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Attractors in Hyperbolic-Type
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School of Information Science and Engineering, Changzhou University, Changzhou, China

A new hyperbolic-type memristor emulator is presented and its frequency-dependent

pinched hysteresis loops are analyzed by numerical simulations and confirmed by

hardware experiments. Based on the emulator, a novel hyperbolic-type memristor

based 3-neuron Hopfield neural network (HNN) is proposed, which is achieved through

substituting one coupling-connection weight with a memristive synaptic weight. It is

numerically shown that the memristive HNN has a dynamical transition from chaotic,

to periodic, and further to stable point behaviors with the variations of the memristor

inner parameter, implying the stabilization effect of the hyperbolic-type memristor on

the chaotic HNN. Of particular interest, it should be highly stressed that for different

memristor inner parameters, different coexisting behaviors of asymmetric attractors

are emerged under different initial conditions, leading to the existence of multistable

oscillation states in the memristive HNN. Furthermore, by using commercial discrete

components, a nonlinear circuit is designed and PSPICE circuit simulations and hardware

experiments are performed. The results simulated and captured from the realization

circuit are consistent with numerical simulations, which well verify the facticity of

coexisting asymmetric attractors’ behaviors.

Keywords: hyperbolic-type memristor, Hopfield neural network (HNN), asymmetric attractors, coexisting

behaviors, hardware experiment

INTRODUCTION

The neurons regarded as the fundamental component unit of brain can generate intricate
dynamical behaviors (Korn and Faure, 2003; Ma and Tang, 2017) and the constructing Hopfield
neural network (HNN) (Hopfield, 1984) is a significant model in artificial neurology. When a
nonlinear function is taken for a neuron activation function, the HNN belongs to a nonlinear
dynamical system (Hopfield, 1984), resulting in the generations of chaos, hyperchaos, period,
and/or quasi-period. In the past few years, numerous results with respect to the complex dynamical
behaviors of the HNN have been reported generally (Bersini and Sener, 2002; Li et al., 2005; Yang
and Huang, 2006; Yuan et al., 2009; Zheng et al., 2010; Danca and Kuznetsov, 2017). As a whole,
it is necessary and pregnant to further investigate complex dynamics in the neural network (Korn
and Faure, 2003), particularly the HNN with a memristive synaptic weight (Li et al., 2014).

With the appearance of memristor (Strukov et al., 2008), it gradually generates far-reaching
influence in the field of circuit fundamental theory. Since memristor is a nonlinear two-terminal
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element (Chua, 2012), a large number of research achievements
with respect to memristive chaotic circuits have been reached by
introducing different memristors into some classical application
circuits (Bao et al., 2014, 2015, 2016a,b; Chen et al., 2015; Kengne
et al., 2015; Li et al., 2015; Wu et al., 2016; Xu et al., 2016;
Zhou et al., 2017). Similarly, memristor can be also applied to
the artificial neural network because the characteristic of neuron
synapse is similar to the feature of memristor (Chua et al.,
2012; Kim et al., 2012; Prezioso et al., 2015; Wang Z. R. et al.,
2016), which has been drawn broad researchers’ more and more
attention in recent years (Wang et al., 2011; Adhikari et al., 2012;
Li et al., 2014; Duan et al., 2015; Pham et al., 2016; Wang L. D.
et al., 2016; Yang et al., 2017). These researches in physiology and
anatomy are more effective to help us understand the dynamical
properties of a large network (Korn and Faure, 2003). Hence, it
is extremely significant and indispensable to investigate chaotic
dynamics of memristive neural networks for studying brain
functions as well as artificial neural networks (Guckenheimer and
Oliva, 2002; Li et al., 2005; Wang et al., 2017).

By introducing a memristive synaptic weight (Li et al., 2014;
Pham et al., 2016) to substitute a resistive synaptic weight,
two kinds of memristive neural networks are presented, from
which complex dynamical behaviors of self-exited quasi-periodic
limit cycle, chaotic attractor, and hyperchaotic attractor as well
as hidden hyperchaotic attractor are exhibited by numerical
simulations. The circuit realization of the memristive neural
network using discrete electronic components is developed
in Pham et al. (2016), only PSPICE circuit simulations are
performed to confine numerical simulations, however, without
hardware experimental fabrications and measurements. In this
paper, we present a hyperbolic-type memristor based 3-neuron
Hopfield neural network (HNN) on the basis of the reference
(Zheng et al., 2010), which can show the stabilization effect of
the hyperbolic-type memristor on the chaotic HNN, resulting
in a dynamical transition from chaotic, to periodic, and
further to stable point behaviors with the variations of the
memristor inner parameter. Especially, for different memristor
inner parameters, different coexisting behaviors of asymmetric
attractors are emerged under different initial conditions, which
are availably validated by PSPICE circuit simulations and
hardware experiments. It should be highlighted that the
new finding of coexisting asymmetric attractors’ behaviors
in the memristive HNN and the correspondingly hardware
experimental verifications have not been previously reported.

