on nearly or more than half of instances, while it is signifi-

cantly worse than θ -DEA, NSGA-III, NMPSO, MOEA/D-PaS,

and PICEA-g on 7, 13, 9, 8, and 4 instances, respectively.

Moreover, CPSO performs better than HypE on all instances.

Therefore, CPSO is competitive with the benchmark models.

Comprehensively considering the results of IGD and HV

metrics, CPSO generally presents stronger diversity and better

convergence than the competitors on the WFG problems.

For example, although CPSO obtains worse IGD values than

PICEA-g on WFG5 and WFG7, it gets better HV values on

all these problem instances. The reversed performance on IGD

and HV metrics may be due to the relatively reversed concen-

tration on diversity and convergence. To intuitively show the

algorithm performance, Fig. S.1, in the supplementary mate-

rial, illustrates the distributions of the obtained solutions of

different algorithms in one run on the 10-objective WFG8.

From Fig. S.1, in the supplementary material, we can see

that CPSO finds solutions well distributed on the margins

as well as the center of the PF. In contrast, both θ -DEA

and NSGA-III obtain well-converged but poorly diversified

solutions. NMPSO gets nonuniform solutions that concentrate

more on the objectives with large orders of magnitude. Thus,

even though the solutions accumulate to a larger HV value,

NMPSO still gets a poor IGD value due to the loss of diver-

sity. MOEA/D-PaS converges to some marginal parts of the PF

and bias toward only a few objectives. The small number of

converged solutions cannot accumulate to a large HV. Similar

situations also occur on HypE and PICEA-g. HypE gets solu-

tions well converged but poorly diversified. PICEA-g gets

nonconvergent or nondiversified solutions. Thus, both HypE

and PICEA-g receive a large IGD and a small HV.

C. Convergence Analysis of CPSO

In this section, we discuss the convergence of CPSO. To

take DTLZ1 as an example, the convergence curves of IGD

value are plotted in Fig. 5. As shown in Fig. 5(a), on the 5-

objective instance, the IGD value decreases quickly to 0.52 in

30 000 FEs, further reduces to 0.061 in 60 000 FEs and finally

reaches 0.0601. For the harder 10-objective instance shown in

Fig. 5(b), the IGD value decreases to 0.3 in 60 000 FEs and

reaches 0.1550 at last. These show that CPSO can converge

to the PF steadily.

To further investigate the search behavior of CPSO, we

report the swarm information per 100 generations. Since CPSO

converges faster on the 5-objective instance, we take the 5-

obejective instance as an example. To maintain the logic of

the search behavior, only one run is taken randomly. There

are totally 500 generations. The pBest and position X of all

particles in all swarms are presented once per 100 genera-

tions in Fig. 6(a)–(e), and the solutions in the output archive

are presented in Fig. 6(g). The pBest and X of all swarms in

each generation are combined and the nondominated solutions

among them are also presented in Fig. 6(f). From Fig. 6(a)–(e),

we can see that the swarms gradually converge to the PF. In

the early stage, the particles have poor values on almost all

objectives and the extreme points are far from the PF. Through

swarm coevolution, different objective values of all particles

become smaller. By the 400th generation, the maximum val-

ues of each objective have been reduced from 300 to 0.4. The

swarms are significantly closer to the PF. It is interesting to

find that there are no extreme points of the PF after the 400th

generation as shown in Fig. 6(d) and (e). This is because the

extreme points obtained earlier are pushed to the center of

the PF since their BO are optimized by the BOL strategy

gradually. Thus, different objective values except the corre-

sponding PO become closer in the later stage. The swarms

move along the PF and maintain stable. This can be confirmed

by Fig. 6(f) that all the nondominated solutions obtained by

the swarms along the search process can well cover the whole

PF. Nevertheless, with the help of archive update (SR and SP



LIU et al.: CPSO WITH BOL STRATEGY FOR MANY-OBJECTIVE OPTIMIZATION 597

(a) (b) (c) (d)

(e) (f) (g)

Fig. 6. Distributions of solutions obtained by CPSO on DTLZ1 with five objectives. (a)–(e) pBest and position X of all particles in all swarms per
100 generations. (f) Nondominated solutions of all the pBest and X obtained by all the swarms along the whole search process. (g) Solutions in the output
archive.

components), the good solutions found by the swarms are pre-

served and the missing areas of the PF are filled as shown in

Fig. 6(g).

D. Contributions of Each Component in CPSO

In CPSO, there are three components: 1) MPMO compo-

nent with BOL strategy; 2) SR component with ELS and JLS

operators; and 3) SP component. To observe the contributions

of each component, we perform experiments of five CPSO

variants with different combinations of the components, i.e.,

MPMO, SR, MPMO+SP, SR+SP, and MPMO+SR. Since SP

does not generate solutions, it cannot be tested independently.

