
COFIRANK

Maximum Margin Matrix Factorization for
Collaborative Ranking

Markus Weimer∗ Alexandros Karatzoglou† Quoc Viet Le‡ Alex Smola§

Abstract

In this paper, we consider collaborative filtering as a ranking problem. We present
a method which uses Maximum Margin Matrix Factorization and optimizes rank-
ing instead of rating. We employ structured output prediction to optimize directly
for ranking scores. Experimental results show that our method gives very good
ranking scores and scales well on collaborative filtering tasks.

1 Introduction

Collaborative filtering has gained much attention in the machine learning community due to the
need for it in webshops such as those of Amazon, Apple and Netflix. Webshops typically offer
personalized recommendations to their customers. The quality of these suggestions is crucial to the
overall success of a webshop. However, suggesting the right items is a highly nontrivial task: (1)
There are many items to choose from. (2) Customers only consider very few (typically in the order
of ten) recommendations. Collaborative filtering addresses this problem by learning the suggestion
function for a user from ratings provided by this and other users on items offered in the webshop.
Those ratings are typically collected on a five star ordinal scale within the webshops.

Learning the suggestion function can be considered either a rating (classification) or a ranking prob-
lem. In the context of rating, one predicts the actual rating for an item that a customer has not rated
yet. On the other hand, for ranking, one predicts a preference ordering over the yet unrated items.
Given the limited size of the suggestion shown to the customer, both (rating and ranking) are used
to compile a top-N list of recommendations. This list is the direct outcome of a ranking algorithm,
and can be computed from the results of a rating algorithm by sorting the items according to their
predicted rating. We argue that rating algorithms solve the wrong problem, and one that is actually
harder: The absolute value of the rating for an item is highly biased for different users, while the
ranking is far less prone to this problem.

One approach is to solve the rating problem using regression. For example for the Netflix prize
which uses root mean squared error as an evaluation criterion,1 the most straightforward approach
is to use regression. However, the same arguments discussed above apply to regression. Thus, we
present an algorithm that solves the ranking problem directly, without first computing the rating.

For collaborative rating, Maximum Margin Matrix Factorization (MMMF) [11, 12, 10] has proven to
be an effective means of estimating the rating function. MMMF takes advantage of the collaborative
effects: rating patterns from other users are used to estimate ratings for the current user. One key
∗Telecooperation Group, TU Darmstadt, Germany, mweimer@tk.informatik.tu-darmstadt.de
†Department of Statistics, TU Wien, alexis@ci.tuwien.ac.at
‡Computer Science Department, Stanford University, Stanford, CA 94305, quoc.le@stanford.edu
§SML, NICTA, Northbourne Av. 218, Canberra 2601, ACT, Australia, alex.smola@nicta.com.au
1We conjecture that this is the case in order to keep the rules simple, since ranking scores are somewhat

nontrivial to define, and there are many different ways to evaluate a ranking, as we will see in the following.

1



advantage of this approach is that it works without feature extraction. Feature extraction is domain
specific, e.g. the procedures developed for movies cannot be applied to books. Thus, it is hard
to come up with a consistent feature set in applications with many different types of items, as for
example at Amazon. Our algorithm is based on this idea of MMMF, but optimizes ranking measures
instead of rating measures.

Given that only the top ranked items will actually be presented to the user, it is much more important
to rank the first items right than the last ones. In other words, it is more important to predict what a
user likes than what she dislikes. In more technical terms, the value of the error for estimation is not
uniform over the ratings. All of above reasonings lead to the following goals:

• The algorithm needs to be able to optimize ranking scores directly.
• The algorithm needs to be adaptable to different scores.
• The algorithm should not require any features besides the actual ratings.
• The algorithm needs to scale well and parallelize such as to deal with millions of ratings arising

from thousands of items and users with an acceptable memory footprint.

We achieve these goals by combining (a) recent results in optimization, in particular the application
of bundle methods to convex optimization problems [14], (b) techniques for representing functions
on matrices, in particular maximum margin matrix factorizations [10, 11, 12] and (c) the application
of structured estimation for ranking problems. We describe our algorithm COFIRANK in terms of
optimizing the ranking measure Normalized Discounted Cumulative Gain (NDCG).

