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Coexistence and Criticality in Size-Asymmetric Hard-Core Electrolytes

José Manuel Romero-Enrique,* G. Orkoulas, Athanassios Z. Panagiotopoulos,† and Michael E. Fisher
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2431

(Received 28 July 2000)

Liquid-vapor coexistence curves and critical parameters for hard-core 1:1 electrolyte models with
diameter ratios l � s2�s1 � 1 to 5.7 have been studied by fine-discretization Monte Carlo methods.
Normalizing via the length scale s6 �

1
2 �s1 1 s2�, relevant for the low densities in question, both T �

c
(� kBTcs6�q2) and r�

c (� rcs3
6) decrease rapidly (from �0.05 to 0.03 and 0.08 to 0.04, respectively)

as l increases. These trends, which unequivocally contradict current theories, are closely mirrored by
results for tightly tethered dipolar dimers (with T�

c lower by �0% 11% and r�
c greater by 37% 12%).

PACS numbers: 64.70.Fx, 02.70.Lq, 05.70.Jk
The formation of coexisting fluid phases of different
electrolyte concentrations in ionic solutions has been the
topic of numerous recent experimental [1], theoretical
[2,3], and simulation studies [4–7]. The simplest models
for electrolytes —the “primitive models”—treat the sol-
vent as a uniform dielectric continuum. The most studied
system is the restricted primitive model (RPM) that con-
sists of equisized hard spheres, half carrying a charge 1q
and half 2q. Recent simulations [4–7] agree with respect
to the critical temperature and density for the vapor-liquid
transition, finding the remarkably low values T�

c � 0.05
and r�

c � 0.07 [6]; see (1). By contrast to the RPM,
the effects of charge and size asymmetry have not been
extensively analyzed either theoretically or via simulation.

Here we focus on the effects of size asymmetry on
gas-liquid coexistence and critical parameters by study-
ing hard-core primitive models for 1:1 electrolytes that
have no restrictions on the relative magnitude of the
diameters of the 1 and 2 ions, i.e., the so-called size-
asymmetric primitive model [3]. The first claim to
treat size asymmetry theoretically appears already in
Debye and Hückel’s original paper [8,9] and extensions
invoking Bjerrum ion pairing have been analyzed [9].
Other mean potential approaches include the symmetrized
Poisson-Bolzmann and modified Poisson-Boltzmann
[10] schemes. The mean spherical approximation (MSA)
[2,3,10] and hypernetted-chain [11] integral equations have
also been applied. Currently, however, there are no simula-
tion results available to check these various theories.

This work, which extends [12], provides a first study of
the effects of size asymmetry on both critical parameters
and liquid-vapor coexistence [13]. We find, in fact, a sys-
tematic trend of Tc and rc with increasing size asymmetry
that directly conflicts with the principal theories cited.

To be specific, we consider a system of N hard spheres
of diameter s1 carrying charges 1q, and N of diameter
s2 carrying charges 2q. The interaction energy between
two nonoverlapping ions, i and j, of charges qi and qj

(� 6q) separated by distance rij is Uij � qiqj�Drij ,
where D represents the dielectric constant of the solvent
which will be set to unity. The hard-sphere interactions
0031-9007�00�85(21)�4558(4)$15.00
are supposed additive so that the (1, 2)-ion collision
diameter is s6 �

1
2 �s1 1 s2�. This, in fact, provides

the basic length scale appropriate for defining both the
reduced temperature and the reduced density via

T� � kBTDs6�q2 and r� � rs3
6 , (1)

[2,4] where r � 2N�V is the total ionic number density.
Other definitions of the reduced density are, of course,
viable [3,10] and might be advantageous at high densities.
However, at the low densities of interest here (2r�

c & 0.2)
the formation of ion pairs, triples, chains, and rings (see
Fig. 4) is controlled almost exclusively by s6, which re-
mains well defined even if s1 or s2 vanishes yielding
point ions [14]. The reduced simulation box length is de-
fined similarly via L� � L�s6.