Therefore, MPMO, SR, MPMO+SP, SR+SP, and MPMO+SR

are CPSO variants with only MPMO, only SR, only both

MPMO and SP, only both SR and SP, and only both MPMO

and SR, respectively. For the variants without SP, the archive

size is set as infinite and all the nondominated solutions are

stored. The results in terms of IGD metric are summarized

in Table IV, and the detail is presented in Table S.II, in the

supplementary material. The number of the best cases of each

variant is presented in Table V. From Tables IV, V, and S.II,

in the supplementary material, it can be seen that CPSO

outperforms all its variants. CPSO, MPMO+SP, SR+SP,

MPMO+SR, MPMO, and SR perform the best on 12, 2, 7, 2,

6, and 3 cases, respectively. Moreover, CPSO is significantly

better than MPMO+SP, SR+SP, MPMO+SR, MPMO, and

SR on 24, 15, 23, 24, and 25 cases while is beaten by them

on only 4, 8, 6, 8, and 3 out of 32 cases, respectively.

The MPMO performs worse than CPSO on most cases

but is the best on 6 instances, i.e., 10-objective instances of

DTLZ5, DTLZ6, WFG1, and WFG2, and also 5-objective

instances of WFG2 and WFG3. Together with SP, the per-

formance of MPMO (i.e., the MPMO+SP variant) improves

on most cases with regular PFs but degenerates on DTLZ5-

DTLZ7 and WFG1-WFG3 with irregular PFs. This is because

the SP enhances the diversity of the archive such that the

archive provides strong guidance for the swarms on regular

TABLE IV
PERFORMANCE COMPARISON BETWEEN CPSO AND ITS VARIANTS

MPMO+SP, SR+SP, MPMO+SR, MPMO, AND SR IN

TERMS OF IGD VALUES ON DTLZS AND WFGS

TABLE V
NUMBER OF BEST CASES OF CPSO AND ITS VARIANTS MPMO+SP,

SR+SP, MPMO+SR, MPMO, AND SR IN TERMS OF

IGD VALUES ON DTLZS AND WFGS

PFs. However, for DTLZ5-DTLZ7 and WFG1-WFG3 with

irregular PFs, SP may provide misleading information and

cause the waste of computing resources on improper PF geom-

etry. Specially, on the 5-objective WFG1 and 10-objective

WFG3, MPMO+SP performs better than MPMO since the

guidance of well-diversified archive solutions accelerates the

algorithm convergence.

The SR performs the best on three 5-objective instances of

DTLZ4, DTLZ7, and WFG5, but performs poorly on other

instances, especially on the 10-objective instances. Since the

JLS combines good information of different solutions while

the ELS helps to jump out of local optima, SR can be seen

as a combination of global search and local search. However,

although SR can handle some 5-objective instances, it still

faces difficulties on 10-objective instances. With SP, the per-

formance of SR (i.e., the SR+SP variant) improves greatly

especially on the 10-objective instances. The SP helps SR to

avoid the repeated search of the same areas. Nevertheless, the

SR+SP variant is still beaten by CPSO on most cases. Thus,

the global search ability of SR is not efficient enough.



598 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 4, AUGUST 2019

Combining the MPMO with the SR, the obtained

MPMO+SR variant still performs poorly and it works the

best on only 2 instances, i.e., 5-objective WFG4 and 10-

objective WFG6. Compared with SR, the MPMO+SR variant

performs better on most 10-obejective instances, i.e., DTLZ1-

DTLZ5, DTLZ7, WFG1-WFG3, WFG5, WFG6, and WFG9.

This shows the strong global search ability of MPMO in

high-dimensional objective space. Compared with MPMO, the

MPMO+SR variant performs better especially on problems

with regular PFs. The SR helps the MPMO to jump out of local

optima and fill the missing areas of the PF that are missed by

the swarms. Nevertheless, without SP, the rapid increase of the

nondominated archived solutions causes the decrease of selec-

tion pressure and consequently the ability of the BOL strategy

is limited. By adding the SP into MPMO+SR, the resultant

MPMO+SR+SP (which is actually CPSO) performs better on

most cases. Thus, the combination of the three components

performs the best.

In general, MPMO is the basis of CPSO, SR assists to jump

out of local PFs and reach out to the missing areas of the PF,

and SP stores good solutions for information sharing among

the swarms. Without the help of SR and SP, the MPMO is not

efficient and is easily trapped in local optima. Likewise, with-

out the help of MPMO and SP, the SR has insufficient global

search ability to solve MaOPs especially when the objective

number is large. For the SP, on the one hand, the SP enables

CPSO to keep the good solutions found along the search pro-

cess; on the other hand, the SP enables the archive to be

a communication environment for the swarms. Thus, all the

three components play different yet significant roles in CPSO.

E. Benefit of BOL Strategy in MPMO Component

The BOL strategy promotes the coevolution of the swarms.

In this section, we consider three CPSO variants for compar-

isons, i.e., CPSO-noCP, CPSO-rand, and CPSO-pgbestra, to

verify the effects of the CP evaluation in the BOL strategy, the

BO optimization in the BOL strategy, and the BOL strategy,

respectively. They differ from CPSO only in velocity update.

