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BY 
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ABSTRACT. A construction of all coextensions of a regular semigroup S by rectangu-
lar bands is obtained. The construction is analogous to Hall's construction of 
orthodox semigroups as spined products of bands and inverse semigroups and 
reduces to that construction when S is inverse. The results are specialized to provide 
a construction of the category of all normal coextensions of a regular semigroup. 

If S' is a regular semigroup, then by a coextension of S' we mean a pair (S, </» 
where S is a regular semigroup and </> is a homomorphism from S onto S': (S, </» is 
called a coextension of S' by rectangular bands if, for each e' E E(S'), </>-I(e') is a 
rectangular subband of S. If S' is a regular semigroup and (): E --> E(S') is a 
bimorphism, then by an extension of () by S' we mean a pair (S, </» where S is a 
regular semigroup with E(S) = E and </>: S --> S' is a surjective homomorphism with 
E( </» = (). In [5] the authors have obtained a construction of all coextensions of a 
biordered set E' by rectangular biordered sets; that is, all bimorphisms (): E --> E' 
such that the congruence classes of ke! () are rectangular. In this paper we shall 
describe all extensions of such bimorphisms which give rise to coextensions of 
regular semigroups by rectangular bands. Our construction is analogous to Hall's 
construction [3] of orthodox semigroups as spined products of bands and inverse 
semigroups. 

1. Preliminary results, inductive groupoids. We assume familiarity with the basic 
ideas and notation of semigroup theory as presented in the book of Clifford and 
Preston [1]. In addition we assume the definitions, results and notation of our paper 
[5] and we shall not repeat these results here. 

By a groupoid we mean a small category in which every morphism is an 
isomorphism: as in [6] we denote the morphism set of a groupoid G also by G; the 
vertex set (set of objects) will be denoted by V(G). A groupoid G together with a 
partial order E;;; on G is called an ordered groupoid if it satisfies the conditions 
(OGI)-(OG3) of [6]: an inductive groupoid is a pair (G, e) consisting of an ordered 
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groupoid G and a V-isomorphism e: §(E) ~ G (where E is a biordered set and §(E) 
is the groupoid of E-chains of E) which satisfies the conditions (IGI) and (IG2) of 
[6] and their duals. We refer the reader to [6, §4] for a description of the category of 
inductive groupoids and its relation to the category of regular semigroups. As in [6], 
G denotes the functor from the category of regular semigroups to the category of 
inductive groupoids and S denotes the functor from the category of inductive 
groupoids to the category of regular semigroups. We identify each regular semigroup 
S with S(G(S)) by the natural isomorphism TIs and each inductive groupoid G with 
G(S(G)) by the natural isomorphism PG (see [6]). 

If E is a biordered set we denote by T*(E) the groupoid of partial w-isomor-
phisms of E. T*(E) is an inductive groupoid relative to the evaluation T (see [6]). As 
in [6], the domain of a E T*(E) is denoted by ea and the range of a is denoted by 
fa; that is, a is a partial w-isomorphism from w(ea) onto w(fa)' If G is an inductive 
groupoid, x E G and g E w(ex) we denote the restriction of x to g by g * x (see [6]) 
and define gaG(x) = fgox' From [6, Proposition 3.8] we have the following result. 

PROPOSITION 1.1. Let G be an inductive groupoid. Then aG(x): w(ex) ~ w(fx) is an 
w-isomorphism of E = V( G) and the map a G: x ~ a G( x) is an. inductive functor (with 
V(ad = 'E) of G to T*(E) such that the following diagram commutes: 

In particular, if G is a full inductive subgroupoid of T*(E) then aG is the inclusion of G 
in T*(E). 

If S is a regular semigroup and (x, x') E G(S) it is clear that e(x,x') = xx' and 
i(x,x') = x'x. Also, for g E w(xx'), g * (x, x') = (gx, x'g) and so fg.(x, x') = x'gx. 
Thus the w-isomorphism aG(S)(x, x') maps g E w(xx') to x'gx E w(x'x). We denote 
the homomorphism S(ad of S(G) into S(T*(E(S))) = T(E(S)) by as (see [6]). 
From [6] we know that ker as = J1.(S), the maximum indempotent-separating con-
gruence on S, and that S is fundamental if and only if a s is an isomorphism of S 
onto a full subsemigroup of T(E(S)). 

Let (): E ~ E' be a surjective bimorphism. An w-isomorphism a E T*(E) is 
compatible with () if there exists a' E T*(E') such that the following diagram 
commutes: 

w( ea) 
(J 

w(ea,) ~ 

~a ~a' 

w(fa) 
(J 

w(fa' ) ~ 

that is, (ga)() = (g())a' for all g E w(ea ). If a is compatible with (), then it is easy to 
see that the w-isomorphism a' making the above diagram commutative is unique, so 
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COEXTENSIONS OF REGULAR SEMIGROUPS 557 

that 0*: a -- a' is a mapping of the subset 5(/ C T*(E) consisting of all ",-isomor-
phisms compatible with 0 into T*(E'). We have the following: 

PROPOSITION 1.2 [6]. 5(/ is a full inductive subgroupoid of T*(E) and 0*: 5(/T* (E) 
is an inductive functor with V( 0*) = 0 such that, for all inductive functors q,: G -- G' 
with V( q,) = 0, the following diagram commutes: 

(J* 

-- T*(E') 

In particular if q,: 5 -- T*(E') with 5 C T*(E) and V(q,) = 0, then 5 C 5(/ and 
q, = 0* 1'5' . 

