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COEXISTENCE THEOREMS OF STEADY STATES
FOR PREDATOR-PREY INTERACTING SYSTEMS

LIGE LI

Abstract. In this paper we give necessary and sufficient conditions for the existence
of positive solutions of steady states for predator-prey systems under Dirichlet
boundary conditions on Q <s R". We show that the positive coexistence of predator-
prey densities is completely determined by the "marginal density," the unique
density of prey or predator while the other one is absent, i.e. the (un,0) or (0, v0).
More specifically, the situation of coexistence is determined by the spectral behavior
of certain operators related to these marginal densities and is also completely
determined by the stability properties of these marginal densities. The main results
are Theorems 1 and 4.2.

1. Main results. In this paper we give necessary and sufficient conditions for the
existence of positive solutions to the following system:

[Am + uM{u,v) = 0,
(1) ¡dAv + v{g{u)-m(v)) = 0,

l(«,i>)|ao = (0,0),       Í2^R",
where A is the Laplacian Am = E"=1 ux x. M is a C1 function and is globally
Lipschitzian, and is assumed to satisfy the so-called prey growth rate conditions (see
Figure 1)

(Mx) Mv(u,v) <0foru,v> 0.
In addition

(M2) Mu(u,0) < Ofor m > 0.
(M3) There exists a constant C0 > 0 such that M(u, 0) < 0 for u > C„.
(M4) A/(0,0)> 0.

M(u,0)

Figure 1
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The functions g and m belong to C:(R) and are increasing functions satisfying
g(0) — m(v) < 0 for v larger than some constant Cx.

In order to state the main result a lemma is in order.

Lemma 1.1. Let <j> be a strictly decreasing function, <p(u) < 0 for large u.
(i) If 4>(0) > Xx, then the equation — Am = u<p(u), u | af2 = 0 has a unique positive

solution.
(ii) // <|>(0) < Xx then the above equation has no positive solution, i.e. u = 0 is the

only nonnegative solution.
Here Xx is the first eigenvalue of —A for the region ñ with homogeneous Dirichlet

condition.

Lemma 1.1 and its proof are well known, see, for example, [4]. Under the above
hypotheses about the functions M, g and m the system (1) is a steady state system
for the predator-prey problem. We shall see the importance to the system (1) of the
component u or v while the other one is absent, that is, the solution (m0,0) and
(0, v0) of (1) under certain conditions. According to Lemma 1.1, we have the unique
solution (m0,0) to (1) with m0 > 0 provided M(0,0) > Xx, and the unique solution
(0, v0) to (1) with v0 > 0 provided g(0) > Xxd + m(0) and m is strictly increasing.
Notice that the latter case means a positive density of predator could exist even
without the prey, the food source. In and only in this case, in order to get a positive
prey density coupled to a predator density, we make an additional hypothesis:

(MM) M(0, v) > M(u, v) for u,v>0.
Biologically, (MM) indicates that a maximal birthrate of prey occurs at its absent
state.

Our first result is the following theorem.

Theorem I.A. If m # 0, then the positive solution (u, v) of (1) has a priori bounds
0 < u < Bv 0 < u < B2.

(A.l) // M(0,0) < \x, g(0) < \xd + m(0), then (0,0) is the only nonnegative
solution of (1).

(A.2) //g(0) < \xd + m(0), then (1) has a positive solution (u, v) iff M(0,0) > Xx
and the first eigenvalue of the operator s/= dA + [g(M0) — m(0)]I is positive.

(A.3) // g(0) > Xxd + m(0), we assume (MM). Then (i) has a positive solution
(u,v) iff M(0,0) > \x and the first eigenvalue of the operators s/= dA +
[g(M0) - m(0)]I and 36 = A + M(0, v0)I are both positive.

Theorem l.B. In case m = 0, we assume in addition g(0) < 0 and (M5): There
exists 6 > 0 such that Mv(u, v) < —6 for 0 < m < C0, v > 0. Then there are a priori
bounds Bx, B2 for a positive solution of (1). Moreover,

(B.l) If M(0,0) < Xx, then (0,0) is the only nonnegative solution.
(B.2) (1) has a positive solution (u,v) iff M(0,0) > Xx and the first eigenvalue of

s&= dA + g(u0) I is positive.

Remark. (1) From the biological point of view the case of (A.2) rules out the
possibility that the predator has positive density in the absence of prey.
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(2) Theorem 1 includes many well-known systems and results as special cases.
Examples include the quadratic system

M(u, v) = —au — bv + c,
g(u) - m{v) = eu- fv ± g,        m{v) = fv, g{u) = eu ± g,

where a, b, c, e, /, g are positive numbers; see [5, 8, 12, 14, 17]. It is interesting to
mention here that the usual monotone technique does not work very well for the
above system because the existence of a small positive lower solution will require
somewhat severe restrictions on the above system. As a consequence many models
are ruled out, for example, when / = 0 (see below).

M{u,v) = —au — bv + c,
g{u) = u-y,        m = 0, a,b,c,y > 0.

This case was only discussed as an ODE system before. In the PDE case one has to
estimate the a priori bound of the solution v. Our Theorem LB solves this problem.

M(u,v) = </>(«) -v-p{u),
(in)

g(u) = ku\p(u) - y,        m = 0,

where -p(u) = c/(d + u), </> satisfies
($,) <i>(0) > 0, <¡>'{u) < 0 for m > 0,
(í>2) <í>(m) < 0 for some constant u > C0> 0.

2. Preliminary theorems and lemmas. In this section we introduce two theorems
due to E. N. Dancer and N. Alikakos and give improvements of them. Additionally,
we shall prove some lemmas which are useful in the sequel.

(A) We first follow the notations given in Dancer [11]. Let £ be a Banach space.
W = E is called a wedge in E if (i) W is a closed convex set and (ii) aW <z W for
every real a > 0. A wedge W is called a cone if W n (- W) = (0). Let W = {x G
E | y + yx g W for some y > 0} where y is an arbitrary element in the wedge W.
Then:

(i)WY= {x g E | y + Ox G W for 0 < 6 < y, for some y > 0}.
(ii) Wy is convex, Wy 2 {-y} U {y} U W.

(iii) Wv is also a wedge.
Let Sv= {xG Wy\-x ^ Wy}\ then S   is a linear subspace of E. Yet L be a
compact linear operator in E with L(WA çz W. L is said to have property a if

there is a t g (0,1) and an element w g W \ Sy such that w - tLw g S„. Dancer's
theorem can be stated as follows (see §§1, 2 of [11]).

Theorem D. Let W be a wedge in a Banach space E and A: W -> W be a compact
map with fixed point Ay0 = y0 G W. Let L = A'(y0) be the Fréchet derivative of A at
y0. Then L maps Wy into itself.

(i)   Assume I — L is invertible on  E and L has property  a  on   Wy0,   then
indexw(A,yo) = 0.

(ii) Assume also that I — L is invertible on E. If L does not have property a, then
indexW(A, y0) = ±1.
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Note. By index w( A, y) we mean the degree deg^(/ - A, U(y),0), where U(y) is
a small neighborhood of y in W. It is well known that deg^(/ - A,U(y),0) does
not depend on the choice of U(y) as long as it is small enough. Notice that in order
to define a Leray-Schauder degree, W should be a retract in the Banach space E.
By an important theorem of Dugundji, every nonempty closed convex subset
of a Banach space £ is a retract of E. Our wedge is hence a retract of E.
degiV(I - A,U,0) + 0 implies that there is a fixed point y g U of A. For more
details see [2].