The rest of the paper is organized as follows. In Section
Hyperbolic-type Memristor Emulator, a hyperbolic-type
memristor emulator is proposed and then its frequency-
dependent pinched hysteresis loops are exhibited by numerical
simulations and hardware experiments. In Section Hyperbolic-
type Memristor based HNN, a novel hyperbolic-type memristor
based 3-neuron Hopfield neural network (HNN) is constructed
and the stability analyses of its equilibrium points are conducted.
In Section Coexisting Behaviors of Asymmetric Attractors,
coexisting behaviors of asymmetric attractors are investigated
by bifurcation diagrams, Lyapunov exponent spectra, and phase
portraits, which exhibits the existence of multistable oscillation
states in the memristive HNN. In Section PSPICE Circuit

Simulations and Hardware Experiments, an implementation
circuit is designed, upon which PSPICE circuit simulations and
hardware experiments are performed to verify the coexisting
behaviors of asymmetric attractors in the hyperbolic-type
memristor based HNN. The conclusions are summarized in
Section Conclusion.

HYPERBOLIC-TYPE MEMRISTOR
EMULATOR

A neuron activation function is a monotone differentiable
function which is bounded above and below. Therefore, a
hyperbolic tangent function is usually utilized as the neuron
activation function. For this reason, a new hyperbolic-type
memristor emulator is proposed and its constitutive relation is
modeled as

i = W(v0)v = [a− b tanh(v0)]v

τdv0/dt = f (v0, v) = −v0 − v (1)

where v and i represent the voltage and current at the input
port of the memristor emulator, respectively, v0 is the inner
state variable, a and b are two inner positive constants of
the memristor emulator, and τ is integral time constant. The
nonlinear memductance functionW(v0) can be expressed as

W(v0) = a− b tanh(v0) (2)

which implies that the memristor is passive and voltage-
controlled. Thus, the proposed emulator can be defined as a
non-ideal hyperbolic-type memristor emulator.

With off-the-shelf discrete components, the circuit realization
scheme of the hyperbolic-type memristor emulator described
by Equation (1) is designed, as shown in Figure 1. The
realization circuit shown in Figure 1A consists of an integrator
U0 connected two resistors R and a capacitor C, an inverting
hyperbolic tangent function circuit unit T0 marked by –tanh
with solid box, an analog multiplier M and two resistors Ra and
Rb. It is pointed that different from the ideal voltage-controlled
memristor reported in Bao et al. (2014, 2015, 2016a,b) and Li et al.
(2015), a resistor R is newly added to the integrating capacitor
C in parallel to avoid DC voltage integral drift. The hyperbolic
tangent function circuit unit shown in Figure 1B is implemented
by a dual-transistor pair of T1 and T2, a module of current source
I0, and two operational amplifier circuits for controlling gains
(Duan and Liao, 2007).

Three operational amplifiers TL082CP and one analog
multiplier AD633JNZ with ±15 V DC voltage sources,
four crucial bipolar transistors MPS2222, fifteen precision
potentiometers, and one monolithic ceramic capacitor are
utilized. The linear element parameters in Figure 1 are employed
as listed in Table 1. With the element parameters, the output of
the hyperbolic tangent function circuit unit is thus obtained as
Duan and Liao (2007).

vo = − tanh(vi) (3)
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FIGURE 1 | Circuit realization of the hyperbolic-type memristor emulator. (A) Circuit realization scheme; (B) the inverting hyperbolic tangent function unit circuit.

TABLE 1 | Circuit parameters of the memristor emulator for simulations and

experiments.

Parameter Signification Value

R Resistance 10 k�

C Capacitance 100 nF

Ra Resistance 10 k�

Rb Resistance 2 k�

g Multiplier gain 0.1

RF Resistance 520 �

RC Resistance 1 k�

RT Resistance 2 k�

RW Resistance 9.8 k�

where vi and vo stand for the input voltage and output voltage of
the circuit in Figure 1B, respectively.

Applying Kirchhoff’s circuit laws and the constitutive
relations to the circuit in Figure 1A, the mathematical model of
the hyperbolic-type memristor emulator can be established as

i = W(v0)v =

[

1

Ra
−

g

Rb
tanh(v0)

]

v

dv0

dt
= f (v0, v) = −

1

RC
(v0 + v) (4)

where g is the gain of the multiplier M. Introducing the
hyperbolic-type memristor emulator into a dynamical system
and scaling the circuit parameters in a dimensionless form, there
yields

τ = t/RC, a = R/Ra, b = gR/Rb (5)

The circuit parameters of the hyperbolic-type memristor
emulator are listed in Table 1. Thus, the normalized parameters
of the nonlinear memductance function W(v0) are calculated as
a= 1 and b= 0.5.

