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Cofactors, such as NAD(H) and NADP(H), play important roles in energy transfer within the cells 

by providing the necessary redox carriers for a myriad of metabolic reactions, both anabolic and 

catabolic.  Thus, it is crucial to establish the overall cellular redox balance for achieving the desired 

cellular physiology. Of several methods to manipulate the intracellular cofactor regeneration rates, 

altering the cofactor specificity of a particular enzyme is a promising one. However, the 

identification of relevant enzyme targets for such cofactor specificity engineering (CSE) is often 

very difficult and labor intensive. Therefore, it is necessary to develop more systematic approaches 

to find the cofactor engineering targets for strain improvement. Presented herein is a novel 

mathematical framework, cofactor modification analysis (CMA), developed based on the well-

established constraints-based flux analysis, for the systematic identification of suitable CSE targets 

while exploring the global metabolic effects. The CMA algorithm was applied to E. coli using its 

genome-scale metabolic model, iJO1366, thereby identifying the growth-coupled cofactor 

engineering targets for overproducing four of its native products: acetate, formate, ethanol and 

lactate, and three non-native products: 1-butanol, 1,4-butanediol and 1,3-propanediol. Notably, 

among several target candidates for cofactor engineering, glyceraldehyde-3-phosphate 

dehydrogenase (GAPD) is the most promising enzyme; its cofactor modification enhanced both the 

desired product and biomass yields significantly. Finally, given the identified target, we further 

discussed potential mutational strategies for modifying cofactor specificity of GAPD in E. coli as 

suggested by in silico protein docking experiments. 

Keywords: Metabolic engineering, cofactor specificity engineering (CSE), genome-scale metabolic 

model, flux balance analysis (FBA), cofactor modification analysis (CMA). 

1.   Introduction 

Microbial synthesis of several value-added biochemicals such as biofuels, 

pharmaceuticals and fine chemicals is an attractive alternative to the chemical synthesis.
1, 
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2
 However, low productivity and limited capability to synthesize some of the prominent 

compounds are the main challenges for its industrial applications. In this regard, 

recombinant technology now allows us to creatively engineer the innate metabolic 

capabilities of the organism for improving product yield, product range or substrate 

utilization by up-, down-regulating, inserting and/or deleting numerous metabolic genes 

at the same time.
3, 4

 As a result, in the past decade, several works have shown to produce 

a myriad of products from both native and non-native substrates in microbial expression 

hosts, Escherichia coli and Saccharomyces cerevisiae.
5-9

 However, despite these 

successes, many of the engineered microbes still do not exhibit the desired cellular 

physiology mainly due to the imbalances in redox cofactor regeneration rates, which are 

primarily caused by the insertion and/or deletion of certain gene(s). This can be well 

exemplified by the case of ethanol production from xylose in S. cerevisiae. Even though 

S. cerevisiae has been made to assimilate xylose via insertion of three genes, xylose 

reductase (XYL1), xylitol dehydrogenase (XYL2) and xylulose kinase (XKS1), from 

Pichia stipitis, the cellular growth and ethanol yields are still very low when compared to 

glucose due to the imbalances in cofactor regeneration rates across the inserted xylose 

assimilatory pathway; XYL1 prefers NADPH whereas XYL2 requires NAD
+
.
10

 When the 

cofactor specificity of any of these enzymes was altered from NADPH to NADH or 

NAD
+
 to NADP

+
, the resulting strains show an appreciable increase in ethanol 

productivity.
10-12

 Similarly, the production of several important secondary metabolites 

such as terpenoids, aromatic ketones and flavonoids in E. coli have also shown drastic 

improvement by attenuating the cofactor production rates.
13, 14

 

Recognizing the importance of manipulating the redox cofactor regeneration rates, 

numerous approaches have been proposed for increasing the availability of desired 

cofactor. Over-expression of de novo synthesis pathways
15

 and the redirection of carbon-

flow via specific pathways
16

 are two methods for increasing the overall production rates. 