. The last statement of the proposition implies that 5(/ is the maximum subgroupoid 
of T*(E) to which 0 extends as an inductive functor and that the extension is 
unique. Moreover, if q,: G -- G' is any inductive functor such that V( q,) = 0, then 
im( a c> C 5(J and q, is surjective if and only if im( a G') C im 0 *. 

2. Coextensions of regular semigroups by rectangular bands. If (S, q,) is a coexten-
sion of S' by rectangular bands, it is clear that (l(S), l( q,» is a coextension of I(S') 
by rectangular bands and the construction of such coextensions is described in 
Theorem 4.5 of [5]. (Here I(S) denotes the subsemigroup of S which is generated by 
its idempotents.) In particular, the induced coextension (E( S), E( q,» of the bi-
ordered set E(S') must be of the form E(E(S'),{Ea }, q" 1/;) where the family of 
mappings q, and 1/; satisfies conditions (Pi), i = 1,2,3, and (P4) of [5] relative to 
I(S') (see [5,§4]). We shall say that (E, 0) is a strong coextension of E' relative to 
the idempotent-generated regular semigroup S' with E(S') = E' if the family of 
mappings q, and 1/; associated with (E, 0) satisfies (P4) relative to S'. (E, 0) is strong 
if it is strong relative to some S'. 

Let (E,O) be a coextension of the biordered set E'. By Proposition 1.2 and 
[6, Theorem 4.12], S(O*): S(5(/) -- S(T*(E'» = T(E') is a homomorphism such that 
E(S(O*» = O. We write 19 = S(5(/) and 0 = S(O*). Thus kerOis a congruence on T(/ 
such that ker 0 n (E X E) = ker O. In fact ker 0 is the largest congruence with this 
property; the smallest congruence with this property is denoted by 1/(/. (Such a 
congruence 1/(/ exists by the results of Reilly and Scheiblich [8].) 

Recall that, if S is a regular semigroup, then peS) denotes the maximum 
congruence on S whose congruence classes containing idempotents are rectangular 
bands [5]. The next proposition characterizes strong coextensions in terms of 1/(J. 

PROPOSITION 2.1. Let (E, 0) be a coextension of a biordered set E'. Thus 1/(/ C p(19) 
if and only if (E, 0) is strong relative to some idempotent generated regular semigroup 
S' (with E(S') = E'). 

PROOF. Let S(/ denote the semigroup T(//1/(J with E(S(/) identified with E' by 
identifying e1/(/ with eO. If 1/i is the canonical homomorphism of 19 onto S(/, then the 
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foregoing identification implies that E('"i) = fJ. If TJo ~ p(To), it is clear that (18, TJi) 
is a coextension of So by rectangular bands inducing (E, fJ) and so (E, fJ) is strong 
relative to I( So). 

Conversely assume that (E, fJ) is a strong coextension of E' relative to some 
idempotent-generated regular semigroup S' with E(S') = E'. Thus by Theorem 4.5 
of [5] there exists a coextension (S, p) of S' by rectangular bands inducing (E, fJ) 
(that is, with E(p) = fJ) and with S an idempotent-generated semigroup on E. If p. is 
the maximum idempotent-separating congruence on S, it follows by Proposition 2.13 
of [5] that the congruence P = (ker po p.)/p. is contained in p(I(E» (where I(E) 
denotes the fundamental idempotent-generated semigroup on E). Now p. = ker as 
and E(a s ) = LE , so p n (E x E) = ker fJ. So, if e E E and e,f E Ee, = e'fJ- I with 
d,f, then the mapping fJt= g --> fg (for all g E ",r( e» is an ~class preserving mapping 
of ",r(e) onto ",ru) satisfying conditions (1) and (2) of Proposition 2.8 of [5] in 
I(E). Since I(E) ~ 18, it follows that the condition (1) holds in To also. To prove 
(2), we first note that for all (x, x') E G(18) there exists a unique a E 50 such that 
PG(~= (x, x') where PG : 50 --> G(18) is the natural isomorphism sending ~o 
(a,a- I) (see [6]). By the convention adopted (see §1) we identify a with (a,a- I). 
Since V(G(To» = E(18) by the definition of G(18) (see [6]), the identification above 
also identifies e E E' with the corresponding idempotent e in E(18). Hence for 
g E ",(ea), 