For the sake of verifying the frequency-dependent pinched
hysteresis loops of the hyperbolic-type memristor emulator,
the circuit parameters given in Table 1 are selected and a

sinusoidal voltage source v = Vmsin(2π ft) is considered, where
Vm and f are the stimulus amplitude and frequency, respectively.
When Vm = 4 V is held and f is set to 400 Hz, to 1 kHz,
and to 2 kHz, respectively, the v – i curves are plotted in
Figure 2A1, which exhibits that the hysteresis loop is pinched
at the origin and shrinks into a single-valued function at
infinite frequency, and its lobe area decreases with the increase
of the frequency. While when f = 400 Hz is maintained
and Vm is set to 2 V, to 3 V, and to 4 V, respectively,
the v – i curves are plotted in Figure 2B1, which explains
that the pinched hysteresis loop is regardless of the stimulus
amplitude. The numerical simulations in Figure 2 demonstrate
that the hyperbolic-type memristor emulator can behave three
fingerprints for distinguishing memristors (Adhikari et al., 2013).

With the circuit scheme given in Figure 1, a hardware level
on breadboards is made to verify the numerical simulations.
In hardware experiments, the linear element parameters and
the stimulus parameters of the sinusoidal voltage source are
the same as those used in numerical simulations. In addition,
a function signal generator is used as the applied sinusoidal
voltage source and a 4 channel digital oscilloscope is utilized
to capture the experimental phase portraits. Consequently, the
pinched hysteresis loops for various stimulus frequencies and
stimulus amplitudes are captured as shown in Figures 2A2,B2,
respectively, which illustrates that the measurement results from
the hardware circuit are well consistent to those revealed by
numerical simulations.

HYPERBOLIC-TYPE MEMRISTOR BASED
HNN

Mathematical Modeling
Hopfield neural network (HNN) can be featured by a set of
circuit state equations corresponded to n neurons (Bersini and
Sener, 2002). For the i-th neuron, the circuit state equation is
expressed as

Ci
dxi

dt
= −

xi

Ri
+

n
∑

j= 1

wij tanh(xj)+ Ii (6)
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FIGURE 2 | Numerically simulated and experimentally measured pinched hysteresis loops of the hyperbolic-type memristor emulator, where (A1,B1) are numerical

simulations and (A2,B2) are experimental measurements. (A) Vm = 4 V with different stimulus frequencies; (B) f = 400 Hz with different stimulus amplitudes.

where xi is a state variable standing for the voltage across the
capacitorCi,Ri is a resistor representing themembrane resistance
between the inside and outside of the neuron, Ii is a input bias
current, tanh(xj) is a neuron activation function indicating the
voltage input from the j-th neuron, and W = (wij) is an n × n
synaptic weight matrix illustrating the strength of connections
between the i-th and j-th neurons.

In the realization circuit of HNN, the synaptic weight
wij is generally constructed by a resistor connecting the
i-th and j-th neurons. When the connection resistor is
replaced by the above hyperbolic-type memristor characterized
by Equation (1), a memristor based HNN can be easily
proposed.

A hyperbolic-type memristor based HNN with 3 neurons is
considered in our next work. The connection topology for the
hyperbolic-type memristor based HNN is displayed in Figure 3.
Corresponding to this connection topology, the connection
matrix considered is of the following form

W =





w11 w21 w31

w12 w22 w32

w13 w23 w33



 =





−1.4 1.2 −7
1.1 0 2.8
kW −2 4



 (7)

Define n = 3, Ci = 1, Ri = 1, Ii = 0, and RC = 1.
The autonomous ordinary differential equations describing the
proposed memristive network can be derived in a dimensionless

FIGURE 3 | Connection topology for hyperbolic-type memristor based HNN.

form as

ẋ1 = −x1 − 1.4 tanh(x1)+ 1.2 tanh(x2)− 7 tanh(x3)

ẋ2 = −x2 + 1.1 tanh(x1)+ 2.8 tanh(x3)

ẋ3 = −x3 + kW tanh(x1)− 2 tanh(x2)+ 4 tanh(x3)

ẋ4 = −x4 + tanh(x1) (8)

where W = a – btanh(x4) stands for the synaptic weight w13

connecting the first and third neurons and k is a positive constant
representing the coupling strength of the hyperbolic-type
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memristor. Thus, the hyperbolic-type memristor based HNN
can be modeled by Equation (8), which is a four-dimensional
autonomous nonlinear dynamical system.

With respect to Equation (8), the parameters of a, b, k which
are related to the hyperbolic-type memristor W are positive. It
can be proved that the orbits of Equation (8) including periodic
and chaotic orbits are confined in a bounded region.

Referring to the approach in Nik et al. (2015), Zahedi and Nik
(2015), Chen et al. (2017), and Singh and Roy (2017), a Lyapunov
function is introduced as

V(x1, x2, x3, x4) =
1

2
x21 +

1

2
x22 +

1

2
x23 +

1

2
x24 (9)

The time derivative of Equation (9) is yield as

V̇(x1, x2, x3, x4) = x1ẋ1 + x2ẋ2 + x3ẋ3 + x4ẋ4

= −x21 − x22 − x23 − x24 + (−1.4x1 + 1.1x2

+ kWx3 + x4) tanh(x1)

+ (1.2x1 − 2x3) tanh(x2)+ (−7x1 + 2.8x2

+ 4x3) tanh(x3) (10)

For convenience, denote

v(x1, x2, x3,x4) = (−1.4x1 + 1.1x2 + kWx3 + x4) tanh(x1)