On the other hand, techniques such as over-expression of endogenous nucleotide 

transhydrogenase (PntA/UdhA) enzyme
17

, which converts NAD(H) to NADP(H) and its 

reverse, or the alteration of cofactor specificity from NAD(H) to NADP(H) or vice-versa 

of a particular enzyme
10-13

 can enhance the desired cofactor production rates at the 

expense of other. Among these different approaches, altering the cofactor specificity of a 

particular enzyme is an attractive method as it is quite stable from the evolutionary point 

of view. However, the identification of relevant enzyme targets for cofactor specificity 

engineering (CSE) in such a method is often very difficult and labor intensive. Therefore, 

development of more systematic approaches to find the appropriate CSE targets is highly 

required to achieve the best possible strain design. 

Constraints-based flux analysis is a simple and extensible steady-state modeling 

approach that can accurately simulate the cellular phenotype in terms of metabolic fluxes 

with the information of reaction stoichiometry and mass-balance from the underlying 

metabolic models.
18, 19

 Therefore, it has been successfully applied to various organisms 

for analyzing the cellular phenotypes systematically under different genetic and/or 

environmental perturbations at genome-scale.
20, 21

  Furthermore, this framework has also 
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been extended into several computational algorithms over the past decade for the rational 

identification of gene targets that can be manipulated for strain improvement. The 

OptKnock
22

 and OptStrain
23

 were the first constraints-based algorithms developed to 

identify genes for knock-out (KO) and knock-in (KI) using a mixed-integer linear 

programming (MILP) formulation of the metabolic network. Subsequently, the 

OptKnock was extended into algorithms such as OptGene
24

 and GDLS
25

 for identifying 

the gene knockout targets within reasonable computational time based on genetic 

algorithm- and heuristic search-based frameworks, respectively. Later, OptKnock was 

also modified into another algorithm, OptReg
26

, which can find even the up- and down- 

regulation genetic targets in addition to the deletion candidates. RobustKnock
27

 has 

modified the OptKnock for identifying the possible genetic manipulations with a 

guaranteed minimal product synthesis rate by considering all the possible alternate 

optima. Most recently, another MILP-based problem, OptORF
28

, was developed to find 

genetic manipulation targets that are consistent with known transcriptional regulatory 

rules. Moreover, most of these frameworks are now conveniently accessible via 

constraints-based modeling  software tools such as COBRA toolbox and OptFlux.
29

 

However, despite the availability of several computational algorithms for identifying 

valid genetic targets to either delete, up- or down-regulate, still no method exists for 

investigating and improving the overall cellular redox cofactor balance, which may often 

be limiting case in achieving the desired strain design. Therefore, in this study, we 

introduce a novel mathematical framework, cofactor modification analysis (CMA), based 

on the well-established constraints-based flux analysis framework to systematically 

identify the best possible candidates among several reactions in the entire metabolic 

network whose CSE can lead to an improvement in both product yield and cellular 

growth. Subsequently, we also demonstrate the efficacy of this newly developed 

algorithm by applying it on the genome-scale metabolic network model of E. coli, 

predicting the best CSE targets that can lead to a significant improvement in both cellular 

growth and production rates of various native and non-native chemicals. 

 

2.   Methods 

2.1.   Constraints-based flux analysis 

The constraints-based flux analysis is the most commonly used mathematical framework 

for analyzing cellular metabolisms.
19

 It involves the constraining of cellular metabolic 

network by considering the balance of the metabolic fluxes (reactions) around each 

metabolite. Under steady state, the mass balance of intracellular metabolites in a network 

can be represented as: 

 0ij j

j

S v   (1) 
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where ijS refers to the stoichiometric coefficient of metabolite i involved in reaction j, 

jv denotes to the flux or specific rate of metabolic reaction j. Since eq. 1 is under-

determined most of the times in many metabolic networks, linear programming (LP) can 

be used to solve it with an objective function such as maximization of biomass or 

minimization of substrate uptake. Additionally, constraints on flux-capacity can be 

incorporated using the following constraint: 

 
min max

j j jv v v   (2) 

where 
min

jv and 
max

jv represent the lower and upper limits on the flux of reaction j. 

