
Journal of Machine Learning Research 18 (2017) 1-49 Submitted 3/16; Revised 1/17; Published 5/17

COEVOLVE: A Joint Point Process Model for Information

Diffusion and Network Evolution∗✸

Mehrdad Farajtabar mehrdad@gatech.edu

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA

Yichen Wang yichen.wang@gatech.edu

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA

Manuel Gomez-Rodriguez manuelgr@mpi-sws.org

MPI for Software Systems
Paul-Ehrlich-Strasse, 67663 Kaiserslautern
Germany

Shuang Li sli370@gatech.edu

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332, USA

Hongyuan Zha zha@cc.gatech.edu

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA

Le Song lsong@cc.gatech.edu

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332, USA

Editor: Edo Airoldi

Abstract

Information diffusion in online social networks is affected by the underlying network
topology, but it also has the power to change it. Online users are constantly creating new
links when exposed to new information sources, and in turn these links are alternating
the way information spreads. However, these two highly intertwined stochastic processes,
information diffusion and network evolution, have been predominantly studied separately,
ignoring their co-evolutionary dynamics.

We propose a temporal point process model, Coevolve, for such joint dynamics,
allowing the intensity of one process to be modulated by that of the other. This model
allows us to efficiently simulate interleaved diffusion and network events, and generate

. ∗Preliminary version of this work appeared in (Farajtabar et al., 2015b).

. ✸ Implementation codes are available at https://github.com/farajtabar/Coevolution
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traces obeying common diffusion and network patterns observed in real-world networks
such as Twitter. Furthermore, we also develop a convex optimization framework to learn
the parameters of the model from historical diffusion and network evolution traces. We
experimented with both synthetic data and data gathered from Twitter, and show that our
model provides a good fit to the data as well as more accurate predictions than alternatives.

Keywords: social networks, information diffusion, network structure, co-evolutionary
dynamics, point processes, Hawkes process, survival analysis

1. Introduction

Online social networks, such as Twitter or Weibo, have become large information net-
works where people share, discuss and search for information of personal interest as well as
breaking news (Kwak et al., 2010). In this context, users often forward to their followers
information they are exposed to via their followees, triggering the emergence of information
cascades that travel through the network (Cheng et al., 2014), and constantly create new
links to information sources, triggering changes in the network itself over time. Importantly,
recent empirical studies with Twitter data have shown that both information diffusion and
network evolution are coupled and network changes are often triggered by information dif-
fusion (Antoniades and Dovrolis, 2015; Weng et al., 2013; Myers and Leskovec, 2014).

While there have been many recent works on modeling information diffusion (Gomez-
Rodriguez et al., 2010; Du et al., 2013; Cheng et al., 2014; Farajtabar et al., 2015a) and
network evolution (Chakrabarti et al., 2004; Leskovec et al., 2008, 2010), most of them
treat these two stochastic processes independently and separately, ignoring the influence
one may have on the other over time. More notably, Weng et al. (2013) were the first
to show experimental evidence that information diffusion influences network evolution in
microblogging sites both at system-wide and individual levels. In particular, they studied
Yahoo! Meme, a social micro-blogging site similar to Twitter, which was active between
2009 and 2012, and showed that information diffusion causes about 24 % of the new links,
and that the likelihood of a new link from a user to another increases with the number of
posts by the second user seen by the first one. Also, Antoniades and Dovrolis (2015) studied
the temporal characteristics of retweet-driven connections within the Twitter network and
realized that the number of retweets is an important factor to infer such connections. They
showed that links created due to information diffusion account for 42 % of new links, and
are rather infrequent, compared to tweets and retweets, but they are responsible for a large
percentage of the new links in Twitter.

However, there are a few limitations in the above-mentioned studies. First, they only
characterize the effect that information diffusion has on the network dynamics, or the vice
versa, but not the bidirectional influence. Second, previous studies are mostly empirical and
only make binary predictions on link creation events without precise timing. For example,
the work of (Weng et al., 2013; Antoniades and Dovrolis, 2015) predict whether a new link
will be created based on the number of retweets; and, Myers and Leskovec (2014) predict
whether a burst of new links will occur based on the number of retweets and users’ similarity.
Thus, to better understand information diffusion and network evolution, there is an urgent
need for joint probabilistic models of the two processes, which are largely inexistent to date.

In this paper, we propose a probabilistic generative model, Coevolve, for the joint
dynamics of information diffusion and network evolution on Twitter-like networks. Our
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Figure 1: Illustration of how information diffusion and network structure processes interact

model is able to learn parameters from real world data, and predict the precise timing of both
diffusion and new link events. The proposed model is based on the framework of temporal
point processes, which explicitly characterizes the continuous time interval between events,
and it consists of two interwoven and interdependent components, as shown in Figure 1:

I. Information diffusion process. We design an “identity revealing” multivariate
Hawkes process (Farajtabar et al., 2014) to capture the mutual excitation behavior of
retweeting events, where the intensity of such events in a user is boosted by previous
events from her time-varying set of followees. Although Hawkes processes have been
used for information diffusion before (Farajtabar et al., 2016; Blundell et al., 2012;
Iwata et al., 2013; Zhou et al., 2013a; Farajtabar et al., 2014; Linderman and Adams,
2014; Valera and Gomez-Rodriguez, 2015), the key innovation of our approach is to
explicitly model the excitation due to a particular source node, hence revealing the
identity of the source. Such design reflects the reality that information sources are
explicitly acknowledged, and it also allows a particular information source to acquire
new links in a rate according to her “informativeness”.

II. Network evolution process. We model link creation as an “information driven”
survival process, and couple the intensity of this process with retweeting events. Al-
though survival processes have been used for link creation before (Hunter et al., 2011;
Vu et al., 2011), the key innovation in our model is to incorporate retweeting events as
the driving force for such processes. Since our model has captured the source identity
of each retweeting event, new links will be targeted toward information sources, with
an intensity proportional to their degree of excitation and each source’s influence.

Our model is designed in such a way that it allows the two processes, information
diffusion and network evolution, unfold simultaneously in the same time scale and exercise
bidirectional influence on each other, allowing sophisticated coevolutionary dynamics to be
generated, as illustrated in Figure 2.

Importantly, the flexibility of our model does not prevent us from efficiently simulating
diffusion and link events from the model and learning its parameters from real world data:

• Efficient simulation. We design a scalable sampling procedure that exploits the
sparsity of the generated networks. Its complexity is O(nd logm), where n is the
number of events, m is the number of users and d is the maximum number of followees
per user.
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Figure 2: Illustration of information diffusion and network structure co-evolution.
Information diffusion → network structure: David’s tweet at 1:00 pm about a
paper is retweeted by Sophie and Christine respectively at 1:10 pm and 1:15 pm
to reach out to Jacob. Jacob retweets about this paper at 1:20 pm and 1:35 pm
and then finds David a good source of information and decides to follow him
directly at 1:45 pm.
Information diffusion → network structure: As a result new path of information
from David to Jacob (and his downstream followers) is created. Consequently, a
subsequent tweet by David about a car at 2:00 pm directly reaches out to Jacob
without need to Sophie and Christine retweet.

• Convex parameters learning. We show that the model parameters that maximize
the joint likelihood of observed diffusion and link creation events can be efficiently
found via convex optimization.

Then, we experiment with our model and show that it can produce coevolutionary dynamics
of information diffusion and network evolution, and generate retweet and link events that
obey common information diffusion patterns (e.g., cascade structure, size and depth), static
network patterns (e.g., node degree) and temporal network patterns (e.g., shrinking diam-
eter) described in related literature (Leskovec et al., 2005, 2010; Goel et al., 2012). Finally,
we show that, by modeling the coevolutionary dynamics, our model provides significantly
more accurate link and diffusion event predictions than alternatives in large scale Twitter
data set (Antoniades and Dovrolis, 2015).

The remainder of this article is organized as follows. We first proceed by building
sufficient background on the temporal point processes framework in Section 2. Then, we
introduce our joint model of information diffusion and network structure co-evolution in
Section 3. Sections 4 and 5 are devoted to answer two essential questions: how can we
generate data from the model? and how can we efficiently learn the model parameters from
historical event data? Any generative model should be able to answer the above questions.
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Figure 3: Illustration of three inter-related quantities in point processes framework: con-
ditional density function, conditional cumulative density function, and survival
function.

In Sections 6, 7, and 8 we perform empirical investigation of the properties of the model,
we evaluate the accuracy of the parameter estimation in synthetic data, and we evaluate
the performance of the proposed model in the real-world data set, respectively. Section 9
reviews the related work, and finally, the paper is concluded in Section 10. Proofs, more
detailed contents and experimental results, and some extensions are left to the appendices.

2. Background on Temporal Point Processes

A temporal point process is a random process whose realization consists of a list of discrete
events localized in time, {ti} with ti ∈ R

+ and i ∈ Z
+. Many different types of data

produced in online social networks can be represented as temporal point processes, such
as the times of retweets and link creations. A temporal point process can be equivalently
represented as a counting process, N(t), which records the number of events before time t.
Let the history H(t) be the list of times of events {t1, t2, . . . , tn} up to but not including
time t. Then, the number of observed events in a small time window [t, t+ dt) of length dt
is

dN(t) =
∑

ti∈H(t)

δ(t− ti) dt, (1)

and hence N(t) =
∫ t

0 dN(s), where δ(t) is a Dirac delta function. More generally, given a
function f(t), we can define the convolution with respect to dN(t) as

f(t) ⋆ dN(t) :=

∫ t

0
f(t− τ) dN(τ) =

∑

ti∈H(t)
f(t− ti). (2)

The point process representation of temporal data is fundamentally different from the dis-
crete time representation typically used in social network analysis. It directly models the
time interval between events as random variables, avoids the need to pick a time window
to aggregate events, and allows temporal events to be modeled in a fine grained fashion.
Moreover, it has a remarkably rich theoretical support (Aalen et al., 2008).

An important way to characterize temporal point processes is via the conditional in-
tensity function—a stochastic model for the time of the next event given all the times of
previous events. Formally, the conditional intensity function λ∗(t) (intensity, for short) is
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Figure 4: Three types of point processes with a typical realization

the conditional probability of observing an event in a small window [t, t + dt) given the
history H(t), i.e.,

λ∗(t)dt := P {event in [t, t+ dt)|H(t)} = E[dN(t)|H(t)], (3)

where one typically assumes that only one event can happen in a small window of size dt
and thus dN(t) ∈ {0, 1}. Then, given the observation until time t and a time t′ > t, we can
also characterize the conditional probability that no event happens until t′ as

S∗(t′) = exp

(

−

∫ t′

t

λ∗(τ) dτ

)

, (4)

the (conditional) probability density function that an event occurs at time t′ as

f∗(t′) = λ∗(t′)S∗(t′), (5)

and the (conditional) cumulative density function, which accounts for the probability that
an event happens before time t′:

F ∗(t′) = 1− S∗(t′) =

∫ t′

t

f∗(τ) dτ. (6)

Figure 3 illustrates these quantities. Moreover, we can express the log-likelihood of a list of
events {t1, t2, . . . , tn} in an observation window [0, T ) as

L =

n∑

i=1

log λ∗(ti)−

∫ T

0
λ∗(τ) dτ, T > tn. (7)

This simple log-likelihood will later enable us to learn the parameters of our model from
observed data. Finally, the functional form of the intensity λ∗(t) is often designed to capture
the phenomena of interests. Some useful functional forms we will use are (Aalen et al., 2008):

(i) Poisson process. The intensity is assumed to be independent of the history H(t),
but it can be a nonnegative time-varying function, i.e.,

λ∗(t) = g(t) > 0. (8)
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(ii) Hawkes process. The intensity is history dependent and models a mutual excitation
between events, i.e.,

λ∗(t) = µ+ ακω(t) ⋆ dN(t) = µ+ α
∑

ti∈H(t)
κω(t− ti), (9)

where,

κω(t) := exp(−ωt)I[t > 0] (10)

is an exponential triggering kernel and µ > 0 is a baseline intensity independent of
the history. Here, the occurrence of each historical event increases the intensity by a
certain amount determined by the kernel and the weight α > 0, making the intensity
history dependent and a stochastic process by itself. In our work, we focus on the
exponential kernel, however, other functional forms, such as log-logistic function, are
possible, and the general properties of our model do not depend on this particular
choice.