+ (1.2x1 − 2x3) tanh(x2)+ (−7x1 + 2.8x2

+ 4x3) tanh(x3) (11)

Equation (10) can be then rewritten as

V̇(x1, x2, x3, x4) = −2V(x1, x2, x3, x4)+ v(x1, x2, x3, x4) (12)

Forx4 ∈ R,−1 < tanh(x4) < 1. Therefore,

a− b < W = a− b tanh(x4) < a+ b (13)

and

|W| ≤ M = max
{
∣

∣a− b
∣

∣ ,
∣

∣a+ b
∣

∣

}

(14)

For any xi (i = 1, 2, 3, 4), one has
∣

∣tanh (xi)
∣

∣ < 1. Equation (11)
can be thereby simplified as

v(x1, x2, x3,x4) ≤
∣

∣(−1.4x1 + 1.1x2 + kWx3 + x4) tanh(x1)
∣

∣

+
∣

∣(1.2x1 − 2x3) tanh(x2)
∣

∣

+
∣

∣(−7x1 + 2.8x2 + 4x3) tanh(x3)
∣

∣

<
∣

∣−1.4x1 + 1.1x2 + kWx3 + x4
∣

∣ + |1.2x1 − 2x3|

+ |−7x1 + 2.8x2 + 4x3|

≤ 9.6 |x1| + 3.9 |x2| + (kM + 6) |x3| + |x4| (15)

Let D0 > 0 be the sufficiently large region. For all (x1, x2, x3, x4)
satisfying V(x1, x2, x3, x4) = D with D > D0, there exists the
following condition

v(x1, x2, x3,x4) < 9.6 |x1| + 3.9 |x2| + (kM + 6) |x3| + |x4|

< x21 + x22 + x23 + x24 = 2V(x1, x2, x3, x4) (16)

where (kM + 6) is a positive constant.
Consequently, on the surface

{

(x1, x2, x3,x4)
∣

∣V(x1, x2, x3,x4) = D
}

(17)

with D > D0, there yields

V̇(x1, x2, x3,x4) = −2V(x1, x2, x3, x4)+ v(x1, x2, x3,x4) < 0

(18)

which implies that the set

{

(x1, x2, x3,x4)
∣

∣V(x1, x2, x3,x4) ≤ D
}

(19)

is a confined region of all solutions of Equation (8), i.e., the
memristive system Equation (8) is bounded.

Equilibrium Point and Stability Analysis
Since the memristive system Equation (8) is invariant under
the transformation (x1, x2, x3, x4, b) to (–x1, –x2, –x3, –x4, –
b), the memristive system Equation (8) is symmetric about the
parameter b.

By setting the left-hand side of Equation (8) to zero, the
equilibrium points of the hyperbolic-type memristor based
Hopfield neural network can be numerically solved and
determined as a zero equilibrium point P0 = (0, 0, 0, 0) and two
nonzero equilibrium points P1 = (δ1, δ2, δ3, δ4) and P2 = (η1, η2,
η3, η4), where the nonzero equilibrium points P1 and P2 can be
calculated by solving the following equations















δ1 = y1
δ2 = z1
δ3 = atanh( 1

2.8 z1 −
1.1
2.8 tanh y1)

δ4 = tanh y1

(20a)

and















η1 = y2
η2 = z2
η3 = atanh( 1

2.8 z2 −
1.1
2.8 tanh y2)

η4 = tanh y2

(20b)

where the values of y1, z1 and y2, z2 are the two intersection
points of the two following function curves

h1(y, z) = −y− 1.4 tanh(y)+ 1.2 tanh(z)

− 7 tanh{atanh[ 5
14 z −

11
28 tanh(y)]} (21a)

h2(y, z) = −atanh[ 5
14 z −

11
28 tanh(y)]

+ 0.8{a− b tanh[tanh(y)]} tanh(y)

− 2 tanh(z)+ 4 tanh{atanh[ 5
14 z −

11
28 tanh(y)]}

(21b)

Therefore, the values of y1, z1 and y2, z2 can be determined
through graphic analytic method. Taking k = 0.8, a = 1, and
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b= 0.26 as an example, the two function curves given in Equation
(21) can be plotted in Figure 4, from which the solutions are
gotten as y1 = 2.1661, z1 = −0.5971, y2 = −1.4755, and z2 =

0.1974. Correspondingly, the two nonzero equilibrium points P1
and P2 can be easily obtained from Equation (20a) and (20b).

