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ABSTRACT 

Contact-free camera-based measurement of cognitive stress 
opens up new possibilities for human-computer interaction 
with applications in remote learning, stress monitoring, and 
optimization of workload for user experience. The 
autonomic nervous system controls the inter-beat intervals 
of the heart and breathing patterns, and these signals change 
under cognitive stress. We built a participant-independent 
cognitive stress recognition model based on 
photoplethysmographic signals measured remotely at a 
distance of 3 meters. We tested the model on naturalistic 
responses from 10 individuals completing randomized-
order computer-based tasks (ball control and card sorting). 
The system successfully detected increased stress during 
the tasks, which were consistent with self-report measures. 
Changes in heart rate variability were more discriminative 
indicators of cognitive stress than were heart rate and 
breathing rate. 

Author Keywords 
Physiology; photoplethysmography; heart rate; breathing 
rate; heart rate variability; cognitive stress; remote; camera.  

ACM Classification Keywords 
H.5.2. Information interfaces and presentation: User 
Interfaces – Input devices and strategies, Interaction styles. 

INTRODUCTION 
The measurement of cognitive stress and performance on 
cognitive tasks has huge potential for human-computer 
interaction and affective computing applications, including 
remote learning, automated tutor systems, workload 
optimization [10] or “flow” understanding [4], and stress 
monitoring. Physiological responses contain rich affective 
information [7, 18] even when a subject is not expressing 
any signs outwardly. Additionally, they are less visible, and 
are not as susceptible to manipulation from social display 

rules or influences. While people may manipulate 
themselves to smile and look happy when they are stressed, 
the underlying physiology may still reveal that they have 
high stress. The autonomic nervous system (ANS) has three 
branches: the sympathetic nervous system (SNS), the 
parasympathetic nervous system (PNS), and the enteric 
nervous system. This work focuses on the SNS and the 
PNS.  The SNS mobilizes the body’s resources in response 
to a challenge or a threat, the PNS works antagonistically to 
control this process and is most active during rest and 
digestion. Inter-beat intervals (IBI) of the heart and 
breathing patterns are controlled by both the SNS and the 
PNS, enabling different types of stress responses to be 
captured by measuring each heartbeat. In particular, the 
heart rate variability (HRV) low frequency (LF) component 
is modulated by both sympathetic and parasympathetic 
activity and the high frequency (HF) component reflects 
parasympathetic influence on the heart. An estimate of 
sympathetic modulation (the sympatho/vagal balance) can 
be made by considering the LF/HF power ratio.  During 
cognitive stress, we expect to see the HRV LF become 
elevated relative to the HRV HF.  During rest we expect the 
HRV HF to be highest. 

Typically, physiological responses are measured using 
contact sensors on the body (e.g. the torso or finger tips). 
However, contact sensors require hardware that can be 
uncomfortable or unnatural to wear and can limit the 
motion or dexterity of the user, especially when interacting 
with technology. Recent work has shown that physiological 
measurements of heart rate and respiration can be 
accurately captured remotely, via photoplethysmography 
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Figure. 1. a) Experimental set-up.  Participants completed 

tasks on a laptop and were recorded with a camera 3m 
away.  b) Screenshots of the Ball Control Task (top) and the 
Berg Card Sorting Task (bottom) used to induce cognitive 

stress. Prior to, and between tasks, participants rested. 



(PPG) using a low-cost camera and ambient light [14, 19].  
However, in that work, participants were seated in front of a 
camera and asked to hold still, and the focus was on 
demonstrating the accuracy of measurement of the 
underlying cardiorespiratory parameters. 

This paper examines a different set of conditions that are 
appropriate to HCI. We propose a new measure, which 
aims to extract an estimate of cognitive stress from the non-
contact physiology.  

BACKGROUND 
Experiments using contact sensors have shown that 
cognitive tasks have an impact on HRV [3, 9, 16]. People 
under mental load show reduced HF HRV components 
compared to a control group [9]. During high-attention 
tasks absolute measures of LF and HF HRV power have 
been observed to decrease when compared to a 
baseline [16]. Measureable changes in heart rate (HR) were 
also observed; however, the increases or decreases were 
task dependent. With methods such as spectral analysis of 
HRV, it may be possible to predict such things as the 
optimal work time under mental load [11]. Other 
applications of our approach include emotion tracking [8, 
12] and health monitoring. The method we present has the 
advantage of not requiring the user to be in contact with a 
device. Furthermore, it has the potential of being much 
more scalable due to the ubiquitous nature of cameras. 