ga =/, =/, = ga(x x') = x'gx g.a g.(x, x') , 

(see Proposition 1.1). Suppose that h E SUa' e). By (1), fh E SUa' f) and h, hf E 
EhO' Therefore fah, fa(fh) E EUah)o and fahfl,fifh). Moreover, xhx' = xfahx' = 
U«h)a- I, xfhx' = U«(fh»a- I. Since a E 50' it follows that xhx', x(fh)x' E 
E(Uah)«-')O which is a p-class in I(E). Hence we have V(xhx') = V(x(fh)x') = 
V(x(fJ1h)x') in I(E). But I(E) is a full subsemigroup of To and so this equality holds 
in To also. Thus fJf satisfies condition (2) in 18 and so by Proposition 2.8 of [5], 
(e, f) E p(18). If e~f and e, f E Ee" we can prove dually that (e, f) E p(To). 
Therefore, for all e, f E Ee, we have (e, f) E p(18). Hence TJo n p(To) = PI is a 
congruence on 18 such that ePI = EeO for all e E E; that is, PI n EX E = ker fJ. 
But TJo is the minimum congruence with this property and hence PI = TJo ~ p(To), as 
required. 

THEOREM 2.2. Let U be a regular semigroup and (E, fJ) be a strong coextension of 
E' = E(U). Let ~: U --> So be a homomorphism with E(n = LE" Then there exists a 
regular semigroup S = S(U, fJ, n with E(S) = E and a homomorphism p: S --> U with 
E( p) = fJ such that the following diagram is a pullback as well as a pushout in the 
category B/i. (of regular semigroups). 

(2.1 ) 

S 
p 
--> U 
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S is isomorphic to the spined product of To and U with respect to 'I1i and ~: (S, p) is a 
coextension of U by rectangular bands. 

Conversely if(S, p) is a coextension of U by rectangular bands, then (E(S), E(p» 
is a strong coextension of E(U) and there exists a homomorphism ~: U ~ SE(p) with 
E(n = 'E(U) such that S is isomorphic to S(U, E(p), n. 

PROOF. Let S' be the spined product of 19 and Uwith respect to 'I1i and~, that is 

S' = {(x, u) E T9 X U: x'l1i = un 
with product defined by (x, u)(y, v) = (xy, uv). If (x, u) E S' and x' E V(x), then 
x''I1i E V(un and by Lemma I of Hall [4] there exists u' E V(u) such that 
u'~ = x''I1i and so (x', u') E V«x, u» in S'. Hence S' is regular. Clearly, (x, u) E 
E(S') iff x E E(T9) = E and u = xO; also, e ~ (e, eO) is an isomorphism of E onto 
E(S'). Let S = S(u, 0, n be the semigroup obtained by identifying E(S') with E by 
the isomorphism (e, e) ~ e. If p is the homomorphism (x, u) ~ u, then it is onto. 
For, if u E U, u~ E S9 and since 'I1i is onto, there exists x E 19 with x'l1i = u~ and so 
(x, u) E S and (x, u)p = u. Also,p is one-to-one on %-classes. For if (x, u)%(y, u), 
then x'l1i = Y'l1i and since '119 k p(19), and since x%y in T9, we have x = y. Let p' 
denote the projection (x, u) ~ x. Thus (x, u)p''I1i = (x, u)p~; that is p''I1i = pt. 
Since we have identified (e, eO) with e, it follows that E(p') = 'E. Since E: 
S ~ E(S) is a functor, we have, 

0= 'EO = E(p')E( '111) = E(p )E(O = E(p). 

This together with the fact that p is one-to-one on %-classes implies that (S, p) is a 
coextension of U by rectangular bands inducing (E, 0). 

To show that p' = as' consider (x, u) E S and (x', u')....§.. V«x, u». Thus x' E 
V(x) in T9 and so we may choose a E 59 such that ii = x, a-I = x'. Let g E w(ea ): 

by identifying 59 and G(T9) we have (as in the proof of Proposition 2.1), 

ga = gO(ii, a-I) = ~ gii = x'gx, 

and so 

(ga)O = (x'gx)'I1i = u'~gOu~ = (u'gOu)~ = u'gOu 

since E(n = 'E" Also, in S, we have 

gos«x, u),(x', u')) = (x'gx, u'(gO)u) = (ga, (ga)O) = ga 

and hence 0s«x, u), (x', u'» = a. Therefore 

(x,u)os= 0s«x,u),(x',u')) =ii=x= (x,u)p'; 

that is, p' = as. 
The fact that S is isomorphic to the spined product implies that the diagram (2.1) 

is a pullback. To prove that it is a pushout, consider the commutative diagram: 

p 

S 
p 
~ u 
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Thus 'h = '''h where t/I; = E('TT;), i = 1,2. Therefore ker8 k kert/l\. If (x, y) E 71", 
then V(x) = V(y) and so by Lemma 2.1 of [5], for e E E(Rx) andf E E(Lx)' there 
exists e' E E(Ry ) n Le and f' E E(Ly ) n Rf such that y = e'xf'. Now e, e' E Ee" 
and so et/l\ = e"h. Hence x = ex ker'TT\e'x. Similarly e'x ker'TT\e'xf' and so (x, y) E 
ker 'TT\. Thus 71" k ker 'TT\ and so 'TT, defined by 