CPSO-noCP selects a solution randomly when the two solu-

tions are nondominated on PO and BO during archive solution

selection in the BOL strategy. CPSO-rand adopts a rand

strategy that implements velocity update by learning from

pBest and a solution randomly selected from archive. CPSO-

pgbestra adopts the learning strategy pgbestra proposed in [12]

that implements velocity update by learning from the pBest,

the gBest of the swarm, and a solution randomly selected

from archive. Since the JLS combines solutions from differ-

ent swarms, it may affect the observation of the coevolution

effect of the BOL strategy. Thus, we also compare their cor-

responding versions without JLS, named noJLS, noJLS-noCP,

noJLS-rand, and noJLS-pgbestra, respectively.

The detailed results of CPSO and its variants with JLS

on IGD and HV metrics are reported in Table S.III, in the

supplementary material, and the significance test results are

summarized in Table VI. The results of noJLS and other

variants without JLS in terms of IGD and HV metrics are

summarized in Table VII and the detail is presented in

Table S.IV, in the supplementary material.

The results in Table S.III, in the supplementary material

show that CPSO converges faster than CPSO-noCP, CPSO-

rand, and CPSO-pgbestra in most cases. Moreover, CPSO gets

the best IGD values on 13 out of 32 cases and the best HV

values on 22 out of 32 cases. Thus, the CPSO with the BOL

strategy performs the best. The advantage of the BOL strat-

egy is more obvious in the comparisons between noJLS and its

variants as shown in Table S.IV, in the supplementary mate-

rial. The noJLS achieves the best IGD values on 15 out of

32 cases and the best HV values on 25 out of 32 cases.

For the CP evaluation in the BOL strategy, CPSO performs

better than CPSO-noCP on 7 cases while worse on only 5 out

of 32 cases in terms of the IGD metric, and also works better

than CPSO-noCP on 12 cases while worse on only 2 out of

32 cases in terms of the HV metric. These show that, between

two nondominated solutions, selecting a solution with better

CP as archive solution helps to speed up convergence. Similar

phenomenon appears between the comparison between noJLS

and noJLS-noCP.

For the BO optimization in the BOL strategy, CPSO per-

forms better than CPSO-rand on 10 cases while worse on only

5 out of 32 cases on IGD metric. The corresponding numbers

of better and worse cases on HV metric are 14 and 5, respec-

tively. Thus, the BOL strategy converges faster than the rand

strategy. It is interesting to see that CPSO-rand gets better HV

values than CPSO on 5 instances of the DTLZs since the ran-

dom selection in the rand strategy enhances diversity and helps

to obtain well-diversified solutions. When comparing the vari-

ants without the JLS (i.e., noJLS and noJLS-rand) in Table V,

the BOL strategy still beats the rand strategy. For example,

for DTLZs, noJLS obtains better IGD values than noJLS-rand

on most instances and worse HV values on only one instance;

and for WFGs, noJLS performs significantly better or at least

equivalently on all instances on HV metric. In general, the

BOL strategy performs better than the rand strategy and the

BO optimization can accelerate convergence.

Next, we compare the BOL strategy with the pgbe-

stra strategy [12]. Compared with CPSO-pgbestra, CPSO per-

forms remarkably better on both IGD and HV metrics. It

indicates the advantage of the BOL strategy. In fact, the

BOL strategy may affect swarm diversity in two opposite

directions: it tends to decrease diversity and improve conver-

gence by moving particles closer to the solutions with good

values on PO, but it is also possible to increase diversity

by speeding up the optimization of different BO toward the

PF. Nevertheless, the cooperation of the BOL strategy and

the MPMO helps different swarms to approximate different

parts of the PF, and thus the diversity and convergence can be

improved simultaneously.

F. Benefit of ELS and JLS Operators in SR Component

In this section, the effects of two operators ELS and JLS in

SR component are investigated. We consider three variants of

CPSO, i.e., noELS, noJLS, and noELS-noJLS, and they differ

from CPSO only in that noELS does not adopt the ELS, noJLS



LIU et al.: CPSO WITH BOL STRATEGY FOR MANY-OBJECTIVE OPTIMIZATION 599

TABLE VI
PERFORMANCE COMPARISON BETWEEN CPSO AND ITS VARIANTS WITH

DIFFERENT LEARNING STRATEGIES IN TERMS OF IGD AND

HV VALUES ON DTLZS AND WFGS

TABLE VII
PERFORMANCE COMPARISON BETWEEN NOJLS AND ITS VARIANTS

WITH DIFFERENT LEARNING STRATEGIES NOJLS-NOCP, NOJLS-RAND,
NOJLS-PGBESTRA IN TERMS OF IGD AND HV

VALUES ON DTLZS AND WFGS

TABLE VIII
PERFORMANCE COMPARISON BETWEEN CPSO AND ITS VARIANTS

NOELS, NOJLS, AND NOELS-NOJLS IN TERMS OF IGD AND

HV VALUES ON DTLZS AND WFGS

does not adopt JLS, and noELS-JLS does not adopt either

ELS or JLS. The comparison results on IGD and HV metrics

are summarized in Table VIII and the detail is reported in

Table S.V, in the supplementary material.