(iii) Survival process. There is only one event for an instantiation of the process, i.e.,

λ∗(t) = (1−N(t))g(t), (11)

where g(t) > 0 and the term (1 − N(t)) makes sure λ∗(t) is 0 if an event already
happened before t.

Figure 4 illustrates these processes. Interested reader should refer to Aalen et al. (2008) for
more details on the framework of temporal point processes.

Point process models have been applied to many tasks in networks such as fake news
mitigation (Farajtabar et al., 2017), recommendation systems (Hosseini et al., 2017), outlier
detection (Li et al., 2017), activity shaping in social networks (Farajtabar et al., 2014), veri-
fying crowd-generated data (Tabibian et al., 2017), sequence modeling using deep recurrent
neural networks (Xiao et al., 2017), and campaigning in networks (Farajtabar et al., 2016).

3. Generative Model of Information Diffusion and Network Evolution

In this section, we use the above background on temporal point processes to formulate
Coevolve, our probabilistic model for the joint dynamics of information diffusion and
network evolution.

3.1 Event Representation

We model the generation of two types of events: tweet/retweet events, er, and link creation
events, el. Instead of just the time t, we record each event as a triplet, as illustrated in
Figure 5(a):

er or el := ( u
↑

destination

,
source

↓

s, t
↑

time

). (12)

For retweet event, the triplet means that the destination node u retweets at time
t a tweet originally posted by source node s. Recording the source node s reflects the
real world scenario that information sources are explicitly acknowledged. Note that the
occurrence of event er does not mean that u is directly retweeting from or is connected

7
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(a) Event representation (b) Point and counting processes

Figure 5: Events of point processes and their associated counting processes for link creation
and information diffusion; (a) Trace of events generated by a tweet from David
followed by new links Jacob creates to follow David and Sophie; (b) The associated
points in time and the counting process realizations.

to s. This event can happen when u is retweeting a message by another node u′ where
the original information source s is acknowledged. Node u will pass on the same source
acknowledgement to its followers (e.g., “I agree @a @b @c @s”). Original tweets posted by
node u are allowed in this notation. In this case, the event will simply be er = (u, u, t).
Given a list of retweet events up to but not including time t, the history Hr

us(t) of retweets
by u due to source s is

Hr
us(t) = {e

r
i = (ui, si, ti)|ui = u and si = s} . (13)

The entire history of retweet events is denoted as

Hr(t) := ∪u,s∈[m]H
r
us(t). (14)

For link creation event, the triplet means that destination node u creates at time
t a link to source node s, i.e., from time t on, node u starts following node s. To ease
the exposition, we restrict ourselves to the case where links cannot be deleted and thus
each (directed) link is created only once. However, our model can be easily augmented to
consider multiple link creations and deletions per node pair, as discussed in Section E. We
denote the link creation history as Hl(t).

3.2 Joint Model with Two Interwoven Components

Given m users, we use two sets of counting processes to record the generated events, one
for information diffusion and another for network evolution. More specifically,

I. Retweet events are recorded using a matrix N(t) of size m ×m for each fixed time
point t. The (u, s)-th entry in the matrix, Nus(t) ∈ {0} ∪ Z

+, counts the number of
retweets of u due to source s up to time t. These counting processes are “identity
revealing”, since they keep track of the source node that triggers each retweet. The

8
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matrix N(t) is typically less sparse than A(t), since Nus(t) can be nonzero even when
node u does not directly follow s. We also let dN(t) := ( dNus(t) )u,s∈[m].

II. Link events are recorded using an adjacency matrix A(t) of size m×m for each fixed
time point t. The (u, s)-th entry in the matrix, Aus(t) ∈ {0, 1}, indicates whether u is
directly following s. Therefore, Aus(t) = 1 means the directed link has been created
before t. For simplicity of exposition, we do not allow self-links. The matrix A(t) is
typically sparse, but the number of nonzero entries can change over time. We also
define dA(t) := ( dAus(t) )u,s∈[m].

Then, the interwoven information diffusion and network evolution processes can be charac-
terized using their respective intensities

E[dN(t) |Hr(t) ∪Hl(t)] = Γ∗(t) dt (15)

E[dA(t) |Hr(t) ∪Hl(t)] = Λ∗(t) dt, (16)

where,

Γ∗(t) = ( γ∗us(t) )u,s∈[m] (17)

Λ∗(t) = ( λ∗
us(t) )u,s∈[m]. (18)

The sign ∗ means that the intensity matrices will depend on the joint history, Hr(t)∪Hl(t),
and hence their evolution will be coupled. By this coupling, we make: (i) the counting
processes for link creation to be “information driven” and (ii) the evolution of the linking
structure to change the information diffusion process. In the next two sections, we will
specify the details of these two intensity matrices.

3.3 Information Diffusion Process

We model the intensity, Γ∗(t), for retweeting events using multivariate Hawkes process:

γ∗us(t) = I[u = s] ηu + I[u 6= s]βs
∑

v∈Fu(t)
κω1(t) ⋆ (Auv(t) dNvs(t)) , (19)

where I[·] is the indicator function and Fu(t) := {v ∈ [m] : Auv(t) = 1} is the current set
of followees of u. The term ηu > 0 is the intensity of original tweets by a user u on
his own initiative, becoming the source of a cascade, and the term βs

∑

v∈Fu(t)
κω1(t) ⋆

(Auv(t) dNvs(t)) models the propagation of peer influence over the network, where the
triggering kernel κω1(t) models the decay of peer influence over time.

Note that the retweeting intensity matrix Γ∗(t) is by itself a stochastic process that
depends on the time-varying network topology, the non-zero entries inA(t), whose growth is
controlled by the network evolution process in Section 3.4. Hence the model design captures
the influence of the network topology and each source’s influence, βs, on the information
diffusion process. More specifically, to compute γ∗us(t), one first finds the current set Fu(t)
of followees of u, and then aggregates the retweets of these followees that are due to source s.
Note that these followees may or may not directly follow source s. Then, the more frequently
node u is exposed to retweets of tweets originated from source s via her followees, the more
likely she will also retweet a tweet originated from source s. Once node u retweets due to
source s, the corresponding Nus(t) will be incremented, and this in turn will increase the
likelihood of triggering retweets due to source s among the followers of u. Thus, the source
does not simply broadcast the message to nodes directly following her but her influence

9
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(a) Link creation process (b) Social network (c) Information diffusion process

Figure 6: Our hypothetical social network where the information diffusion paths make Ja-
cob follow David: (a) The breakdown of conditional intensity function for the link
creation process of Jacob following David AJD(t); (b) The information paths be-
tween Jacob and David; (c) The information diffusion processes for David tweeting
on his own initiative NDD(t) and Jacob retweeting posts originated from David
NJD(t).

propagates through the network even to those nodes that do not directly follow her. Finally,
this information diffusion model allows a node to repeatedly generate events in a cascade,
and is very different from the independent cascade or linear threshold models (Kempe et al.,
2003) which allow at most one event per node per cascade.

3.4 Network Evolution Process

In our model, each user is exposed to information through a time-varying set of neighbors.
By doing so, information diffusion affects network evolution, increasing the practical appli-
cation of our model to real-world network data sets. The particular definition of exposure
(e.g., a retweet’s neighbor) depends on the type of historical information that is available.
Remarkably, the flexibility of our model allows for different types of diffusion events, which
we can broadly classify into two categories.

In the first category, events corresponds to the times when an information cascade hits a
person, for example, through a retweet from one of her neighbors, but she does not explicitly
like or forward the associated post. Here, we model the intensity, Λ∗(t), for link creation
using a combination of survival and Hawkes process:

λ∗
us(t) = (1−Aus(t))



µu + αu

∑

v∈Fu(t)

κω2(t) ⋆ dNvs(t)



 , (20)
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where the term 1−Aus(t) effectively ensures a link is created only once, and after that, the
corresponding intensity is set to zero. The term µu > 0 denotes a baseline intensity, which
models when a node u decides to follow a source s spontaneously at her own initiative. The
term αuκω2(t) ⋆ dNvs(t) corresponds to the retweets by node v (a followee of node u) which
are originated from source s. The triggering kernel κω2(t) models the decay of interests over
time.

In the second category, the person decides to explicitly like or forward the associated
post and influencing events correspond to the times when she does so. In this case, we
model the intensity, Λ∗(t), for link creation as:

λ∗
us(t) = (1−Aus(t))(µu + αu κω2(t) ⋆ dNus(t)), (21)

where the terms 1 − Aus(t), µu > 0, and the decaying kernel κω2(t) play the same role
as the corresponding ones in Equation (20). The term αuκω2(t) ⋆ dNus(t) corresponds to
the retweets of node u due to tweets originally published by source s. The higher the
corresponding retweet intensity, the more likely u will find information by source s useful
and will create a direct link to s.

In both cases, the link creation intensity Λ∗(t) is also a stochastic process by itself,
which depends on the retweet events, be it the retweets by the neighbors of node u or the
retweets by node u herself, respectively. Therefore, it captures the influence of retweets on
the link creation, and closes the loop of mutual influence between information diffusion and
network topology. Figure 6 illustrates these two interdependent intensities.

Intuitively, in the latter category, information diffusion events are more prone to trigger
new connections, because, they involve the target and source nodes in an explicit interaction,
however, they are also less frequent. Therefore, it is mostly suitable to large event data sets,
as the ones we generate in our synthetic experiments. In contrast, in the former category,
information diffusion events are less likely to inspire new links but found in abundance.
Therefore, it is more suitable for smaller data sets, as the ones we use in our real-world
experiments. Consequently, in our synthetic experiments we used the latter and in our
real-world experiments, we used the former.

More generally, the choice of exposure event should be made based on the type and
amount of available historical information. Note that, these are two realizations, among
the many others, of the link formation process in the Coevolve framework. Many other
extensions can be found in appendix E. In practice, these different forms can be utilized
depending on the conditions and constraints of the networks and the data in hand. More
importantly, in this section, we make one example on how to tailor the model to fit the
application best.