2 Problem Definition

Assume that we have m items and u users. The ratings are stored in the sparse matrix Y where
Yi,j ∈ {0, . . . , r} is the rating of item j by user i and r is some maximal score. Yi,j is 0 if user
i did not rate item j. In rating, one estimates the missing values in Y directly while we treat this
as a ranking task. Additionally, in NDCG [16], the correct order of higher ranked items is more
important than that of lower ranked items:

Definition 1 (NDCG) Denote by y ∈ {1, . . . , r}n a vector of ratings and let π be a permutation
of that vector. πi denotes the position of item i after the permutation. Moreover, let k ∈ N be a
truncation threshold and πs sorts y in decreasing order. In this case the Discounted Cumulative
Gains (DCG@k) score [5] and its normalized variant (NDCG@k) are given by

DCG@k(y, π) =
k∑
i=1

2yπi − 1
log(i+ 2)

and NDCG@k(y, π) =
DCG@k(y, π)
DCG@k(y, πs)

DCG@k is maximized for π = πs. The truncation threshold k reflects how many recommendations
users are willing to consider. NDCG is a normalized version of DCG so that the score is bounded
by [0, 1].

Unlike classification and regression measures, DCG is defined on permutations, not absolute val-
ues of the ratings. Departing from traditional pairwise ranking measures [4], DCG is position-
dependent: Higher positions have more influence on the score than lower positions. Optimizing
DCG has gained much interest in the machine learning and information retrieval (e.g. [2]) commu-
nities. However, we present the first effort to optimize this measure for collaborative filtering.

To perform estimation, we need a recipe for obtaining the permutations π. Since we want our system
to be scalable, we need a method which scales not much worse than linearly in the number of the
items to be ranked. The avenue we pursue is to estimate a matrix F ∈ Rm×u and to use the values
Fij for the purpose of ranking the items j for user i. Given a matrix Y of known ratings we are now
able to define the performance of F :

R(F, Y ) :=
u∑
i=1

NDCG@k(Πi, Y i), (1)

2



where Πi is argsort(−F i), it sorts F i in decreasing order.2 While we would like to maximize
R(F, Ytest) we only have access to R(F, Ytrain). Hence, we need to restrict the complexity of F to
ensure good performance on the test set when maximizing the score on the training set.

3 Structured Estimation for Ranking

However,R(F, Y ) is non-convex. In fact, it is piecewise constant and therefore clearly not amenable
to any type of smooth optimization. To address this issue we take recourse to structured estimation
[13, 15]. Note that the scores decompose into a sum over individual users’ scores, hence we only
need to show how minimizing−NDCG(π, y) can be replaced by minimizing a convex upper bound
on the latter. Summing over the users then provides us with a convex bound for all of the terms.3
Our conversion works in three steps:

1. Converting NDCG(π, y) into a loss by computing the regret with respect to the optimal
permutation argsort(−y).

2. Denote by π a permutation (of the n items a user might want to see) and let f ∈ Rn be a
estimated rating. We design a mapping ψ(π, f) → R which is linear in f in such a way
that maximizing ψ(π, f) with respect to π yields argsort(f).

3. We use the convex upper-bounding technique described by [15] to combine regret and
linear map into a convex upper bound which we can minimize efficiently.

Step 1 (Regret Conversion) Instead of maximizing NDCG(π, y) we may also minimize

∆(π, y) := 1−NDCG(π, y). (2)

∆(π, y) is nonnegative and vanishes for π = πs.

Step 2 (Linear Mapping) Key in our reasoning is the use of the Polya-Littlewood-Hardy inequal-
ity: For any two vectors a, b ∈ Rn their inner product is maximized by sorting a and b in the same
order, that is 〈a, b〉 ≤ 〈sort(a), sort(b)〉. This allows us to encode the permuation π = argsort(f)
in the following fashion: denote by c ∈ Rn a decreasing nonnegative sequence, then the function

ψ(π, f) := 〈c, fπ〉 (3)

is linear in f and maximized with respect to π for argsort(f). Since ci is decreasing by construction,
the Polya-Littlewood-Hardy inequality applies. We found that choosing ci = (i+ 1)−0.25 produced
good results in our experiments. However, we did not formally optimize this parameter.

Step 3 (Convex Upper Bound) We adapt a result of [15] which describes how to find convex
upper bounds on nonconvex optimization problems.