The Jacobian matrix at the equilibrium point
P = (x̄1, x̄2, x̄3, x̄4) is derived from Equation (8) as

J =









−1− 1.4h1 1.2h2 −7h3 0
1.1h1 −1 2.8h3 0

kW̄h1 −2h2 −1+ 4h3 −kbtanh(x̄1)h4
h1 0 0 −1









(22)

where hi = sech2(x̄i)(i = 1, 2, 3, 4) andW̄ = a− b tanh(x̄4).
For the zero equilibrium point P0 = (0, 0, 0, 0), the

characteristic polynomial equation is yielded as

P(λ) = det(1λ − J)

= (λ + 1)[λ3 + 0.4λ2 + (7ka− 3.52)λ + 3.64ka− 5.2] = 0

(23)

FIGURE 4 | Two function curves and their intersection points, where a = 1

and b = 0.26.

which implies the eigenvalues of P0 is only related to the
memristor inner parameter a but not associated with the
memristor inner parameter b. When a = 1, it is confirmed by
Routh-Hurwitz criteria that P0 is stable if k≥ 1.4286, otherwise it
is unstable if k < 1.4286. Taking k= 0.8 and a= 1 as an example,
the eigenvalues of P0 is derived as λ1 = 0.7684, λ2,3 = −0.5842
± j1.6237, λ4 = −1, implying that the zero equilibrium point is
an unstable saddle point.

For the two nonzero equilibrium points P1 = (δ1, δ2, δ3, δ4)
and P2 = (η1, η2, η3, η4), however, the corresponding eigenvalues
should be solved by using MATLAB numerical simulations.
When k= 0.8 and a= 1, for different memristor inner parameter
b, two nonzero equilibrium points P1 and P2, their corresponding
eigenvalues, and the generating attractor types are shown in
Table 2. Therefore, it can be seen that the nonzero equilibrium
points P1 and P2 are asymmetric, P1 is a stable node-focus for b≥
0.44, and whereas P2 always is an unstable saddle-focus, leading
to the emergence of coexisting asymmetric attractors’ behaviors.
Moreover, the results in Table 2 demonstrate that when the value
of the parameter b increases, the dynamical behaviors of the
hyperbolic-type memristor based HNN have transitions from
unstable chaotic to unstable periodic and then to stable point
behaviors, i.e., the dynamical behaviors of the HNN can be
stabilized by the hyperbolic-type memristor.

Furthermore, it can be amusingly found from a larger number
of numerical simulations that in the region of 0.44 ≤ b <

3.06, P1 is a stable node-focus and P2 is an unstable saddle-
focus; but in the region of b ≥ 3.06, P1 disappears and the
unique nonzero equilibrium point P2 maintains an unstable
saddle-focus.

COEXISTING BEHAVIORS OF
ASYMMETRIC ATTRACTORS

The initial conditions of four state variables are selected as (0, 0.1,
0, 0), (0, −0.1, 0, 0), and (1, 0, 0, 0), respectively, and the
parameter k is set to 0.8, to 0.95, and to 1, respectively. When

TABLE 2 | Non-zero equilibrium points, the corresponding eigenvalues, and the generating attractor types.

b Nonzero equilibrium points P1
and P2

Eigenvalues Attractor type

0 (1.7654, −0.3644, −0.5500, 0.9431)

(−1.7654, 0.3641, 0.5500, −0.9431)

0.3660 ± j1.1781, −0.8889, −1.0000

0.3660 ± j1.1781, −0.8889, −1.0000

Double-scroll chaotic attractor

0.26 (2.1661, −0.5971, −0.6868, 0.9741)

(−1.4755, 0.1974, 0.4529, −0.9006)

0.2290 ± j0.9261, −0.9751 ± j0.0484

0.4089 ± j1.3451, −0.7536, −1.0488

Right-chaotic spiral attractor and double-scroll chaotic

attractor

0.41 (2.5629, −0.8138, −0.8270, 0.9882)

(−1.3265, 0.1182, 0.4040, −0.8684)

0.0501 ± j0.6812, −0.9883 ± j0.0439

0.4041 ± j1.4327, −0.6655, −1.0749

Right-period-1 limit cycle and left-chaotic spiral attractor

0.43 (2.6399, −0.8541, −0.8555, 0.9899)

(−1.3073, 0.1085, 0.3977, −0.8636)

0.0126 ± j0.6379, −0.9898 ± j0.0418

0.4022 ± j1.4447, −0.6533, −1.0784

Right-period-1 limit cycle and left-period-4 limit cycle

0.44 (2.6811, −0.8754, −0.8709, 0.9907)

(−1.2978, 0.1037, 0.3946, −0.8612)

−0.0076 ± j0.6155, −0.9906 ± j0.0406

0.4010 ± j1.4508, −0.6472, −1.0802

Right-stable point attractor and left-period-2 limit cycle

0.46 (2.7737, −0.9226, −0.9062, 0.9922)

(−1.2787, 0.0943, 0.3884, −0.8561)

−0.0536 ± j0.5675, −0.9920 ± j0.0380

0.3986 ± j1.4631, −0.6348, −1.0837

Right-stable point attractor and left-period-2 limit cycle

0.54 (3.2263, −1.1437, −1.0988, 0.9969)

(−1.2031, 0.0588, 0.3642, −0.8346)

−0.2883 ± j0.3859, −0.9963 ± j0.0263

0.3855 ± j1.5148, −0.5847, −1.0981

Right-stable point attractor and left-period-3 limit cycle
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the memristor inner parameter b is adjusted in the region of
[0, 0.6], the coexisting behaviors of asymmetric attractors in
the hyperbolic-type memristor based HNN can be revealed by
bifurcation diagrams, Lyapunov exponent spectra, and phase
portraits. Note that Wolf ’s method reported in Wolf et al. (1985)
is used to calculate the finite-time Lyapunov exponents, where
MATLAB ODE45 algorithm with time-step 0.1 s and time-end
10 ks are utilized.

