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Abstract — Wealthy individuals may be less tempted to defect than those with comparatively low
payoffs. To take this into consideration, we introduce coevolutionary success-driven multigames
in structured populations. While the core game is always the weak prisoner’s dilemma, players
whose payoffs from the previous round exceed a threshold adopt only a minimally low temptation
to defect in the next round. Along with the strategies, the perceived strength of the social dilemma
thus coevolves with the success of each individual player. We show that the lower the threshold
for using the small temptation to defect, the more the evolution of cooperation is promoted.
Importantly, the promotion of cooperation is not simply due to a lower average temptation to
defect, but rather due to a dynamically reversed direction of invasion along the interfaces that
separate cooperators and defectors on regular networks. Conversely, on irregular networks, in
the absence of clear invasion fronts, the promotion of cooperation is due to intermediate-degree
players. At sufficiently low threshold values, these players accelerate the erosion of defectors and
significantly shorten the fixation time towards more cooperative stationary states. Coevolutionary

multigames could thus be the new frontier for the swift resolution of social dilemmas.

Copyright © EPLA, 2014

Evolutionary multigames [1,2] or mixed games [3] are
one of the more recent and very promising developments
in evolutionary game theory [4-8]. Inspired by the early
research on dynamic stability in symmetric games with
two decisions [9], evolutionary multigames enable the us-
age of different payoff matrices in the realm of the same
competitive process. This might be particularly useful in
the realm of social dilemmas, where the pursuit of short-
term individual benefits may quickly result in the erosion
of cooperation, and ultimately also in the “tragedy of the
commons” [10]. However, when individuals are torn be-
tween what is best for them and what is best for the so-
ciety, one should not overlook the importance of personal
success and status. To illustrate the point, imagine two in-
dividuals wanting to use public transport. One is wealthy
and the other is poor. Under normal circumstances, the
wealthy individual is less likely to defect by using the
services without paying for the ticket. Put differently,
the temptation to defect is certainly higher for the poor

individual. Thus, when we face a dilemma, we are likely
to perceive differently what we might gain by choosing
to defect, and evolutionary multigames provide the the-
oretical framework for properly addressing precisely such
situations.

No social dilemma has received as much attention as the
prisoner’s dilemma game [11-32], and this is why we also
adopt it as the core game in this letter. Each instance of
the game is contested by two players who have to decide
simultaneously whether they want to cooperate or defect,
and the dilemma is given by the fact that although mutual
cooperation yields the highest collective payoff, a defector
will do better if the opponent decides to cooperate. Due to
the different sources of heterogeneity, however, the sym-
metry in payoff elements is not necessarily fulfilled [33,34].
The key question that we aim to answer is: how will the in-
troduction of different payoff matrices that are used by in-
dividual players based on their success in previous rounds
of the game influence the cooperation level in the whole
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population? Although previous research has focused on
situations where many different games are played simulta-
neously [1-3,9], in the present work we consider identical
games, but with different payoff values. Furthermore, we
consider a coevolutionary setup [35], where along with the
strategies the perceived strength of the temptation to de-
fect coevolves with the success of each individual player.

As we will show, on regular networks success-driven se-
lection of the temptation to defect leads to dynamically
reversed direction of invasion along the interfaces that
separate cooperators and defectors, while on irregular net-
works the promotion of cooperation is due to intermediate-
degree players that accelerate the erosion of defectors.
This is significantly different from the expected outcome
in well-mixed populations, where the stationary state can
be deduced by the average values of the employed pay-
off elements. The study of coevolutionary multigames
in structured populations thus highlights the usefulness
of interdisciplinary research centered around statistical
physics, which has recently revealed many new ways by
means of which social dilemmas could be resolved in favor
of cooperative behavior [35-43].