Mathematically, the constraints-based flux analysis problem for biomass flux 

maximization can be represented as: 

    max
biomass

v             (P1)  

 s.t.   0      metabolite ij j

j

S v i    

       
min max

reaction 
j j j

v v v j     

2.2.   Cofactor modification analysis (CMA) 

To identify the best possible candidate for CSE in the entire metabolic network that can 

lead to a growth coupled product synthesis, first, we need to examine the consequences of 

replacing the cofactor specificity from NAD(H) to NADP(H) or vice-versa for all the 

reactions that involve them. However, it is quite tedious to iteratively examine the effect 

of CSE on each of the reaction in a metabolic network as there may be several reactions 

involving redox cofactors. Therefore, in order to remedy this issue, we formulate a MILP 

problem with two stoichiometric matrices where one representing the original metabolic 

state and the other signifying reactions with switched cofactors such that the formulation 

can select the best possible reaction with original or altered cofactor specificity for the 

stated objective. In this regard, we first modified the mass-balance constraints of the 

constraints- based framework (P1) by duplicating the stoichiometric matrix to account for 

reactions with engineered cofactor specificity:  

 ( ) 0cMod cMod

ij j ij j

j

S v S v   (3) 

In eq. 3, 
cMod

ijS  refers to the modified stoichiometric coefficient of metabolite   

involved in reaction j and j

cModv  denotes to the flux or specific rate of cofactor modified 

reaction j. Here, it should be noted that 
cMod

ijS is as same as ijS , except the reactions 

which involve NAD(H) or NADP(H) where it will be simply swapped such that 

( ) ( )

cMod

NAD j NADP jS S , ( ) ( )

cMod

NADP j NAD jS S , ( ) ( )

cMod

NADH j NADPH jS S and ( ) ( )

cMod

NADPH j NADH jS S . 

Additionally, a binary variable j

cMody  is introduced in the flux capacity constraints (eq. 2) 

of jv and j

cModv to ensure that there is no duplication of same reaction with both the 

cofactors. Eq. 2 can be appropriately modified as: 
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   min max(1 ). (1 ).cMod cMod

j j j j jy v v y v               (4) 

 min maxcMod cMod

j j j j jy v v y v   (5) 

       {0,1}    reaction cMod

jy j   (6) 

where the binary variable cMod

jy assume a value one if the corresponding reaction has its 

cofactor specificity modified and a value of zero if the reaction has its original cofactor 

specificity. Here, it should be noted that since all the reactions in a metabolic network 

does not involve cofactor, the selection of reaction j by the variable cMod

jy in eq. 5 shall be 

restricted to a small subset of reactions, C via elimination of unwanted reactions (e.g. 

reactions which do not involve any cofactors, transport and exchange reactions) as 

follows: 

 min max    reaction cMod cMod

j j j j jy v v y v j C     (5a) 

With all the above-mentioned changes to the constraints of original framework, 

CMA can be formulated as a bi-level MILP problem in which the formulation identifies 

the reactions that need to be modified for cofactor specificity so that the optimization of 

cellular objective indirectly leads to the overproduction of required biochemical. 

Mathematically, it can be represented as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 

min

biomass
v

is the minimum amount of biomass that needs to be produced and k is 

the number of allowed switches. 

In general, bi-level optimization problems involving thousands of variables are 

computationally quite intensive to solve with their nested structure. Therefore, in order to 

solve the above mentioned bi-level optimization in an easier manner, it has to be re-

formulated into a single-level MILP using the duality theory. For this purpose, first, the 
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inner problem is re-formulated in its dual form. The dual problem equivalent to the inner 

problem is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where i  is the dual variable associated with stoichiometric constraints in eq. 3,  j and 

j  are the dual variables associated with flux  in eq.4,  and  are the dual variables 

associated with  in eq. 5. 

Once the dual form of the inner problem is formulated, it is further equated with 

the original inner primal problem according to duality theory; if the primal and dual 

problems are appropriately bounded then their objective values must be equal at one 

another at optimality. Using this condition, the bi-level formulation shown previously is 

easily transformed into a single-level optimization problem as: 
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For all simulations in this work, we fixed k=1 to avoid unrealistic simulations as cofactor 

specificity engineering requires substantial efforts. 