Finally, note that creating a link is more than just adding a path or allowing informa-
tion sources to take shortcuts during diffusion. The network evolution makes fundamental
changes to the diffusion dynamics and stationary distribution of the diffusion process in
Section 3.3. As shown in Farajtabar et al. (2014), given a fixed network structure A,
the expected retweet intensity µs(t) at time t due to source s will depend of the network
structure in a nonlinear fashion, i.e.,

µs(t) := E[Γ∗
·s(t)] = (e(A−ω1I)t + ω1(A− ω1I)

−1(e(A−ω1I)t − I))ηs, (22)

where ηs ∈ R
m has a single nonzero entry with value ηs and e(A−ω1I)t is the matrix expo-

nential. When t → ∞, the stationary intensity µ̄s = (I − A/ω)−1 ηs is also nonlinearly

11
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(a) Ogata’s algorithm (b) Proposed algorithm

Figure 7: Ogata’s algorithm vs our simulation algorithm in simulating U interdependent
point processes characterized by intensity functions λ1(t), . . . , λU (t); (a) Illustrat-
ing Ogata’s algorithm, which first takes a sample from the process with intensity
equal to sum of individual intensities and then assigns it to the proper dimension
proportionally to its contribution to the sum of intensities; (b) Illustrating our
proposed algorithm, which first draws a sample from each dimension indepen-
dently and then takes the minimum time among them.

related to the network structure. Thus, given two network structures A(t) and A(t′) at
two points in time, which are different by a few edges, the effect of these edges on the in-
formation diffusion is not just an additive relation. Depending on how these newly created
edges modify the eigen-structure of the sparse matrix A(t), their effect on the information
diffusion dynamics can be very significant.

4. Efficient Simulation of Coevolutionary Dynamics

We could simulate samples (link creations, tweets and retweets) from our model by adapting
Ogata’s thinning algorithm (Ogata, 1981), originally designed for multidimensional Hawkes
processes. However, a naive implementation of Ogata’s algorithm would scale poorly, i.e.,
for each sample, we would need to re-evaluate Γ∗(t) and Λ∗(t). Thus, to draw n sample
events, we would need to perform O(m2n2) operations, where m is the number of nodes.
Figure 7(a) schematically demonstrates the main steps of Ogata’s algorithm. Please refer
to Appendix B for further details.

Here, we design a sampling procedure that is especially well-fitted for the structure of
our model. The algorithm is based on the following key idea: if we consider each intensity
function in Γ∗(t) and Λ∗(t) as a separate point process and draw a sample from each, the
minimum among all these samples is a valid sample for the multidimensional point process.

12



Information Diffusion and Network Evolution

Algorithm 1 Simulation Algorithm for Coevolve

Initialization:
Initialize the priority queue Q
for ∀ u, s ∈ [m] do

Sample next link event elus from Aus (Algorithm 3)
Q.insert(elus)
Sample next retweet event erus from Nus (Algorithm 3)
Q.insert(erus)

end for
General Subroutine:
t← 0
while t < T do

e← Q.extract min()
if e = (u, s, t′) is a retweet event then

Update the history Hr
us(t

′) = Hr
us(t) ∪ {e}

for ∀ v s.t. u v do
Update event intensity: γvs(t

′) = γvs(t
′−) + β

Sample retweet event ervs from γvs (Algorithm 3)
Q.update key(ervs)
if NOT s v then

Update link intensity: λ∗
vs(t

′) = λ∗
vs(t

′−) + α
Sample link event elvs from λvs (Algorithm 3)
Q.update key(elvs)

end if
end for

else
Update the history Hl

us(t
′) = Hl

us(t) ∪ {e}
λ∗
us(t)← 0 ∀ t > t′

end if
t← t′

end while

As the results of this section are general and can be applied to simulate any multi-
dimensional point process model we abuse the notation a little bit and represent U (possibly
inter-dependent) point processes by U intensity functions λ∗

1, . . . , λ
∗
U . In the specific case

of simulating coevolutionary dynamics we have U = m2 + m(m − 1) were the first and
second terms are the number information diffusion and link creation processes, respectively.
Figure 7 illustrates the way in which both algorithms differ. The new algorithm has the
following steps:

1. Initialization: Simulate each dimension separately and find their next sampled event
time.

2. Minimization: Take the minimum among all the sampled times and declare it as the
next event of the multidimensional process.

13
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Algorithm 2 Efficient Intensity Computation

Global Variabels:
Last time of intensity computation: t
Last value of intensity computation: I
Initialization:
t← 0
I ← µ
function get intensity(t′)
I ′ ← (I − µ) exp(−ω(t′ − t)) + µ
t← t′

I ← I ′

return I
end function

Algorithm 3 1-D next event sampling

Input: Current time: t
Output: Next event time: s
s← t
λ̂← λ∗(s) (Algorithm 2)
while s < T do

g ∼ Exponential(λ̂)
s← s+ g
λ̄← λ∗(s) (Algorithm 2)
Rejection test:
d ∼ Uniform(0, 1)
if d× λ̂ < λ̄ then

return s
else

λ̂ = λ̄
end if

end while
return s

3. Update: Recalculate the intensities of the dimensions that are affected by this ap-
proved sample and re-sample only their next event. Then go to step 2.

Note that, events are sampled one by one; After each event, the intensities of affected dimen-
sions are recomputed and fixed. This means that, the history is fixed and the dimensions of
the Hawkes process become independent (just until the next event). We take next sample.
Then, we make the necessary updates in the intensity functions to capture the influence
of dimensions on each other. Therefore, each dimension can be thought independent until
next sample is drawn because the intensity function is known.

To prove that the new algorithm generates samples from the same distribution as Ogata’s
algorithm does we need the following Lemma. It justifies step 2 of the above outline.
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Lemma 1 Assume we have U independent non-homogeneous Poisson processes with inten-
sity λ∗

1(τ), . . . , λ
∗
U (τ). Take random variable τu equal to the time of process u’s first event

after time t. Define τmin = min1≤u≤U {τu} and umin = argmin1≤u≤U {τu}. Then,

(a) τmin is the first event after time t of the Poisson process with intensity λ∗
sum(τ). In

other words, τmin has the same distribution as the next event (t′) in Ogata’s algorithm.

(b) umin follows the conditional distribution P(umin = u|τmin = x) =
λ∗
U
(x)

λ∗
sum(x) . I.e. the

dimension firing the event comes from the same distribution as the one in Ogata’s algorithm.

Given the above Lemma, we can now prove that the distribution of the samples generated
by the proposed algorithm is identical to the one generated by Ogata’s method.

Theorem 2 The sequence of samples from Ogata’s algorithm and our proposed algorithm
follow the same distribution.

It’s noteworthy that the dimensions are not independent, but their dependency is consid-
ered in the update stage. Until the next update happens they can be considered independent
because their intensity function is determined and fixed.

This new algorithm is specially suitable for the structure of our inter-coupled processes.
Since social and information networks are typically sparse, every time we sample a new
node (or link) event from the model, only a small number of intensity functions in the local
neighborhood of the node (or the link), will change. This number is of O(d) where d is the
maximum number of followers/followees per node. As a consequence, we can reuse most of
the individual samples for the next overall sample. Moreover, we can find which intensity
function has the minimum sample time in O(logm) operations using a heap priority queue.
The heap data structure will help maintain the minimum and find it in logarithmic time
with respect to the number of elements therein. Therefore, we have reduced an O(nm)
factor in the original algorithm to O(d logm).

Finally, we exploit the properties of the exponential function to update individual inten-
sities for each new sample in O(1). For simplicity consider a Hawkes process with intensity
λ∗(t) = µ+

∑

ti∈Ht
α exp(−ω(t−ti)). Note that both link creation and information diffusion

processes have this structure. Now, let ti < ti+1 be two arbitrary times, we have

λ∗(ti+1) = (λ∗(ti)− µ) exp(−ω(ti+1 − ti)) + µ. (23)

It can be readily generalized to the multivariate case too. Therefore, we can compute the
current intensity without explicitly iterating over all previous events. As a result we can
change anO(n) factor in the original algorithm toO(1). Furthermore, the exponential kernel
also facilitates finding the upper bound of the intensity since it always lies at the beginning
of one of the processes taken into consideration. Algorithm 2 summarizes the procedure
to compute intensities with exponential kernels, and Algorithm 3 shows the procedure to
sample the next event in each dimension making use of the special property of exponential
triggering kernel.

The simulation algorithm is shown in Algorithm 1. By using this algorithm we reduce
the complexity from O(n2m2) to O(nd logm), where d is the maximum number of followees
per node. That means, our algorithm scales logarithmically with the number of nodes and
linearly with the number of edges at any point in time during the simulation. Moreover,
events for new links, tweets and retweets are generated in a temporally intertwined and
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Algorithm 4 MM-type parameter learning for Coevolve

Input: Set of retweet events E = {eri } and link creation events A = {eli} observed in
time window [0, T )
Output: Learned parameters {µu} , {αu} , {ηu} , {βs}
Initialization:
for u← 1 to m do

Initialize µu and αu randomly
end for
for u← 1 to m do

ηu =

∑

er
i
∈E I[u=ui=si]

T

end for
for s← 1 to m do

βs =

∑

er
i
∈E I[s=si 6=ui]

∑

u∈[m] I[u 6=s]
∑

v∈Fu(t)

∫ T

0 κω1 (t)⋆(Auv(t) dNvs(t)) dt

end for
while not converged do

for i← 1 to nl do
νi1 =

µui

µui
+αui

∑

v∈Fui
(ti)

(
κω2 (t)⋆dNvs(t)

)∣
∣

∣

t=ti

νi2 =
αui

∑

v∈Fui
(ti)

(
κω2 (t)⋆dNvs(t)

)∣
∣

∣

t=ti

µui
+αui

∑

v∈Fui
(ti)

(
κω2 (t)⋆dNvs(t)

)∣
∣

∣

t=ti

end for
for u← 1 to m do

µu =

∑

el
i
∈A

I[u=ui] νi1
∑

s∈[m]

∫ T

0 (1−Aus(t)) dt

αu =

∑

el
i
∈A

I[u=ui]νi2
∑

s∈[m]

∫ T

0 (1−Aus(t))(κω2 (t)⋆dNus(t)) dt

end for
end while

interleaving fashion, since every new retweet event will modify the intensity for link creation
and vice versa.

5. Efficient Parameter Estimation from Coevolutionary Events

In this section, we first show that learning the parameters of our proposed model reduces
to solving a convex optimization problem and then develop an efficient, parameter-free
Minorization-Maximization algorithm to solve such problem.

5.1 Concave Parameter Learning Problem

Given a collection of retweet events E = {eri } and link creation events A = {eli} recorded
within a time window [0, T ), we can easily estimate the parameters needed in our model
using maximum likelihood estimation. To this aim, we compute the joint log-likelihood L
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of these events using Equation (7), i.e.,

L({µu} , {αu} , {ηu} , {βs}) =
∑

eri∈E

log
(
γ∗uisi

(ti)
)
−

∑

u,s∈[m]

∫ T

0
γ∗us(τ) dτ

︸ ︷︷ ︸

tweet / retweet

+
∑

eli∈A

log
(
λ∗
uisi

(ti)
)
−

∑

u,s∈[m]

∫ T

0
λ∗
us(τ) dτ

︸ ︷︷ ︸

links

.