Z'TT=X'TT\, 
for z E S" and x E 19 with x7li = z, is a single valued homomorphism such that 
'TT\ = 71i'TT. To prove that r'TT = 'TT2, consider u E U. Thus there exists xES such that 
u = xp and so 

Ur'TT = {xpr)'TT = (xa s7li)'TT = {xas)'TT\ = (xp )'TT2 = U'TT2. 

Thus r'TT = 'TT2 and this proves that the diagram (2.1) is a pushout in RS. 
Conversely assume that (S, p) is a coextension of U by rectangular bands. Write 

E(S) = E, E(p) = 8 and E' = E(U). Then, clearly, (E, 8) is a strong coextension 
of E' with respect to J(E). Define r: U --+ S" by ur = (x as) 71i for some xES with 
xp = u. This definition is single valued. For if xp = yp, then (x, y) E ker p. Hence 
(xa s' yas) E p where p is the image of the congruence ker pop, under as. Since 
ker as = p" by Proposition 2.13 of [5], p k p(19). Since E(as ) = 'E' E(p) = 8, it 
follows that p n EX E = ker8. Since 71" k p(19) and E(71i) = 8, it follows that 
71" = p. Hence (xa s )71i = (ya s )71i. To prove that r is a homomorphism, consider u, 
v E U. If xp = u and yp = v, then 

{uv)r = {{xy)p)r = ({xy)ashi = (xashi{yashi = (ur){vr). 
Also, since a s 7li = pr, 

8E{r) = E{a s )E(71i) = 'EE(71i) = E(71i) = 8 

and so E(n = L E" 

To prove that S is isomorphic to S(U, 8, n, define t by 
xt = (xa s , xp). 

Clearly, t is a homomorphism of S into S(U, 8, n. If xt = yt, then xa s = yas and 
so xXy in S. Since xp = yp and p is one-to-one on :JG.classes, we have x = y. Thus t 
is one-to-one. To prove that t is onto, consider (z, u) E S(U, 8, n. Since p is onto, 
there exists xES such that xp = u and so (xa s )71i = ur = z7li. Since 71" k p(T,,), 
we have V(xa s ) = V(z) in T". Therefore, by Lemma 2.1 of [5], there exists 
e E E(R z ) and f E E(Lz ) such that e(xas)f= z. Since E(a s ) = LE, we have 
(exf)a s = z. Now e8 E E(R ur ) and f8 E E(Lur ) and since E(r) = 'E" we have 
u ERe" n L/". Hence 

(exf)p = (ep){xp)(fp) = (e8)u(f8) = u. 
Therefore(z, u) = «exf)as, (exf)p) = (exf)t. This completes the proof. 

REMARK. The hypothesis that E(n = L E' in the statement of Theorem 2.2 is only a 
matter of convenience; the essential requirement here is that E(n be an isomor-
phism. 

REMARK. If (E, 8) is a coextension of a sernilattice E', then it can be seen that 
every ",-isomorphism of E is compatible with 8 so that, in this case, T" = T(E). 
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Since strong coextensions of semilattices are bands, it follows that the foregoing 
theorem is exactly equivalent to Hall's spined product theorem for orthodox 
semigroups (Hall [3, Theorem 1 D. 

REMARK. Given a regular semigroup S' and a strong coextension (E, 0) of E(S') 
relative to I( S'), it may not be possible to find a coextension of S' by rectangular 
bands inducing (E, 0), since there may not exist a homomorphism ~ of S' to S(J so 
that E(n is an isomorphism. The example given by Hall in [3] proves this (cf. 
[3, §4.lD. 

We proceed to give an alternate description of the semigroup S(U, 0, n similar to 
Hall's second theorem of [3]. Let (E, 0) = E(E', {Ee,}, cP, tP). For e' E E' and 
e E E, write 

Ee, = Ir(e') X A1(e') and e = (ir(e)' A1(e»)' 

It is clear that the mapping Re --+ ir(e) is a bijection of T(J/13t onto 

1= U {Ir(e'): e' E E'l. 

so that we may define a partial order on I making it a regular partially ordered set 
(cf. Grillet [2] and Nambooripad [7]). Similarly Le --+ A1(e) is a bijection of 18/e onto 
A = U {A1(e'): e' E E'} and so A is a regular partially ordered set with respect to 
the obvious partial order in A. 

Now suppose that 

S' = {(u, i, A): u E U, i E Ir(uu') , A E A1(u'u) foru' E V(u}}. 