2.3.   Cofactor flux-sum 

The redox cofactors of interest, NAD(H) and NADP(H), are involved in many reactions 

of E. coli metabolism. The resultant fluxes jv from flux analysis will just indicate the 

rates of consumption/generation of these cofactors for each of the respective metabolic 

reactions but not the overall turnover rates. Therefore, we utilized the previously 

developed concept of ‘‘flux-sum’’ to quantify the metabolite turnover rates.
30, 31

 Since the 

overall consumption and generation rates are equal under the steady-state assumption, the 

flux-sum of metabolite i can be formulated as 0.5i ij j
j

S v   . Each ij jS v  term in this 

summation series gives us the absolute rate of consumption/generation of metabolite i 

due to reaction j and thus by halving the sum of these terms, we can obtain the overall 

turnover rate for metabolite i. 

2.4.   In silico model settings 

The latest genome-scale metabolic model of E. coli, iJO1366, accounting for 1366 genes, 

2583 reactions and 1805 metabolites in three cellular compartments, cytosol, periplasm 

and extracellular matrix was used throughout the work described herein.
32

  23 new 

reactions were added into this model to facilitate the synthesis of non-natural products in 

E. coli: 6 for 1-butanol, 11 for 1,4-butanediol and 5 for 1,3-propanediol (see additional 

file 1 for the list of reactions added). Furthermore, the iJO1366 model was also pre-

processed to identify the possible candidates for CSE (See additional file 1 for list of 

candidates considered for CSE). For all simulations, a glucose uptake rate of 20 mmol g
-1

 

DCW hr
-1

 was used and the non-growth associated maintenance energy was maintained 

at 3.15 mmol g
-1

 DCW hr
-1

. The oxygen uptake rate was set to zero in all simulations 

corresponding to anaerobic conditions. The minimum level of target biomass in CMA 

simulations was set at an arbitrary value, i.e. 0.05 hr
-1

. Additionally, the CAT, 

DHPTDNR, DHPTDNRN, FHL, SPODM, SPODMpp, SUCASPtpp, SUCFUMtpp, 

SUCMALtpp and SUCTARTtpp reactions were also constrained to zero for the reasons 

previously established.
32

 All simulations were performed in GAMS IDE software using 

CPLEX solver. 

3.   Results 

3.1.   Improving native products synthesis ability in E. coli 

We first conducted CMA on the E. coli iJO1366 model to analyze whether CSE of any 

particular enzyme can improve the cofactor (re-)generation rates, and thus, enhance the 

synthesis capability of four of its natural products: acetate, formate, ethanol and lactate. 

Table 1 summarizes the CMA identified CSE targets for each of them. Note that the 

abbreviations of enzymes/reactions presented in table 1 and elsewhere in the paper adhere 
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to the iJO1366 metabolic model definitions. From the analysis results, it could be 

observed that the production ability of all the four compounds analyzed can be improved 

significantly upon modifying the cofactor specificity of a certain enzyme (Table 1). Most 

importantly, the CSE design for acetate, ethanol and formate overproducing strain also 

indicated a significant increase in the biomass yield. 

Table 1.  CSE strategies predicted by CMA for overproducing the natural products 
in wild-type E. coli. 

Product CSE targets Biomass Flux (hr-1) 
Product Flux  

(mmol g-1 DCW hr-1) 

Acetate - 0.518 16.157 

GAPD 0.644 30.101 

Formate - 0.518 34.175 

GAPD 0.644 62.516 

Ethanol - 0.518 15.878 

PDH 0.536 19.014 

Lactate - 0.518 0 

ALCD2x/ACALD 0.426 33.218 

 

The CMA framework identified glyceraldehyde-3-phosphate dehydrogenase 

(GAPD) as the best enzyme target for CSE to overproduce acetate and formate. In E. coli, 

all the fermentation products including acetate, formate and ethanol are produced from 

pyruvate through pyruvate formate lyase (PFL). The acetyl-coA resulting from PFL is 

further metabolized into ethanol and acetate via acetaldehyde dehydrogenase (ACALD) 

and phosphotransacetylase (PTAr), respectively (Fig. 1A). Therefore, in order to increase 

the production of acetate, the flux through PFL must be increased whereas the flux 

through ACALD must be reduced. In this regard, the GAPD-CSE mutant strain 

eliminates the carbon flow via ACALD by eradicating the need to regenerate the NADH 

lost in the GAPD as it is replaced with NADPH (Fig. 1B). Furthermore, the replacement 

of GAPD’s cofactor also has a positive effect on biomass synthesis due to better 

NADP(H) regeneration rates. Here, it should be noted that although both NAD(H) and 