In investigating the quadratic system

-Am = au(l — u) - uv,    -dAv = v{-v + m{u - y)),    {u, v) \ dQ = (0,0),

where a > Xx, m and y are positive constants with 0 < y < 1, Dancer [12] in 1984
gave a necessary and sufficient condition for the existence of a positive solution to
the above system. His proof was based on Theorem D, but this theorem cannot be
applied to the above system, since the condition that / - L is invertible on E does
not hold. In order to apply the index theorem to our elliptic system (1), we give an
improvement to Theorem D as follows.

Theorem D'. Let y0 g E be a fixed point of A.
(i) Assume I — L is invertible on Wv \ {0). If I — L: Wr —> Wr is not a

surjective map, then indexw(A, y) = 0.
(ii) Assume I — L is invertible on Wv. If L does not have property a then

inde\w(A, y) = ±1.

Theorem D' can be proved by a straightforward modification of the proof of
Theorem D in [11].

(B) Next we state a result obtained by N. Alikakos [1] in 1979. (See §4 of [1].)

Theorem A.1 Let (u,v) be a positive local (in t) solution of

m, = d{)Au + f(u) — 4>(u,v),
v, = dxAv - g(v) + k<b(u,v),

\ 3«    dn j 30

where 0 < u(x,0) < m, 0 < v(x, 0) < v, 0 ^ <b(u,v) ^ p(u)v", the function p(u) is a
continuous monotone nondecreasing function of u, I < a < (n + 2)/n, n = dimfi,
/(0) = 0 = /(C(l) wher f(x) < 0 for x > C(), and g(v) > fiv for some ju > 0 and all
v > 0. Then u, v can he extended to a global solution over 0 < / < oo and

lim   max v(x,t) ^ C

where the constant C is independent of the upper bounds m, v of the initial data.

'In reviewing this paper, the referee pointed out that in Theorem A and Theorem A' below, it is
necessary to emphasize the strictness of the second inequality of 1 < a < (n -4 2)/,,.
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The proof of Theorem A in [1] is based on a result of Conway and Smoller (see
Theorem 3.2 of [9]) which says that limr_oo \\u{x, t)\\L¡ < C,, Cx being some positive
constant.

A modification and improvement of Theorem A can be obtained as follows.

Theorem A', (i) If in Theorem A the boundary condition (du/dn,dv/dn)\dCt =
(0,0) is replaced by (u,v)\3a = (0,0) then lim,_oomaxK(x, t) < C, where C does
not depend on v (but might depend on u) and C does not depend on the diffusion rate
dQ.

(ii) For dv/dt = dAv - g(v) + a(x)<p(v), d > 0, i»|3a = 0, v > 0, g(v)^pv,
/x > 0, 0 < 4>(v) < va with I < a < (n + 2)/n, and a(x) is bounded. If
lim,^, fr¡v(x,t)4: C, where C, is independent of the bound of v(0, x), then
lim, _x max x eq v(x, t) < C, where C is independent of the bound of the initial data
v(0,x).

The proof of Theorem A' is based on the technique employed in [1] combined with
the following facts. A positive solution with homogeneous Dirichlet boundary
conditions and certain smoothness of its coefficients must have a nonpositive
derivative along the outward normal: du/dn\m < 0, dv/dn\Ml < 0. Hence ap-
propriate results in Conway-Smoller [9] still hold under the Dirichlet boundary
condition, namely, liml^ao\\v(x, t)\\,¡ < C[. The C[ depends on Max(C(),M), k (or
the bound of a(x)), p, meas(fi) and the maximum value of /on [0, Max(C0, «)]. The
equation itself gives the following kinetic energy inequality

t   yi v2dx   «£ -dj \w\" dx - ju j v2 + Max\a(x) \( va+l dx.

Applying the Nirenberg-Gagliardo inequality to fc¡v°+l dx, we get

¿(/^SÍ-lrf + O/jv^-M/^' + MttlflWl.i^oár)

< -¡if v2 + Max|a(jc)| - - if vdx    = - ¡i Í v1 + C.

So all arguments in the proof to Theorem 4.1 in Alikakos [1] will work here for the
proof of Theorem A'.

(C) We are now going to give some lemmas which play an important role in the
sequel.

Lemma 2.1. Assume a(x) g LX(Q). Denote by XX(L) the principal eigenvalue of
the linear operator L. Let u be a function satisfying u > 0 in Í2 with u\ ac = 0.

(i) // 0 & (A + a(x))u t> 0 then XX(A + a(x)I) > 0.
(ii) // 0 £ (A + a(x))u < 0 then A,(A + a(x)I) < 0.

(iii) // (A + a(x))u 9É 0 then XX(A + a(x)I) = 0.

Proof, (i) Let 6(x) be the eigenfunction corresponding to the principal eigenvalue
/i, = X,(A + a(x)I). Without loss of generality, we can assume 8(x) > 0 in Q.
Then 0 < /Si(A + a(x))u6 = nxfau8, hence ¡xx > 0. (Notice that since (A + a(x))u
^ 0 it follows that m # 0, and 0(x) > 0, the "ground state" 6 is known to have nice
regularity properties and we have 0 < /n(A + a(x))u0dx.)
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(ii) We need only to switch the sign in the proof of (i).
(iii) 0 = fixjr¡u6dx with m > 0, m ̂  0, 0 > 0. This implies u, = 0.    D

Lemma 2.2. ///GLip(R) (i.e. f is Lipschitzian on R to R), -Am>/(m),
— Av < f(v), u # v < m i« S2, r/ze« u > v in £2.

Proof. It follows immediately from the strong maximum principle that either
u = v or u > v in ü.   D

Lemma 2.3. Assume T is a compact positive linear operator on an ordered Banach
space. Let u > 0 be a positive element. We have the following conclusions,

(i) If Tu > uthenr(T)> 1.
(ii) If Tu < uthenr(T) < 1.

(iii) If Tu = uthenr(T)= 1.

Here and throughout this paper, r(L) denotes the spectral radius of the operator
L.

Proof, (iii) Tu = u implies that 1 is an eigenvalue with positive eigenfunction u.
The conclusion now follows from the Krein-Rutman theorem (see Theorem 3.2 in
[2]), i.e. 1 = r(T).

(i) Let Tu > u and suppose r(T) < 1. Since 1 • u - Tu < 0 and u > 0, by the
Krein-Rutman theorem again, r(T) + 1. Suppose now r(T) < 1. Since a = 1 ■
( — u)— T( — u)> 0 then by the Fredholm alternative there must be a unique
solution v of a = 1 ■ v - T(v) and furthermore, by the Krein-Rutman theorem once
again, this solution is positive, therefore ( — m) > 0. This contradiction shows r(T) >
1.

(ii) Tu < u implies 1 • u - Tu > 0. A similar argument to that in (i) shows
1 > r(T).    a

Lemma 2.4. Let a(x) g L°°(fi). Then Xx(dA + ai) > 0 implies

r[(-A + P)~\d-la + P)l] > 1,

where P is any positive constant satisfying P > d~*\\a\\ L°°.

