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Math. Z. 113, 313-325 (1970) 

Coglueing Homotopy Equivalences 

RONALD BROWN and PHILIP R. HEATH 

1. Introduction 

Suppose given a commutative diagram of maps of topological spaces 

i 
(1.1) y g , D 

f 

in which the front square is a pull-back. Then P is often called the fibre-product 

o f f  and p, and it is also said that ~: P ~ X  is induced by f from p. The map 

~: Q-~ P  is determined by ~01 and q)2. Our object is to give conditions on the 

front and back squares which ensure that if q~l, q~2 and ~o are homotopy equiv- 

alences, then so also is ~. 

First of all we shall assume throughout that the back square of (1.1) as well 

as the front square, is a pull-back. 

Second recall that a map q: E --* B has the W C H P  (weak covering homotopy 

property) if it has the covering property for all homotopies Z x I ---, B which 

are stationary on Z x [0, �89 This property has been shown by Dold [3] and 

Weinzweig [7] to be convenient for studying fiber homotopy equivalences, 

and our results will extend some of theirs. 

For  the rest of this section we will assume that in (1.1) p and q have the 

WCHP. Then our main object is the following theorem which will be proved 

in Sections 2 to 5. 

(1.2) Theorem (The coglueing theorem). Under the above assumptions, if q), qol, 

q)2 are homotopy equivalences, then so also is ~. 

We call this a '" coglueing theorem" because its dual (in the sense of Eckmann- 

Hilton) is very naturally called a "glueing theorem". Such a glueing theorem 

is proved in [1"] and it seems to us that the coglueing and glueing theorems are 

so to speak the '"first theorems" in the theory of fibrations and cofibrations 
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respectively. The proof of Theorem 1.2 is based on the proof of the dual theorem 

[1; 7.5.7] but it is worth giving in detail firstly to make the exposition here 

self-contained, secondly in order to generalise to the W CH P  (as against just 

the CHP), thirdly in order to present more consequences of the method than 

are given in [1] and fourthly, because the present theorem implies the dual 

theorem (but not conversely), and in slightly more generality, as is shown by 

Heath in [5a]. In particular we now give some corollaries of the coglueing 

theorem. Even these special cases have not, as far as we know, been published 

before. 

First of all, let us write, as is common, 

Q=g*(E), P=f*(D)  

and take Y= X, (P2 = 1. Then f =  (p g and so P = ((p g)* (D) = g* cp*(D). 

(1.3) Corollary. I f  ~o: B---~ A, q)l: E--~ D are homotopy equivalences, then so 

also is ~: g*(E)--~g* (p*(D). 

Next replace (1.1) by the following diagram 

f 
P ~D 

X f ~ D 

and we obtain 

(1.4) Corollary. I f  f :  X ~ A  is a homotopy equivalence, then so also is f :  

f*(D)-~ D. 

It follows from this Corollary and Theorem (3.4) that the pair ( f  f )  is a 

homotopy equivalence ~ --~ p of maps. 

For  the next application we concentrate attention on the map of fibrations 

E ~~ 
lp 

B ~ A  

Let x z B ,  and let Fx=q-l(x),  F~(x)=p -~ q~(x) be the fibres of q, p over x, ~o(x) 
respectively. Then ~Pl restricts to a map Fx~  F~r Of course if in (1.1) we take 

Y= {x}, X =  {~o(x)} and let g, f be the inclusions; then Q, P can be identified 

with F~, Fz(x) respectively, and ~: Q ~ P then becomes the restriction of ~p~. 
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(1.5) Corollary. I f  q~ and q~l are homotopy equivalences, then so also is ~: 

f 

In w 6 we apply Corollary (1.5) to prove that the Serre spectral sequence of 

a Serre fibration applies also to a map which has the WCHP. 

In the case Fx and F~(~) are of the homotopy type of CW-complexes, Corol- 

lary (1.5) can be deduced from the exact homotopy sequence of a fibration, 

the 5-1emma, and Whitehead's theorem. Corollary (1.4) can be proved similarly 

if D and f*(D) are of the homotopy type of CW-complexes. But such results 

are not as general as ours, and in any case do not seem to us to be in the spirit 

of the theory of fibrations. 

Corollary (1.5) is also obvious in the category of maps of spaces with base 

point and homotopies rel base point (and if x is the base point of B). In this 

theory, the C HP always means that homotopies rel base point lift to homo~ 

topies rel base point. But such a theory is not the obvious one for fibrations. 

In fact one of the difficulties of the Eckmann-Hilton duality is this restriction 

to spaces with base point, since in many practical cases one either wants 

no base point at all, or a free choice of base point. 

For another application, consider the pull-back square 

Q ~ E  

~ l 
Y g , B  

in which q has the WCHP.  

(1.6) Corollary. I f  Y and E are contractible, then Q is either empty or is of the 

homotopy type of ~2(B, b), the space of loops on B starting at some point beB. 

Proof If g (Y)c~ q (E) is empty, then Q is empty. Otherwise, let b E g (Y)c~ q (E), 

and consider the pull-back square 

s (B, b) --* PB 

I 1, 
{b} ---, B 

in which p is the usual fibration of paths with initial point at b. Because p 

is a fibration with contractible total space, q: E ~ B lifts to a map 01 : E ~ P B; 

also there is a unique map q~2: Y---~ {b}. Then qh, q~2 are homotopy equivalences. 

By the coglueing theorem, the map ~: Q ~ ~?(B, b) determined by ~o 1, q~2 and 

1 : B -~ B, is a homotopy equivalence. 