Formally, we study pairwise evolutionary games, where
mutual cooperation yields the reward R, mutual defection
leads to punishment P, and the mixed choice gives the co-
operator the sucker’s payoff S and the defector the temp-
tation 7. Within this setup we have the weak prisoner’s
dilemma game if T'> R > P = S. Without loss of gener-
ality weset R=1,P=5=0and T > 1. However, T' > 1
is a free parameter only for those players z whose payoff
from the previous round II? is not larger than a thresh-
old ©. If II? > ©, then player x uses only a minimally
low temptation to defect 77 < T in the next round of the
game. We will use 77 = 1.01 as a fixed value, which still
ensures a higher payoff for defectors and thus preserves
the weak prisoner’s dilemma ranking at all times.

We use a L x L square lattice with periodic boundary
conditions as the simplest interaction network to describe
a structured population, and we also consider scale-free
networks of size N as a somewhat more apt description of
realistic social and technological networks [44]. In what
follows, we will specify the applied system size with the
presented results, although we emphasize that our results
are robust and valid in the large system size limit, when
the latter sufficiently exceeds the typical correlation length
of the emerging spatial patterns. To make the results on
different networks comparable, we apply threshold values
that are proportional to their average degree (z) = z,,
such that © = 2z, H, where H denotes the scaling factor of
the threshold.

Unless stated differently, for example to illustrate a spe-
cific invasion process as in fig. 2, we use random initial con-
ditions such that cooperators s, = C' and defectors s, = D
are uniformly distributed across the network. We simulate
the evolutionary process in accordance with the standard
Monte Carlo simulation procedure comprising the follow-
ing elementary steps. First, a randomly selected player

x acquires its payoff I, by playing the game with all its
neighbors. Next, player  randomly chooses one neighbor
y, who then also acquires its payoff I, in the same way
as previously player x. Lastly, player = adopts the strat-
egy s, from player y with a probability determined by the
Fermi function

1
" 1+ exp[(IL, — I1,) /K]

W(sy — sz) (1)
where K = 0.1 quantifies the uncertainty related to the
strategy adoption process [36]. The selected value en-
sures that better-performing players are readily followed
by their neighbors, although adopting the strategy of a
player that performs worse is not impossible either. This
accounts for imperfect information, errors in the evalu-
ation of the opponent, and similar unpredictable factors.
Each full Monte Carlo step (MCS) gives a chance for every
player to change its strategy once on average. All simula-
tion results are obtained on networks with N = 10%-2-10°
players or more depending on the proximity to phase
transition points, and the fraction of cooperators fo is
determined in the stationary state after a sufficiently long
relaxation extending up to 2-10° MCS. To further improve
accuracy, the final results are averaged over 1000 or more
independent runs.

Before turning to the results, it is worth pointing out
that the selection of the temptation for each particular
player x depends only on its payoff from the one previ-
ous round II?. It is possible to extend the “memory” of
players and thus to consider payoffs from M > 1 previ-
ous rounds, but the main conclusions remain the same as
presented below. Notably, considering M > 1 still does
not involve traditional “memory effects” in evolutionary
games because player x does not record past strategies of
its neighbors, but simply accumulates own payoffs from
the M previous rounds. We also note that we have ex-
plored structured populations other than those described
by the square lattice and the scale-free network, and we
have also found that the main results remain robust.

We begin by exploring how the fraction of cooperators
fo varies in dependence on the temptation 7" and the
threshold scaling factor H. As shown in the main panel
of fig. 1, the lower the value of H, the larger the value
of T at which cooperators are still able to survive. Natu-
rally, at H = 0 everybody would play the game with the
minimal temptation 77 = 1.01, while for larger values of
H players will increasingly often use the higher T' value.
When the threshold © = 2z, H exceeds the maximally at-
tainable payoff for an individual player, we recover the
uniform (classical) model, where every defector uses T at
all times.