(24)

For the terms corresponding to retweets, the log term sums only over the actual observed
events while the integral term actually sums over all possible combination of destination and
source pairs, even if there is no event between a particular pair of destination and source. For
such pairs with no observed events, the corresponding counting processes have essentially
survived the observation window [0, T ), and the term −

∫ T

0 γ∗us(τ)dτ simply corresponds to
the log survival probability. The terms corresponding to links have a similar structure.

Once we have an expression for the joint log-likelihood of the retweet and link creation
events, the parameter learning problem can be then formulated as follows:

minimize{µu},{αu},{ηu},{βs} −L({µu} , {αu} , {ηu} , {βs})

subject to µu ≥ 0, αu ≥ 0, ηu ≥ 0, βs ≥ 0 ∀u, s ∈ [m].
(25)

Theorem 3 The optimization problem defined by Equation (25) is jointly convex.

5.2 Efficient Minorization-Maximization Algorithm

Since the optimization problem is jointly convex with respect to all the parameters, one
can simply take any convex optimization method to learn the parameters. However, these
methods usually require hyper parameters like step size or initialization, which may sig-
nificantly influence the convergence. Instead, the structure of our problem allows us to
develop an efficient algorithm inspired by previous work (Zhou et al., 2013a,b; Xu et al.,
2016), which leverages Minorization Maximization (MM) (Hunter and Lange, 2004) and is
parameter free and insensitive to initialization.

Our algorithm utilizes Jensen’s inequality to provide a lower bound for the second log-
sum term in the log-likelihood given by Equation (24). More specifically, consider a set of
arbitrary auxiliary variable νij , where 1 ≤ i ≤ nl, j = 1, 2 and nl is the number of link
events, i.e., nl = |A|. Further, assume these variables satisfy

∀ 1 ≤ i ≤ nl : νi1, νi2 ≥ 0, νi1 + νi2 = 1. (26)

The following lemma is preliminary to find a closed form update formula for the parameters.
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Lemma 4 The log-likelihood in Equation (24) is lower-bownded as follows:

L ≥ L
′ =

∑

eri∈E

I[ui = si] log (ηui
) +

∑

eri∈E

I[ui 6= si] log(βsi)

+
∑

eri∈E

I[ui 6= si] log
(∑

v∈Fui(ti)

(

κω1(t) ⋆ (Auiv(t) dNvsi(t))
)∣
∣
∣
t=ti

)

−
∑

u,s∈[m]

ηuT + βs
∑

v∈Fu(t)

∫ T

0
κω1(t) ⋆ (Auv(t) dNvs(t)) dt

+
∑

eli∈A

νi1 log(µui
) + νi2 log(αui

) + νi2 log
( ∑

v∈Fui
(ti)

(
κω2(t) ⋆ dNvs(t)

)∣
∣
t=ti

)

−
∑

eli∈A

νi1 log(νi1) + νi2 log(νi2)

−
∑

u,s∈[m]

µu

∫ T

0
(1−Aus(t)) dt+ αu

∫ T

0
(1−Aus(t))(κω2(t) ⋆ dNus(t)) dt.

(27)

Given the above lemma, by taking the gradient of the lower-bound with respect to the
parameters, we can find the closed form updates to optimize the lower-bound:

ηu =

∑

eri∈E
I[u = ui = si]

T
(28)

βs =

∑

eri∈E
I[s = si 6= ui]

∑

u∈[m] I[u 6= s]
∑

v∈Fu(t)

∫ T

0 κω1(t) ⋆ (Auv(t) dNvs(t)) dt
(29)

µu =

∑

eli∈A
I[u = ui] νi1

∑

s∈[m]

∫ T

0 (1−Aus(t)) dt
(30)

αu =

∑

eli∈A
I[u = ui] νi2

∑

s∈[m]

∫ T

0 (1−Aus(t))(κω2(t) ⋆ dNus(t)) dt
. (31)

Finally, although the lower bound is valid for every choice of νij satisfying Equation (26),
by maximizing the lower bound with respect to the auxiliary variables we can make sure
that the lower bound is tight:

maximize{νij} L′({µu} , {αu} , {ηu} , {βs} , {νij})

subject to νi1 + νi2 = 1 ∀ i : 1 ≤ i ≤ nl

νi0, νi1 ≥ 0 ∀ i : 1 ≤ i ≤ nl.

(32)

Fortunately, the above constrained optimization problem can be solved easily via Lagrange
multipliers, which leads to closed form updates:

νi1 =
µui

µui
+ αui

∑

v∈Fui
(ti)

(
κω2(t) ⋆ dNvs(t)

)∣
∣
t=ti

(33)

νi2 =
αui

∑

v∈Fui
(ti)

(
κω2(t) ⋆ dNvs(t)

)∣
∣
t=ti

µui
+ αui

∑

v∈Fui
(ti)

(
κω2(t) ⋆ dNvs(t)

)∣
∣
t=ti

. (34)

Algorithm 4 summarizes over the learning procedure, which is guaranteed to converge
to a global optimum (Hunter and Lange, 2004; Zhou et al., 2013a)
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It’s notable that, the maximum likelihood is prone to fall into overfitting, therefore, there
is a wealth of research on how to add sparsity constraints like low rank or group sparsity
regularizers (Zhou et al., 2013a) or via suitable conjugate prior (Linderman and Adams,
2014). The ideas on the next section are applicable with some modification to the case
that the aforementioned ideas are utilized to improve the naive solution of the maximum
likelihood.

6. Properties of Simulated Co-evolution, Networks and Cascades

In this section, we perform an empirical investigation of the properties of the networks
and information cascades generated by our model. In particular, we show that our model
can generate co-evolutionary retweet and link dynamics and a wide spectrum of static and
temporal network patterns and information cascades.

6.1 Simulation Settings

Throughout this section, if not said otherwise, we simulate the evolution of a 8,000-node
network as well as the propagation of information over the network by sampling from our
model using Algorithm 1. We set the exogenous intensities of the link and diffusion events
to µu = µ = 4× 10−6 and ηu = η = 1.5 respectively, and the triggering kernel parameter to
ω1 = ω2 = 1. The parameter µ determines the independent growth of the network—roughly
speaking, the expected number of links each user establishes spontaneously before time T is
µT . Whenever we investigate a static property, we choose the same sparsity level of 0.001.
The specific range of values we utilized in the current and the next section are such that the
process remains stationary and doesn’t blow up (Hawkes, 1971). Furthermore, the range of
parameters are chosen such that all the results could be reported in a unified scale.

6.2 Retweet and Link Coevolution

Figures 8(a,b) visualize the retweet and link events, aggregated across different sources, and
the corresponding intensities for one node and one realization, picked at random. Here, it
is already apparent that retweets and link creations are clustered in time and often follow
each other. Further, Figure 8(c) shows the cross-covariance of the retweet and link creation
intensity, computed across multiple realizations, for the same node, i.e., if f(t) and g(t) are
two intensities, the cross-covariance is a function h(τ) =

∫
f(t + τ)g(t) dt. It can be seen

that the cross-covariance has its peak around 0, i.e., retweets and link creations are highly
correlated and co-evolve over time. For ease of exposition, we illustrated co-evolution using
one node, however, we found consistent results across nodes.

6.3 Degree Distribution

Empirical studies have shown that the degree distribution of online social networks and
microblogging sites follow a power law (Chakrabarti et al., 2004; Kwak et al., 2010), and
argued that it is a consequence of the rich get richer phenomena. The degree distribution
of a network is a power law if the expected number of nodes md with degree d is given by
md ∝ d−γ , where γ > 0. Intuitively, the higher the values of the parameters α and β, the
closer the resulting degree distribution follows a power-law. This is because the network
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Figure 8: Coevolutionary dynamics for synthetic data; (a) Spike trains of link and retweet
events; (b) Link and retweet intensities with an exponentially decaying kernel;
(c) Cross covariance of link and retweet intensities: The peak around 0 shows the
coupling of retweet and link events.
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Figure 9: Degree distributions when network sparsity level reaches 0.001 for different β (α)
values and fixed α = 0.1 (β = 0.1) are shown in top (bottom) row. By varying the
value of β (α) the degree distributions spans from random to scale-free networks
illustrating the flexibility of the framework to model real-world networks.

grows more locally. Interestingly, the lower their values, the closer the distribution to an
Erdos-Renyi random graph (Erdos and Rényi, 1960), because, the edges are added almost
uniformly and independently without influence from the local structure. Figure 9 confirms
this intuition by showing the degree distribution for different values of β and α.

6.4 Small (shrinking) Diameter

There is empirical evidence that the diameter of online social networks and microblogging
sites exhibit relatively small diameter and shrinks (or flattens) as the network grows (Back-
strom et al., 2012; Chakrabarti et al., 2004; Leskovec et al., 2005). Figures 10(a-b) show the
diameter on the largest connected component (LCC) against the sparsity of the network
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Figure 10: Diameter and clustering coefficient for network sparsity 0.001; (a,b) The diame-
ter against sparsity over time for fixed α = 0.1, and for fixed β = 0.1 respectively;
(c,d) The clustering coefficient (CC) against β and α, respectively.

over time for different values of α and β. Although at the beginning, there is a short increase
in the diameter due to the merge of small connected components, the diameter decreases as
the network evolves. Moreover, larger values of α or β lead to higher levels of local growth
in the network and, as a consequence, slower shrinkage. Here, nodes arrive to the network
when they follow (or are followed by) a node in the largest connected component.

6.5 Clustering Coefficient

Triadic closure (Granovetter, 1973; Leskovec et al., 2008; Romero and Kleinberg, 2010)
has been often presented as a plausible link creation mechanism. However, different social
networks and microblogging sites present different levels of triadic closure (Ugander et al.,
2013). Importantly, our method is able to generate networks with different levels of triadic
closure, as shown by Figure 10(c-d), where we plot the clustering coefficient (Watts and
Strogatz, 1998), which is proportional to the frequency of triadic closure, for different values
of α and β.

6.6 Cascade Patterns

Our model can produce the most commonly occurring cascades structures as well as heavy-
tailed cascade size and depth distributions, as observed in historical Twitter data (Goel
et al., 2012). Figure 11 summarizes the results, which provide empirical evidence that the
higher the α (β) value, the shallower and wider the cascades.

7. Experiments on Model Estimation and Prediction on Synthetic Data

In this section, we first show that our model estimation method can accurately recover the
true model parameters from historical link and diffusion events data and then demonstrate
that our model can accurately predict the network evolution and information diffusion
over time, significantly outperforming two state of the art methods (Weng et al., 2013;
Antoniades and Dovrolis, 2015; Myers and Leskovec, 2014) at predicting new links, and a
baseline Hawkes process that does not consider network evolution at predicting new events.
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Figure 11: Distribution of cascade structure, size and depth for different values of α (β)
and fixed β = 0.2 (α = 0.8) on the top (bottom) row. The commom motifs of
propagation are shown in (a) and (d).