It is clear th~t 'IT: (a, u) --+ (u, ir(ea)' A1Ua» is a ~apping of S(U, 0, n into S'. If 
'IT( a, u) = 'IT({3, v), then clearly u = v and a and {3 are %equivalent in 18. But since 
(a, u), (p, v) E S, al1i = Pl1i and since l1i is one-to-one on %classes, it follows that 
a = p. If (u, i, A) E S', where i E Ir(e') and A E A 1U') with e' E E(Ru) and f' E 
E(Lu)' we can find e E Ee, and f E Ef' such that ir(e) = i and A1U) = A. So there 
exists a unique a E Re n Lfin 18 such that al1i = ut. Thus (a, u)'IT = (u, i, A). This 
shows that the semigroup S may be coordinatized in terms of I, A and U as above. 

To describe the multiplication in S', first consider (u, t, A) E S'. Let 0: E 5(J be 
such that (a, u)'IT = (u, t, A). Let A",-' be the mapping of T/J/l3tinto itself defined by 

A",-,{Rf ) = RU",h)",-' 

where hE SU"" f). Thus A",-' is a normal mapping of 18/l3tsuch that Rfa E M(A",-') 
and im A",-' = 18/('!,JRe) (the principal ideal generated by Re) (cf. Nambooripad 
[7, Theorem C]). Also, by Lemma 2.12 of [7], A",-' is uniquely determined by a. 
Hence, A",-' induces, in an obvious way, a normal mapping which we denote by 
cI>(u, t, A) of I such that imcI>(u, t, A) = I(t) and M(cI>(u, t, A» = {j E I: (j, A) E 
E}. Dually, there exists a normal mapping v(u, t, A) of A such that imv(u, t, A) = 
A(A) and M(v(u, i, A» = {IL E A: (t, IL) E E}. 

Now let (a,u)'IT=(U,i,A) and (jj,v)'IT=(v,j,IL). If (ajj,uv)'IT=(uv,k,l) 
th~n k corresponds to R;;p and I corresponds to L;;p. But from [6] we know that 
a{3 = (0: 0 {3)h where h E SU"" en) and so R;;Q = Re . Now, e(", 0 Q) = U",h )0:-1 

P P (00 fJ>h IJ h 

so that Re = A",-,(Re ). Hence k = cI>(u, t, A)(j). Dually 1= (A)V(V, j, IL). 
(a 'lIlh II 
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Therefore if we define 
(u, i, A)( v, j, p.) = (uv, <p(u, i, A)(J), (A)i'( v, j, p.» 

then with this product S' becomes a regular semigroup isomorphic to S. Thus we 
have the following theorem. 

THEOREM 2.3. Let U be a regular semigroup, (E,O) be a strong coextension of 
E' = E(U) and ~: U -> So be an idempotent separating homomorphism. Write 
(E, 0) = E(E',{Ee,}, cP, 1[;), Ee, = Ir(e'l X A1(e'l' 1= U {lr(e'l: e' E E'}, A = 
U {A1(e'l: e' E E'} and for any e E E, e = (ir(el' A1(el)' Let 

S' = {(u, i, A): i E Ir(uu'l' A E Al(u'ulforu' E V(u)} 

and for each (u, i, A) E S', let <P( u, i, A) and '1'( u, i, A) denote normal mappings of I 
and A respectively defined above. Then S', with product defined by 

(u, i, A)( v, j, p.) = (uv, <p( u, i, A )(J), (A )'1'( v, j, p.» 
is a regular semigroup and the mapping p': (u, i, A) -> u is a homomorphism of S' onto 
U such that there exists an isomorphism X: E -> E(S') making the following diagram 
commutative: 

8 
E IE' 

1 x ~( ') E(S,)/E(P': 

(S', p') is a coextension of U by rectangular bands. 
Conversely every coextension of U by rectangular bands can be (up to isomorphism) 

constructed in this way. 

Let (S, p) and (S', p') be two coextensions of a regular semigroup U by 
rectangular bands. A morphism F: (S, p) -> (S', p') is a homomorphism F: S -> S' 
such that the following diagram commutes: 

P' 
S' ) U 

Fr/. 
S 

We denote by B(U) the category of all coextensions of a regular semigroup U by 
rectangular bands in which morphisms are those defined above. Theorems 2.2 and 
2.3 describe the construction of objects in B(U). We proceed to describe the 
construction of morphisms in this category. In the following we use the coordinatiza-
tion of the coextension (S, p), introduced in Theorem 2.3. 

THEOREM 2.4. Let (S, p) and (S', p') be coextensions of a regular semigroup U by 
rectangular bands. Let I = S/01, l' = S'/01, A = S/eand A' = s'/e. If F: (S, p) 
-> (S', p') is a morphism of coextensions, then the mappings OR: 1-> l', 0L: A -> A' 
defined by 
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satisfy the following conditions: for all (U, i, A) E Sand j E I, t-t E A, 

0R(<I>(U, i, A)(j)) = <I>(u, 0R(i), 0LP,»(OR(J)), 

0L('I'(U, i, A)(t-t» = 'I'(u, 0R(i), 0L(A»(OL(t-t», 
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where <I>(u, i, A) ['I'(u, i, A)] denote the normal mapping of I [A] defined in Theorem 
2.3. 