Lemma 2 Assume that ψ is defined as in (3). Moreover let π∗ := argsort(−f) be the ranking
induced by f . Then the following loss function l(f, y) is convex in f and it satisfies l(f, y) ≥
∆(y, π∗).

l(f, y) := max
π

[
∆(π, y) + 〈c, fπ − f〉

]
(4)

Proof We show convexity first. The argument of the maximization over the permutations π is a
linear and thus convex function in f . Taking the maximum over a set of convex functions is convex
itself, which proves the first claim. To see that it is an upper bound, we use the fact that

l(f, y) ≥ ∆(π∗, y) + 〈c, fπ∗ − f〉 ≥ ∆(π∗, y). (5)

The second inequality follows from the fact that π∗ maximizes 〈c, fπ∗〉.

2M i denotes row i of matrix M . Matrices are written in upper case, while vectors are written in lower case.
3This also opens the possibility for parallelization in the implementation of the algorithm.

3



4 Maximum Margin Matrix Factorization

Loss The reasoning in the previous section showed us how to replace the ranking score with a
convex upper bound on a regret loss. This allows us to replace the problem of maximizing R(F, Y )
by that of minimizing a convex function in F , namely

L(F, Y ) :=
u∑
i=1

l(F i, Y i) (6)

Matrix Regularization Having addressed the problem of non-convexity of the performance score
we need to find an efficient way of performing capacity control of F , since we only haveL(F, Ytrain)
at our disposition, whereas we would like to do well on L(F, Ytest). The idea to overcome this prob-
lem is by means of a regularizer on F , namely the one proposed for Maximum Margin Factorization
by Srebro and coworkers[10, 11, 12]. The key idea in their reasoning is to introduce a regularizer on
F via

Ω[F ] :=
1
2

min
M,U

[trMM> + trUU>] subject to UM = F. (7)

More specifically, [12] show that the above is a proper norm on F . While we could use a semidef-
inite program as suggested in [11], the latter is intractable for anything but the smallest problems.4
Instead, we replace F by UM and solve the following problem:

minimize
M,U

L(UM,Ytrain) +
λ

2
[
trMM> + trUU>

]
(8)

Note that the above matrix factorization approach effectively allows us to learn an item matrix M
and a user matrix U which will store the specific properties of users and items respectively. This
approach learns the features of the items and the users. The dimension d of M ∈ Rd×m and
U ∈ Rd×u is chosen mainly based on computational concerns, since a full representation would
require d = min(m,u). On large problems the storage requirements for the user matrix can be
enormous and it is convenient to choose d = 10 or d = 100.

Algorithm While (8) may not be jointly convex in M and U any more, it still is convex in M and
U individually, whenever the other term is kept fixed. We use this insight to perform alternating sub-
space descent as proposed by [10]. Note that the algorithm does not guarantee global convergence,
which is a small price to pay for computational tractability.

repeat
For fixed M minimize (8) with respect to U .
For fixed U minimize (8) with respect to M .

until No more progress is made or a maximum iteration count has been reached.

Note that on problems of the size of Netflix the matrix Y has 108 entries, which means that the
number of iterations is typically time limited. We now discuss a general optimization method for
solving regularized convex optimization problems. For more details see [14].

5 Optimization

Bundle Methods We discuss the optimization over the user matrix U first, that is, consider the
problem of minimizing

R(U) := L(UM,Ytrain) +
λ

2
trUU> (9)

The regularizer trUU> is rather simple to compute and minimize. On the other hand, L is expensive
to compute, since it involves maximizing l for all users.

Bundle methods, as proposed in [14] aim to overcome this problem by performing successive Taylor
approximations of L and by using them as lower bounds. In other words, they exploit the fact that

L(UM,Ytrain) ≥ L(UM ′, Ytrain) + tr(M −M ′)>∂ML(UM ′, Y )∀M,M ′.

4In this case we optimize over
»

A F
F> B

–
� 0 where Ω[F ] is replaced by 1

2
[tr A + tr B].

4



Algorithm 1 Bundle Method(ε)
Initialize t = 0, U0 = 0, b0 = 0 and H =∞
repeat

Find minimizer Ut and value L of the optimization problem

minimize
U

max
0≤j≤t

[
trU>j M + bj

]
+
λ

2
trU>U.