NADP(H) can serve as redox carriers, NAD(H) is primarily involved in the catabolic 

reactions whereas NADP(H) is required to synthesize most of the building blocks of the 

cell. Therefore, the replacement of NAD(H) with NADP(H) in GAPD enables E. coli to 

meet the biosynthetic requirements of NADP(H) more efficiently using glycolysis rather 

than the pentose phosphate pathway or the UdhA/PntAB enzymes (Fig. 1B). In general, 

these observations are in very good agreement with the experimental work by Martinez, 

et al. who have previously shown that altering GAPD’s cofactor specificity from 

NAD(H) to NADP(H) can improve both biomass and acetate yields significantly.
13
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Fig. 1. In silico simulated flux maps of central metabolism and cofactor flux-sums in (A) wild-type, (B) GAPD-

CSE, (C) PDH-CSE and (D) ALCD2x-CSE E. coli. The flux maps are generated using the results from 

constraints-based flux analysis. The color intensity of the edges between two nodes in the flux maps correspond 

to the amount of flux flow through them whereas the dotted lines represent the reactions with no active fluxes. 

The insert bar-graph in each figure represent the flux-sums of NAD(H) and NADP(H). 
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In case of ethanol overproducing design, pyruvate dehydrogenase (PDH) was 

identified as the best candidate for CSE by CMA. Unlike the wild-type E. coli, the PDH-

CSE strain enables the ethanol overproduction by allowing an increased carbon flow 

from pyruvate to acetyl-coA by utilizing the PDH in addition to PFL (Fig. 1C). 

Interestingly, this observation is in very good agreement with the earlier report by 

Pharkya et al., who suggested an up-regulation of PDH is mandatory to increase ethanol 

production.
26

 When PDH is up-regulated, it minimizes the flux through PFL, thus, 

reducing the amount of carbon flux wasted in formate synthesis. However, despite the 

up-regulation of PDH gene, wild-type E. coli may not produce acetyl-coA efficiently via 

PDH due to the NAD
+
 requirements. In this regard, the PDH-CSE strain can successfully 

utilize the PDH as it can regenerate NADP
+
 via several other NADP-dependent 

pathways. Furthermore, apart from improving the ethanol flux, the PDH-CSE strain also 

improve the biomass yield by allowing more flux towards the biomass synthesis 

pathways (Table 1). 

For the design of lactate overproducing strain, CMA identified alcohol 

dehydrogenase (ALCD2x) or aldehyde dehydrogenase (ACALD) as the top candidates 

for CSE. Replacing the cofactor specificity of ALCD2x or ACALD allows E. coli to 

produce lactate as a homo-fermentation product with a theoretical maximum yield of 33 

mmol g
-1

 DCW h
-1

. Most importantly, unlike the ethanol or acetate over-producing 

designs where all the CSE targets offered a direct solution to improve the cofactor 

balancing in product producing pathways, this strategy perturbs the cofactor regeneration 

profile in the ethanol producing pathway, and thus, indirectly redirecting the flux towards 

lactate (Fig. 1D). Again, it should be noted that this strategy identified by CMA is 

comparable to the KO designed mutants for lactate overproducing E. coli where the 

ethanol production pathways are blocked by knocking out ALCD2x and/or ACALD.
22

 

We further explored the product flux envelopes of ethanol, acetate, formate and 

lactate, in the wild-type and the CMA identified CSE mutants to analyze how the 

biomass flux and product fluxes are modified upon cofactor specificity alternation in E. 

coli. All the four flux envelopes in Figure 2 show that CSE mutants have an enlarged 

production envelope, suggesting that the CSE mutants possess better product synthesis 

capability than wild-type. Notably, the engineered strains also showed a significant 

improvement in the biomass fluxes except lactate case,  highlighting that CSE benefits 

both product and biomass yield such that the specific productivity of these strains are 

superior than those of wild-type. Furthermore, the flux envelopes of acetate and formate 

overproducing mutants showed interesting characteristics where the maximum possible 

product fluxes of CSE-mutants where significantly higher than wild-type E. coli at zero 

biomass flux (Fig. 2B and 2C). To better understand this phenomenon, we performed 

constraints-based flux simulations by maximizing acetate production in the wild-type and 