The key parameter for our study is the ratio of diameters
of positive and negative ions, namely,

l � s2�s1 . (2)

Because of symmetry with respect to the exchange of 1

and 2 ions, only l $ 1 need by considered.
In addition to the ionic systems, we have studied, for

the sake of comparison [15], tightly tethered dipolar dimer
systems consisting of N pairs of a positive and a nega-
tive ion restricted to remain at separations sd satisfying
s6 # sd # 1.02s6. Interactions of the tethered dimers
are otherwise identical to those of the ions.

We adopt the methodology of [12]. Neutral grand-
canonical fine-discretization Monte Carlo simulations
(characterized by a temperature T and a chemical potential
for a pair of unlike ions, m) have been performed on cubic
boxes of length L, under periodic boundary conditions.
The positions available to each ion are the sites of a
simple cubic lattice of spacing a. A “lattice refinement”
parameter z � s6�a is introduced, so that when z ! `

the continuum is recovered. For values of z $ 3, the RPM
displays a gas-liquid coexistence curve that approaches
the continuum case quite closely already for z � 5 [12].
In a Lennard-Jones fluid studied using z � 10, the phase
envelope and critical points of the lattice and continuum
systems were equal within the simulation uncertainties
© 2000 The American Physical Society
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TABLE I. Critical parameters, T �
c �L�� and r�

c �L��, for the l �
1, z � 10 ionic models with two values of e`. (The 1s statis-
tical uncertainties refer to the last decimal place.)

L� 100T�
c : e` � 1, e` � `. 100r�

c : e` � 1, e` � `.

12 5.09(1) 4.97(1) 7.0(3) 8.0(2)
15 5.03(1) 4.96(1) 7.0(2) 8.2(3)
18 5.00(1) 4.96(1) 7.4(2) 7.9(2)

[16]. The structure of the liquid at short distances, as
judged by the pair correlations, was also the same.

We have thus adopted a refinement parameter of z �
10. For the largest value of l we explore, namely, l � 52

3 ,
the diameter of the smaller sphere is s1 � 3a. When l �
1, typical correlation functions for both like and unlike
ion pairs then agree to within graphical accuracy with the
corresponding continuum results (for the same T�, r�, and
L�). For higher values of l (.1), the discretization effects
on the (1, 2) and (2, 2) correlation functions decrease,
while those on the (1, 1) correlation functions increase,
as s1�a becomes smaller; but the latter are very small at
short distances because of the strong repulsions.

The fine-lattice technique embodies precomputation and
subsequent lookup of the Coulomb interaction between
any two lattice sites, including all periodic images. The
Ewald sums were performed with conduction (“tin-foil”)
boundary conditions, i.e., e` � `; but for l � 1, vac-
uum boundary conditions (e` � 1) were also used to
allow comparisons with [6]; see Table I and below.

Biased insertions and deletions of pairs of unlike ions
were performed for ionic models, following [4]. Our teth-
ered dimers have 318 distinct configurations on the lattice.
Dimers were inserted by randomly placing the 2 ion and
selecting one of the 318 positions for the 1 ion.

Histogram reweighting techniques were used to obtain
the vapor-liquid envelopes up to T & 0.98Tc [17]. Ef-
fective critical points for given L� were estimated using
mixed-field finite-size scaling methods [18], assuming
Ising-type criticality. To discern a systematic dependence
on l, this approach should be satisfactory even though
recent results [19] (which indicate that the pressure
should also enter the field mixing) cast doubts on its
full reliability.

The two Ewald-sum boundary conditions for l � 1
yield different critical values (see Table I) but extrapola-
tion to L� � ` gives T�

c � 0.0495�2� for both cases and
r�

c � 0.078�5� for e` � 1 and 0.079�5� for e` � `. The
agreement is excellent; but since the e` � ` results vary
less with L� they were used for the further simulations.