From Table VIII, we can see that CPSO gets the best IGD

values on 16 instances and the best HV values on 22 out of

32 instances, which are much better than the values obtained

by noELS, noJLS, and noELS-noJLS since noELS, noJLS,

and noELS-noJLS achieve the best IGD values on 7, 4, and

5 instances, and the best HV values on 10, 10, and 0 instances,

respectively. Particularly, the noELS-noJLS performs the worst

on most instances, showing that the two operators can improve

algorithm performance.

The problems with multimodal characteristics, e.g., DTLZ1,

DTLZ3, DTLZ6, DTLZ7, WFG2, WFG4, and WFG9, have

many local PFs. Compared with noELS, CPSO obtains signif-

icantly better or at least equal IGD values on all these problems

except the 5-objective WFG4, and performs better on all these

problems except the 5-objective WFG2 in terms of the HV

metric. Thus, the ELS does help the CPSO to jump out of local

optima. Specifically, on the 5-objective instances of WFG4

and WFG7, CPSO gets significantly worse IGD values but

better HV values. This may be their reversed concentration on

diversity and convergence since CPSO consumes more com-

putation on ELS to get more diverse solutions while noELS

has more generations to move faster toward the PF. Overall,

from the better performance of CPSO on most instances, it can

be seen that the adoption of ELS can improve the performance

of CPSO.

As for the JLS, from Table VIII, we can see that CPSO

performs significantly better than or equivalently to noJLS on

almost all problems in terms of both IGD and HV metrics.

TABLE IX
PERFORMANCE COMPARISON BETWEEN CPSO AND ITS VARIANTS

SP-RAND, SP-CD IN TERMS OF IGD AND

HV VALUES ON DTLZS AND WFGS

It shows that the JLS generates solutions on the areas of the

PF that are missed by the swarms and hence CPSO can get

well-diversified solutions to achieve better IGD and HV scores.

G. Benefit of Reference-Point-Based Selection

Method in SP Component

In this section, we investigate the influence of the reference-

point-based selection method in SP component for archive

update. As the number of objectives increases, the number of

nondominated solutions increases rapidly. The SP is expected

to control archive size and simultaneously ensure solution

diversity. We compare CPSO with two variants SP-rand and

SP-CD, where SP-rand is a CPSO variant that randomly selects

NA solutions from the nondominated solutions for updating

archive, and SP-CD selects NA solutions according to the CD

metric proposed in NSGA-II [6]. The results are summarized

in Table IX and the detail is reported in Table S.VI, in the

supplementary material. CPSO performs better than SP-rand

and SP-CD on 28 and 18 out of 32 instances, respectively, on

both of IGD and HV metrics. In contrast, SP-rand performs

better than CPSO on only three instances, i.e., two instances

of WFG1 and one 5-objective instance of WFG2, since a ran-

dom selection easily misses some areas of the PF. For SP-CD,

it performs better than CPSO on the 5-objective instances

of DTLZ2, DTLZ4, WFG2, WFG4, WFG5, and WFG9, but

worse than CPSO on their 10-objective instances. This shows

that CD metric fails to estimate solution diversity in a high-

dimensional objective space. It is interesting to observe that

SP-CD performs well on DTLZ7 and WFG1 with irregular

PFs, but poorly on DTLZ5, DTLZ6, and WFG3 who also have

irregular PFs. This shows that the CD metric may be able to

track the PF geometry of the problems and can handle some

problems with irregular PF. In general, compared with random

selection and CD metric, the reference-point-based selection

method can handle most of problems with regular or irregular

PFs and has advantages especially on 10-objective instances.

H. Influence of Parameter Settings

In this section, we investigate the influence of the param-

eters: population size, inertia weight ω, and acceleration

coefficients ci. DTLZ3 and WFG2 are chosen from DTLZs

and WFGs as examples since these two problems include most

typical features among the two test suits. Note that the param-

eters except the tested one remain the same as described in

Section IV-A.

1) Population Size: To demonstrate the influence of the

population size in each swarm, experiments are conducted

with different population size for each swarm of 10, 20,



600 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 4, AUGUST 2019

30, 40, and 50. The average IGD results are illustrated in

Fig. S.2(a) and (b), in the supplementary material. CPSO gets

similar results with population size in the range of [20, 40] on

WFG2 while works well in the range of [10, 20] on DTLZ3.

On 10-objective instances, a small population size also leads to

better results on DTLZ3 while on WFG2 the CPSO performs

better with a population size of 10 or in the range of [30, 50].

Although a large population size increases swarm diversity,

the degeneration of convergence still causes the poor results

on DTLZ3. Therefore, we set the population size as 20 for

5-objective and 10 for 10-objective problems. Therefore, the

total population size is 100 for all the problems.