GAPD-CSE E. coli. The wild-type strain produced mixed products consisting of 2 moles 

acetate, 0.5 moles of ethanol and 1 mole of formate per mole of glucose. On the other 

hand, the GAPD-CSE mutant strain with altered cofactor specificity from NAD(H) to 

NADP(H) synthesized significantly high amount of acetate (2.82 moles instead 2) along 



 CMA: a computational framework for cofactor specificity engineering 

 

11 

with negligible quantities of formate and ethanol. Such substantial change in metabolic 

behavior is most likely because of the cofactor balancing in acetate pathways; the NADH 

produced by enzyme GAPD in wild-type can be regenerated only via the fermentative 

pathways, i.e. ACALD and ALCD2x, and thus producing significant amounts of ethanol. 

Conversely, in the GAPD-CSE mutant strain, the NADPH produced by GAPD can be 

regenerated via several other NADP-dependent reactions which are involved in biomass 

synthesis. In summary, these results indicate that CSE offers multiple advantages over the 

knockout design for strain design by improving both product yield and biomass yield 

even beyond its theoretical maximum via better cofactor regeneration. 

 

Fig. 2. Biomass vs. product flux envelopes for acetate (A), formate (B), ethanol (C) and lactate (D) in wild-type 

(solid line) and CSE-mutant (dashed line) E. coli. The flux envelopes were drawn by maximizing and 

minimizing the product synthesis fluxes while constraining the biomass flux at several pre-defined values as 

shown in the x-axis. 

3.2.   Improving non-native products synthesis ability in E. coli 

Following our success in improving the growth coupled product synthesis for ethanol, 

acetate and formate via CSE in E. coli, we applied it to the synthetic pathway designed 

mutant strains that are specifically designed for producing non-native products such as 1-

butanol, 1,4-butanediol and 1,3-propanediol. 1-butanol is an important biofuel, naturally 

produced from Clostridum species has significant potential in replacing gasoline as it 

possess a very similar energy content (27 MJ L
-1

).
33

 1,3-propanediol and 1,4-butanediol 

are important building blocks for several polymers.
34

 It has been earlier shown that E. 

coli can be successfully utilized to produce these compounds by manifesting their 

synthetic pathways into the host chassis where some of them have further optimized the 

engineered strain to produce these synthetic compounds by knocking out several genes.
8, 
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35, 36
 However, as explained earlier, the insertion and/or deletion of several reactions that 

involve a redox cofactor as it is in the 1,4-butanediol case where among the total 10 gene 

modifications (6 inserted and 4 deleted), 6 of them involves NAD(P), and thus could 

significantly alter the overall cofactor regeneration rates. Therefore, in this study we also 

analyzed the best possible CSE targets in the engineered E. coli using our newly 

developed CMA. To do so, first, the KO design for all the products where identified 

using the OptKnock algorithm as these non-native compounds cannot be synthesized just 

by the insertion of relevant synthetic reactions (See Table 2 for the KO design of each 

product used in this study). Secondly, we applied the CMA on these mutants as same as 

the wild-type after removing the reactions that are suggested to be knocked out from 

iJO1366 model. 

Table 2.  CSE strategies predicted by CMA for overproducing the non-native 
products in E. coli. 

Product KO targets CSE targets 
Biomass Flux 

(hr-1) 

Product Flux 

(mmol g-1 DCW hr-1) 

1-butanol GLCptspp, ALCD2x, 

LDH_D, MDH 

- 0.461 8.166 

PDH 0.476 9.392 

1,4-butanediol ADHEr, LDH_D, 

FUM, ATPS4r 

- 0.432 8.242 

G6PDH2r 0.386 10.273 

1,3-propanediol TPI, MGSA, F6PA, 

G6PDH2r, ALCD2x 

- 0.062 13.996 

G3P2 0.076 15.045 

 

Table 2 summarizes the CMA identified enzyme targets for CSE in the KO-

designed non-native product synthesizing E. coli strains. PDH is identified as the best 

candidate for CSE to overproduce 1-butanol. Similar to ethanol, 1-butanol is also 

synthesized through alcohol and aldehyde dehydrogenases from acetyl-coA. Therefore, 

analogous to the ethanol overproducing strain design, the replacement of PDH’s cofactor 

from NAD(H) to NADP(H) enables the conversion of more pyruvate into acetyl-coA, 

and thus facilitates the 1-butanol synthesis.  