7.1 Experimental Setup

Throughout this section, we experiment with our model considering m=400 nodes. We set
the model parameters for each node in the network by drawing samples from µ∼U(0, 0.0004),
α∼U(0, 0.1), η∼U(0, 1.5) and β∼U(0, 0.1). We then sample up to 60,000 link and infor-
mation diffusion events from our model using Algorithm 1 and average over 8 different
simulation runs.

7.2 Model Estimation

We evaluate the accuracy of our model estimation procedure via two measures: (i) the
relative mean absolute error (i.e., E[|x − x̂|/x], MAE) between the estimated parameters
(x) and the true parameters (x̂), (ii) the Kendall’s rank correlation coefficient between each
estimated parameter and its true value, and (iii) test log-likelihood. Tables 1 and 2, and
Figure 12 show the rank correlation, relative error, and the log likelihood on the test data,
respectively. They show that as we feed more events into the estimation procedure, the
estimation becomes more accurate.

7.3 Link Prediction

We use our model to predict the identity of the source for each test link event, given the
historical events before the time of the prediction, and compare its performance with two
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Table 1: Parameter Estimation Results (Rank Correlation)
# Events α β η µ

5× 104 0.66 ± 0.05 0.82 ± 0.05 0.81 ± 0.05 0.72 ± 0.03

4× 104 0.58 ± 0.03 0.79 ± 0.04 0.72 ± 0.05 0.65 ± 0.03

3× 104 0.49 ± 0.05 0.76 ± 0.04 0.66 ± 0.04 0.58 ± 0.05

2× 104 0.38 ± 0.05 0.65 ± 0.05 0.54 ± 0.05 0.47 ± 0.05

1× 104 0.24 ± 0.03 0.43 ± 0.05 0.29 ± 0.04 0.26± 0.04

Table 2: Parameter Estimation Results (Relative Error)
# Events α β η µ

5× 104 0.25 ± 0.05 0.1 ± 0.04 0.16 ± 0.05 0.18 ± 0.05

4× 104 0.31 ± 0.05 0.17 ± 0.05 0.24 ± 0.03 0.28 ± 0.06

3× 104 0.47 ± 0.04 0.32 ± 0.04 0.35 ± 0.04 0.39 ± 0.05

2× 104 0.65 ± 0.05 0.49 ± 0.04 0.55 ± 0.04 0.57 ± 0.05

1× 104 0.86 ± 0.05 0.71 ± 0.04 0.75 ± 0.06 0.79 ± 0.05

state of the art methods, which we denote as TRF (Antoniades and Dovrolis, 2015) and
WENG (Weng et al., 2013).

Central to TRF model is the notion of TRF event: When a follower L ∈ F(R) receives a
retweet of S through R, L can decide to follow S directly. They call this sequence a Tweet-
Retweet-Follow (TRF) event, and refer to its three main actors as Speaker S, Repeater R,
and Listener L. In addition to characterizing and identifying such events, TRF measures
the probability of creating a link from a source at a given time by simply computing the
proportion of new links created from the source over all total created links up to the given
time. More specifically, it estimates the probability of new link as follows. Consider a tweet
of Speaker S at time ts . Suppose that this tweet is not retweeted by any of the followers
of S in the period [ts, ts +∆]. Let Φ(S, ts) be the set of followers of followers of S that are
not directly following S at ts. The exogenous probability of of following S is:

PEXO =
|L : L ∈ Φ(S, ts), L ∈ F(S, ts +∆|

|Φ(S, ts)|
. (35)

Similarly, consider a tweet of Speaker S at time ts that has been retweeted by a follower of
S, referred to as Repeater R, at time tr > ts . Let ΦR(S, tr) be the subset of Φ(S, tr) that
includes only followers of R. The endogenous probability of following S is:

PEND =
|L : L ∈ ΦR(S, tr), L ∈ F(S, tr +∆|

|ΦR(S, tr)|
. (36)

And the probability of following S is simply PEXO + PEND.

Weng et al. (2013) analyzed the complete graph and activity of Yahoo! Meme, to iden-
tify the effect of information diffusion on the evolution of the underlying network. WENG
considers several link creation strategies and makes a prediction by combining these strate-
gies. More specifically, they consider five link creation mechanisms and their combinations:
Random: follow a randomly selected user who is not yet followed; Triadic closure: follow
a randomly selected triadic node; Grandparent: follow a randomly selected grandparent;
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Figure 12: Performance of model estimation for the synthetic network reported in Log-
likelihood on unseen test data.
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Figure 13: Prediction performance of future links and activities for a 400-node synthetic
network on the test unseen data. The accuracy is reported by means of average
rank (AR) and success probability that the true events rank among the top-1
events (Top-1).

Origin: follow a randomly selected origin; Traffic shortcut: follow a randomly selected
grandparent or origin. Then, they parameterize the the probability of using a strategy and
learned the it using maximum likelihood. Because of the contribution of multiple terms
in the log-likelihood expression (due to the mixed effects of strategies) they numerically
explore the values of parameters in the unit square to maximize the log-likelihood.

Here, we evaluate the performance by computing the probability of all potential links
using our model, TRF and WENG. In our model, the intensity gives us a measure of how
likely a link will be created at a specific point of time. The higher the intensity, the more
likely the connection. Therefore, we can sort the future events based on the likelihood of
happening. Then, we compute (i) the average rank of all true (test) events in our sorted
list (AvgRank) and, (ii) the success probability that the true (test) events rank among the
top-1 potential events at each test time (Top-1). Figure 13 summarizes the results, where
we trained our model with an increasing number of events. Our model outperforms both
TRF and WENG for a significant margin.

7.4 Activity Prediction

We use our model to predict the identity of the node that generates each test diffusion event,
given the historical events before the time of the prediction, and compare its performance
with a baseline consisting of a multi-dimensional Hawkes process without network evolution
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Figure 14: Link and retweet behavior of 4 typical users in the real-world data set. Panels
(a,c,e,g) show the spike trains of link and retweet events and Panels (b,d,f,h)
show the estimated link and retweet intensities with exponential decaying kernel.

part. For the Hawkes baseline, we take a snapshot of the network right before the prediction
time, and use all historical retweeting events to fit the model and finding (auv)u,v∈[m] and
(ηu)u∈[m] similar to previous works (Farajtabar et al., 2014). Here, each user u performs
activity with intensity

γu(t) = ηu +
∑

v∈Fu(t)

auv κω1(t) ⋆ dNv(t). (37)

Now, we have two Hawkes process based models, Coevolve, which considers information
propagation coevolved with the link creation process, and the baseline Hawkes model which
only contains the information propagation part to model activities. Similar to the link
prediction we used the intensity to measure how likely is an event. We can sort future
events according to their probability. Then, we evaluate the performance via the same two
measures as in the link prediction task and summarize the results in Figure 13 against an
increasing number of training events. Please refer to the previous subsection to learn about
the measures used here. The results show that, by modeling the network evolution, our
model performs significantly better than the baseline.

8. Experiments on Coevolution and Prediction on Real Data

In this section, we validate our model using a large Twitter data set containing nearly
550,000 tweet, retweet and link events from more than 280,000 users (Antoniades and
Dovrolis, 2015). We will show that our model can capture the co-evolutionary dynamics
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Figure 15: Empirical and simulated cross covariance of link and retweet intensities for four
typical users.

and, by doing so, it predicts retweet and link creation events more accurately than several
alternatives.

8.1 Data Set Description & Experimental Setup

We use a data set that contains both link events as well as tweets/retweets from millions
of Twitter users (Antoniades and Dovrolis, 2015). In particular, the data set contains data
from three sets of users in 20 days; nearly 8 million tweet, retweet, and link events by more
than 6.5 million users. The first set of users (8,779 users) are source nodes s, for whom all
their tweet times were collected. The second set of users (77,200 users) are the followers of
the first set of users, for whom all their retweet times (and source identities) were collected.
The third set of users (6,546,650 users) are the users that start following at least one user
in the first set during the recording period, for whom all the link times were collected.

In our experiments, we focus on all events (and users) during a 10-day period (Sep 21
2012 - 30 Sep 2012) and used the information before Sep 21 to construct the initial social
network (original links between users). We model the co-evolution in the second 10-day
period using our framework. More specifically, in the coevolution modeling, we have 5,567
users in the first layer who post 221,201 tweets. In the second layer 101,465 retweets are
generated by the whole 77,200 users in that interval. And in the third layer we have 198,518
users who create 219,134 links to 1978 users (out of 5567) in the first layer.

We split events into a training set (covering 85% of the retweet and link events) and a
test set (covering the remaining 15%) according to time, i.e., all events in the training set
occur earlier than those in the test set. We then use our model estimation procedure to fit
the parameters from an increasing proportion of events from the training data.

8.2 Retweet and Link Coevolution

Figures 14 visualizes the retweet and link events, aggregated across different targets, and
the corresponding intensities given by our trained model for four source nodes, picked at
random. Here, it is already apparent that retweets (of his posts) and link creations (to
him) are clustered in time and often follow each other, and our fitted model intensities
successfully track such behavior. Further, Figure 15 compares the cross-covariance between
the empirical retweet and link creation intensities and between the retweet and link creation
intensities given by our trained model, computed across multiple realizations, for the same
nodes. For all nodes, the similarity between both cross-covariances is striking and both has
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Figure 16: Empirical cross covariance and learned model parameters for 1,000 users, picked
at random. The x-axis indexes the users while their α, β and the empirical cross
covariance are shown in different colors on the y-axis.

their peak around 0, i.e., retweets and link creations are highly correlated and co-evolve
over time. For ease of exposition, as in Section 6, we illustrated co-evolution using four
nodes, however, we found consistent results across nodes.

To further verify that our model can capture the coevolution, we compute the average
value of the empirical cross covariance function, denoted by mcc, per user. Intuitively, one
could expect that our model estimation method should assign higher α and/or β values to
users with high mcc. Figure 16 confirms this intuition on 1,000 users, picked at random.
Whenever a user has high α and/or β value, she exhibits a high cross covariance between
her created links and retweets.

8.3 Link Prediction

We use our model to predict the identity of the source for each test link event, given
the historical (link and retweet) events before the time of the prediction, and compare its
performance with the same two state of the art methods as in the synthetic experiments,
TRF (Antoniades and Dovrolis, 2015) and WENG (Weng et al., 2013).

We evaluate the performance by computing the probability of all potential links using
different methods, and then compute (i) the average rank of all true (test) events (AvgRank)
and, (ii) the success probability (SP) that the true (test) events rank among the top-1
potential events at each test time (Top-1). We summarize the results in Figure 17(a-
b), where we consider an increasing number of training retweet/tweet events. Our model
outperforms TRF and WENG consistently. For example, for 8 · 104 training events, our
model achieves a SP 2.5x times larger than TRF and WENG.