Case 1 for k = 0.8
When k = 0.8, the bifurcation diagrams of the state variable x1
and the corresponding first two Lyapunov exponents are shown

in Figures 5A,B, respectively, from which unstable chaotic,
unstable periodic, and stable point behaviors as well as period
doubling bifurcation routes, tangent bifurcation routes, and crisis
scenarios can be found. When the parameter b is gradually
increased in the region of (0, 0.4), the dynamical behaviors of
system Equation (8) are basically consistent for different initial
conditions and their orbits all start from chaos, enter into a
large periodic window with zero largest Lyapunov exponents
via reverse period doubling bifurcation routes, then break into
chaos via tangent bifurcation routes, further turn into chaos with
narrow bands via crisis scenarios, and last degrade into period via
reverse period doubling bifurcation routes.

FIGURE 5 | Coexisting behaviors of asymmetric attractors with the increase of b, where k = 0.8 and a = 1. (A) Bifurcation diagrams of the state variable x1, the red,

blue, and black orbits corresponding to (0, 0.1, 0, 0), (0, −0.1, 0, 0), and (1, 0, 0, 0), respectively; (B) three kinds of first two Lyapunov exponents under different initial

conditions.

FIGURE 6 | Phase portraits of asymmetrically coexisting attractors with different b in the x1 – x3 plane. (A) Coexistence of right-chaotic spiral attractor and

double-scroll chaotic attractor at b = 0.26; (B) coexistence of right-period-1 limit cycle and left-chaotic spiral attractor at b = 0.41; (C) coexistence of right-period-1

limit cycle and left-period-4 limit cycle at b = 0.43; (D) coexistence of right-stable point attractor (marked with five-pointed star) and left-period-2 limit cycle at b = 0.46.
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It is especially interesting that coexisting behaviors of
asymmetric attractors can be also observed, which are mainly
emerged in two regions of [0.2595, 0.2640] and [0.4, 0.6] due to
the occurrences of the crisis scenarios under the initial conditions
of (0, −0.1, 0, 0) and (1, 0, 0, 0). For some determined values
of the parameter b, the phase portraits of coexisting asymmetric
attractors in the x1 – x3 plane are depicted in Figure 6, where
four different kinds of coexisting asymmetric attractors are
exhibited. Based on the above theoretical analyses, it can be
known that the generating chaotic attractors and limit cycles in

Figure 6 are associated with two unstable saddle-foci and the
convergent point attractor in Figure 6D is related to a stable
node-focus. Consequently, the hyperbolic-type memristor based
HNN is self-excited but not hidden (Danca and Kuznetsov,
2017).

Case 2 for k = 0.95
When the coupling strength of the hyperbolic-type memristor
is chosen as k = 0.95, the bifurcation diagrams of the state
variable x1 and the corresponding first two Lyapunov exponents

FIGURE 7 | Coexisting behaviors of asymmetric attractors with the increase of b, where k = 0.95 and a = 1. (A) Bifurcation diagrams of the state variable x1, the red,

blue, and black orbits corresponding to (0, 0.1, 0, 0), (0, −0.1, 0, 0), and (1, 0, 0, 0), respectively; (B) three kinds of first two Lyapunov exponents under different initial

conditions.

FIGURE 8 | Phase portraits of asymmetrically coexisting attractors with different b in the x1 – x3 plane. (A) Coexistence of right- and left-chaotic spiral attractors at

b = 0.01; (B) coexistence of right-chaotic spiral attractor and left-period-4 limit cycle at b = 0.04; (C) coexistence of right-chaotic spiral attractor, left-period-1 limit

cycle, and right-period-2 limit cycle at b = 0.14; (D) coexistence of right-period-2 limit cycle and left-period-1 limit cycle at b = 0.46.
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are shown in Figures 7A,B, respectively. Similarly, dynamical
behaviors of chaotic attractors, limit cycles, point attractors,
bifurcation routes, and crisis scenarios can be found in Figure 7.
Differing from the dynamical behaviors in the case 1, the globally
coexisting behaviors of asymmetric attractors are existed in this
case.

Several phase portraits of coexisting asymmetric attractors
in the x1 – x3 plane are plotted in Figure 8. In special, the
coexistence of three disconnected attractors at b = 0.14 are

displayed in Figure 8C, where for the initial conditions (0, 0.1,
0, 0), a right-chaotic spiral attractor appears in the hyperbolic-
type memristor based HNN and four Lyapunov exponents are
L1 = 0.0321, L2 = 0, L3 = −0.4098, and L4 = −0.9715,
respectively; whereas for the initial conditions (0, −0.1, 0, 0)
and (1, 0, 0, 0), a left-period-1 limit cycle and a right-period-
2 limit cycle are separately emerged in the system (8), the
corresponding Lyapunov exponents are L1 = 0, L2 = −0.1190,
L3 = −0.1193, and L4 = −1.0295, respectively, as well as

FIGURE 9 | Coexisting behaviors of asymmetric attractors with the increase of b, where k = 1 and a = 1. (A) Bifurcation diagrams of the state variable x1, the red,

blue, and black orbits corresponding to (0, 0.1, 0, 0), (0, −0.1, 0, 0), and (1, 0, 0, 0), respectively; (B) three kinds of first two Lyapunov exponents under different initial

conditions.