2) Inertia Weight ω: We perform experiments on DTLZ3

and WFG2 with ω set as 0.1, 0.3, 0.5, 0.7, and 0.9, respec-

tively. From Fig. S.2(c), in the supplementary material, the

results show that the range of [0.1, 0.5] for the 5-objective

instance and the range of [0.5, 0.7] for the 10-objective

instance are promising on DTLZ3. For WFG2, the 5-objective

instance is less sensitive to ω value while the 10-objective

instance prefers a relatively large value in the range of

[0.7, 0.9]. This is because a large value is beneficial to global

search in a high-dimensional objective space. On the contrary,

a small value helps the algorithm to focus more on local areas

in a low-dimensional objective space. Thus, we set the value

of ω linearly decreasing from 0.9 to 0.4.

3) Acceleration Coefficients ci: The acceleration coeffi-

cients ci in the BOL strategy are tested in the range of

[0.5, 2.0] with step sizes of 0.1 as well as the value of 1.49,

with totally 17 × 17 = 289 combinations. The results are

illustrated in Fig. S.2(d)–(g), in the supplementary material.

In each subfigure, the projection of the 3-D surface is pre-

sented on the bottom of the 3-D space. For the 5-objective

DTLZ3, the combination of the ranges in the lower right cor-

ner seems poor, indicating that excessively large values (e.g.,

c1 > 1.8 and c2 > 1.6) are not suitable. However, for the 10-

objective DTLZ3, the combination of the ranges in the lower

left corner seems poor, while a range of [0.5, 1.8] for c1 and

a range of [1.0, 2.0] for c2 are preferred. For the 5-objective

WFG2, the algorithm is less sensitive to c1 and performs well

with c2 in the range of [1.0, 2.0]. For the 10-objective WFG2,

a range of [0.5, 1.8] for c1 and a range of [0.9, 1.6] for c2

perform well while the combination of two small values or

two large values performs poorly. This shows that a relatively

medium value for c1 and c2 benefits exploitation and faster

convergence. From these four instances, we can see that the ci

values are indeed problem dependent and should be carefully

considered. Generally speaking, the performance of CPSO is

less sensitive to c1 but more dependent on c2. CPSO can work

well in a relatively large range of [0.5, 1.8] for c1 but in a rela-

tively small range of [1.0, 1.6] for c2 on all the tested instances.

Specially, a too small (i.e., [0.5, 0.9]) or too large value (i.e.,

[1.7, 2.0]) of c2 may lead to less satisfactory results in some

cases. The former may cause false convergence due to the

lack of sufficient information to optimize the other objectives,

while the latter may cause excessively fast convergence and

get the deception of local optima. Therefore, a reasonable set-

ting of c1 and c2 helps to enhance the global search ability

of CPSO.

4) Combination Test: Since population size, ω, and ci inter-

act with each other, we also investigate their influence together

on various combinations. According to the above results, we

select values of 10, 20, and 30 for population size, 0.1, 0.5,

and 0.9 for ω, and 1.0, 1.49, and 2.0 for ci to construct dif-

ferent combinations. Note that c1 and c2 are set to the same

values in this test. These values are selected due to the rep-

resentativeness of their combinations according to the above

results. The results are reported in Table S.VII, in the sup-

plementary material. From Table S.VII, in the supplementary

material, we can see that the performance under different

parameter combinations is consistent with the above inde-

pendent tests. A population size of 20 can obtain relatively

good performance on 5-objective instances of both DTLZ3

and WFG2 whilst a population size of 10 is preferred by the

10-objective instances. For ω, the values of 0.1 and 0.5 are pre-

ferred by DTLZ3 while the values of 0.5 and 0.9 are preferred

by WFG2. For ci, the values of 1.0, 1.49, and 2.0 perform well

on different instances.

V. CONCLUSION

When solving MaOPs, traditional MOEAs face challenges

in terms of diversity and convergence. On the one hand, coevo-

lutionary mechanisms with multiple populations are beneficial

to maintain diversity for finding solutions well-distributed on

the whole PF. On the other hand, the poorly performed objec-

tives of a solution often become a bottleneck for the solution

to converge toward PF. These factors motivate our considera-

tion of CPSO, which incorporates the MPMO coevolutionary

framework for diversity enhancement and a novel BOL strat-

egy to optimize BO for convergence improvement. Multiple

swarms optimize different objectives concurrently and they

coevolve with the BOL strategy toward PF.

Experiments have been conducted on DTLZ and WFG

problems with various characteristics and different number of

objectives. IGD and HV metrics are adopted to evaluate the

algorithm performance. The experimental results show that,

compared with several state-of-the-art algorithms for MaOPs,

the proposed CPSO is promising. The proposed CPSO can

find a set of well-diversified and well-converged nondominated

solutions for MaOPs.

REFERENCES

[1] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-
objective optimization: A short review,” in Proc. IEEE Congr. Evol.

Comput., 2008, pp. 2424–2431.
[2] K. Deb and H. Jain, “An evolutionary many-objective optimization

algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints,” IEEE Trans. Evol.

Comput., vol. 18, no. 4, pp. 577–601, Aug. 2014.
[3] J. Maltese, B. M. Ombuki-Berman, and A. P. Engelbrecht, “A scalability

study of many-objective optimization algorithms,” IEEE Trans. Evol.