Compute Ut+1 = ∂UL(UtM,Ytrain)
Compute bt+1 = L(UtM,Ytrain)− trUt+1Mt

if H ′ := trU>t+1Mt + bt+1 + λ
2 trUU> ≤ H then

Update H ← H ′

end if
until H − L ≤ ε

Since this holds for arbitrary M ′, we may pick a set of Mi and use the maximum over the Taylor
approximations at locations Mi to lower-bound L. Subsequently, we minimize this piecewise linear
lower bound in combination with λ

2 trUU> to obtain a new location where to compute our next
Taylor approximation and iterate until convergence is achieved. Algorithm 1 provides further details.

As we proceed with the optimization, we obtain increasingly tight lower bounds on L(UM,Ytrain).
One may show [14] that the algorithm converges to ε precision with respect to the minimizer of
R(U) in O(1/ε) steps. Moreover, the initial distance from the optimal solution enters the bound
only logarithmically.

After solving the optimization problem in U we switch to optimizing over the item matrix M . The
algorithm is virtually identical to that in U , except that we now need to use the regularizer in M
instead of that in U . We find experimentally that a small number of iterations (less than 10) is more
than sufficient for convergence.

Computing the Loss So far we simply used the loss l(f, y) of (4) to define a convex loss with-
out any concern to its computability. To implement Algorithm 1, however, we need to be able to
solve the maximization of l with respect to the set of permutations π efficiently. One may show
that computing the π which maximizes l(f, y) is possible by solving the inear assignment problem
min

∑
i

∑
j Ci,jXi,j with the cost matrix:

Ci,j = κi
2Y [j] − 1

DCG(Y, k, πs)log(i+ 1)
− cifj with κi =

{
1 if i < k,

0 otherwise

Efficient algorithms [7] based on the Hungarian Marriage algorithm (also referred to as the Kuhn-
Munkres algorithm) exist for this problem [8]: it turns out that this integer programming problem
can be solved by invoking a linear program. This in turn allows us to compute l(f, y) efficiently.

Computing the Gradients The second ingredient needed for applying the bundle method is to
compute the gradients of L(F, Y ) with respect to F , since this allows us to compute gradients with
respect to M and U by applying the chain rule:

∂ML(UM,Y ) = U>∂FL(X, F, Y ) and ∂UL(UM,Y ) = ∂FL(X, F, Y )>M

L decomposes into losses on individual users as described in (6). For each user i only row i of F
matters. It follows that ∂FL(F, Y ) is composed of the gradients of l(F i, Y i). Note that for l defined
as in (4) we know that

∂F i l(F i, Y i) = [c− cπ̄−1 ].

Here we denote by π̄ the maximizer of of the loss and cπ̄−1 denotes the application of the inverse
permutation π̄−1 to the vector c.

5



6 Experiments

We evaluated COFIRANK with the NDCG loss just defined (denoted by COFIRANK-NDCG) as
well as with loss functions which optimize ordinal regression (COFIRANK-Ordinal) and regression
(COFIRANK-Regression). COFIRANK-Ordinal applies the algorithm described above to preference
ranking by optimizing the preference ranking loss. Similarly, COFIRANK-Regression optimizes for
regression using the root mean squared loss. We looked at two real world evaluation settings: “weak”
and “strong” [9] generalization on three publicly available data sets: EachMovie, MovieLens and
Netflix. Statistics for those can be found in table 1.

Dataset Users Movies Ratings
EachMovie 61265 1623 2811717
MovieLens 983 1682 100000

Netflix 480189 17770 100480507

Table 1: Data set statistics

Weak generalization is evaluated by predicting the rank of unrated items for users known at
training time. To do so, we randomly select N = 10, 20, 50 ratings for each user for training and
and evaluate on the remaining ratings. Users with less then 20, 30, 60 rated movies where removed
to ensure that the we could evaluate on at least 10 movies per user We compare COFIRANK-NDCG,
COFIRANK-Ordinal, COFIRANK-Regression and MMMF [10]. Experimental results are shown in
table 2.