Conversely, given mappings OR: 1-> 1', 0L: A -> A', satisfying the conditions above, 
then the mapping F defined by 

F(u, i, A) = (u, 0R(i), 0L(A» 

is a morphism of (S, p) to (S', p') such that 

for all xES. 

PROOF. Suppose that F: (S, p) -> (S', p') is a morphism. If F(u, i, A) = (u', i', A'), 

then i = R(u,i,A)' A = L(u,i,A)' i' = R(U',i',A') = RF(u,i,A) and A' = LF(u,i.A)' Also 
p'(F(u, i, A» = p'(u', i', A') = u' andp(u, i, A) = u. Hence u = u'. Thus 

F(u, i, A) = (u, 0R(i), 0L(A». 
To prove the condition above, consider j E I. Choose t-t E A and a E E(U) so that 
e = (a, j, t-t) E E(S). Then 

F((u, i, A)(a, j, t-t)) = F(ua, <I>(u, i, A)(J), 'I'(a, j, t-t)(A» 
= (ua, 0R(<I>(U, i, A)(J)), 0L('I'(a, j, t-t)(A»). 

Since F is a homomorphism, we have 

F((u, i, A)(a, j, t-t)) = (u, 0R(i), 0L(A»(a, 0R(J), 0L(t-t» 

= (ua, <I>(u, 0R(i), 0L(A»(OR(j»' 'I'(a, 0R(I), 0L(t-t»(OL(A»). 
Hence we get 0R(<I>(U, i, A)(j» = <I>(u, 0R(i), 0L(A»(OR(j». The second condition is 
proved dually. 

Conversely if OR: 1-> 1', 0L: A -> A' are mappings satisfying the given conditions, 
then the mapping F defined above is clearly a morphism of coextensions if F is a 
homomorphism. To prove this, take (u, i, A), (v, j, t-t) E S. Then 

F((u, i, A)( v, j, t-t» = F(uv, <I>(u, i, A)(J), '1'( v, j, t-t)(A» 
= (uv, 0R('I'(U, i, A)(j)), 0L('I'(V, j, t-t)(A»), 

F(u, i, A)F(v, j, t-t) = (u, 0R(i), 0L(A»)(V, 0R(J), 0L(t-t)) 

= (uv, <I>(u, 0R(i), 0L(A»(OR(J», 'I'(v, 0R(J), 0L(t-t»(OL(A»). 

The given conditions imply that F is a homomorphism. 

3. Normal coextensions. A coextension (E, 0) of a biordered set F is said to be 
normal if for e E E and /3 E F with /3 w eO, there exists a unique fEE with f we 
and fO = /3. In [5] is was shown that such coextensions are coextensions by 
rectangular biordered sets and may be described in terms of two set valued functors 
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XR: I = F 16}., -> Set and XL: A = Fie -> Set and we shall write (E, 0) = 
E(F; XR' XL)' (Here, a partially ordered set XlSregarded as a small category in the 
usual way; with morphisms from x to y when y os;;;; x.) Theorems 2.2 and 2.3 can be 
simplified considerably when the coextensions of biordered sets considered are 
normal. 

LEMMA 3.1. Let (E, 0) be a normal coextension of the biordered set F. Then for all 
e E E, Oe = 0 I w(e) is an isomorphism of w(e) onto w(eO). 

PROOF. It is clear that Oe is a surjective bimorphism of w( e) onto w( eO). To prove 
that Oe is an isomorphism, it is sufficient to show that Oe is one-to-one. This is 
obvious from the definition of normality. 

THEOREM 3.2. Let (E, 0) be a normal coextension of the biordered set F. Then we 
have the following. 

(a) 0 is a homomorphism ofT(E) onto T(F). 
(b) kerO = 118 C p(T(E». 

PROOF. To prove (a), it is sufficient to show that 5"8 = T*(E) and imO* = T*(F); 
so, let a E T*(E). Then by Lemma 3.1, a' = Oe~1 0 a 0 Of. is an isomorphism of 
w(eaO) onto w(faO) such that 00 a' = a 0 O. Thus O*(a) = a' and a E 5"8' Therefore 
5"8 = T*(E). Similarly if a' E T*(F), and if e,f E E with eO = ea, andfO = fa" then 
a = Oe 0 a' 0 0/ E T*(E) ~d O*(a) = a'. Thus imO* = T*(f). This proves (a)._ 