Comput., vol. 22, no. 1, pp. 79–96, Feb. 2018.
[4] L. M. Antonio and C. A. Coello Coello, “Coevolutionary multi-objective

evolutionary algorithms: A survey of the state-of-the-art,” IEEE Trans.

Evol. Comput., to be published, doi: 10.1109/TEVC.2017.2767023.
[5] H. Wang, L. Jiao, and X. Yao, “Two_Arch2: An improved two-archive

algorithm for many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 19, no. 4, pp. 524–541, Aug. 2015.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

http://dx.doi.org/10.1109/TEVC.2017.2767023


LIU et al.: CPSO WITH BOL STRATEGY FOR MANY-OBJECTIVE OPTIMIZATION 601

[7] T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-,
and indicator-based methods in many-objective optimization,” in
Evolutionary Multi-Criterion Optimization (LNCS 4403). Heidelberg,
Germany: Springer, 2007, pp. 742–756.

[8] Z. N. He and G. Yen, “Many-objective evolutionary algorithm: Objective
space reduction and diversity improvement,” IEEE Trans. Evol. Comput.,
vol. 20, no. 1, pp. 145–160, Feb. 2016.

[9] R. C. Purshouse and P. J. Fleming, “On the evolutionary optimization of
many conflicting objectives,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 770–784, Dec. 2007.

[10] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[11] K. C. Tan, Y. J. Yang, and C. K. Goh, “A distributed cooperative coevo-
lutionary algorithm for multiobjective optimization,” IEEE Trans. Evol.

Comput., vol. 10, no. 5, pp. 527–549, Oct. 2006.

[12] Z.-H. Zhan et al., “Multiple populations for multiple objectives: A
coevolutionary technique for solving multiobjective optimization prob-
lems,” IEEE Trans. Cybern., vol. 43, no. 2, pp. 445–463, Apr. 2013.

[13] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.

IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[14] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in
Proc. IEEE Congr. Evol. Comput., 1998, pp. 69–73.

[15] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive parti-
cle swarm optimization,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 39, no. 6, pp. 1362–1381, Dec. 2009.

[16] Z.-G. Chen et al., “Multiobjective cloud workflow scheduling: A multi-
ple populations ant colony system approach,” IEEE Trans. Cybern., to
be published, doi: 10.1109/TCYB.2018.2832640.

[17] K. Deb, M. Mohan, and S. Mishra, “Evaluating the-domination based
multi-objective evolutionary algorithm for a quick computation of
Pareto-optimal solutions,” Evol. Comput., vol. 13, no. 4, pp. 501–525,
2005.

[18] Y. Yuan, H. Xu, B. Wang, and X. Yao, “A new dominance relation-
based evolutionary algorithm for many-objective optimization,” IEEE

Trans. Evol. Comput., vol. 20, no. 1, pp. 16–37, Feb. 2016.

[19] S. Yang, M. Li, X. Liu, and J. Zheng, “A grid-based evolutionary algo-
rithm for many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 17, no. 5, pp. 721–736, Oct. 2013.

[20] M. Li, S. Yang, and X. Liu, “Shift-based density estimation for Pareto-
based algorithms in many-objective optimization,” IEEE Trans. Evol.

Comput., vol. 18, no. 3, pp. 348–365, Jun. 2014.

[21] X. Y. Zhang, Y. Tian, and Y. C. Jin, “A knee point-driven evolutionary
algorithm for many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 19, no. 6, pp. 761–776, Dec. 2015.

[22] J. Cheng, G. G. Yen, and G. Zhang, “A many-objective evolutionary
algorithm with enhanced mating and environmental selections,” IEEE

Trans. Evol. Comput., vol. 19, no. 4, pp. 592–605, Aug. 2015.

[23] B. Li, K. Tang, J. Li, and X. Yao, “Stochastic ranking algorithm for
many-objective optimization based on multiple indicators,” IEEE Trans.

Evol. Comput., vol. 20, no. 6, pp. 924–938, Dec. 2016.

[24] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in Proc. Parallel Prob. Solving Nat., 2004, pp. 832–842.

[25] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective
selection based on dominated hypervolume,” Eur. J. Oper. Res., vol. 181,
no. 3, pp. 1653–1669, Sep. 2007.

[26] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Hypervolume-
based multiobjective optimization: Theoretical foundations and practical
implications,” Theor. Comput. Sci., vol. 425, no. 1, pp. 75–103, 2012.

[27] M. Fleischer, “The measure of Pareto optima applications to multiobjec-
tive metaheuristics,” in Proc. Evol. Multi Crit. Optim., Faro, Portugal,
2003, pp. 519–533.

[28] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based
many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp. 45–76,
Mar. 2011.

[29] R. Wang, R. C. Purshouse, and P. J. Fleming, “Preference-inspired
coevolutionary algorithms for many-objective optimization,” IEEE

Trans. Evol. Comput., vol. 17, no. 4, pp. 474–494, Aug. 2013.

[30] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector
guided evolutionary algorithm for many-objective optimization,” IEEE

Trans. Evol. Comput., vol. 20, no. 5, pp. 773–791, Oct. 2016.