If the game were contested in a well-mixed population,
the reported promotion of cooperation in fig. 1 would sim-
ply be the consequence of an overall lower average value
of T (see [3] for details). In structured populations, how-
ever, this is not the case because here only a minority of
players is using the smaller 77 < T" value. To demonstrate
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Fig. 1: (Colour on-line) The fraction of cooperators fc in
dependence on the temptation T, as obtained for different
threshold scaling factors H (see legend) on the square lattice.
For comparison, we also show results obtained with the uni-
form (classical) model, where every player x uses the same
temptation T, regardless of its success in the previous round
—irrespectively of IT2. The inset shows the fraction of all play-
ers using T (satisfying I12 > ©), along with the fraction of co-
operators fc, as obtained for H = 0.5. We have used lattices
with linear size L = 400.

this, we show in the inset of fig. 1 the fraction of those
players who use T3 instead of the higher T' value when
calculating their payoffs, as obtained for H = 0.5. For
convenience, we also plot fo in dependence on T at the
same H value. Interestingly, the fraction of players using
T is getting smaller as T increases, and it lastly drops to
zero when the system terminates into the all-D phase. Of
course, the extinction of those using 77 at that point is
understandable since in the absence of cooperators there
is no one to exploit, and hence everybody has payoff zero
and fails to exceed © = z,H.

To understand the reported promotion of cooperation,
instead of a “static” or equilibrium argument that works
for well-mixed populations, in our case we have to look
more carefully at the microscopic dynamics. We find that,
in fact, the positive effect has a dynamical origin: when
a defector collects a large payoff that satisfies II, > z,H,
then its next payoff will be lower due to the usage of the
smaller T} value. Consequently, defectors fail to spread
effectively, which ultimately gives rise to a higher station-
ary fraction of C players. This effect can be demonstrated
transparently by monitoring the movement of interfaces
between competing strategies, where in the prepared ini-
tial state the strategies are arranged into stripes. The evo-
lution of cooperation from such special initial conditions
is plotted in fig. 2 for different values of H. Initially, when
the interfaces are straight, cooperators have an advantage
regardless of H (all curves rise) because they are supported
by almost all their neighbors, while at the same time the
neighboring defectors can collect a high payoff from only a
single C' neighbor. In other words, network reciprocity is
in full effect [45]. But after a short time, when interfaces
become irregular, the evolution depends sensitively on the
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Fig. 2: (Colour on-line) The competition between cooperators
and defectors (fc — fp) along initially straight interfaces, as
obtained for different threshold scaling factors H (see legend)
on the square lattice. We have used prepared initial states,
such that cooperators and defectors were arranged in stripes
of width W = 20 on a square lattice with linear size L =
1000. It can be observed that initially, when straight interfaces
maximize the efficiency of network reciprocity, cooperators are
more successful than defectors regardless of the value of H. As
time goes on and the interfaces roughen, however, sufficiently
small values of H are able to reverse the direction of invasion
and keep it in favor of cooperators. Note that for larger values
of H the cooperators start giving in to defectors, and eventually
fc = 0 will be reached for H = 0.75 and H = 1 (see fig. 1).
We have used the temptation 7" = 1.3.

value of H. While for H = 0.75 and H = 1 defectors start
spreading into the territory of cooperators to eventually
yield the fo = 0 phase, for sufficiently low values of H we
can observe a dynamically reversed direction of invasion
along the interfaces that separate cooperators and defec-
tors. Cooperators are therefore able to survive at adverse
conditions that are beyond reach for network reciprocity
alone.

On irregular networks, where clear invasion fronts are
absent, one may expect slightly different behavior from
what we have reported above for the square lattice (qual-
itatively identical result can be obtained also for other
regular networks). To demonstrate this, we show in fig. 3
results obtained on the scale-free network. It can be ob-
served that, like on the square lattice, the lower the value
of H, the larger the value of T at which cooperators are
still abundant in the population. We note that, for clarity,
the considered temptations in fig. 3 significantly exceed
the traditional T' = 2 prisoner’s dilemma limit. Moreover,
because of the presence of hubs, we need a much higher
value of H to recover the uniform (classical) model, where
everybody uses T' > 77 at all times. But this also means
that we can allow more defectors to use the higher T" value
(apply larger H values) and still have a highly cooperative
society.