8.4 Activity Prediction

We use our model to predict the identity of the node that generates each test diffusion event,
given the historical events before the time of the prediction, and compare its performance
with a baseline consisting of a Hawkes process without network evolution. For the Hawkes
baseline, we take a snapshot of the network right before the prediction time, and use all
historical retweeting events to fit the model. Here, we evaluate the performance the via the
same two measures as in the link prediction task and summarize the results in Figure 17(c-
d) against an increasing number of training events. The results show that, by modeling the
co-evolutionary dynamics, our model performs significantly better than the baseline.
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Figure 17: Prediction performance in the Twitter data set by means of average rank (AR)
and success probability that the true (test) events rank among the top-1 events
(Top-1).
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Figure 18: Quantile plots of the intensity integrals from the real link and retweet event time.
The alignment of blue dots (empirical) and red ones (theoretical) shows the
suitability of our model in representing observed traces of activities in Twitter.

8.5 Model Checking

Given all the subsequent event times generated using a Hawkes process, i.e., ti and ti+1,
according to the time changing theorem (Daley and Vere-Jones, 2007), the intensity integrals
∫ ti+1

ti
λ(t) dt should conform to the unit-rate exponential distribution. Figure 18 presents the

quantiles of the intensity integrals computed using intensities with the parameters estimated
from the real Twitter data against the quantiles of the unit-rate exponential distribution. It
clearly shows that the points approximately lie on the same line, giving empirical evidence
that a Hawkes process is the right model to capture the real dynamics.

9. Related Work

In this section, we survey related works in modeling temporal networks followed by a sub-
section on co-evolution dynamics. Next, we review the literature on information diffusion
models. Finally, we conclude this section by works that are closely related and are developed
for almost the same goal.

Temporal Networks. Much effort has been devoted to modeling the evolution of social
networks (Phan and Airoldi, 2015; Doreian and Stokman, 2013; Wang et al., 2011). Of
the proposed methods in characterizing link creation, triadic closure (Granovetter, 1973)
is a simple but powerful principle to model the evolution based on shared friends. Mod-
eling timing and rich features of social interactions has been attracting increasing interest
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in the social network modeling community (Goldenberg et al., 2010). However, most of
these models use timing information as discrete indices. The dynamics of the resulting
time-discretized model can be quite sensitive to the chosen discretization time steps; Too
coarse a discretization will miss important dynamic features of the process, and too fine
a discretization will increase the computational and inference costs of the algorithms. In
contrast, the events we try to model tend to be asynchronous with a number of different
time scales. Recently, Snijders and Luchini (2006) used a Cox-intensity Poisson model with
exponential random graphs to model friendship dynamics. Brandes et al. (2009) extended
this model to the temporal sequence of interactions that take place in the social network,
but with insufficient model flexibility, and limited scalability. However, these works largely
fail to model the interdependency between events generated by different users, which is one
of the focuses of our proposed framework. Most of this line of work is summarized in a recent
survey (Holme, 2015), with a short section devoted to point process based approaches.

Co-evolution Dynamics. In machine learning and several other communities, both the
dynamics on the network and the dynamics of the network have been extensively studied,
and combining the two is a natural next step. For example, Bhattacharya et al. (2015)
claimed that content generation in social networks is influenced not just by their personal
features like age and gender, but also by their social network structure. Furthermore,
research has been done to address the co-evolution problems, for example, in the complex
network literature, under the name of adaptive system (Gross and Blasius, 2008). The main
premise is that the evolution of the topology depends on the dynamics of the nodes in
the network, and a feedback loop can be created between the two, which allows dynamical
exchange of information. In a different context, epidemiologists have found that nodes may
rewire their links to try to avoid contact with the infected ones (Gross et al., 2006). Co-
evolutionary models have been also developed for collective opinion formation, investigating
whether the coevolutionary dynamics will eventually lead to consensus or fragmentation of
the population (Zschaler et al., 2012). However, this line of research tends to be less data-
driven.Moreover, although the general nonlinear dynamic-system based methods usually
address co-evolutionary phenomena that are macroscopic in nature, they lack the inference
power of statistical generative models which are more adapted to teasing out microscopic
details from the data. Finally, we would also like to mention a different line of research
exemplified by the actor-oriented models developed by Snijders (2014), where a continuous-
time Markov chain on the space of directed networks is specified by local node-centric
probabilistic link change rules, and MCMC and method of moments are used for parameter
estimation. Hawkes processes we used are generally non-Markovian and making use of event
history far into the past.

Information Diffusion. The presence of timing information in event data and the abil-
ity to model such information bring up the interesting question of how to use the learned
model for time-sensitive inference or decision making. Furthermore, the development of
online social networks has attracted a lot of empirical studies of the online influence pat-
terns of online communities (Guo et al., 2015), micro blogs (Bakshy et al., 2011) and so on.
However, these works usually consider only relatively simple models for the influence, which
may not be very predictive. For more mathematically oriented works, based on information
cascades (a special case of asynchronous event data) from social networks, discrete-time
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diffusion models have been fitted to the cascades (Goyal et al., 2010a) and used for deci-
sion making, such as identifying influencer (Agarwal et al., 2008), maximizing information
spread (Rodriguez and Schölkopf, 2012), and marketing planing (Richardson and Domin-
gos, 2002; Bhagat et al., 2012). Several recent experimental comparisons on both synthetic
and real world data showed that continuous-time models yield significant improvement in
settings such as recovering hidden diffusion network topologies from cascade data (Du et al.,
2012; Gomez-Rodriguez et al., 2011; Yang and Zha, 2013; Zarezade et al., 2015), predicting
the timings of future events (Rodriguez et al., 2013), finding source of information cas-
cades (Farajtabar et al., 2015a). Besides this, Point process modeling of activity in network
is becoming increasingly popular (Parikh et al., 2012; Hall and Willett, 2016; Farajtabar
et al., 2017). These time-sensitive modeling and decision making problems can usually be
framed into optimization problems and are usually difficult to solve. This brings up interest-
ing optimization problems, such as efficient submodular function optimization with provable
guarantees (Goyal et al., 2010b; Kempe et al., 2003), sampling methods (Lian et al., 2014;
Gunawardana et al., 2011) for inference and prediction, and convex framework proposed
in (Farajtabar et al., 2014; Karimi et al., 2016) to make decisions to shape the activity to a
variety of objectives and intervene in networks (Farajtabar et al., 2017). Furthermore, the
high dimensional nature of modern event data makes the evaluation of objective function
of the optimization problem even more expensive. Therefore, more accurate modeling and
sophisticated algorithm needed to be designed to tackle the challenges posed by modern
event data applications.

The work most closely related to ours is the empirical study of information diffusion
and network evolution (Gross and Blasius, 2008; Singer et al., 2012; Weng et al., 2013;
Antoniades and Dovrolis, 2015; Myers and Leskovec, 2014). Among them, (Weng et al.,
2013) was the first to show experimental evidence that information diffusion influences
network evolution in microblogging sites both at system-wide and individual levels. In
particular, they studied Yahoo! Meme, a social micro-blogging site similar to Twitter,
which was active between 2009 and 2012, and showed that the likelihood that a user u starts
following a user s increases with the number of messages from s seen by u. Antoniades and
Dovrolis (2015) investigated the temporal and statistical characteristics of retweet-driven
connections within the Twitter network and then identified the number of retweets as a
key factor to infer such connections, in agreement with (Weng et al., 2013). Besides link
prediction, they argue about which potential network motifs TRF events can lead to in the
network structure. Myers and Leskovec (2014) showed that the Twitter network can be
characterized by steady rates of change, interrupted by sudden bursts of new connections,
triggered by retweet cascades. They also developed a method to predict which retweets are
more likely to trigger these bursts. Finally, Tran et al. (2015) utilized multivariate Hawkes
process to establish a connection between temporal properties of activities and the structure
of the network. In contrast to our work they studied the static properties, e.g., community
structure and inferred the latent clusters using the observed activities.

However, there are fundamental differences between the above-mentioned studies and
our work. First, they only characterize the effect that information diffusion has on the
network dynamics, but not the bidirectional influence. In contrast, our probabilistic gen-
erative model takes into account the bidirectional influence between information diffusion
and network dynamics. Second, previous studies are mostly empirical and only make binary
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predictions on link creation events. For example, the work of (Weng et al., 2013; Antoni-
ades and Dovrolis, 2015) predict whether a new link will be created based on the number of
retweets; and, (Myers and Leskovec, 2014) predict whether a burst of new links will occur
based on the number of retweets and users’ similarity. However, our model is able to learn
parameters from real world data, and predict the precise timing of both diffusion and new
link events.

10. Conclusion and Future Works

In this work, we proposed a joint continuous-time model of information diffusion and net-
work evolution, which can capture the coevolutionary dynamics, can mimic the most com-
mon static and temporal network patterns observed in real-world networks and information
diffusion data, and can predict the network evolution and information diffusion more accu-
rately than previous state-of-the-arts. Using point processes to model intertwined events in
information and social networks opens up many interesting venues for future. Our current
model is just a show-case of a rich set of possibilities offered by a point process framework,
which have been rarely explored before in large scale social network modeling. There are
quite a few directions that remain as future work and are very interesting to explore. For
example:

• A large and diverse range of point processes can also be used instead in the framework
and augment the current model without changing the efficiency of simulation and the
convexity of parameter estimation.

• We can incorporate features from previous state of the diffusion or network structure.
For example, one can model information overload by adding a nonlinear transfer
function on top of the diffusion intensity, or model peer pressure by adding a nonlinear
transfer function depending on the number of neighbors.

• There are situations that the processes are naturally evolve in different time scales. For
example, link dynamics is meaningful in the scale of days, however, the resolution in
which information propagation occurs is usually in hours or even minutes. Developing
an efficient mechanism to account for heterogeneity in time resolution would improve
the model’s ability to predict.

• We may augment the framework to allow time-varying parameters. The simulation
would not be affected and the estimation of time-varying interaction can still be carried
out via a convex optimization problem (Zhou et al., 2013b).

• Alternatively, one can use different triggering kernels for the Hawkes processes and
learn them to capture finer details of temporal dynamics.
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Appendix A. Notations

Table 3: Table of Notations of the COEVOLVE framework

Notation Description

m number of nodes in the network

er = (u, s, t) retweet event: node u retweets at time t a tweet by source node s

el = (u, s, t) link event: node u create at time t a link to source node s

Hr
us(t) history of retweet events by node u up to time t due to source s

Hr(t) history of all retweet events up to time t

Hl(t) history of all link events up to time t

Nus(t) count process of the number of retweets of u due to source s up to time t

N(t) count process matrix of all pairs N(t) := ( Nus(t) )u,s∈[m]

dN(t) differential of retweet process matrix dN(t) := ( dNus(t) )u,s∈[m]

Aus(t) survival process indicating whether u is directly following s at time t

A(t) survival process matrix of all paris A(t) := ( Aus(t) )u,s∈[m]

dA(t) differential of link creation process matrix dA(t) := ( dAus(t) )u,s∈[m]

γ∗us(t) conditional intensity function of user u retweet an event due to source s

Γ∗(t) matrix of information diffusion intensity functions Γ(t) = ( γ∗us(t) )u,s∈[m]

I[·] indicator function

Fu(t) set of followers of u at time t

ηu intensity of original tweets by a user u on his own initiative

βs amount of increase in retweeting intensity when a tweet by source s hits

κω(t) decaying kernel with bandwidth ω; κω(t) = e−ωt

λ∗
us(t) conditional intensity function for user u follows source s at time t

Λ∗(t) matrix of link creation intensity functions Λ∗(t) = ( λ∗
us(t) )u,s∈[m]

µu intensity of node u deciding to follow a source at her own initiative

αu amount of increase in linking intensity when a tweet by the source hits

E collection of retweet events observed

A collection of link creation events

L likelihood of observation

νij auxiliary variable for lower-bounding the log-likelihood
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Appendix B. Basic Simulation Algorithm

In this section, we revisit Ogata’s algorithm in more details. Consider a U -dimensional
point process in which each dimension u is characterized by a conditional intensity function
λ∗
u(t).
Ogata’s algorithm starts with summing the intensities, λ∗

sum(τ) =
∑U

u=1 λ
∗
u(τ). Then,

assuming we have simulated up to time t, the next sample time, t′, is the first event drawn
from the non-homogenous Poisson process with intensity λ∗

sum(τ) which begins at time
t. Here, the algorithm exploits that, given a fixed history, the Hawkes Process is a non-
homogenous Poisson process, which runs until the next event happens. Then, the new event
will result in an update of the intensities and a new non-homogenous Poisson process starts
until the next event.