Since, always, 118 C ker 0, the statement (b) will follow if we show that ker 0 C 
p(T(E»; or equivalently, 0 is one-to-one on the :JG.classes of T(E). Let ii, Ii be 
:JG.equivalent elements in T(E), where a, fJ E T*(E). If iiO = lio, then ea6}.,ep and 
faI:/P and so fJl = r(ea, ep)fJr(/p, fa)pfJ (see [6]) and fJl' a E T*(E)(ea, fa)' So, 
iiI 0 = lio = iiO and so O*(fJl) p O*(a). Since O*(fJl)' O*(a) E T*(F)(eaO, faO), it 
follows that O*(fJ l) = O*(a). Thus 

a = 0 0 O*(a) 00-1 = 0 0 O*(fJ ) 00-1 = fJ . e. f. e. I f. I 

So ii = iiI = Ii. 
We have observed before that if (E, 0) is a strong coextension of F by rectangular 

biordered sets and if U is a regular semigroup with E(U) = F, it may not be possible 
always to find a coextension of U by rectangular bands inducing (E,O) as the 
biordered set (see the remark after Theorem 2.2). By Theorem 2.2, a necessary and 
sufficient condition for the existence of such a coextension is that there exists an 
idempotent separating homomorphism of U into S8' If (E,O) is normal, the 
foregoing theorem implies that S8 is isomorphic to T(F). Since 118 C p(T(E», (E, 0) 
is a strong coextension of F and so, the existence of the natural homomorphism as: 
U -> T( F) implies that U satisfies the condition of Theorem 2.2. Thus we have 

COROLLARY 3.3. Let (E, 0) be a normal coextension of a biordered set F.If U is any 
regular semigroup with E(U) = F, then there exists a coextension of U by rectangular 
bands inducing (E, 0). In particular every normal coextension of F is strong relative to 
every idempotent-generated regular semigroup S' with E(S') = F. 
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For convenience we shall say that a coextension of a regular seroigroup by 
rectangular bands is normal if it induces a normal coextension on its biordered sets. 
Given a regular seroigroup U, the subcategory of the category !!(U) consisting of all 
normal coextensions will be denoted by !i!!(U). The following theorem describes the 
construction of objects and morphisms of !i!!( U). 

If E(F; XR' XL) is a normal coextension of F and if U is any regular seroigroup 
with E(U) = F, in the following, it is convenient to identify I = FIG}., with U IG}., 
and A = Fie with U Ie so that XR and XL are functors on U IG}., = I and U Ie = A 
respectively. 

THEOREM 3.4. (1) Let (E, fJ) = E(F; XR' XL) be a normal coextension of the 
biordered set F and let U be a regular semigroup with E(U) = F. Then 

S = {(u, i, A): u E U, i E XR(RJ, A E XL(LJ} 

with product defined by 

(u, i, A)( v, j, po) = (uv, iXR(R u' R uv ), poXL(Lv' Luv» 

is a regular semigroup and the mapping p: (u, i, A) ..... u is a homomorphism of S onto 
U such that (S, p) = S(U; XR' XL) is a normal coextension of U. Further the map7T: 
(a, i, A) ..... (i, A) is an isomorphism of E(S) onto E such that E(p) = 7T 0 fJ. 

Conversely if (S, p) is any normal coextension of U define XR by XR(R u) = {Rx: 
xp = u} for Ru E I and for R u' Rv E I with Rv';;; Ru and Rx E XR(R u)' define 
RxXR(Ru' Rv) = Ry where Ry is the unique element in XR(R v) such that Ry .;;; Rx. 
Then X R is a set-valued functor on I. Dually 

and LxXL(Lu' Lv) = Ly where Lv .;;; Lu and Ly is the unique element in XL(Lv) such 
that Ly';;; Lx, defines a set-valuedfunctor on A. Moreover, the map t: x ..... (xp, R x' Lx) 
is an isomorphism of(S, p) onto S(U; XR' XL). 

(2) Let 4>: S(U; XR' XL) ..... S(U; X~, XL) be a morphism of normal coextensions. 
Then there exist natural transformations 

a: XR ..... X~, '1": XL ..... X~ 

such thatforall(u, i, A) E S(U; XR' XL)' 

(u, i, A)4> = (u, iaR ., A'I"LJ. 

Conversely, given two natural transformations a: XR ..... X~ and '1": XL ..... X~, the map 4> 
defined by the equation above is a morphism of the coextensions: 4> is an isomorphism if 
and only if a and 'I" are natural isomorphisms. 

PROOF. (1) Let (u, i, A), (v, j, po), (w, k, p) E S. Then by the definition of product 
in S, 

[(u, i, A)(V, j, p.)](w, k, p) 
= (uvw, iXR(R u' Ruv)XR(R uv ' R uvw )' PXL(Lw' Luvw») 
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and 
(u, i, A)[(V, j, JL)(W, k, v)] 

= (UVW, iXR(Ru, R uvw )' vXL(Lw, Lvw)xL(Lvw ' Luvw)). 
Since X R and X T, are functors we have 

XR(R u' Ruv)XR(R uv ' Ruvw) = XR(R u' R uvw )' 
XL(Lw, Lvw)XL(Lvw ' Luvw) = XL(Lw, Luvw) 

and so the product defined in S is associative. Further, for (u, i, A) E S, choose 
u' E V(u),j E XR(R u') and JL E XL(Lu'). Since Ru = R uu' and L u' = L uu' it follows 
that 

iXR(R u' R uu') = iXR(Ru, RJ = i, 
JLXL( Lu" L uu') = JLXL( L u" L u') = JL 

and so, (u, i,A)(U', j, JL) = (uu', i, JL). Hence 

(u, i, A)(U', j, JL)(u, i, A) = (uu', i, JL)(u, i, A) 
= (u, iXR(R uu" RJ, AXL(Lu' LJ(A)) = (u, i, A). 