FIGURE 10 | Phase portraits of asymmetrically coexisting attractors with different b in the x1 – x3 plane. (A) Coexistence of right- and left- period-2 limit cycles at b =

0.01; (B) coexistence of right-chaotic spiral attractor and left-period-1 limit cycle at b = 0.1; (C) coexistence of right-period-2 limit cycle, left-period-1 limit cycle, and

right-period-3 limit cycle at b = 0.24; (D) coexistence of right-period-2 limit cycle with transient chaos, left-period-1 limit cycle, and right-period-2 limit cycle at

b = 0.34.
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FIGURE 11 | Circuit realization scheme of the hyperbolic-type memristor

based HNN.

L1 = 0, L2 = −0.1814, L3 = −0.1815, and L4 = −0.9698,
respectively.

Case 3 for k = 1
When the coupling parameter is changed as k= 1, the bifurcation
diagrams of the state variable x1 and the corresponding
first two Lyapunov exponents are shown in Figures 9A,B,
respectively. However, only for the initial conditions (0, 0.1,
0, 0) and (1, 0, 0, 0), complex dynamical behaviors including
limit cycles with different periodicities, right-chaotic spiral
attractors with different topologies, right-period-2 limit cycles
with transient chaos, and stable point attractors as well as period
doubling bifurcation routes, tangent bifurcation routes, and crisis
scenarios can be discovered. Like as the dynamical behaviors
in the case 2, the globally coexisting behaviors of asymmetric
attractors can be also found in this case.

Some phase portraits of coexisting asymmetric attractors in
the x1 – x3 plane are demonstrated, as shown in Figure 10. It
should be mentioned that two types of coexisting asymmetric
multiple attractors’ behaviors are generated, as shown in
Figures 10C,D, in which a strikingly coexisting phenomenon of
right-period-2 limit cycle with transient chaos, left-period-1 limit
cycle, and right-period-2 limit cycle at b = 0.34 is presented in
Figure 10D.

Two Remarks
But above all, different kinds of coexisting asymmetric attractors
can be easily found in the hyperbolic-type memristor based
HNN. It is significant to stress that the coexistence of
two and three disconnected attractors revealed in the above

FIGURE 12 | Hardware experimental breadboards using commercial discrete

components. (A) Hyperbolic-type memristor emulator; (B) three inverting

hyperbolic tangent function circuit units; (C) main circuit of the hyperbolic-type

memristor based HNN.

three cases are all asymmetric, which are different from the
symmetric coexistence of multiple attractors encountered in
many nonlinear dynamical systems (Kengne et al., 2015; Bao
et al., 2016a; Xu et al., 2016). Therefore, the hyperbolic-
type memristor based HNN is a specific nonlinear dynamical
system.

Additionally, according to the above three cases, it can
be thereby concluded that the coupling strength and inner
parameters of the hyperbolic-type memristor have significant
effects on the dynamics of the hyperbolic-type memristor based
HNN, i.e., the newly introduced hyperbolic-type memristor
can cause the HNN initially in chaotic state to be stabilized
to the stable state or can be used to generate chaotic
signals in the HNN. In other words, the memristor can be
regarded as a controller to realize the dynamical control of the
HNN.

PSPICE CIRCUIT SIMULATIONS AND
HARDWARE EXPERIMENTS

By using commercial discrete components, an experimental
circuit can be made to verify the coexisting behaviors of
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FIGURE 13 | PSPICE simulated and experimentally captured phase portraits of coexisting asymmetric attractors in the v1–v3 plane, where (A1,B1,C1,D1) are

PSPICE circuit simulations, and (A2,B2,C2,D2) are hardware experimental measurements. (A) Coexistence of right- and left-chaotic spiral attractors; (B) coexistence

of right-chaotic spiral attractor and left-period-4 limit cycle; (C) coexistence of right-chaotic spiral attractor, left-period-1 limit cycle, and right-period-2 limit cycle;

(D) coexistence of right-period-2 limit cycle and left-period-1 limit cycle.
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asymmetric attractors in the hyperbolic-type memristor based
HNN.

Design and Fabrication of Hardware Circuit
With the mathematical model of Equation (8), the hyperbolic-
type memristor based HNN can be physically implemented
by some operational amplifiers linked with resistors and/or
capacitors (Bao et al., 2017), a nonlinear memristor, and
three nonlinear function circuits. The circuit scheme for the
memristive HNN is drawn in Figure 11, where the memristorW
represents the proposed hyperbolic-type memristor emulator in
Figure 1A and the three circuit modules Ta, Tb, and Tc marked
by –tanh with solid box are the inverting hyperbolic tangent
function circuit units drawn in Figure 1B.