Proof. There is an eigenfunction <j>x > 0 such that (dA + a)<j>x = Xx(dA + al)<bx
> 0. Therefore (-A + P)<¡>x < (d~la + />)</>,, so <j>x < (-A + P)~l(d~la + P)<j>x.
But (-A + P)'l(dla + P)I is a compact positive hnear operator, hence by
Lemma 2.3, r[(-A + Py\d-*a + P)] > 1.   D

(D) In this section we briefly recall some well known facts. If A is a second order
uniformly elliptic operator, consider the parabolic equation

u, = Au + f{x,u)   onfixR+

and its steady state, the elliptic equation 0 = ^4m + f(x, u).
The notion of a solution u of the steady state equation being a stable or

asymptotically stable solution of the corresponding parabolic equation can be defined
in the usual way, for example, see Chapter 10 in [18]. The following is a version of a
well-known result (see Theorem 10.5 in [18]).
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Lemma 2.5. Consider Au + f(x,u) — 0, m|8í2 = h(x). Let v0, u0 be a lower and
upper solution to the above equation and let u be the unique solution of it with
v0 < m < m0. // u(x, t) is any solution of the parabolic equation u, = Au + f(x, u),
u\mxRt= h(x) with v0 < u(x,0) < m0, then u(x,t)^u(x) as t -* oo, so u is
asymptotically stable.

We need the following lemma.

Lemma 2.6. If f(x)/x is strictly decreasing for x > 0 with f(x) < 0 for x > some
constant C0, then the positive solution of —Am =/(«), m|8Q = 0 is asymptotically
stable.

Proof. By Lemma 1.1 the positive solution m0 to -Am =/(m) with u\;xa = 0 is
unique, and by the general maximum principle it must satisfy 0 < m0 < C0. It is easy
to see that u = C0 is an upper solution while u = 0 is a lower solution. (Notice that
our assumption about f(x) implies that /(0) = 0.) Our lemma now follows from
Lemma 2.5.   D

(E) We want to prove the following proposition.

Proposition 2.7. Let f(u)/u be strictly decreasing with f(u)<0foru> C0 and
let f'(0) > Xx. Thus we have a unique positive solution m() of -Am =/(m), u\aa = 0.
Then w = 0 is the only solution of the linearization -Aw = f'(u())w, w\-6Q = 0.

Proof. (1) By the general maximum principle uQ < C0. Thus by Lemma 2.2,
0 < m() < C0, so/(«„)> 0.

(2) By Lemma 2.6, m0 is asymptotically stable with respect to the parabolic
equation u, = Au + f(u), u\-xaxRi = 0, so the spectrum of the operator A + f'(u0) ■ I
lies on the real semiaxis (- oo,0]. This proposition claims that u < 0. We shall prove
this claim by using bifurcation techniques. Consider now the following equation

-Aw = 8f(u0)w,        w\i)a = 0

where 8 g [1 - e, 1 + e] is a positive number close to 1 such that df'(0) > Xx and
therefore the equation

F(u,8) = Au + 8f(u) = 0,        u\i)Q = 0

has a unique positive solution uoe for each such given 8 with f(uxw) > 0 for the
same reason as that in part (1) of this proof.

(3) We are going to show that at 8 = 1 our problem undergoes some sort of
secondary bifurcation. Indeed, what we employ here is the proof of the Crandall-
Rabinowitz bifurcation theorem (see [10 or 18]). Our first step is to verify the usual
three conditions under which bifurcation occurs.

(i) First suppose there is a w() # 0 satisfying -Aw0 =/'(m())w0, m»0|90 = 0; then
zero is the principal eigenvalue of the operator jj/= A + f'(ux))l. By Lemma 2.6, the
spectrum of s? lies in (-oo,0], so we may assume that w0(x) > 0 for x G Í2 and
that zero is a simple eigenvalue: dim(Kerj^) = 1. Here s/ is the Fréchet derivative
DJ Au + 8f(u)) at m() and 0 = 1, where m() = ui)X.
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(ii) Second, by the well-known selfadjoint property of A + f'(u0)I under zero
Dirichlet boundary condition and the Fredholm alternative, codim(3?(jtf)) = 1
where Si(s#) is the range of sá and <f> G S7t( jh7) iff fa<bw0 = 0.

(iii) We claim [DgDu(Au + 8f(u))]\u=Uog=x(w0) £ 3t(s¿). To see this notice that

[DeDu{Au + 8f(u))]\u=Uoj=x(w0) = f'(u0)w0,

and

( f'(u0)wowo = - f (A^oK =  f |vw0|2 =7 0

because w0 ̂  0 with w0| 3Û = 0. This proves our claim.
Combining (i)-(iii), it follows that at 8 = 1 we can get some bifurcation about

Am + 8f(u) = 0 (or equivalently, we can employ the implicit function theorem) and
we get the solution

M = u(s) = M0 + s{w0 + <r>(s))

and 1 - e < 8(s) < 1 + e satisfying Am + 8f(u) = 0 with </>(0) = 0, 0(0) = 1, where
5 is in a neighborhood of zero; 8(s) passes across 1 when s crosses zero and
<¡>(s) g (w0)± = 3t{s#). For small positive sx, since Mq,^ > 0, <¡>(0) = 0, it follows
that m, = m0 + sx(w0 + <t>(sx)) is positive in £2. Notice that

-Am0=/(m0),    -Aw0=/'(m0)w0.

Thus we have

Am, = Am0 + sxAw0 + 5,A</)

or

-Am! = -Am0 - sxAw0 - sxA<t> =f(u0) + sxf'(u0)w0 - sxA<)>.

On the other hand,

-Am, = 0(*i)/("i) = 8(sx)[f(u0) +f'(u0){sxw0 + sx<j>(sx)) + 8]

by using the Fréchet derivative at m0 where ||ô||/5, -^ 0 as sx -* 0. We thus have the
following equality:

f(u0) + sxf'(u0)w0 - sxA<t> = 8(sx)[f(u0) +f'(u0){sxw0 + sx<t>(sx)) + «].

A simple manipulation yields

(1 - 8(sx))f(u0) + sx{l - 8{sx))f'{u0)w0 - sxA<¡> = sxf'{u0)<t>{sx) + 8(sx)S.

Dividing by sx and multiplying by wQ, we get

sx*{l - 8(sx))f(u0)w0+{l - 8(sx))f'{u0)w2

= {f'(u0)<p + A<p)wQ + sx~1ô8{sx)w0.

Next take the integral on both sides and notice that

f {f'(u0)4> + A<t>)w0 = / (f'(u0)w0 + Aw0)<t> = 0.
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Letting sx -> 0 we thus have 8'(0)jaf(u0)w0 = 0. The statement that 8(s) passes
across 1 at s = 0 means 8'(0) =7 0, therefore fc¡f(u0)w0 = 0. But w0 > 0, f(u0) > 0.
This contradiction proves that w0 = 0, and hence completes the proof of our
proposition.    D

Note. Smoller, Tromba and Wasserman in [19] obtained interesting results of the
one dimensional space setting by employing a one dimensional covering space
technique.

3. A priori bounds.
(A) m # 0. The first equation of the system

( -Au = uM{u,v),
\ -dAv = v[g{u) - m(v)},       {u,v)\sa = (0,0),

can be written as

-Am = uM{u,0) -u[M{u,0) - M{u,v)\.