Similarly (u', j, JL)(u, i, A)(U', j, JL) = (u', j, JL). Hence (u', j, JL) E V«u, i, A» and 
so S is regular. From the definition of product it is clear that the map p: 
(u, i, A) -> u is a homomorphism and that, for any a E F, ap-l is a rectangular 
subband of E(S). Also (u, i, A) E E(S) if and only if u E F and (i, A) E XR(R u) 
X XL(Lu) = Eu. Therefore the mapping 7T: (a, i, A) -> (i, A) (a E F) is a bijection 
of E(S) onto E such that 7T 0 0 = E(p), where 0 is the bimorphism associated with 
the coextension E(F, XR' XL) which sends (i, A) E E to a. Moreover, by the 
definition of product in S and basic product in E, 7T is an isomorphism (see 
[5, Theorem 5.5]). 

Conversely assume that (S, p) is a normal coextension of U. It follows from the 
definition of normality that for all Rx E XR(R u)' there exists a unique Ry E XR(R v) 
(where R u' Rv E I and Rv";; Ru) such that Ry";; Rx. Thus the definition of 
XR(R u' Rv) is valid. It is also easy to see that XR is a functor. Dually XL is also a 
functor. The map t sending x to (xp, R x, Lx) is clearly single-valued. Also since 
(S, p) is a coextension by rectangular bands, t is a bijection. To prove that t is an 
isomorphism, we first observe that Rxy .,;; Rx and Lxy .,;; Ly for all x, yES. Hence if 
xp = u,yp = v, 

RxXR(R u, RuJ = R xy , LyXL(Lv, LuJ = Lxy 

and so (xt)(yt) = «xy)p, R xy , LXY) = (xy)t. If p' is the projection of S(U; XR' xd 
onto U, it is clear from the definition of t that p = top' and so t is an isomorphism 
of coextensions. 

(2) For each Ru E I and i E XR(R u)' A E XL(LJ, (u, iaR., A'rL) E S(U; X~, x~J 

if and only if iaR. E X~(Ru) and A'rL• E X'(Lu). Thus cp, defined by 

(u, i, A)CP = (u, iaR., A'rLJ, 
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is a mapping of S(U; XR, XL) into S(U; X~, X~) if and only if aRu is a mapping of 
XR(R u) into X~(Ru) and 'fL. is a mapping of XL(LJ into X~(Lu)' Also 

and 

Therefore fJ> is a homomorphism if and only if 

and 

that is, if and only if a: Ru -> aR• and 'f: Lu ---> 'fL. are natural transformations. It is 
also clear that fJ> is a bijection if and only if, for each Ru E /, aR• and 'fLu are 
bijections. Therefore fJ> is an isomorphism if and only if both a and 'f are natural 
isomorphisms. 

Let [I, Set] denote the category of all functors from / = U 101, into Set. Objects in 
[I, Set] areset-valued functors on / and morphisms are natural transformations. If 
al:~ ---> X2 and a 2: X2 ---> X3 are morphisms in [I, Set], the composition of a l and a 2 

is the natural transformation that sends Ru to ak.~~ .. Now consider the category 
[I, Set] X [A, Set]. Then it is easy to see that the maps that send (XR' XIJ E [I, Set] 
X [A, Set] toS(U; XR' XL) and pairs of natural transformations (a, 'f) to the 
homomorphism fJ> = S( U; a, 'f) defined in the foregoing theorem define a functor 
S(U; ,) of[/, Set] X [A, Set] into the category NR(U). Further, X: (S, p) ---> (XR' XL)' 
fJ> ---> (a, 'f) where (XR' XL) and (a, 'f) are pairs of functors and natural transforma-
tions defined in the foregoing theorem, is also a functor of NR(U) to [I, Set) X 
[A, Set] such that S(U; , ) 0 X is naturally isomorphic to L[I,SetjX[A,Set] and X 0 S(U; , ) 
is naturally isomorphic to LNR(U)' Thus - -

THEOREM 3.5. The category NR(U) of all normal coextensions of a regular semi-
group U is naturally equivalent tot/, Set) X [A, Set) where / = U 10t and A = U It. 

The foregoing can be easily modified to show that the category of all normal 
coextensions of a biordered set F is naturally equivalent to the product category 
[F 101" Set) X [Fit, Set). 
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