It can be shown that the waiting time of a non-homogeneous Poisson process is an ex-
ponentially distributed random variable with rate equal to integral of the intensity (Ross,

2011), i.e. s ∼ Exponential
(∫ t+s

t
λ∗
sum(τ) dτ

)

. Thus, the next sample time can be com-

puted as

t′ = t
︸︷︷︸

current time

+ s.
︸︷︷︸

waiting time for the first event

(38)

Sampling from a non-homogenous Poisson process is not straight-forward, therefore, Ogata’s
algorithm uses rejection sampling with a homogenous Poisson process as the proposal dis-
tribution. More in detail, given λ̂ = maxt≤τ≤T λ∗

sum(τ), t′ is the time of first event of ho-
mogenous Poisson Process with rate λ̂. Then, we accept the sample time with probability
λ∗
sum(t′)/λ̂. Finally, the dimension firing the event is determined by sampling proportionally

to the contribution of the intensity of that user to the total intensity, i.e., λ∗
u(t

′)/λ∗
sum(t′)

for 1 ≤ u ≤ U . This procedure is iterated until we reach the end of simulation time T .
Algorithm 5 presents the complete procedure.

Ogata’s algorithm would scale poorly with the dimension of the process, because, after
each sample, we would need to re-evaluate the affected intensities and find the upper bound.
As a consequence, a naive implementation to draw n samples require O(Un2) time complex-
ity, where U is the number of dimensions. This is because for each sample we need to find
the new summation of intensities, which involves O(U) individual ones, each taking O(n)
time to accumulate over this history. In our social networks application, we have m2 −m
point processes for link creation and m2 ones for retweeting, i.e., U = O(m2). Therefore,
Ogata’s algorithm takes O(m2n2) time complexity.
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Algorithm 5 Ogata’s Algorithm

Input: U dimensional Hawkes process {λ∗
u(t)}u=1...U , Due time: T

2: Output: Set of events: H = {(t1, u1), . . . , (tn, un)}
t← 0

4: i← 0
while t < T do

6: λ∗
sum(τ)←

∑U
u=1 λ

∗
u(τ)

λ̂← maxt≤τ≤T λ∗
sum(τ)

8: s ∼ Exponential(λ̂)
t′ ← t+ s

10: if t′ ≥ T then
break

12: end if
λ̄← λ∗

sum(t′)
14: d ∼ Uniform(0, 1)

if d× λ̂ > λ̄ then
16: t← t′

Goto 6
18: end if

S ← 0
20: d ∼ Uniform(0, 1)

for u← 1 to U do
22: S ← S + λ∗

u(t
′)

if S ≥ d then
24: i← i+ 1

ui ← u
26: ti ← t′

t← t′

28: Goto 6
end if

30: end for
Given the new event just sampled update intensity functions λ∗

u(τ)
32: end while

Sampling next
event time

Rejection test

Attribution test
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Appendix C. Proofs

Lemma 1 Assume we have U independent non-homogeneous Poisson processes with inten-
sity λ∗

1(τ), . . . , λ
∗
U (τ). Take random variable τu equal to the time of process u’s first event

after time t. Define τmin = min1≤u≤U {τu} and umin = argmin1≤u≤U {τu}. Then,
(a) τmin is the first event after time t of the Poisson process with intensity λ∗

sum(τ). In
other words, τmin has the same distribution as the next event (t′) in Ogata’s algorithm.

(b) umin follows the conditional distribution P(umin = u|τmin = x) =
λ∗
U
(x)

λ∗
sum(x) . I.e. the

dimension firing the event comes from the same distribution as the one in Ogata’s algorithm.

Proof (a) The waiting time of the first event of a dimension u is exponentially distributed1

random variable (Ross, 2011); i.e., τu − t ∼ Exponential
(∫ t+τu

t
λ∗
u(τ) dτ

)

. We have:

P(τmin ≤ x|x > t) = 1− P(τmin > x|x > t) = 1− P(min (τ1, . . . , τU ) > x|x > t)

= 1− P(τ1 > x, . . . , τU > x|x > t) = 1−

U∏

u=1

P(τu > x|x > t)

= 1−

U∏

u=1

exp

(

−

∫ t+x

t

λ∗
u(τ) dτ

)

= 1− exp

(

−

∫ t+x

t

λ∗
sum(τ) dτ

)

.

(39)

Therefore, τmin− t is exponentially distributed with parameter
∫ τmin

t
λ∗
sum(τ) dτ which can

be seen as the first event of a non-homogenous poisson process with intensity λ∗
sum(τ) after

time t.
(b) To find the distribution of umin we have

P(umin = u|τmin = x) = λ∗
u(x) exp

(

−

∫ t+x

t

λ∗
u(τ) dτ

)
∏

v 6=u

exp

(

−

∫ t+x

t

λ∗
v(τ) dτ

)

= λ∗
u(x)

∏

v

exp

(

−

∫ t+x

t

λ∗
v(τ) dτ

)

.

(40)

After normalization we get P(umin = u|τmin = x) =
λ∗
U
(x)

λ∗
sum(x) .

Theorem 2 The sequence of samples from Ogata’s algorithm and our proposed algorithm
follow the same distribution.

Proof Using the chain rule the probability of observing HT = {(t1, u1), . . . , (tn, un)} is
written as:

P {(t1, u1), . . . , (tn, un)} =
n∏

i=1

P {(ti, ui)|(ti−1, ui−1), . . . , (t1, u1)} =
n∏

i=1

P {(ti, ui)|Hti} .

By fixing the history up to some time, say ti, all dimensions of multivariate Hawkes process
become independent of each other (until next event happens). Therefore, the above lemma

1. If random variable X is exponentially distributed with parameter r, then fX(x) = r exp(−rx) is its
probability distribution function and FX(x) = 1− exp(−rx) is the cumulative distribution function.
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can be applied to show that the next sample time from Ogata’s algorithm and the proposed
one come from the same distribution, i.e., for every i, P {(ti, ui)|Hti} is the same for both
algorithms. Thus, the multiplication of individual terms is also equal for both. This will
prove the theorem.

Theorem 3 The optimization problem defined by Equation (25) is jointly convex.

Proof We expand the likelihood by replacing the intensity functions into Equation (24):

L =
∑

eri∈E

log

(

I[ui = si] ηui
+ I[ui 6= si]βsi

∑

v∈Fui(ti)

(

κω1(t) ⋆ (Auiv(t) dNvsi(t))
)∣
∣
∣
t=ti

)

−
∑

u,s∈[m]

I[u = s] ηu

∫ T

0
dt+ I[u 6= s]βs

∑

v∈Fu(t)

∫ T

0
κω1(t) ⋆ (Auv(t) dNvs(t)) dt

+
∑

eli∈A

log



µui
+ αui

∑

v∈Fui
(ti)

(
κω2(t) ⋆ dNvs(t)

)∣
∣
t=ti





−
∑

u,s∈[m]

µu

∫ T

0
(1−Aus(t)) dt+ αu

∫ T

0
(1−Aus(t))

( ∑

v∈Fu(t)

κω2(t) ⋆ dNvs(t)
)
dt.

(41)

If we stack all parameters in a vector x = ({µu} , {αu} , {ηu} , {βs}), one can easily notice
that the log-likelihood L can be written as

∑

j log(a
⊤
j x)−

∑

k b
⊤
k x, which is clearly a con-

cave function with respect to x (Boyd and Vandenberghe, 2004), and thus −L is convex.
Moreover, the constraints are linear inequalities and thus the domain is a convex set. This
completes the proof for convexity of the optimization problem.

Lemma 4 The log-likelihood in Equation (24) is lower-bownded as follows:

L ≥ L
′ =

∑

eri∈E

I[ui = si] log (ηui
) +

∑

eri∈E

I[ui 6= si] log(βsi)

+
∑

eri∈E

I[ui 6= si] log
(∑

v∈Fui(ti)

(

κω1(t) ⋆ (Auiv(t) dNvsi(t))
)∣
∣
∣
t=ti

)

−
∑

u,s∈[m]

ηuT + βs
∑

v∈Fu(t)

∫ T

0
κω1(t) ⋆ (Auv(t) dNvs(t)) dt

+
∑

eli∈A

νi1 log(µui
) + νi2 log(αui

) + νi2 log
( ∑

v∈Fui
(ti)

(
κω2(t) ⋆ dNvs(t)

)∣
∣
t=ti

)

−
∑

eli∈A

νi1 log(νi1) + νi2 log(νi2)

−
∑

u,s∈[m]

µu

∫ T

0
(1−Aus(t)) dt+ αu

∫ T

0
(1−Aus(t))(κω2(t) ⋆ dNus(t)) dt.

(42)
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Proof We can lower-bound the logarithm in the log-likelihood (Equation (41)) using
Jensen’s inequality as follows:

log



µui
+ αui

∑

v∈Fui
(ti)

(
κω2(t) ⋆ dNvs(t)

)∣
∣
t=ti





= log



νi1
µui

νi1
+ νi2

αui

νi2

∑

v∈Fui
(ti)

(
κω2(t) ⋆ dNvs(t)

)∣
∣
t=ti





≥ νi1 log

(
µui

νi1

)

+ νi2 log




αui

νi2

∑

v∈Fui
(ti)

(
κω2(t) ⋆ dNvs(t)

)∣
∣
t=ti





≥ νi1 log(µui
) + νi2 log(αui

) + νi2 log




∑

v∈Fui
(ti)

(
κω2(t) ⋆ dNvs(t)

)∣
∣
t=ti





− νi1 log(νi1)− νi2 log(νi2).

(43)

Replacing the logarithm with the lower-bound gets the result.

Appendix D. More Properties of the Coevolution Model

In this section we complement the properties of simulated coevolved networks and cascades
by visualizing the outcomes, i.e., the networks and cascades.