Notice that M{u,0) - M(u,v)> 0 and g(M) - g(0) > 0 for u > 0, v > 0. By
Lemma 1.1, the problem

(3.1) - Au = uM(u,0),        m|3S2 = 0

has a unique positive solution m0 provided M{0,0) > Xx. Since

uM{u,0) - m[M(m,0) - M(u,v)] < uM{u,0)    for u,v > 0,

if (m, v) is a positive solution to the system (1), then m is a lower solution to (3.1). By
uniqueness it follows immediately that u < m0. Since M(u,0) < 0 for m > C0, the
general maximum principle gives supxeaM0(x) < C0. Therefore 0 < u < m0 < Q +
e = fij.

Now consider -¿Au = v[g(u) - m(v)\, v\dí¡ = 0. The general maximum princi-
ple together with the monotonicity of g yields supxeùm(v(x)) < g(Bx). The upper
bound to v then follows from the monotonicity of m.

(B) m = 0.
In this case consider the corresponding parabolic system

(l.B),    m, = Am + uM(u,v),    v, = dAv + vg(u),    (u, v) |3S2xR+= (0,0)

with 0 < m(0, x) < m (< C0, of course), 0 < tj(0, x) < ¿;, where m, v are the bounds
of the initial data. We shall use the theory of invariant region and /-stability (see [18,
Chapter 16]). We shall use the following well-known result (see [18, Chapter 14]).

Theorem 3.1. Let D be a positive diagonal matrix with 2 a rectangle and assume
the system u, = DAü + f(u) is f-stable. Then 2 is invariant iff f does not point
outward at each point of 92.

Using operator semigroup theory (see [13]), one can prove that as long as / g C1
is globally Lipschitzian, the above system is /-stable.

We return to the system (LB),. Denote by Bx = max(M, C0) > 0. Then by Theo-
rem 3.1 it is easy to check that the rectangle 0 < u < Bx, 0 < v < oo is an invariant
region of the system (LB),. By hypothesis (M5) for Theorem l.B, Mv(u,v) < -8
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for 0 < m < C0, v 7> 0. It follows that there is a positive constant k > 0 such that
k min0<us.c \Mv(u, t»)| > max0<u<C|g'(M) with k independent of u,v. Rewrite
(l.B), as

m, = Am + uM(u,0) - m[M(m,0) - M(u,v)],

!>f-«/Ai; + i>[*(0) + g(ii)-s(0)],
(«.»)l80X«— (0,0).

Use the mean value theorem to get

m, = Am + uM(u,0) + uvMv{u,8xv),

v, = dAv + vg{0) + uvg'(d2u)

where 8X, 82 g [0,1]. Integrating both equations over Q and noticing that
3m/9/i |3i2xR*< 0, 3ij/3n|3r2xR < 0(m, v are positive solutions) gives

f (ku, + v,) < k [ uM(u,0) +  f vg(0) +  f vu(kMt, + g').

Since A/,, < 0 and k\Mr\ > g', we thus have

— f (ku + v)=  ( ku, + v,^k( uM(u,0) +  ( vg{0)

= g(0) ( (ku + v) + k( [uM(u,0) - g{0)u]

<g(0)f {ku + v) + C.
Jo

C does not depend on initial data v(0, x). Since u is bounded by C0 and g(0) < 0,
by the boundedness of u(t, x) and Gronwall's inequality it follows that
lim,^, jav(t, x)dx < c for some constant c, which is independent of the bound
of the initial data v(0, x). Using part (ii) of Theorem A' in §2, we deduce that there
is a constant B2 independent of v such that lim,^^ max v(t, x) < B2.

Let us return to the elliptic system
(l.B) 0 = Am + uM(u,v),   0 = dAv + vg(u),    {u,v) |3fl = (0,0).
Then (m, v) is also a solution of the parabolic problem (l.B), with the initial data as
u(x), v(x) themselves. The independence of the bound B2 to the initial data implies
v(x) = lim,^xv(t, x) ^ B2. Notice that since 0 < u < Bx, B2 does not depend on u
either, in fact, if necessary, let B2 = max(B2, Bx) be the new B2. This gives a priori
bounds to the solution (m, v) of (l.B).    D

4. Proof of Theorems LA and l.B. In this section we shall complete the proof of
Theorems LA and l.B.

(I) First we prove the necessity parts of both theorems. Denote the nonnegative
solution to (1) by (ü, v). Since 0 < v # 0, apply Lemma 2.2 to the second equation
in (1), noticing that zero is an obvious solution we get v(x) > 0 in ß. Similarly,
u(x) > 0 in Yl. Since M0(u,v) < 0 for u, v > 0 and Am + mM(m, v) = 0, we have
Am + üM(ü,0) > 0, so ii is a positive lower solution of the equation

Am + mM(m,0) = 0,        m|3í2 = 0.
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Notice that the constant C0 + e is an upper solution to the above equation and that
m < Bx = C0 + e. It follows that there exists a positive solution m0 of the above
equation with 0 < m ̂  m0 < Bx. Applying again Lemma 2.2, we have m < m0 in Œ.
Since m0 > 0 by Lemma 1.1 we have A/(0,0) > Xx. Because m0 > ü, v > 0, it follows
that

-dAv = v{g{u) - m{v)) < v{g{u0) - m{0)),

therefore dAv + [g(M0) - m(0)]v > 0. Then Lemma 2.1 implies that

\l[dA+(g{uo)-m(0))l]>0.
(Letting m = 0, we also obtain the necessity for Theorem l.B.)

In case g(0) > Xxd + m(0), we have another trivial solution (0, v0), since v > 0
and -dAv = v(g(ü) - m(v)) > ß(g(0) - m(v)). So v is an upper solution of the
equation

-dAv = v{g(0)-m(v)),       v\m = 0.

Consider 8<¡>x where <bx > 0 is the eigenfunction corresponding to Xx of

-A<i>, = X,<#>!,       <t>\\àa = 0
and 8 is so small that g(0) - m(8<t>x) > Xxd > 0 (by the continuity of m at zero and
the assumption that g(0) > Xxd + m(0)). So

-dA(8<t>x) = Xxd8<i>x < 8<¡>x{g(0) - «(«*,)),
whence 8<px > 0 is a positive lower solution to the above equation. It is not hard to
prove v > 8(px provided 8 is small enough. (To see this, we rewrite the second
equation of (1) as

-dAv + v{m(v) - m(0)) = v{g(ü) - m(0)) > 0.

The positivity of the right-hand side is due to the assumption g(0) - w(0) > Xxd > 0
and g(ü) - m(0) ^ g(0) - m(0). Notice that m(v) - m(0) > 0, and also that v
attains its minimum zero only at 3Í2, so by the Hopf minimum principle, 3jj/3h 13Q
< 0 (here we have used the regularity). Now 3^>,/3« 13a < 0 (actually, o<j>x/dn 130
< 0), since 3ñ is a closed set, there is a small Ô, such that (dv/dn — 8xd<bx/dn) \ 3fJ
< 0. Since (v — fii^>i)|3a = 0 hence v — 8x<j>x > 0 in a neighborhood N of 3Í2. We
can find a small positive 82 such that v — 82<bx > 0 in U\N. Let 8 = Min(51,rS2).
Then we have v — 5</>, > 0 in Í2.)

By the well-known lower-upper solution technique and the fact that v0 is the
unique solution of

-dAv^v(g(0)-m(v)),        v\l)a = 0,

we deduce v > o0, so we have

0 = Am + ùM(ù,v) < Am + üM(ü,v0) < Am + mM(0, v0).