This additional promotion of cooperation might be re-
lated to the heterogeneity of the interaction topology [39],
where it is generally believed that the highly connected
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Fig. 3: (Colour on-line) The fraction of cooperators fc in de-
pendence on the temptation T, as obtained for different thresh-
old scaling factors H (see legend) on the scale-free network. We
have used networks with N = 10* players, and the displayed
results were averaged over 5000 independent runs, so that the
error bars are comparable with the size of the symbols.
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Fig. 4: (Colour on-line) The fraction of nodes that are occupied
by cooperators in dependence on the temptation 7', as obtained
for H = 2.5 on the scale-free network. Nodes are classified
into three categories, namely for having small, medium and
large degree. For comparison, we also show the overall level of
cooperation in the network.

players rule the evolutionary process [13,15,18]. In our
case, the hubs can easily collect high payoffs, and there-
fore they will always apply the low 77 value. This, how-
ever, weakens only the defectors that occupy the hubs,
but not the cooperators. But importantly, this statement
is valid for almost any H value, and hence it cannot ex-
plain the strong dependence of the cooperation level on H
that we report in fig. 3. Our argument can be supported
convincingly by comparing the cooperation level among
players that have the same “degree class”. We therefore
divide the players into three categories, such that the de-
gree span belonging to each group is equally large on the
logarithmic scale. This allows us to determine the frac-
tion of cooperators among players having small, medium
and large degree. A representative comparison is plotted
in fig. 4. While the cooperation level remains high among
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Fig. 5: (Colour on-line) Representative time evolution of the
fraction of cooperators fc, as obtained for H = 1 (dotted red
line) and H = 50 (solid green line) at 7" = 1.5 if starting from
a random initial state on scale-free network. The inset shows
the average fixation time 7 in dependence on threshold scaling
factors H. Supporting the results in the main panel, it can
be observed that the fixation time needed to reach fc = 1
decreases significantly as H decreases. We have used scale-free
networks with N = 10* players, and the displayed results were
averaged over 5000 independent runs.

the hubs, they cannot influence the rest of the popula-
tion, and accordingly, the average cooperation level may
decrease significantly at high values of T. This behav-
ior is significantly different from the previously uncovered
mechanism that is responsible for augmented cooperation
levels on heterogeneous networks when uniform payoff val-
ues were applied [13,36]. In the latter case, the asymmetric
information flow where the hubs were always followed by
small-degree players is essential. In our case, however, the
crucial difference is due to the behavior of intermediate-
degree players, who are responsible for spreading the suc-
cessful strategy from hubs towards the abundant “minor”
(weakly connected) players. If defectors could remain
powerful among the middle class, then they could block
the invasion of cooperation. But if intermediate-degree de-
fectors are weakened due to the application of a sufficiently
low value of H, then only cooperative hubs can “spread”
their strategy successfully across the whole population.
To corroborate the above argumentation, we compare
the evolutionary dynamics at different values of H, but
when the final outcome is identical. Results presented in
fig. 3 show that at 7' = 1.5 the system always evolves
to a cooperator-dominated state, independently of the H
value. However, results presented in fig. 5 demonstrate
that the dynamics to reach the fo = 1 phase does depend
sensitively on the applied threshold. At H = 50 (solid
green line), where due to the high threshold intermediate-
degree defectors remain relatively strong, the resistance
against cooperators persists much longer than at H = 1.
Ultimately, fo = 1is always reached, but the fixation time
at H = 1, where middle class defectors are forced to use
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Fig. 6: (Colour on-line) The fraction of cooperators fc in de-
pendence on the temptation T', as obtained for different thresh-
old scaling factors H (see legend) on the scale-free network.
Here the reversed coevolutionary rule is applied, such that
“wealthy” players who fulfill TTIZ > © use T > Ti, while the
“poor” players use T3 < T. Evidently, the evolution of co-
operation can be promoted just as well as with the original
coevolutionary rule, for which results are presented in fig. 3.

the minimally low 7} < T value, is much shorter. Natu-
rally, each individual fixation time can depend sensitively
on the generated network and on the initial distribution
of strategies. Therefore, to obtain conclusive results, we
have averaged the fixation time over a large number of
independent runs. As the inset of fig. 5 shows, the av-
erage fixation time indeed increases unambiguously with
increasing values of H, and this despite the fact that the
behavior of the leading hubs remains unchanged.