Remote measurement of physiology [6, 21] and stress [20, 
22] has been demonstrated using expensive thermal 
cameras and Dopplar radar. However, these methods 
require hardware that is not available ubiquitously. Recent 
work has shown that HR, breathing rate (BR) and HRV LF 
and HF components can be measured from PPG signals 
recovered from the human face via a low-cost ordinary 
webcam [14, 19]. However, in that work, it was not 
examined whether these measurements would be sensitive 
enough to capture subtle changes due to increases in 
cognitive stress whilst a person interacts with a computer. 
Bousefsaf et al. [3] found that remote measurements could 
be used to capture changes in physiological parameters 
when participants completed a Stroop task. However, they 
did not capture measurement whilst people engaged in 
active computer tasks nor did they show a generalizable 
predictive model for stress level. Physiological signals have 
been useful in a number of scenarios when measuring the 
impact of computer and cognitive tasks [1, 8, 12]. Recently, 
contact PPG measurements have been found to be sensitive 
and reliable indicators of cognitive stress during computer 
tasks [12]. Our work contributes a new way to capture 
similar signals using just a camera.  

EXPERIMENT 
Ten healthy adult participants of both genders (five 
females), different ages (18 to 28) and multiple skin colors 
(Caucasian, Asian) were seated in front of a computer. All 
data were recorded on another computer (Toshiba running 
Windows 7). Six participants were wearing glasses and one 

had a beard. During the experiment participants were seated 
approximately 3 meters from the camera, an Olympus 
DSLR (see Figure 1(a)). The participants were each 
recorded for 10 minutes while they completed two three-
minute computer tasks, each preceded by a two-minute rest 
period. The tasks were designed to test whether the impact 
of cognitive tasks could be captured using remotely 
measured physiological responses and were presented in a 
randomized order. Both tasks were programmed using the 
Psychology Experiment Building Language (PEBL) [17], 
which contains validated cognitive tests. Figure 1 (b) shows 
screenshots of the tasks.  During the rest period before each 
of the tasks, participants were asked to relax while viewing 
a pleasant image on the computer for two minutes.  

The ball control task involved controlling a ball on a 
computer screen.  The ball was drawn to the edges of the 
screen and the participant’s aim was to keep the ball in the 
center. The participants used the laptop computer touchpad 
to control the ball during the task. If the ball reached the 
edge of the screen, there was a loud audio buzzer that 
sounded. Participants were also told that their performance 
was being logged and compared to that of others. The task 
lasted three minutes (one minute at three different 
randomized difficulty levels). In a number of cases the 
participants could not keep the ball from hitting the side of 
the screen and the buzzer sounded. This provides evidence 
that the task was sufficiently challenging. 

The Berg Card Sorting Task (BCST) [2] is a problem 
solving exercise in which participants are required to sort 
cards into one of four piles according to a rule that has not 
been revealed to them. During the exercise the rule can 
change, again without an indication to the subject. The 
card-sorting task involved completing a shortened 64 card 
task version of the BCST [5]. If the participants had not 
completed the task after three minutes it was ended 
automatically. Again, not all participants were able to finish 
the task showing that it was sufficiently challenging. 

Stress Questionnaire  
In order to capture the self-reported levels of stress that 
participants experienced during the task, they were asked to 
complete a short questionnaire after finishing the tasks. We 
used a shortened version of the Dundee Stress State 
Questionnaire [13]. Of most relevance in this analysis the 
participants were asked to report their stress during the 
tasks: “During the task I felt” on a five-point Likert scale 
with end points “very stressed” (1) and “no stress at all” (5).  

REMOTE COGNITIVE STRESS MEASUREMENT 

Physiological Measurement 
We recover the PPG signals from each video using the 
approach presented by McDuff et al. [14]. From the PPG 
signal a 120 sec. moving window (step size=1s) was used to 
quantify the following parameters. The HR was calculated 
as the average of the IBIs. The BR was determined from the 
center frequency of the highest peak (fHFpeak) between 0.15 



and 0.4Hz of the HRV power spectrum. For the frequency 
domain HRV parameters LF and HF powers of the HRV 
were calculated as the area under the PSD curve 
corresponding to 0.04-0.15Hz and 0.15-0.4Hz respectively. 
LF and HF were quantified in normalized units in order to 
minimize the impact of difference in total power. We also 
computed the unnormalized LF and HF powers of the HRV 
for use as features in the cognitive stress recognition model. 
The accuracy of this method for measuring HR, BR and 
HRV parameters was characterized in [14] and [19] and 
compared to FDA-approved contact sensor measurements.  
Therefore, we do not repeat this validation here. 