For all COFIRANK experiments, we choose λ = 10. We did not optimize for this parameter. The
results for MMMF were obtained using MATLAB code available from the homepage of the authors
of [10]. For those, we used λ = 1

1.9 for EachMovie, and λ = 1
1.6 for MovieLens as it is reported

to yield the best results for MMMF. In all experiments, we choose the dimensionality of U and M
to be 100. All COFIRANK experiments and those of MMMF on MovieLens were repeated ten times.
Unfortunately, we underestimated the runtime and memory requirements of MMMF on EachMovie.
Thus, we cannot report results on this data set using MMMF.

Additionally, we performed some experiments on the Netflix data set. However, we cannot compare
to any of the other methods on that data set as to the best of our knowledge, COFIRANK is the first
collaborative ranking algorithm to be applied to this data set, supposedly because of its large size.

Strong generalization is evaluated on users that were not present at training time. We follow the
procedure described in [17]: Movies with less than 50 ratings are discarded. The 100 users with the
most rated movies are selected as the test set and the methods are trained on the remaining users.
In evaluation, 10, 20 or 50 ratings from those of the 100 test users are selected. For those ratings,
the user training procedure is applied to optimize U . M is kept fixed in this process to the values
obtained during training. The remaining ratings are tested using the same procedure as for the weak

Method N=10 N=20 N=50
EachMovie COFIRANK-NDCG 0.6562± 0.0012 0.6644± 0.0024 0.6406± 0.0040

COFIRANK-Ordinal 0.6727± 0.0309 0.7240± 0.0018 0.7214± 0.0076
COFIRANK-Regression 0.6114± 0.0217 0.6400± 0.0354 0.5693± 0.0428

MovieLens COFIRANK-NDCG 0.6400± 0.0061 0.6307± 0.0062 0.6076± 0.0077
COFIRANK-Ordinal 0.6233± 0.0039 0.6686± 0.0058 0.7169± 0.0059
COFIRANK-Regression 0.6420± 0.0252 0.6509± 0.0190 0.6584± 0.0187
MMMF 0.6061± 0.0037 0.6937± 0.0039 0.6989± 0.0051

Netflix COFIRANK-NDCG 0.6081 0.6204
COFIRANK-Regression 0.6082 0.6287

Table 2: Results for the weak generalization setting experiments. We report the NDCG@10 accuracy for
various numbers of training ratings used per user. For most results we report the mean over ten runs and the
standard deviation. We also report the p-values for the best vs. second best score.

6



Method N=10 N=20 N=50
EachMovie COFIRANK-NDCG 0.6367± 0.001 0.6619± 0.0022 0.6771± 0.0019

GPR 0.4558± 0.015 0.4849± 0.0066 0.5375± 0.0089
CGPR 0.5734± 0.014 0.5989± 0.0118 0.6341± 0.0114
GPOR 0.3692± 0.002 0.3678± 0.0030 0.3663± 0.0024
CGPOR 0.3789± 0.011 0.3781± 0.0056 0.3774± 0.0041
MMMF 0.4746± 0.034 0.4786± 0.0139 0.5478± 0.0211

MovieLens COFIRANK-NDCG 0.6237± 0.0241 0.6711± 0.0065 0.6455± 0.0103
GPR 0.4937± 0.0108 0.5020± 0.0089 0.5088± 0.0141
CGPR 0.5101± 0.0081 0.5249± 0.0073 0.5438± 0.0063
GPOR 0.4988± 0.0035 0.5004± 0.0046 0.5011± 0.0051
CGPOR 0.5053± 0.0047 0.5089± 0.0044 0.5049± 0.0035
MMMF 0.5521± 0.0183 0.6133± 0.0180 0.6651± 0.0190

Table 3: The NGDC@10 accuracy over ten runs and the standard deviation for the strong generalization eval-
uation.

generalization. We repeat the whole process 10 times and again use λ = 10 and a dimensionality of
100. We compare COFIRANK-NDCG to Gaussian Process Ordinal Regression (GPOR) [3] Gaussian
Process Regression (GPR) and the collaborative extensions (CPR, CGPOR) [17]. Table 3 shows our
results compared to the ones from [17].

COFIRANK performs strongly compared to most of the other tested methods. Particularly in the strong
generalization setting COFIRANK outperforms the existing methods in almost all the settings. Note
that all methods except COFIRANK and MMMF use additional extracted features which are either
provided with the dataset or extracted from the IMDB. MMMF and COFIRANK only rely on the
rating matrix. In the weak generalization experiments on the MovieLens data, COFIRANK performs
better for N = 20 but is marginally outperformed by MMMF for the N = 10 and N = 50 cases.
We believe that with proper parameter tuning, COFIRANK will perform better in these cases.