The important role of intermediate-degree players, or
alternatively, only the second-order importance of hubs
(which is an unexpected results by itself), can be veri-
fied effectively if we modify the microscopic dynamics so
that “wealthy” players, those whose payoffs fulfill IT? > ©,
use the actual T" value while the unsuccessful players use
the minimally low 77 < T. Although this is an obvi-
ously “unfair” rule where the cooperators are expected
to struggle, it is perfectly suited for our purposes at this
point. Moreover, because of the applied coevolutionary
rule, cooperators actually still fare very well against the
defectors. Indeed, the results obtained with the reversed
coevolutionary rule presented in fig. 6 are comparable to
the results obtained with the original coevolutionary rule
shown in fig. 3. Naturally, in the reversed case, we recover
the uniform (classical) results on the scale-free network
only at the small threshold limit, when all players use the
higher T value at all times.

To further demonstrate the decisive role of the middle
class —players with intermediate degree within the
network— we have again measured the fixation times at
different threshold scaling factors H when the final state is
an all-C' phase. For the reversed coevolutionary rule, how-
ever, we have used a slightly smaller 7" = 1.4 value than for
the original coevolutionary rule (see fig. 5). As the results
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Fig. 7: (Colour on-line) The average fixation time 7 in depen-
dence on the threshold scaling factor H, as obtained for the
original coevolutionary rule (denoted as “top”) and for the re-
versed coevolutionary rule (denoted as “bottom”) at T' = 1.4.
We have used scale-free networks with N = 10" players. The
displayed results were averaged over 5000 independent runs, so
that the error bars are comparable with the size of the symbols.

presented in fig. 7 show, for the reversed coevolutionary
rule, too, there is again a significant difference in how fast
the same final state is reached. Indeed, a fast transition to
the pure C phase can only be reached when intermediate-
degree defectors are “weakened” by the necessity to use
the lower threshold value.

Summarizing, we have shown that the introduction of
coevolutionary multigames in structured populations re-
veals new ways for the resolution of social dilemmas.
While this may be an expected consequence of the fact
that players in structured populations have a limited
interaction range, more importantly, our model also illus-
trates that the stationary state in coevolutionary multi-
games cannot be deduced simply by the average values
of the employed payoff elements. On regular networks,
such as the square lattice as the simplest approximation
of a structured population, cooperation benefits from dy-
namical reversals of the spreading direction of interfaces
that separate cooperators and defectors. We have demon-
strated this by studying the evolution of cooperation with
prepared initial conditions, which have revealed acceler-
ated and persistent interface expansion towards the re-
gion of defectors. However, on irregular networks, such
as the scale-free network as a simple theoretical proxy
for social and technological networks, cooperation bene-
fits from the middle class players, which significantly ac-
celerate the erosion of defectors, thereby shortening the
fixation times towards highly cooperative states. Inter-
estingly, we have shown that, even if successful players
adopt higher temptation values and unsuccessful players
adopt the minimally low temptation values, the evolution
of cooperation is still promoted significantly. Thus, it ap-
pears that the details of the coevolutionary process are of
secondary importance. What matters most is simply the
possibility for individual players to express their differing
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perception of the situation, without much regard for the
details of the perception itself.

We note that all the presented results are robust to vari-
ations of the interaction network, and can be observed also
if the payoffs are collected from more rounds from the past
and if the social dilemma is different from the prisoner’s
dilemma, overall indicating a high degree of universality.
We conclude that coevolutionary multigames might be the
new frontier for the identification of new mechanisms that
lead to the swift resolution of social dilemmas.
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