Cognitive Stress Classification 
We used the following seven physiological parameters for 
classification: i) heart rate, ii) breathing rate, iii) HRV LF 
normalized power, iv) HRV HF normalized power, v) HRV 
LF/HF ratio, vi) HRV LF total power, and vii) HRV HF 
total power. We used independent remote physiological 
measurements from a more controlled preliminary study 
featuring 10 subjects to train a cognitive stress recognition 
model. In the preliminary study participants completed two 
minute rest and two minute mental arithmetic tasks while 
remaining still and looking directly at the camera. The 
physiological features were extracted from the two-minute 
videos. A Naive Bayes classifier was trained and validated 
using a leave-one-participant-out procedure. The accuracy 
of rest vs. cognitive load classification was 86% on the 
holdout examples. The training sets and testing sets were 
participant independent, so that nobody in the testing set 
was also in the training set. The BR, HRV HF and LF 
features were the best single features for discriminating 
between the restful and stress states. For more details about 
the training data and classification see [15]. The computer 
task data we collected and analyze below was independent 
of the training data used for the predictive model and, in all 
but two cases (P1 and P3), the participants were different. 
Furthermore, the tasks considered in this work represent 
more realistic everyday computer activities that require 
cognitive processing and dexterity. Activities such as 
looking at the computer screen and using the computer 
track-pad introduced motion artifacts that can negatively 
influence the quality of the remote physiological readings 
as well as introduce physiological changes associated with 
body motions. Furthermore, the participants showed more 
spontaneous facial expressions, such as smiling, during the 
computer tasks. All of these aspects make this situation 
much harder than prior work addressed. 

RESULTS 
Using the method described above we extracted 
physiological parameters from the videos of individuals 
completing the 10 minute computer tasks. We divided the 
signals into two-minute segments (one-minute overlap) 
yielding a total of 20 segments of rest data, 30 segments of 
ball task data and 30 segments of card task data. We applied 
the NB model, defined earlier for predicting cognitive 
stress, to the data to determine whether the changes in 
activities were associated with changes in predicted levels 
of cognitive stress. Figure 2 shows the mean values of HR, 
BR, HRV LF, HRV HF and HRV LF/HF for all of the 
participants during each of the tasks. The average heart 
rates and breathing rates were not significantly different in 
any case, showing that heart rate and breathing rate alone 
may not be a very discriminative indicator of cognitive 
stress. In our preliminary work we found breathing rate to 
be significantly different during cognitive tasks than rest 
periods. However, perhaps breathing rates are dependent on 
the type of task and less generalizable. The changes in HRV 
power seem more generalizable and did allow us to 
discriminate between the rest periods and tasks. The HRV 
was impacted the most by the ball task and changes in LF 
(p<0.05), HF (p<0.05) and LF/HF (p<0.05) power were all 
significant (based on two-sample t-tests) compared to the 
rest periods. This in turn impacted the cognitive stress 
predictions the most. There was higher HRV LF power and 
lower HRV HF power in the card task than the rest task 
(mean LF/HF ratio was 0.61 in rest and 1.10 during the card 
task) suggesting considerably greater sympathetic 
activation and cognitive stress; however, the variability was 
higher explaining why the differences were not significant 
at a 95% confidence. 

 
Figure 3. Cognitive stress posterior probability predictions. 
A) For each participant and task. B) Average probability 

(and 95% confidence intervals) for each task across all 
participants. The predicted stress was significantly higher 
(p<0.05) during the ball task compared to the rest period.  

Rest task, N=20; Ball task, N=30; Card task, N=30. 

 
Figure 2. Mean physiological parameters (and 95% confidence) during each task. A) Heart rate, B) Breathing Rate, C) HRV 
LF normalized power, D) HRV HF normalized power, E) HRV LF/HF. Rest task, N=20; Ball task, N=30; Card task, N=30. 