Since m > 0, by Lemma 2.1, A^A + A/(0, v0)) > 0. This completes the proof.   D
Remark. We have seen that for any positive solution (u,v) of (1), u < m(), v ^ v0

always hold. We have, indeed, by Lemma 2.2, u < m0, /j > v{). (v0 would be zero
provided g(0) < Xxd + m(0).)
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(II) To prove the sufficiency of our condition we confine ourselves to Theorem
I.A. A remark will be given later indicating the modification to the arguments
necessary for proving Theorem LB. The proof we are going through here is a
generalization of that in [12].

From the result of §3 we have a priori bounds 0 < u < Bx, 0 < v < B2. Conse-
quently there is a positive number P which is large enough that

max{ max\M{u{x),v(x)) |, max d~1\g{u{x)) - m{v{x))\\ < P.

Let

A(u,v) = (-A + P)~l[uM(u,v) + Pu, d~\){g(u) - m(v)) + Pv].

By the strong maximum principle, (-A + P)~* is a compact linear positive map, so
A is a direct sum of compact positive maps. It is clear that (m, v) is a solution of (1)
iff (m, v) is a fixed point of A (and this claim has nothing to do with the choice of P
as long as P is large enough). Consider the equations

j -Au = 8uM{u,v),
{l-A)9 { -dAv = 6v{g(u) - m(v)),       (u,v)\dQ = (0,0),

where 8 is playing the role of a parameter running from zero to infinity. Let
D = {(u,v) g C0(S2) © C0(Sl)\u < Bx + 1, v < B2 + 1} where Bx, B2 are the a
priori bounds of the solution (m, v) of (1). Let K be the positive cone of C0(S2):

K= {/G C0(i2)|/(jc)ïï0ior;c e S2, f{x) = 0 for x G oü).

From §3 the upper bounds of u and v are independent of the diffusion rates. (Recall
that we are dealing with Theorem I.A.) So we can assume that the positive solution
(ug, ve) of (l.Afl) satisifies v9 < B2, ue < Bx for all 8 g (0, oo). Let

Ae(u,v) = (-A + P)~l[8uM(u,v) + Pu, d-*8v[g(u) - m(v)) + Pv].

By the definition of D, Ae has no fixed point on dD for all 8 G (0, oo). Hence
the homotopy invariance of degree theory tells us that the fixed point index
i(Ae, int D, K ® K) is independent of 8. Because the case (A.3) in Theorem LA is
the hardest one, we shall discuss mainly this case.

Let 8 g (0, Xx/M(0,0)) n (0, Xxd/(g(0) - m(0))), where Xx is the first eigenvalue
of — A over fi under zero Dirichlet boundary conditions. Then for such a choice of 8
the system (LA)fl has as its only nonnegative solution u = 0, v = 0. To see this, first
notice that under this choice of 8, u60 = 0 is the only nonnegative solution to the
equation

-Au = 8uM(u,0),       t/|3a = 0.

Since 0 < Ug < ueo always holds, therefore ue = 0. Consequently, since 8 g
(0, Xxd/(g(0) - m(0))), by Lemma 1.1, the equation -dAve = 6ve(g(0) - m(ve))
with v8\sa — 0 implies ve = 0. Thus (0,0) is the only fixed point of Ae in K ffi K, i.e.
for the above choice of 6

i(Ae, intD,K@K) = deg(/ - Ae, N(0,0), (0,0)),
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where A^O, 0) is a small neighborhood of (0,0) in D. As is well known for a compact
positive operator A with fixed point Ay = y,

deg(/ - A,U(y),0) = index(L,0,C)

where U(y) is a small neighborhood of y, C is the positive cone, L is the Fréchet
derivative of A at y which is of course linear, and index(L,0, C) = ( — 1)" where a
is the sum of the multiplicities of the eigenvalues of L larger than one. So index = 1
provided r(L) < I.

Now

L = A'e(0,0) = (-A + P)~
8M{0,0) + P 0

0 d-*8{g{0) - m{0)) + P

Because 8 G (0, Xx/M(0,0)) n (0, Xxd/(g(0) - m(0))), therefore r(L) < 1, and we
have

i{Ag,intD, K® K) = deg(/ - A0, N{0,0), (0,0)) = index(L,0, K © K) = 1

for all 8 as above. But this holds for all 8 > 0 by the homotopy invariance property,
including 8 = 1. Since we are particularly dealing with the case (A.3), so we have
three trivial nonnegative solutions of (1): (0,0), (m0, 0) and (0, v0). If we can show

0 = index(A(0,0), K ® K) = index{A, {Uo,0), K © K)

= index{A,{0,Vo), K® K)

then there must be at least a positive solution (m, v) in D.
Note. In case (A.2) of Theorem LA, we have only two trivial nonnegative

solutions of (1): (0,0), (m0, 0), and need only to prove

0 = index{A,(0,0), K © K) = index(^, (m0,0), K © K).

(A) We investigate the case of y = (0,0).
In this case Wv = {(/,<£) g C0(fi) © C0(ñ) |(0,0) + y(/,<i>) g K © K for some

y > 0}. So Wv = K © K. Let L = A'(0,0). Then / - L is not invertible in E =
C0(ñ) © C0(fi). (This can be verified when A/(0,0) is one of the values
( \2, X3,..., Xn,... }.) We thus appeal to Theorem D' in §2. We need to check that
/ — L is invertible in W = K © K and it is not a surjective map on Wv. Suppose
that

(í)-¿'(0.0)(í),    where(^)GÎ?v.

This can be written in another form, namely

(-A + Pyl{P + M(0,0))r = r,

(-A + P)~\P + d~*{g(0) - m(0)))k = k.

From the second equation,

-Ak = d-l{g(0)-m(0))k,       *|3B = 0.
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But

dl(g(0)-m(0))>Xx,

whence d~l(g(0) - m(0)) must be one of (X2, X3,..., X„,...}, and consequently
k <£ K. Therefore k = 0. (In case (A.2), d~l(g(0) - m(0)) < A,, so k = 0 follows.)

The first equation implies -Ar = M(0,0)r. Because M(0,0) > A,, it follows that
M(0,0) G { A2, X3,..., A„,...} implies r £ K. So / - L is invertible in Wv = W{m
= K® K.

Next, we need to verify that / - A'(0,0) = / - L is not a surjective map on Wr
when A/(0,0)g {X2, X3,..., X,„...}. (Notice that if X, < A/(0,0)#X„ /> 2, then
/ - A'(0,0) is invertible on E = C0(S2) © C0(ti). We can thus apply Theorem D in
§2. We need only to check property a of A'(0,0) since W(00) = K © K. S(00) = 0 © 0,
so A'(0,0) has property a iff A'(0,0) has an eigenvalue X > 1. Let </>, be the
eigenfunction -A<j>x = Xx<px; then A'(0,0)(4>x, 0)T = X(<bx,0)T where X =
[P + M(0,0)]/(P + X,) > 1.) Let A/(0,0) = X, for some / ^ 2 and let <p, be the
eigenfunction corresponding to X,: — A<i>, = X,^),. <j>, changes sign in Í2. The nodes of
<¡>i divide fi into no more than / subdomains. So we can find a function <J> g C0(£2)
with -p(x) > 0 in Í2, such that /ßt/z^^O, say, jnir><j>,>0 (the case in which
Íü4><i>i < 0 can be treated similarly). Since <í>/(jc) = 0 for x g 3ñ, there is a small
positive 8 > 0 along with the ¿-neighborhood Í/75 of 3ß:

t/^ [xGH|p(x,3fi) < Ô]

such that maxvea \p(x)fu l«^,! < |/a t|/0,. Denote by rj > 0 the number
min vea\/y »P(^)- (Recall that >^(x) = 0 only if x G 3Í2.) See Figure 2.