For the over-production of 1,4-butanediol, CMA identified the oxidative pentose 

phosphate pathway enzyme, glucose 6-phosphate dehydrogenase (G6PDH2r) as the best 

candidate. The replacement of G6PDH2r’s cofactor from NADP(H) to NAD(H) allows 

the mutant strain to have more NADH pool that can be regenerated via the alcohol and/or 

dehydrogenases present in the downstream steps of 1,4-butanediol production. 

In case of 1,3-propanediol overproducing strain, CMA identified glycerol-3-

phosphate dehydrogenase (G3P2) as the best candidate for CSE where the product yield 

improved by 36% upon cofactor modification. G3P2 is an important enzyme present 

upstream in the 1,3-propanediol synthetic pathway, producing glycerol-3-phospahte from 

dihydroxyacetone phosphate (DHAP). In wild-type E. coli, this enzyme prefers 

NADP(H) as a cofactor, whereas in the CSE strain, it is replaced with NAD(H) to better 

regenerate the NADH required in the downstream step: 1,3-propanediol dehydrogenase.  
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Fig. 3. Biomass vs. product flux envelopes for 1-butanol (A), 1,4-butanediol (B) and 1,3-propanediol (C) in 

wild-type (solid line), KO-designed mutant (dotted line), and KO+ CSE-mutant (dashed line) E. coli. The flux 

envelopes were drawn by maximizing and minimizing the product synthesis fluxes while constraining the 

biomass flux at several pre-defined values as shown in the x-axis. 

In order to better understand the influence of CSE on product production and 

biomass growth in the KO designed mutants, we also examined the product production 

and biomass flux envelopes of all the three strains before and after CSE. Overall, the KO 

designed mutants show a significant improvement in the synthesis ability of all products 

analyzed (Fig. 3). Notably, as in the acetate and ethanol overproducing strains, two out of 

the three KO designed mutants also showed a significant increase in the biomass yield 

along with the increase in product yield after CSE (Table 2). Furthermore, similar to the 

acetate and formate flux envelopes, the 1,3-propanediol overproducing strain also showed 

an improvement in the maximum product flux at zero biomass fluxes (Fig. 3C). This 

indicates that this mutant strain possess better redox balance after CSE, and thus will be 

able to produce the desired compound even beyond the theoretical maximum of wild-type 

E. coli. 

4.   Discussion 

Manipulation of cofactor regeneration rates via cofactor specificity alternation is an 

important technique to alleviate the existing redox imbalances across metabolic 

pathways. Systems biology now has the impetus to assist such methodology through the 

model-driven analyses as they offer a holistic approach to investigate and engineer 

cellular metabolism.
21

 Toward this goal, we herein presented the algorithm, CMA, for 

identifying the CSE targets that can simultaneously improve both cellular growth and 
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product synthesis ability of microbial organisms. Furthermore, we also demonstrated its 

usefulness using E. coli in silico model, iJO1366, for producing several native and non-

native products. Therefore, with the increasing recognition of constraints-based model 

reconstruction and analysis, this procedure can be simply adapted to any other organism 

of interest whose genome-scale metabolic model is readily available. 

 In the current work, we analyzed the cofactor modification targets for four 

native (acetate, ethanol, formate and lactate) and three non-native products (1-butanol, 

1,4-butanediol and 1,3-propanediol). From the analysis, we observed some important 

attributes in cofactor balancing that can be generalized for E. coli. Firstly, in order to 

produce any alcoholic compounds via acetyl-coA, it is important to utilize PDH instead 

of PFL for the conversion of pyruvate to acetyl-coA; PFL wastes significant amounts of 

carbon flux in the form of formate. However, as mentioned earlier, PDH cannot be 

utilized in wild-type E. coli due to the cofactor requirements. Therefore, in order to 

alleviate this problem, replacing PDH’s cofactor from NAD(H) to NADP(H) is an 

attractive solution. Secondly, by replacing the cofactor of GAPD from NAD(H) to 

NADP(H), glycolysis can facilitate the NADP(H) pathways without the involvement of 

pentose phosphate pathway or the transdehydrogenases, i.e. PntAB or UdhA. This 

observation is remarkable as improvement of NADP(H) regeneration rates has multiple 

advantages such as enhanced biomass synthesis and increase in the production capacity 

of several value-added products. 