[31] E. J. Hughes, “Multiple single objective Pareto sampling,” in Proc. IEEE

Congr. Evol. Comput., 2003, pp. 2678–2684.

[32] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Adaptation
of scalarizing functions in MOEA/D: An adaptive scalarizing func-
tion based multiobjective evolutionary algorithm,” Evolutionary Multi-

Criterion Optimization, EMO 2009 (LNCS 5467). Heidelberg, Germany:
Springer, 2009, pp. 438–452.

[33] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Simultaneous
use of different scalarizing functions in MOEA/D,” in Proc. Genet. Evol.

Comput., 2010, pp. 519–526.

[34] R. Wang, Z. Zhou, H. Ishibuchi, T. Liao, and T. Zhang, “Localized
weighted sum method for many-objective optimization,” IEEE Trans.

Evol. Comput., vol. 22, no. 1, pp. 3–18, Feb. 2018.

[35] R. Wang, Q. Zhang, and T. Zhang, “Decomposition based algorithms
using Pareto adaptive scalarizing methods,” IEEE Trans. Evol. Comput.,
vol. 20, no. 6, pp. 821–837, Dec. 2016.

[36] W. Hu, G. G. Yen, and G. Luo, “Many-objective particle swarm opti-
mization using two-stage strategy and parallel cell coordinate system,”
IEEE Trans. Cybern., vol. 47, no. 6, pp. 1446–1459, Jun. 2016.

[37] Q. Lin et al., “Particle swarm optimization with a balanceable fit-
ness estimation for many-objective optimization problems,” IEEE Trans.

Evol. Comput., vol. 22, no. 1, pp. 32–46, Feb. 2018.

[38] A. Britto, S. Mostaghim, and A. Pozo, “Iterated multi-swarm: A multi-
swarm algorithm based on archiving methods,” in Proc. Genet. Evol.

Comput., 2013, pp. 583–590.

[39] A. de Campos, A. T. R. Pozo, and E. P. Duarte, “Evaluation of gossip
vs. broadcast as communication strategies for multiple swarms solving
MaOPs,” in Proc. IEEE Congr. Evol. Comput., 2013, pp. 1499–1506.

[40] J. L. Matos and A. Britto, “Multi-swarm algorithm based on archiving
and topologies for many-objective optimization,” in Proc. IEEE Congr.

Evol. Comput., 2017, pp. 1877–1884.

[41] Y. G. Woldesenbet and G. G. Yen, “Dynamic evolutionary algorithm
with variable relocation,” IEEE Trans. Evol. Comput., vol. 13, no. 3,
pp. 500–513, Jun. 2009.

[42] C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang, “An
adaptive multipopulation framework for locating and tracking multi-
ple optima,” IEEE Trans. Evol. Comput., vol. 20, no. 4, pp. 590–605,
Aug. 2016.

[43] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and decompo-
sition,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716,
Oct. 2015.

[44] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test prob-
lems for evolutionary multiobjective optimization,” in Evolutionary

Multiobjective Optimization (Advanced Information and Knowledge
Processing). London, U.K.: Springer, 2005, pp. 105–145.

[45] S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiob-
jective test problems and a scalable test problem toolkit,” IEEE Trans.

Evol. Comput., vol. 10, no. 5, pp. 477–506, Oct. 2006.

[46] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. G. da Fonseca, “Performance assessment of multiobjective
optimizers: An analysis and review,” IEEE Trans. Evol. Comput., vol. 7,
no. 2, pp. 117–132, Apr. 2003.

[47] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary
algorithms: A comparative case study,” in Proc. Parallel Prob. Solving

Nat., 1998, pp. 292–301.

[48] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constric-
tion factors in particle swarm optimization,” in Proc. IEEE Congr. Evol.

Comput., 2002, pp. 84–88.

[49] M. Jiang, Y. P. Luo, and S. Y. Yang, “Stochastic convergence analy-
sis and parameter selection of the standard particle swarm optimization
algorithm,” Inf. Process. Lett., vol. 102, no. 1, pp. 8–16, 2007.

[50] R. Poli and D. Broomhead, “Exact analysis of the sampling distribution
for the canonical particle swarm optimiser and its convergence during
stagnation,” in Proc. Genet. Evol. Comput., 2007, pp. 134–141.

[51] R. Poli, “Mean and variance of the sampling distribution of parti-
cle swarm optimizers during stagnation,” IEEE Trans. Evol. Comput.,
vol. 13, no. 4, pp. 712–721, Aug. 2009.

[52] V. Gazi, “Stochastic stability analysis of the particle dynamics in
the PSO algorithm,” in Proc. IEEE Int. Symp. Intell. Control, 2012,
pp. 708–713.

[53] C. W. Cleghorn and A. P. Engelbrecht, “Particle swarm variants:
Standardized convergence analysis,” Swarm Intell., vol. 9, nos. 2–3,
pp. 177–203, 2015.