Figure 2
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There is a function \px in C0°°(fi) which approximates -p(x) according to the
estimate

max l^iX*) - -p(x) | < min< —, ~p\, Tvmaxl<í>'(x) I ' meas^)    }
IEÖ (444 )

where E = }aHt- Then -px(x) > 0 for x g fi\US and }a*Pi(pi > 0. This is because
•px(x) > 4>(x) - tj/4 > 3r//4 > 0 for x g fi \US and

/ '/'í^/- / HÁ < ; I'/'i - «M k/l < T-•'o Jn •'.o 1

Therefore

/ -]>•'?i >  I <t><t>i
Jo Jo. 4       4

Let Us/2 = [x g ß|p(x, 3ß) < 5/2]. By a well-known extension theorem in anal-
ysis, there is a function \p2 G C°°(fi) satisfying

«M-*) = "Pi(x) > 0    forxGß\l/8,
*2(x) = 0

^2(x) > 0

for x G {/.Ä\2>

for x g S2 with max ^(x) < max ^x{x).
xeß

Then

/   V/2<í>/ =   /_        tl^l +    /     tl^l =   j •pl'Pl +    /     *P2<Pl
Ju •/s2\t/8 Ju, •/n\t/s JUS

=   _ ^i^i -  /   "h*/ +  /   >//2<í>/

>  ( Hi~ max|t/,(x) - </,,(*) | ■ f \<t>,\
Jn Jo

-2/ \4>,\Jo
max »/'(x) + max\-p(x) — ¡PA*)

>£-

> £-

2 1+ -max >£(*)•/   |*,|

10       £       E      nT x T = T > 0.4 5        4
So we get a function 0 < \p2 g Q°(fi) such that ja-r,2<t>i ^ 0. Now we denote

<í> = ( — A 4- PI)\p2; we claim that there is no function / such that (-A - X,)/= <¡>
with / 13í¡ = 0. If such an / existed, then

i [(-A-X,)/]<|>,=//[(-A-X,)</>,] =  if-0 = 0Ja jq jq
but the left-hand side equals

( <H,= f [(-A + P)-p2]4>,=  ( ^[(-A + P)^]^Jq Jq jq

= [ *2(A, + />)</>, = (X, + P)[ +& * 0.
Jo Jo
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(We have made use of the zero boundary condition in the above computation.) This
contradiction shows the nonexistence of the function /.

Now we take

*A e k ® k = w^,

where •]/ is an arbitrary element in K. We claim that there is no function pair ({)
satisfying

Í)-**•<)-(*
Suppose there is such an ({) and recall that

,      ,     7 ^-i\M(0,0) + P 0A'(0,0) = (-A + P)   ' ' „   , N0 P + d-l{g(0)-m{0))_

We have from the first component that

f-(-A + P)-1{M(0,0) + P)f=t2.
Since xp2 g C0°°(ß), by the regularity of (-A + />) \ /g //02(ß), and we have
-A/- A/(0,0)/= (-A + P)\p2, i.e. (-A - X,)/ = <f>. (Notice that we have set
A/(0,0) = X,.) This contradicts what we claimed in the preceding paragraph.

So / - A'(0,0) is not a surjective map on W(00) = K © K. By Theorem D' in §2,
index(A,(0,0), K® K) = 0.

(B) We investigate the case of y = (m0,0).
In this case WY = C0(ß) © K and

7„(mo,0) + P /„(m0,0)
0 d~l{g(uX))-m(0)) + P

where f(u,v) = uM(u,v). We claim first that / — L is invertible in WY = W(u 0).
Otherwise there is an (J) g Wy such that (rk) = L(^). This means

-Ar =/„(mo,0)/- +/„(mo,0)/c,    -A/c = «/"»(«(«o) - «(O))*,

0<tei:,r#01(r,t)|M-(0,0).

The second equation implies [JA + (g(M()) - m(0))]k = 0. Suppose k # 0, then by
Lemma 2.1, Xx(dA + (g(u0) - m(0))I) = 0. This contradicts the assumption that
Xx(dA 4 (g(M()) - m(0))l) > 0. Therefore k = 0. We thus find that the first of the
above equations becomes

(4.1) -Ar=fu(u{),0)r,        r|3Si = 0,        r # 0.

This is the linearization of the equation

(4.2) - Au=f(u,0) = uM(u,0),        u|3Q = 0

at the point m0. Since (4.2) has a unique positive solution w(), by Proposition 2.7,
equation (4.1) has as its only solution r = 0, so we get A: = 0 = r, provided
Ck) = L(rk)for(rk)& W{   i)y I - L is therefore invertible in W(u¡¡()).

L = A'(uo,0) = (-A4 P)
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A'(uo,0) = (-A + Pyl

In order to complete the proof of index(.4,(M0,0), K ® K) = 0, by Theorem D'
in §2, we claim / - L = / - A'(u0,0) is either invertible in the whole space
C0(fi) © C0(fi) or is not a surjective map on W(u 0). If / — A'(u0,0) is invertible on
C0(ß)© C0(ß), where

7„(«0,0)4P /„("o,0)
0 d-\g(u0) - m(0)) + P

we need to check that A'(u0,0) has property a on WY = C0(fi) © K, where y =

(m0,0), Sy = C0(fi) © 0. This means finding a w G WY\SY and a t G (0,1) such
that w — tA'w g SY. Since XJJA 4 (g(M0) - m(0))I] by hypothesis is positive,
there is a function <j> > 0 such that

dA<t> +(g(«0) - ifi(O))* = A1(¿A +(g(«0) - /m(0))/)$ > 0   in fi.
Therefore,

(¿"Hgí«.)) - "(O)) 4 P)r> >  (-A 4 P)*,
i.e.

(-a 4 prvuK) - «(o)) + p)<í> > *.
Denote the operator (-A 4 P)l(d~l(g(u0) - m(0)) 4 P)I by T; then T is a
compact positive operator and T<j> > <#>. By Lemma 2.3, r(T) > 1. The Krein-
Rutman theorem tells us that there is a function \p > 0 in fi such that Tip =
r(T)xp. Now WY = C0(fi) © K, SY = C0(fi) © 0, WY\SY = C0(fi) © /C\ {0}. Let
w = (°) g W,.\'5V and t = [r(T)]~l. Then T-p = r(T)-}> means exactly w - tA'w
g S,., i.e. A'(uo,0) has property a. So in this case. Theorem D applies; we have thus
index(A,(uo,0), C0(fi) © K) = index „,(,4, (m0,0)) = 0, since C()(fi) © K r> K® K.
By the properties of the local fixed point index and the fact that ( K ® K )° =t 0, we
have index(A, (m(),0), K © K) = 0.