These l � 1 results should approximate well those
of the continuum RPM: recent studies [5–7] yield
0.0488(2)–0.0490(3) for T�

c and 0.062(5)–0.080(5) for
r�

c . Our 1% larger value of T�
c may be due to lattice

discretization. Indeed, previous simulations [12] found
that both T�

c �L�� and r�
c �L�� estimates decreased slightly

as z increased.
FIG. 1. Phase diagrams for ionic systems with various size
asymmetries l � s2�s1. Statistical uncertainties are shown
only when larger than symbol sizes.

The calculated phase diagrams for the ionic and teth-
ered dimer systems are shown in Figs. 1 and 2, respec-
tively. The critical points, which are listed in Table II, were
calculated [18] using L� � 18 data while the subcritical
coexistence curves were obtained using L� � 12. The ef-
fects of size asymmetry are clearly strong, displaying a
marked downward shift in T�

c and r�
c as l increases. (The

lower values of T�
c result in smaller Monte Carlo accep-

tance ratios and increasing sampling difficulties.)
For l � 1, the critical temperatures of the ionic and

dimer systems seem almost identical. Indeed, although
rc is about 37% higher, the overall phase behavior of the
dimers is quite similar to that of the ionic systems, as
stressed by Shelley and Patey [15]. When l increases,
the critical temperatures of the dimers fall more rapidly
but the critical densities approach those for ions, differ-
ing by only 11% at l � 5.67; see Fig. 3 where these
results are depicted graphically versus the asymmetry
parameter v�l� � �1 2 l�2��1 1 l2�. This parameter
respects the symmetry under exchange of 1 and 2

FIG. 2. Phase diagrams for tethered dipolar dimers.
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TABLE II. Dependence on l of estimated critical parameters
for (a) ionic and (b) tethered dimer models.

l T �
c 3 102 2m�

c r�
c 3 102

(a) 1 4.96(1) 1.3424(1) 7.9(2)
2 4.79(1) 1.3347(1) 7.3(2)
3 4.42(1) 1.3189(1) 6.4(4)
4.26 4.03(2) 1.3009(4) 5.5(3)
5.67 3.66(8) 1.2880(8) 4.6(1)

(b) 1 4.98(1) 1.3210(1) 10.8(3)
3 4.27(1) 1.3005(1) 7.7(2)
5.67 3.28(7) 1.2795(4) 5.2(3)

ions and increases monotonically from v�1� � 0 for the
RPM, up to v�`� � 1, for point ions. Extrapolating our
data to the point-ion limit, v � 1, suggests a possibly
common critical density, r�

c , for ions and dimers of
�0.015, with distinct critical temperatures, T�

c , in the
ranges 0.020–0.025 and 0.012–0.018. To check these
speculations, however, may not be easy.

Also shown in Fig. 3, as crosses, are the predictions of
the MSA (using the energy route) for l � 1, 2, 10, and
` [2]. The absolute differences in T�

c and r�
c were to

be anticipated (see, e.g., [20]); but it is striking that the
predicted changes with l in both T�

c and r�
c are opposite

to those revealed by the simulations. The same failure to
predict the correct trends is seen in the various calculations

FIG. 3. Reduced critical temperatures T�
c and densities r�

c as
functions of the asymmetry parameter, v�l� � �1 2 l�2��1 1
l2�, as found by simulations (i) for ionic systems (open circles)
and (ii) for tethered dimers (solid triangles); and as predicted
by theory using (iii) the MSA (energy route) [2] (crosses) and
(iv) extended Ebeling-Grigo theory (in the EG-Eb approxima-
tion) [3] (solid lines).
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of Raineri et al. [3] as illustrated by the solid curves in
Fig. 3. These derive from extensions of the Ebeling and
Grigo theory (which employs Bjerrum ion pairing). (See
also [20].)