The desired circuit in Figure 11 has four dynamic elements
of three capacitors and a hyperbolic-type memristor W,
corresponding to four state variables of v1, v2, v3, and v0,
respectively. Therefore, the circuit state equations for Figure 11
are established as

RC
dv1

dt
= −v1 −

R

R1
tanh(v1)+

R

R2
tanh(v2)−

R

R3
tanh(v3)

RC
dv2

dt
= −v2 +

R

R4
tanh(v1)+

R

R5
tanh(v3)

RC
dv3

dt
= −v3 +

(

R

Ra
−

gR

Rb
tanh(v0)

)

tanh(v1)

−
R

R6
tanh(v2)+

R

R7
tanh(v3)

RC
dv0

dt
= −v0 + tanh(v1) (24)

Assuming that the integrating time constant RC = 1 ms, the
resistance and the capacitance can be chosen as R= 10 k� and C
= 100 nF, respectively. Based on the element values of the weight
matrix (7), other resistances are calculated as R1 = R/1.4= 7.143
k�, R2 = R/1.2 = 8.333 k�, R3 = R/7 = 1.429 k�, R4 = R/1.1
= 9.091 k�, R5 = R/2.8 = 3.571 k�, R6 = R/2 = 5 k�, R7 =

R/4 = 2.5 k�. It is significant to illuminate that two adjustable
parameters of the coupling strength k and the inner parameter
b are achieved by adjusting precision potentiometers Ra and Rb
of the hyperbolic-type memristor emulator in Figure 1A, whose
calculating relations between the resistances and the system
parameters can be determined as Ra = R/ka k� and Rb = gR/kb
k�, respectively.

With the circuit schemes displayed in Figures 1, 11, a
circuit simulation model plotted by using PSPICE electronic
circuit simulator and a hardware experimental circuit fabricated
by commercial electronic components are gotten ready for
validating the coexisting behaviors of asymmetric attractors in
the hyperbolic-type memristor based HNN. The pictures of
several circuit breadboards are photographed as depicted in
Figure 12, where Figure 12A is the hyperbolic-type memristor
emulator, Figure 12B is the three inverting hyperbolic tangent
function circuit units, and Figure 12C is main circuit of
the hyperbolic-type memristor based HNN. Additionally, the
experimentally captured phase portraits are obtained by 4
channel digital oscilloscope.

Simulated and Captured Results
Consider k = 0.95 as an example to perform PSPICE circuit
simulations and hardware experiments of the memristive HNN.
When a = 1, the resistance Ra is fixed as 10.53 kO and only
the resistance Rb is adjustable. By adjusting the resistance Rb of
the hyperbolic-type memristor emulator, some phase portraits
in the v1 – v3 plane are simulated by PSPICE simulator with
time step 10−5 and captured by a 4 channel digital oscilloscope
in XY mode, as shown in Figure 13, where the orbits marked
with red, blue, and black colors represent those triggered
by three different initial values. It should be stressed that,
in PSPICE circuit simulations the different initial values are
assigned by setting different initial capacitor voltages, whereas
during hardware circuit experiments the desired initial values are
randomly achieved by the induced voltages of four capacitors
through switching on and off the hardware circuit power
supplies.

The simulated and captured results given in Figure 13

are consistent with numerical simulations given in Figure 8,
which availably illustrate that the circuit realization form of
the hyperbolic-type memristor based HNN can also display
coexisting behaviors of asymmetric attractors. However,
corresponding to Figures 13A–D, the values of the resistor Rb in
PSPICE circuit simulations are 105.82 k�, 26.13 k�, 7.45 k�,
and 2.21 k�, respectively, while the values of the resistor Rb in
hardware circuit experiments are equal to 105.2 k�, 25.45 k�,
7.2 k�, and 2.13 k�, respectively. Due to the computational
errors in PSPICE simulation (Kuznetsov et al., 2017) and the
existence of parasitic parameters in the practical hardware
circuit, the differences of the values of the resistor Rb indeed
appear in PSPICE circuit simulations and hardware circuit
experiments.

CONCLUSION

In this paper, a new hyperbolic-type memristor emulator is
presented and a novel hyperbolic-type memristor based 3-
neuron HNN is thereby constructed. Based on the mathematical
models and physical realization circuits, the frequency-
dependent pinched hysteresis loops of the presented emulator
are analyzed by numerical simulations and confirmed by
hardware experiments, and coexisting behaviors of asymmetric
attractors in the memristive HNN are revealed by numerical
simulations and validated by PSPICE circuit simulations and
hardware experiments. The research results demonstrate that
the hyperbolic-type memristor has the stabilization effect
on the chaotic HNN, which can cause the HNN initially in
chaotic state to be stabilized to the stable state or can be
used to generate chaotic signals in the HNN. Moreover, for
different memristor inner parameters, different coexisting
behaviors of asymmetric attractors are emerged under different
initial conditions, implying the existences of multistable
oscillation states in the memristive HNN. In particular,
this fantastic phenomenon of the coexisting asymmetric
attractors’ behaviors has not yet reported in previous literature
achievements.
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