D.1 Network Visualization

Figure 19 visualizes several snapshots of the largest connected component (LCC) of two
300-node networks for two particular realizations of our model, under two different values
of β. In both cases, we used µ = 2 × 10−4, α = 1, and η = 1.5. The top two rows
correspond to β = 0 and represent one end of the spectrum, i.e., Erdos-Renyi random
network. Here, the network evolves uniformly. The bottom two rows correspond to β = 0.8
and represent the other end, i.e., scale-free networks. Here, the network evolves locally, and
clusters emerge naturally as a consequence of the local growth. They are depicted using a
combination of forced directed and Fruchterman Reingold layout with Gephi2. Moreover,
the figure also shows the retweet events (from others as source) for two nodes, A and B, on
the bottom row. These two nodes arrive almost at the same time and establish links to two
other nodes. However, node A’s followees are more central, therefore, A is being exposed
to more retweets. Thus, node A performs more retweets than B does. It again shows how
information diffusion is affected by network structure. Overall, this figure clearly illustrates
that by careful choice of parameters we can generate networks with a very different structure.

2. http://gephi.github.io/
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t = 5 t=20 t=35

t=50 t=65 t=80

t = 5 t=20 t=35
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A
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55 70 85

A

55 70 85

B

Figure 19: Evolution of two networks: one with β = 0 (1st and 2nd rows) and another one
with β = 0.8 (3rd and 4th rows), and spike trains of nodes A and B (5th row).
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Figure 20: Coevolutionary dynamics of events for the network shown in Figure 21. Expla-
nation is provided in section D.2.
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Figure 21: Network structure in which events from Figure 20 take place shown at different
time points with the important nodes and links higlighted.

D.2 Cascade Visualization

Figure 20 illustrates the spike trains (tweet, retweet, and link events) for the first 140 nodes
of a network simulated with a similar set of parameters as above and Figure 21 shows
three snapshots of the network at different times. First, consider node 6 in the network.
After she joins the network, a few nodes begin to follow him. Then, when she starts to
tweet, her tweets are retweeted many times by others (red spikes) in the figure and these
retweets subsequently boost the number of nodes that link to her (Magenta spikes). This
clearly illustrates the scenario in which information diffusion triggers changes on the network
structure. Second, consider nodes 46 and 68 and compare their associated events over time.
After some time, node 46 becomes much more active than node 68. To understand why,
note that soon after time 137, node 46 followed node 130, which is a very central node (i.e.
following a lot of people), while node 68 did not. This clearly illustrates the scenario in
which network evolution triggers changes on the dynamics of information diffusion.

Appendix E. Extensions

The basic model presented in Section 3 is just a show-case of the potential of point processes
in modeling networks and processes over them. In this section, we extend our model in a
variety of ways. More specifically, we explain how the model can be augmented to support
link removal, node birth and death, and connection specific parameters. We did not per-
form experiments with these extensions because our real-world data set does not contain
information regarding to link removal and node birth and death. Curating a comprehensive
data set that can be used in modeling all these aspects of networks is left as interesting
future work.

E.1 Link Deletion

We can generalize our model to support link deletion by introducing an intensity matrix
Ξ∗(t) = (ξ∗us(t))u,s∈[m] and model each individual intensity as a survival process. Assume

A+(t) is the previously defined counting matrix A(t), which indicates the existence of an
edge at time t. Then, we introduce a new counting matrix A−(t) = (A−

us(t))u,s∈[m], which
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indicates the lack of an edge at time t, and we define it via its intensity function as

E[dA−(t) |Hr(t) ∪Hl(t)] = Ξ∗(t) dt, (44)

Then, we define the intensity as

ξ∗us(t) = A+
us(t)(ζu + νs

∑

v∈Fu

κω3(t) ⋆ dA
−
vs(t)), (45)

where the term A+
us(t) guarantees that the link has positive intensity to be removed only if

it already exists, just like the term 1−Aus(t) in Equation (21), the parameter ζu is the base
rate of link deletion and νs

∑

v∈Fu κω3(t) ⋆ dA
−
vs(t) is the increased link deletion intensity

due to increased number of followees of u who decided to unfollow s. This is an excitation
term due to deleted links to source s; given s is unfollowed by some followees of u, then u
may find s not a good source of information too.

Given a pair of nodes (u, s), the process starts with A+
us(t) = 0. Whenever a link is

created this process ends and a removal process A−
us(t) starts. Similarly, when the removal

process fires, the connection is removed and a new link creation process is instantiated.
These two processes interleave until the end.

E.2 Node Birth and Death

We can augment our model to consider the number of nodes m(t) to change over time:

m(t) = mb(t)−md(t) (46)

where mb(t) and md(t) are counting processes modeling the numbers of nodes that join and
left the network till time t, respectively. The way we construct mb(t) and md(t) guarantees
that m(t) is always non-negative.

The birth process, mb(t), is characterized by a conditional intensity function φ∗(t):

E[dmb(t) |H
r(t) ∪Hl(t)] = φ∗(t) dt, (47)

where

φ∗(t) = ǫ+ θ
∑

u,s∈[m(t)]

κω4(t) ⋆ dNus(t). (48)

Here, ǫ is the constant rate of arrival and θ
∑

u,s∈[m(t)] κω4(t) ⋆ dNus(t) is the increased rate
of node arrival due to the increased activity of nodes. Intuitively, the higher the overall
activity in the existing network, the larger the number of new users.

The construction of the death process, md(t), is more involved. Every time a new user
joins the network, we start a survival process that controls whether she leaves the network.
Thus, we can stack all these survival processes in a vector, l(t) = (lu(t))u∈[m], characterized
by a multidimensional conditional intensity function σ∗(t) = (σu(t))u∈[mb(t)]

:

E[dl(t)|Hr(t) ∪Hl(t)] = σ∗(t) dt. (49)

Intuitively, we expect the nodes with lower activity to be more likely to leave the network
and thus its conditional intensity function to adopt the following form:

σ∗
u(t) = (1− lu(t))





J∑

j=1

πjgj(t) +



h(t)−
∑

s∈[m(t)]

κω5(t) ⋆ dNus(t)





+



 , (50)

41



Farajtabar, Wang, Gomez-Rodriguez, Li, Zha and Song

where the term (1− lu(t)) ensures that a node is deleted only once,
∑J

j=1 πjgj(t) is the
history-independent typical rate of death, shared across nodes, which we represent by a
grid of known temporal kernels, {gj(t)} with unknown coefficients, {πj}, and the second
term is capturing the effect of activity on the probability of leaving the network. More
specifically, if a node is not active, we assume its intensity is upper bounded by h(t) and the
most active she becomes, the lower its probability of leaving the network and the larger the
term

∑

s∈[m(t)] κω5(t) ⋆ dNus(t). The hinge function (·)+ guarantees the intensity is always
positive.

Then, given the individual death processes the total death process is

md(t) =

mb(t)∑

u=1

lu(t), (51)

which completes the modeling of the time-varying number of nodes.

E.3 Incorporating Features

One can simply enrich the model by taking into account the longitudinal or static infor-
mation of the networked data, e.g., by conditioning the intensity on additional external
features, such as node attributes or edge types (Li and Zha, 2014; Tran et al., 2015). Let
us assume each user u comes with a K-dimensional feature vector xu including properties
such as her age, job, location, number of followers, number of tweets, and more generally
structural features (Fadaee et al., 2015). A good feature set can represent the local and
global structure of the networks. For example, when the feature set includes number of fol-
lowers or location information, the link creation process can be reduced to Barabasi-Albert
model (Barabási and Albert, 1999), Watts-Strogatz model(Watts and Strogatz, 1998), or
their many variations depending on the coefficients.

Interestingly, we can augment the information diffusion intensity as follows. We in-
troduce a K-dimensional link intensity parameter ηu in which each dimension reflects the
contribution of the corresponding element in the feature vector to the intensity and replace
the baseline rate ηu by η⊤

u xu. Similarly, we introduce a K-dimensional vector βs where
each dimension has a corresponding element in the feature vector xs and substitute βs
by βsxs. Therefore, one can rewrite the original information diffusion intensity given by
Equation (19) as:

γ∗us(t) = I[u = s]η⊤
u xu + I[u 6= s]β⊤

s xs

∑

v∈Fu(t)
κω1(t) ⋆ (Auv(t) dNvs(t)) . (52)

Similarly, we can parameterize the coefficients of the link creation intensity by a K-
dimensional vector and write the counter-part of Equation (20) incorporating features of
the node for computing the intensity:

λ∗
us(t) = (1−Aus(t))(µ

⊤
u xu +α⊤

u xu

∑

v∈Fu(t)

κω2(t) ⋆ dNvs(t)). (53)

Through this extension we can easily incorporate content quality of events as well;
Tweets containing interesting ideas, hot news, or specific language will be retweeted more.
Furthermore, these high quality tweets can increase the likelihood of new connections. All
these contextual features can be easily incorporated.
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Another important feature that can be used is the time. The framework can handle
situations that the base rates are time dependent, i.e., ηu(t) or µu(t). Please refer to
(Tabibian et al., 2017; Du et al., 2015) for good instances of time dependent base rates. For
example, where there are seasonal increase or decrease in the follow or retweet processes, we
can write the base rate as µu(t) =

∑K
k=1 rkhk(t) where hk(t)’s are sinusoidal kernels with

different width and rk’s are the coefficients to be learned.

Surprisingly enough, all the results for convexity for parameter learning, and efficient
simulation techniques are still valid for this case too. As far as the features contribute to the
intensity linearly, the log-likelihood is concave and we can simulate the model as efficiently
as the original model (Li and Zha, 2014; Tran et al., 2015).

E.4 Connection Specific Parameters

Up to this point, the parameters of the link creation and removal, node birth and death and
the information diffusion intensities depend on one end point of the interactions. For exam-
ple βs and ηu in the information diffusion intensity given by Equation (19) only depend on
the source and the actor, respectively. However, proceeding with this example, parameters
can be made connection specific, i.e., Equation (19) can be restated as

γ∗us(t) = I[u = s] ηus + I[u 6= s]βus
∑

v∈Fu(t)
κω1(t) ⋆ (Auv(t) dNvs(t)) , (54)

where ηus is the base intensity of u retweeting a tweet originated by s and βus is the
coefficient of excitement of u to retweet s when one of her followees retweets something
from s.

Given enough computational resources and large amounts of historical data, one can take
into account more complex scenarios and larger and more flexible models. For example, the
middle user, say v, who is along the path of diffusion and forwards the tweet originated from
s to u can also be taking into consideration, i.e., defining βsvu as the amount of increase
in intensity of user u retweeting from s when user v has just retweeted a post from s. All
desirable properties of simulation algorithm and parameter estimation method still hold.

E.5 Source-oblivious Information Propagation

Our framework, Coevolve, relies on the assumption that the identity of the original source
is preserved through the information propagation process. However, some platforms may
only keep the last hop in the propagation. Furthermore, this assumption may be violated
when users copy the content of the posts rather than reshare or retweet it. The current
framework, can be easily extended to handle such cases. Basically, the source-oblivious
problem can be posed as a missing (or noisy) data problem which amounts to model and infer
the propagation process via incomplete observation and has been studied recently (Zipkin
et al., 2016; Du et al., 2015; Stomakhin et al., 2011). Furthermore, the unobserved identity
of the source can be modeled as a latent variable and inferred simultaneously with the
Hawkes diffusion network (Yang and Zha, 2013).
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