If / - A'(uo,0) is not invertible in C0(fi) © C0(fi) = E, then there is an (J) G
C„(fi)ffi C0(fi) such that

^=/1'(mo,0)([).

and we get

(4.3)
Ar = /„(M0,0)r4/„(M0,0)A:,

■Ak = d-i{g(u0)-m{0))k,       r\i)Q = k\.)a = 0.
Case I. k = 0. We get - Ar = /„( m(), 0)r, r \ aa = 0.
By Proposition 2.7 this equation implies r = 0. So r = 0 = k, and we can rule out

this case.
Case 2. k ¿ 0, k g C()(fi).
From (4.3) we get k(x) = (-A 4 P) l(d \g(ux))- m(0)) 4 P)A- so there is a

4> g A: = [<i> > 0|<i> G C()(fi)] such that /ai//A. ̂ = 0. Denote^ = (-A 4 PI) ty, then
<í> g iV by the positivity of the operator ( - A 4 P)   '. Consider the element

^(„o.()) = C0(0) © X
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where </>, is an arbitrary element in C0(fi). We claim that (£') is not in the range
[/ — A'(u0,0)]WY. If it is, then there exists a

C0(fi) ©a:

such that

*i (-A + PI)'1
/u(m0,0)4P /„(m0,0)

0 d-l{g(u0) - M{0)) + P *i

It follows that -A*! - dl(g(u0) - m(0))kx = -p. By the definition of -p,

0 * \ ipk = f {-Akx - d'l{g(u0) - m(0))kx)k
Jq Jq

= f kx[-A-d-l{g(u0)-m(0))]k = 0,
Jq

by (4.3). This contradiction establishes our claim. So / - A'(u0,0) is not a surjective
map on W(u 0). Therefore Theorem D' applies, and we come to the conclusion that
index(^,(M0,0), C0(fi) © K) = 0 and therefore index(A, {u0,0), K + K) = 0.

(C) We investigate the case of y = (0, v0).
(Note: in case of (A.2), our proof is completed, since v0 = 0.) The discussion for

this case is quite similar to that of (B); we just simply give the outline of the proof.
In this case

L = A'(0,v0)

= (-A + py M(0,vo) + P 0
d\g'(0)       d-l{g(0) - m(v0) - v0m'(v0))l 4 P

(i) We show / - L is invertible on W(0 Uo) = K ® Q(ß). L(k) = (k) implies

-Ar = M(0,v0)r,

-Ak = d-\g'(0)r 4 d-*{g(0) - m(vQ) - v0m'(v0))k,
r I 30 = k I 3Q = 0.

Suppose 0 ^ r g K. From the first equation and Lemma 2.1 it follows that
X,(A 4 M(0, v0)) = 0, which contradicts our assumption that XX(A 4 M(0, v0)) > 0.
So r = 0. Consequently by Proposition 2.7 we have k = 0.

(ii) We show / - L is either invertible in the whole space C0(fi) © C0(fi) = E or
not a surjective map on W(0 „ ,.

If / — A'(0, v0) is not invertible on E, there exists (k) with

A'(0,v0)(rk)   whereO # (^) e c0(fi) © C0(ß).
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This means

-Ar = M(0,vo)r,
-dAk = vog'(0)r +{g(0) - m(v0) - v0m'(v0))k,

r\ 3ß = k 13a = 0.

If r = 0, then we have k = 0 follows from Proposition 2.7.
If r # 0, remember we have shown in (i) that / - L is invertible on Wy = W(0o y

So by Theorem D' we need only verify that / - L is not a surjective map. Since
r # 0, there is a ip & K, such that füipr * 0. Denote <f> = (-A 4 Py\p G K.
Consider (£ ) g W(0 u , = K © C0(fi) where <px is an arbitrary element in C0(fi). We
claim that ($ ) is not in the range (/ - L)Wy0   x. If it were, then there exists

kl J e »fe..,) = *" © Co(«)
such that

î;)-<-*+')-'
M(0,bo) + P 0

rf-^og'ÍO)       á-HííO) - «(«o) - "o™'K)) + P ki,

*
>i

This implies (- A 4 P)r, - (M(0,i;o) 4 P)^ = (-A 4 P)<p; we thus have

-Ar, - M(0,íj0)r, = t/,

and

0*  [ rpr= [ {-Arx-M(0,vo)rx)r=  f rx{-Ar-M(0,v0)r) = 0
Jq Jq Jq

because -Ar = M(0,vo)r. This contradiction shows / - A'(0,vo) is not a surjec-
tion. Consequently Theorem D' applies and index(^, (0, v0), K ® K) = 0.

(iii) Finally, we must show that if / - A'(0, v0) is invertible on E, then L has
property a. Since S(0 > = 0 © C0(ß), we have to find a w g W^ \ Sy with iv - M'w
g Sy, where í g (0,1). Since /i, = X:(A 4 M(0, v0)I) > 0, there is a positive eigen-
function tj> such that (A 4 Af(0, v0))<p = px<j> > 0. This implies (-A 4 P)<f> <
(M(0,vo) 4 P)d>. Then by Lemma 2.3, r(T) = r[(-A 4 Pyl(M(0,vo) 4 P)] > 1
where T denotes the operator (-A4 P)~1(M(0,v0) 4P) which is compact and
positive. According to the Krein-Rutman theorem, there exists a ip G K such that

(-A4P)"1(M(0,i;0)4P)^ = r(r)^.

Now let w = (¿) G Wy\Sy = K® C0(ß), where y = (0, v0). Then it is easy to
check w - (l/r(T))A'w G S(0i„o) = 0 © C0(fi). Notice that t = l/r(T) < 1. This
concludes the proof of property a. Therefore Theorem D applies, and

index{A,(0,vo), K® K) = 0.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



162 LIGEH

Combining these facts we have proved that

0 = indexa, (0,0), A"© A") = index{A,(uo,0), K ® K)

= index(/l,(0,t»o), K® K)

and deg( A, int D, K ® K ) = 1. We hence have proved the existence of a positive
solution of (1).    D

Remark. We have gone through the proof for Theorem I.A. We have to point out
here the places where extra arguments are needed when going through the proof of
Theorem LB.

(i) Instead of the parametrized system (l.A)e we use the system

I -Am = 8uM(u,v),
°-B)" \-dAv = vg(u),       («,o)|8O-(0,0).

From Theorem A' in §2, the upper bound of v is independent of the diffusion rate
d0 = 8\ so we can assume that the positive solution (ue,Vg) of (l.B)9 satisfies
ve < B2 for all 8 G (0, oo). Of course 0 < ue < Bx = C0 4 e still holds (see §3).

(ii) The other arguments of the proof of Theorem (LB) are even simpler than
those in the proof of Theorem LA, because in this csase m = 0.

Corollary. Assume m(0) — g(0) > 0. Then the system (1) has a positive solution
iff

A+ m(0)-g(0)\-yg(M0)-g(0)
d

where r(L) represents the spectral radius of L.

Proof. Notice first that dl(m(0) - g(0)) ^ 0. So -A4 dy(m(0) - g(0))I is
invertible and the operator in brackets is compact and positive. We first show the
necessity. (1) has a positive solution implies Xx(dA 4 (g(M()) — m(0))I) > 0 by
Theorem LA, so there is a positive eigenfunction ip > 0:

dAip +(g(u()) - m(0))ip = vxip > 0,

where vx = Xx(dA 4 (g(M0) — m(0))I) and \p \ m = 0. Therefore, we have

d^{g(u0)-g(0))ip > {-A +(m(0) - g(0))d-l)-p.