[54] C. W. Cleghorn and A. P. Engelbrecht, “Particle swarm stability: A
theoretical extension using the non-stagnate distribution assumption,”
Swarm Intell., vol. 12, no. 1, pp. 1–22, 2018.

http://dx.doi.org/10.1109/TCYB.2018.2832640


602 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 4, AUGUST 2019

[55] H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “Reference
point specification in inverted generational distance for triangular
linear Pareto front,” IEEE Trans. Evol. Comput., to be published,
doi: 10.1109/TEVC.2017.2776226.

[56] R. Wang, R. C. Purshouse, and P. J. Fleming, “Preference-inspired
co-evolutionary algorithms using weight vectors,” Eur. J. Oper. Res.,
vol. 243, no. 2, pp. 423–441, 2015.

Xiao-Fang Liu (S’14) received the B.S. degree
in computer science from Sun Yat-Sen University,
Guangzhou, China, in 2015.

She is currently a Research Fellow with the
South China University of Technology, Guangzhou,
China. Her current research interests include artifi-
cial intelligence, evolutionary computation, swarm
intelligence, and their applications in design and
optimization, such as cloud computing resources
scheduling.

Zhi-Hui Zhan (S’18–M’13–SM’18) received the
bachelor’s degree and the Ph.D. degree in computer
science from the Department of Computer Science,
Sun Yat-Sen University, Guangzhou, China, in 2007
and 2013, respectively.

He is currently the Changjiang Scholar Young
Professor and the Pearl River Scholar Young
Professor with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou, China. His current research interests
include evolutionary computation algorithms, swarm

intelligence algorithms, and their applications in real-world problems, and in
environments of cloud computing and big data.

Dr. Zhan was a recipient of the Doctoral Dissertation Award by
the China Computer Federation Outstanding Dissertation and the IEEE
Computational Intelligence Society Outstanding Dissertation, the Outstanding
Youth Science Foundation from the National Natural Science Foundations of
China in 2018, and the Wu Wen Jun Artificial Intelligence Excellent Youth
Award from the Chinese Association for Artificial Intelligence in 2017. He is
listed as one of the Most Cited Chinese Researchers in Computer Science.

Ying Gao received the bachelor’s degree and the,
master’s degree in computer science from the Central
South University of China, Changsha, China, in
1997 and 2000, respectively, and the Ph.D. degree in
computer science from the South China University
of Technology, Guangzhou, China, in 2006.

She is currently a Professor with the School
of Computer Science and Engineering, South
China University of Technology. She has pub-
lished over 30 papers in international journals and
conferences. Her current research interests include

computer vision, software architecture and network security.

Jie Zhang received the master’s degree in com-
puter science from China University of Mining and
Technology, Xuzhou, China, in 1999.

She is currently an Associate Professor with the
Beijing University of Chemical Technology, Beijing,
China. Her current research interests include formal
verification and PHM for power and embedded sys-
tem design.

Ms. Zhang is a member of Chinese Institute of
Electronics Embedded Expert Committee.

Sam Kwong (F’13) received the B.Sc. degree
from the State University of New York at Buffalo,
Buffalo, NY, USA, in 1983, the M.A.Sc. degree
in electrical engineering from the University of
Waterloo, Waterloo, ON, Canada, in 1985, and the
Ph.D. degree from the University of Hagen, Hagen,
Germany, in 1996.

From 1985 to 1987, he was a Diagnostic Engineer
with the Control Data Canada, Bloomington, MN,
USA, where he designed the diagnostic software to
detect the manufacture faults of the VLSI chips in

the Cyber 430 machine. He later joined the Bell Northern Research Canada,
Ottawa, ON, Canada, as a Member of Scientific staff. In 1990, he joined the
Department of Electronic Engineering, City University of Hong Kong, Hong
Kong, as a Lecturer, where he is currently a Professor with the Department of
Computer Science. His current research interests include pattern recognition,
evolutionary computations, and video analytics.

Prof. Kwong was appointed as IEEE Distinguished Lecturer for IEEE
Systems, Man and Cybernetics (SMC) Society in 2017. He has been the
Vice President for IEEE SMC for conferences and meetings since 2014.

Jun Zhang (F’17) received the Ph.D. degree in elec-
trical engineering from the City University of Hong
Kong, Hong Kong, in 2002.

He is currently a Changjiang Chair Professor with
the School of Computer Science and Engineering,
South China University of Technology, Guangzhou,
China. His current research interests include com-
putational intelligence, cloud computing, high per-
formance computing, data mining, wireless sensor
networks, operations research, and power electronic
circuits. He has published over 100 technical papers

in the above areas.
Dr. Zhang was a recipient of the China National Funds for Distinguished

Young Scientists from the National Natural Science Foundation of China in
2011 and the First-Grade Award in Natural Science Research from the
Ministry of Education, China, in 2009. He is currently an Associate Editor of
the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, the IEEE
TRANSACTIONS ON CYBERNETICS, and the IEEE TRANSACTIONS ON

INDUSTRIAL ELECTRONICS.

http://dx.doi.org/10.1109/TEVC.2017.2776226