The conflict of our data with the theories cited is, per-
haps, not so surprising when one recognizes the large de-
gree of pair association that occurs already in the critical
region of the RPM (l � 1) [20–22]. Indeed, the pres-
ence of many such closely coupled dipolar pairs is what
motivated the comparison with charged dumbbells [15]
and our tethered dimer systems. But, as realized for
some time [14,21,23] and evident in sample configurations
such as that in Fig. 4, dipolar systems undergo significant
aggregation, primarily forming (1, 2) chains or “living
polymers.” Theories which mainly address the pair corre-
lations cannot readily do justice to the geometrical aspects
of the formation and interaction of such chains [23].

Conversely, some insight into the lowering of T�
c as l in-

creases may be gained by examining how the ground-state
binding energies, E�

b � EbDs6�q2, of various specific
configurations depend on l. Thus for a neutral cluster of
four ions (or two dipolar dimers) we find E�

b � 2.586
for a square “ring” when 1 # l # 1 1

p
2; but E�

b
falls smoothly when l exceeds 2.414 until, at l � 8.26,
the lowest energy configuration switches from a planar
diamond to a straight chain with E�

b � 2.333. Simi-
larly, if two long (1, 2) chains are brought together,
the excess binding energy per ion is E�

b � 0.752 when
1 # l # 2.414 but decreases smoothly to 0.698 when l

grows larger. Other examples exhibit similar effects again
rationalizing the observed drop in T�

c �l�.

FIG. 4. Snapshot of an ionic configuration with l � 5 2
3 and

L� � 15 at T� � 0.0374 � 1.02T�
c and instantaneous density

r� � 0.059 � 1.27r�
c .
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FIG. 5. Fraction f of ions in neutral clusters of n charged
spheres in systems of size L� � 18 at r� �

1
3 r�

c . Solid symbols
denote ionic systems, open symbols tethered dipolar dimers.
The squares correspond to symmetric (l � 1) systems at T � �
0.050, the circles to l � 3 systems at T� � 0.045. From the top
downwards (at n . 10) the reduced densities are r� � 0.026,
0.033, 0.019, and 0.027.

The fact that tethered dimers show lower T�
c values (for

l . 1) than ionic systems supports the view that free ions
assist in lowering the liquid free energy [20]. The result
that the dimers require larger densities to stabilize the liq-
uid is likewise consistent with this idea. In that connection
the theory of [20], in which dipolar dimers are solvated by
1 and 2 free ions (which strongly screen opposite ends
of a dimer), may reasonably be regarded as approximating
the solvation of a dipolar dimer by other dimers: these will
screen by orienting in head-to-tail fashion. A better the-
ory is much to be desired but, as various attempts illustrate
(see, e.g., [24]), that goal seems elusive.

Finally, in an attempt to quantify some structural
differences between ionic and tethered dimer systems,
cluster densities were sampled for selected, comparable
conditions: see Fig. 5. Gillan’s definition of a cluster [21]
was used with a clustering distance R�

C � RC�s6 � 1.1.
It is evident that there are more large clusters in the less
symmetric systems. But tethered dimers have much higher
fractions of large clusters than do ionic systems, even
allowing for the absence of charged clusters in the former.

In summary, our fine-discretization simulations of hard-
core 1:1 electrolyte models have provided unequivocal
evidence that increasing the size asymmetry, measured by
the diameter ratio l � s2�s1, leads to sharp, mono-
tonic drops in appropriately scaled critical temperatures
and densities [see (1)]. Tightly tethered dipolar dimers (or
dumbbells [15]) display broadly similar behavior but with
relatively larger critical densities, and critical temperatures
that decrease faster with increasing l. These trends are in
severe disagreement with current theories [2,3] and present
what appear to be deep challenges to our theoretical under-
standing even at a qualitative level.
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Note added.—After this manuscript was submitted, we
received a copy of Ref. [25] describing calculations for
size-asymmetric electrolytes in the continuum. Critical
temperatures and densities are in agreement, within sta-
tistical uncertainties, with results from the present work.
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