So

and the result we want to prove follows from Lemma 2.3.
We next show the sufficiency. Since the operator in the brackets is compact and

positive, by the Krein-Rutman theorem, there is a positive function ip on fi such that

_A+"(0)-*(0)|   'f^oJ-^U^
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where r > 1 is the spectral radius. A simple computation shows

-dAip=((8M;g{0))-{m(0)-g(0)))ip.

Since ip > 0, g(M0) - g(0) > 0 and r > 1, it is obvious that

-dAip < [g(M0) - g(0)-(m{0) - g{0))]ip= (g(M0) - m{0))ip.

Integrating by parts over fi yields

df |V^|2<   f {g(u0)-m(0))ip2.
Jo Jo

Thus

Since

-df \viP\2+  ( (g(«„) - m{0))ip2 > 0.
Jq Jq

-dfaWrt2 4 /D(g(ii0) - m(0))<i>2"i =     SUP i  ,i

hence vx > 0, i.e. Xx(dA 4 (g(M0) - m(0))I) = vx > 0. Now the desired conclusion
follows immediately from Theorem I.A. The argument to prove the assertion for
(LB) is quite analogous to that given above.   D

Note. This corollary generalizes the main result of §1 in [12].
Before going to our next theorem, a lemma is in order which generalizes the one

given by Conway, Gardner and Smoller [8] in the one dimensional setting in a
special form (see Theorem 2.7 in their joint paper).

Lemma 4.1. Let A =Y.jjaij(x)D¡DJ where aij = aji. Let B = T.ijbij(x)DiDj,
bil = b-j. Assume A and B are uniformly elliptic operators with zero Dirichlet boundary
conditions on fi c R". Let

(?)
Aw 4 a(x)w 4 b(x)z

Bz 4 c(x)z

map CQ+a(ß) to C"(ß). Then the spectrum of L consists of only the pure point
spectrum

*,-tti.«2.£.)u{8x,e2,...,e,.},
where we denote by £, > £2 > ■ • ■ > £H > ■ ■ ■ the pure point spectrum of the
operator B 4 c(x)I, while 8X > 82 > ■ ■ ■ > 8n > ■ ■ ■ is the pure point spectrum of
the operator A 4 a(x)I.

The proof of Lemma 4.1 is a quite straightforward analogue of the original given
in Conway, Gardner and Smoller [8].

We assume hereafter M(0,0) =7 Xx, g(0) - m(0) =7 Xxd, and in case that m = 0,
we make all the assumptions in Theorem LB. Then we have

Theorem 4.2. The system (I) has a positive solution iff all its trivial nonnegative
solutions are unstable.
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M:)

f...(0.0).

Proof. (I) The necessity part. As we have seen, the possible trivial nonnegative
solutions are (0,0), (m0,0), (0, v0). To prove the theorem we need only investigate the
linearization of the operator F at these trivial solutions, where F is

Am 4 uM(u,v)
dAv 4 v(g(u) — m(v))

First of all, let (m, v) be a positive solution of (1). Then m0 > u > 0, so by Lemma
1.1 M(0,0) > X,. We have

A4M(0,0)/ 0
0 dA+(g(0)-m(0))l

Since M(0,0) > A,, therefore X,(A 4 Af(0,0)7) > 0 and the spectrum of Fuv(0,0)
contains a positive point so (0,0) is unstable. Next at (m0, 0), we have

"A 4 M(mo,0) 4 m0Mu(m0,0)7 moM„(mo,0)/
0 dA+{g(uo)-m(0))l

Aw 4 [M(mo,0) 4 u0Mu(u0,0)]w + u0Mv(u0,0)z'

dAz+{g(u0)-m(0))z

By Lemma 4.1, Fu1,(mo,0) has only pure point spectrum a given by op =
{I,, |2,...} U {8X, 62,...} where {|,, |2,...} is the point spectrum of the operator
A 4 [M(mo,0) 4 m0Mu(m0,0)]/ while {8X,62,...} is the point spectrum of the
operator dA 4 (g(M0) - m(0))I. From Theorem LA,

í1 = X1(rfA+(g(«o)-ifi(0))/)>0.
This means ( u 0,0) is an unstable solution because ap contains a positive member.

In case that system (1) has the third trivial solution (0, v0) (not always!), then by
Lemma 1.1, g(0) > Xxd 4 w(0). We have

~A + M(0,v0)l 0
v0g'(0) dA +(g(0) - m(v0) - v0m'(v0))l

Pu.„(u0,0) =

FuA»o,0)(Wz)

FuA0,vQ) =

and

Fu,(0a0)(Wz)
Aw 4 M(0, v0)w

vog'(0)w + dAz+(g(0)-m(vo) vnm '(»o))i

By Theorem LA again, XX(A 4 Af(0, v0)I) > 0. Using Lemma 4.1 (strictly speaking,
an analogue of Lemma 4.1), we see that the spectrum of Fuu(®> i;0) contains a
positive number. Therefore (0, v0) is unstable too.

(II) The sufficiency part. First of all, (0,0) is a trivial nonnegative solution with

A4M(0,0)/ 0
0 dA+{g(0) - m{0))l

So   either   X,(A 4 M{0,0)I) > 0   or   Xx(dA 4 (g(0) - m(0))I) > 0,   i.e.,   either
M(0,0) > X, or g(0) > Xxd 4 m(0). The possible cases are

(i) M(0,0) > Xx, g(0) < Xxd 4 m(0),
(ii) M(0,0) > A,, g(0) > Xxd 4 m(0),

(iii) A/(0,0) < A„ g(0) > Xxd 4 m(0).

FUJ0,0)
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We go through case (i) first. Since M(0,0) > A,, by Lemma 1.1, we have a trivial
nonnegative solution (m0,0). By our assumption it is unstable. The spectrum op of
Fu „(m0,0) contains a positive eigenvalue; according to Lemma 4.1 op = {!,, |2,...}
U {8X,82,...} where |, > |2 > • • - comprise the point spectrum of the operator
A 4 [M(m0,0) 4 u0Mu(u0,0)]I which is the linearization of the operator u -> Am 4
uM( u, 0) at m0. It follows from Proposition 2.7 that |, < 0. This means that
{8X, 82,...} contains a positive number, because 8X> 82> ■ ■■ , therefore, 8X > 0.
({8X,82,...} is the point spectrum of the operator dA + (g(u0) - m(0))I.) It
follows from Theorem LA or LB that system (1) has a positive solution.

An argument similar to the above will work equally well for case (ii). Finally, we
point out that case (iii) will not occur. Since g(0) > Xxd 4 w(0) by Lemma 1.1, the
equation

-dAv = v{g(0)-m(v)),        v\aa = 0,

has a unique positive solution v0, i.e., the system (1) has a trivial nonnegative
solution (0, v0). By our assumption it is supposed to be unstable. So Fur(0,vQ) by
definition, has a positive number in its point spectrum op. According to Lemma 4.1,
a consists of {!,, |2,...} U {8X,82,...} where I, > |2 > ■ ■ ■ are eigenvalues of
the operator A 4 M(0,v0)I and 8X> 82> ■■■ are eigenvalues of the operator
dA 4 (g(0) - m(v0) - v0m'(vQ))I (see part (I) of our proof). By Proposition 2.7,
8X < 0, so |, must be positive, i.e., XX(A 4 M(0, v0)I) > 0. But Af(0,0) > M(0, v0)
by hypothesis (M,), so we have A,(A 4 M(0,0)/) > 0, which implies M(0,0) > X,.
Therefore case (iii) is impossible. This completes our proof.   D
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