 During cofactor engineering, it is important to note that following CMA, there 

are two different approaches available to achieve cofactor specificity alternation. In the 

first method, the enzyme target identified has to be engineered by mutating the protein 

sequences such that its cofactor specificity gets altered. The second method involves 

knockout of the original enzyme, i.e. enzyme identified from CMA, and the insertion of 

an equivalent enzyme from another organism with altered cofactor specificity using 

genetic engineering techniques. While comparing both the methods, the former method is 

preferable against the latter, because the expression levels of a foreign gene can be 

completely different when compared to the host gene expression levels.
37

 Further, in 

order to modify the cofactor specificity of a particular enzyme via mutagenesis, the data 

available in literature for similar studies can be utilized for developing the mutation 

strategies and can be subsequently tested using the in silico protein docking experiments 

before testing it in vivo; it can predict the structure or structural ensemble of the 

intermolecular complex between NAD(H) or NADP(H) and the binding site of enzyme 

together with their binding energies. To better illustrate the utility of such protein docking 

experiments, we have successfully applied it to GAPD for altering its cofactor specificity 

from NAD(H) to NADP(H) using the mutation strategies suggested for Bacillus 

stearothermophilus
38

 (see additional file 2 for detailed workflow and results).  

Although CSE could be an attractive technique in metabolic engineering, one 

particular concern that could lie with it is the possibility of reduction in reaction rates. For 

example, if the enzyme possesses a particular reaction rate with NAD(H) as cofactor, the 

engineered protein with NADP(H) may have a reduced reaction rate owing to the 
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differences in enzyme-substrate binding timings. Since these issues cannot be assessed 

computationally with the current algorithm, further extensions to the presented 

framework can be expected by including the kinetic data of enzyme-substrate binding 

where a priority to the lower value conformations can be designed. Nevertheless, despite 

these limitations, CMA can still offer useful suggestions for strain improvement in a 

systematic manner as shown in this study. 

Finally, the workflow and procedure presented here can be complemented with 

the existing strain design algorithms such as OptKnock or OptStrain since the KO 

designed mutant designs showed more improvements in product yield after CSE. 

Moreover, many of the results presented in this work suggested that altering the cofactor 

specificity will not only improve the product yield but also the biomass yield. Therefore, 

it would be a good practice to use the presented algorithm as the next immediate step to 

the existing strain improvement algorithms that can identify the genetic targets for 

deletion/insertion so that the newly designed strains will not possess any limitations in 

terms of cofactor imbalance that are actually caused by genetic deletions/insertions. 

5.   Conclusions 

In the current work, we presented a novel mathematical framework, CMA, for 

systematically identifying the cofactor specificity engineering targets that can improve 

both cellular growth and product synthesis. The developed framework has been 

demonstrated in E. coli via its genome-scale model iJO1366, thereby identifying the 

growth-coupled CE targets for overproducing four native and three non-native products. 

In general, the results presented here show that CSE can improve not only the product 

yield but also the biomass yield significantly. Among the several candidates identified for 

CSE, GAPD is the most promising one as it increases the biomass yield by improving the 

overall NADP(H) regeneration rates. Therefore, in this work, we have also suggested a 

mutation strategy for altering cofactor specificity of GAPD in E. coli from NAD(H) to 

NADP(H) using the data obtained from literature, and subsequently tested it successfully 

with in silico protein docking experiments. The procedure presented here can be 

complemented with the existing strain design algorithms where the CMA could be the 

next immediate step after identifying the gene deletion/insertion targets for obtaining an 

overall improved strain design. 
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reactions for cofactor engineering in the iJO1366 model. 

Additional File 2 – Detailed information on the computationally-driven enzyme redesign 
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