Figure 3 (a) shows the mean posterior probability of the 
stress model for each participant during each task. For 80% 
of the cognitive tasks the mean predicted stress was higher 
than during the rest periods. For 70% of the participants the 
mean predicted stress was higher during both cognitive 
tasks compared to the rest periods. This result did not 
appear to be due to the ordering of the tasks. The mean 
predictions across all participants during the rest periods 
were significantly lower when compared to the predicted 
cognitive stress levels of the ball control task (p<0.05). All 
the participants reported that their attention was directed 
toward the task and that they were determined to succeed. 
Furthermore, all reported feeling stress during the tasks.  

Figure 4 shows the predicted cognitive stress model 
posterior probability output for two individuals, based on 
the non-contact physiological measures. Broken vertical 
lines indicate transitions between activities. These 
participants exemplify those who said that they felt high 
levels of stress during the tasks. We noticed high LF power 
in the HRV spectra during the computer tasks for both 
participants. The decrease in parasympathetic activity 
(lower HF HRV power) was indeed associated with an 
increase in predicted cognitive stress. Changes in HRV 
activity are often subtle and require highly accurate PPG 
peak detection; however, the model captures the changes 
during both of the computer tasks, with particularly high 
levels of stress during the ball control task. Similar findings 
were observed for the other participants. Different cognitive 
and dexterity-related tasks are likely to cause different 
levels of cognitive stress. The ball task did induce a higher 
level of cognitive load overall compared to the card task. 
This may result from the fact that the participants could not 
control the pace of the task. 

The cognitive stress predictions were consistent with the 
self-report measures. Mean posterior probability from the 

stress model was 0.48 for a rating of 2 out of 5 (high stress), 
0.37 for a rating of 3 out of 5 (moderate stress) and 0.36 for 
a rating of 4 out of 5 (low stress).  No participants reported 
stress as 1 or 5. P1 and P6 reported two of the highest stress 
levels during the task (2 out of 5, where 1=“very stressed”) 
in the post survey and also showed the highest predicted 
stress based on their physiological responses. Conversely, 
P9 and P10 had lower predicted stress levels and they both 
reported two of the lowest stress levels during the task (4 
out of 5, where 5=“no stress at all”).  It must be noted that 
there is a high amount of variability in the baselines 
between individuals, which is a well-known challenge 
associated with physiological parameters. However, our 
model also identifies the changes in stress due to the 
different tasks well. In all but two cases (P1 and P3), the 
participants did not have any data in the training set; thus, 
our model demonstrates the ability to capture differences in 
cognitive stress, which generalize across people, during the 
different computer interactions, a very valuable property.  

CONCLUSION 
This work demonstrates that remotely measured physiology 
parameters of HR, BR and HRV captured at a distance of 3 
meters from a digital camera allow for automatic 
recognition of the cognitive stress of individuals during 
computerized tasks. Remotely measured physiological 
signals showed HRV does change significantly between 
tasks, and can be measured without contact. As expected, 
HR and BR alone were not very discriminative indicators of 
cognitive stress. A person-independent predictive model 
was evaluated in our experiment during which participants 
completed two computer tasks (a ball control task and a 
card sorting task). We show that periods of cognitive stress 
or engagement can be differentiated from periods of rest 
using our model. We found that the recognized stress levels 
were significantly higher during tasks than rest periods, this 
matched with the participants’ reports of stress experienced 
during the tasks. The analysis was performed offline using 
MATLAB and required a windowing procedure. The 
computational cost of the procedure was small. 

Overall, this work shows that remote measurement of 
physiology can be used to capture changes in cognitive 
stress using only a digital camera. This work opens up the 
possibility of interactive tools modulating workload without 
the participant having to wear anything or take any special 
actions.  It has always been our hope that cameras will not 
be turned on without the user’s prior informed consent. Our 
work adds a new reason why this should not 
happen: information that is usually private can now be 
sensed from a computer-user’s face remotely during natural 
interaction.  We must note that the participants in our study 
were filmed under relatively constant ambient lighting and 
did not move their heads much. Future work will consider 
other naturalistic activities that incorporate greater head and 
body motions and changes of ambient light that may impact 
the accuracy of the proposed methods.  

 
Figure 4. Predicted cognitive stress from the NB model. 

The tasks are highlighted by the shaded areas. In the 
examples the mean and peak predicted stress was much 

higher for the ball control and card sorting tasks compared 
to the rest period. These participants reported they felt 
high levels of stress during the tasks but not during rest 

periods. A two minute moving window was used. 
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