7 Discussion and Summary

COFIRANK is a novel approach to collaborative filtering which solves the ranking problem faced
by webshops directly. It can do so faster and at a higher accuracy than approaches which learn
a rating to produce a ranking. COFIRANK is adaptable to different loss functions such as NDCG,
Regression and Ordinal Regression in a plug-and-play manner. Additionally, COFIRANK is well
suited for privacy concerned applications, as the optimization itself does not need ratings from the
users, but only gradients.

Our results, which we obtained without parameters tuning, are on par or outperform several of the
most successful approaches to collaborative filtering like MMMF, even when they are used with
tuned parameters. COFIRANK performs best on data sets of realistic sizes such as EachMovie and
significantly outperforms other approaches in the strong generalization setting.

In our experiments, COFIRANKshows to be very fast. For example, training on EachMovie with
N = 10 can be done in less than ten minutes and uses less than 80MB of memory on a laptop. For
N = 20, COFIRANK obtained a NDCG@10 of 0.72 after the first iteration, which also took less than
ten minutes. This is the highest NDCG@10 score on that data set we are aware of (apart from the
result of COFIRANK after convergence). A comparison to MMMF in that regard is difficult, as it is
implemented in MATLAB and COFIRANK in C++. However, COFIRANK is more than ten times faster
than MMMF while using far less memory. In the future, we will exploit the fact that the algorithm
is easily parallelizable to obtain even better performance on current multi-core hardware as well as
computer clusters. Even the current implementation allows us to report the first results on the Netflix
data set for direct ranking optimization.

Acknowledgments: Markus Weimer is funded by the German Research Foundation as part of the Research
Training Group 1223: “Feedback-Based Quality Management in eLearning”.

Software: COFIRANK is available from http://www.cofirank.org

7



References
[2] C. J. Burges, Q. V. Le, and R. Ragno. Learning to rank with nonsmooth cost functions. In

B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information Processing
Systems 19, 2007.

[3] W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression. J. Mach. Learn. Res.,
6:1019–1041, 2005.

[4] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regres-
sion. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in
Large Margin Classifiers, pages 115–132, Cambridge, MA, 2000. MIT Press.

[5] K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant documents.
In ACM Special Interest Group in Information Retrieval (SIGIR), pages 41–48. New York:
ACM, 2002.

[7] R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense and sparse linear
assignment problems. Computing, 38:325–340, 1987.

[8] H.W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

[9] B. Marlin. Collaborative filtering: A machine learning perspective. Masters thesis, University
of Toronto, 2004.

[10] J. Rennie and N. Srebro. Fast maximum margin matrix factoriazation for collaborative predic-
tion. In Proc. Intl. Conf. Machine Learning, 2005.

[11] N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In L. K. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17,
Cambridge, MA, 2005. MIT Press.

[12] N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In P. Auer and R. Meir,
editors, Proc. Annual Conf. Computational Learning Theory, number 3559 in Lecture Notes
in Artificial Intelligence, pages 545–560. Springer-Verlag, June 2005.

[13] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages 25–32,
Cambridge, MA, 2004. MIT Press.

[14] C.H. Teo, Q. Le, A.J. Smola, and S.V.N. Vishwanathan. A scalable modular convex solver
for regularized risk minimization. In Conference on Knowledge Discovery and Data Mining,
2007.

[15] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured
and interdependent output variables. J. Mach. Learn. Res., 6:1453–1484, 2005.

[16] E. Voorhees. Overview of the TREC 2001 question answering track. In Text REtrieval Con-
ference (TREC) Proceedings. Department of Commerce, National Institute of Standards and
Technology, 2001. NIST Special Publication 500-250: The Tenth Text REtrieval Conference
(TREC 2001).

[17] S. Yu, K. Yu, V. Tresp, and H. P. Kriegel. Collaborative ordinal regression. In W.W. Cohen
and A. Moore, editors, Proc. Intl. Conf. Machine Learning, pages 1089–1096. ACM, 2006.

8