Related to the results of this paper is the fact that if p has the W C H P  then 

the homotopy type of f *(D) depends only on the homotopy class o f f  [3; 

Corollary 6.6]. However there is a strong case for expressing in the context 

of groupoid operations both this fact and some known kinds of operations; 

this will be done in a paper by Heath. 
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2. Elementary Definitions and Results 

For  most of this paper, and unless mentioned otherwise, homotopies will 

be of length 1, and the sum, or composite, of two homotopies F: f ~ g ,  G: g~-h, 

will be written G+F: f~-h. A homotopy  F: Z x I ~ A  is said to be bordered 

if there are numbers r, s in ]0, 1[ such that r<=s and for all zEZ 

F(z, t) = F(z, O) for t E [0; r] ,  

F(z, t)=F(z, 1) for ts[s, 1]. 

These last conditions are expressed as: FIZ • [-0, r], F[Z • [s, 1] are stationary. 

Note  that the sum of two bordered homotopies is bordered, and the reverse 

- F  of a bordered homotopy  F is bordered. 

It is easily seen that a map p: D--->A has the W C H P  if and only if for any 

space Z and map f :  Z -+ D, any bordered homotopy  F: Z x I --* A of p f  lifts 

to a homotopy  H o f f ;  further H may be assumed to be bordered, though it 

will not necessarily be stationary on the same intervals as F. It is well-known 

[3, 7] that if p: D ~ A has the WCHP,  and f :  X ~ A is a map, then f i : f*  (D) ~ X, 

the pull-back of p by f also has the WCHP.  

Let p: D ~ A, u: Z -~ A be maps. We are interested 

D 

Z ">A 

in maps f :  Z - ~ D  which lift u (i.e. which satisfy p f = u )  and in the homotopy  

classes of these rel p. (Two lifts f, g ofu are homotopic rel p if there is a homotopy  

F: f ~ - g  such that pF is stationary.) The set of these homotopy  classes is 

written Z, D \ \  u. 

The main object of this section is the following result, in which ~ A z is the 

track groupoid as defined in [1], and ~ d  denotes the category of sets. 

(2.1) Proposition. I f  p: D-+A has the WCHP, then there is afunctor F: rcA z--, 

5r such that on objects F(u)= Z, D \ \  u. Further, if a~z AZ(u, v) and the lifts f 

of u, g of v satisfy 

F(~) (c ls f )=  cls g, 

then any bordered representative of ~ lifts to a homotopy f ~g. 

To prove the first part  of the proposition it suffices to define F(~) for all 

u, v and ~TcAZ(u, v), and then prove F a functor. To define F(~), we choose 

a l i f t f  of u, and bordered representative F ofa;  then F can be lifted to a homotopy  

H off ,  and i fg  is the final map of H, we set 

r (a)  (cls f )  = cls g. 

However it is necessary to prove F(c~) is well-defined. There are several 

ways of doing this, but a way we like involves the notion offibration ofgroupoids, 
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which is defined in the exercises of [-1], and which is treated in detail in [2]. 

So here we simply outline the method. 

The first point is the following simple observation. 

(2.2) Lemma.  Ifp: D ---* A has the WCHP, then for any Z, the induced morphism 

p,: n DZ--~ n A z is a fibration of groupoids. 

From a fibration of groupoids we obtain a functor: 

(2.3) Lemma.  I f  p: G--* H is a fibration of groupoids, then there is a functor 

F: H--~ 5ed which on objects is given by 

F(u)  = n o p -  1 (u).  

Here n 0 p -  1 (u) denotes the set of components of the groupoid p -  i (u), the 

fibre over u. The point about  this construction is that if b~H(u,v) and 

f~Enop-~(u),  then the fibration property implies that b lifts to an element 

a ~ G ( f  g) for some g, and one defines F(b)(clsf)  to be cls g. The proofs that 

F(b) is well defined, and that F is a functor, are simple. 

In particular we can apply Lemma  (2.3) to the fibration p . :  n DZ--~nA z 

when p: D--->A has the WCHP.  What  has to be checked to prove the first 

part  of Proposit ion (2.1) is: 

(2.4) Lemma.  I f  p: D-- ,A has the WCHP, and u: Z - + A  is a map, then the 

sets ~z o p ,  i (u) and Z, D \ \  u coincide. 

Proof. Let f, g: Z ~ D be lifts of u. T h e n f ~ g  will mean f, g belong to the 

same components  of n o p -  1 (u), and this is true if and only if there is a homotopy  

F: f ' - ' g  such that p F is homotopic  rel end maps to the stationary homotopy  

at u. Thus f ~  g rel p implies f ~  g, and we have to prove the converse. 

Let us assume U: f'.~g is a homotopy  and H:  Z x I x I --~A is a homotopy  

rel Z x [ of p U to the stationary homotopy  at u. Consider the diagram 

Z x l x 0  ! •  a>D 

Z x I x I  tx~o> Z x I x I  ~>A 

in which G is defined by 

U(z,s) if t = 0  

(z, s, t) ~ ~ f(z)  if s = 0 
/ 

[ g (z) if s = 1, 

qo: I x I -+ I x I is a homeomorphism which maps I x 0 onto I x 0 • i x 1, and 

is the restriction of q0. 

Now H(1 x q~) need not be bordered. However H(1 x q~) is homotopic  rel 

end maps to a bordered homotopy  H '  and H '  lifts to a homotopy  K of 

p G(1 x 0). Then L = K ( 1  x q3) -1 is an extension of G whose end map  (z, s)~-+ 

L(z, s, 1) is a homotopy  f - ~ g  rel p as required. 
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We have now constructed the functor F of Proposition (2.1). To prove the 

last part of Proposition (2.1), let F be a bordered representative of ~, and suppose 

F is stationary on Z x [s, 1] (s < 1). By an easy modification of the WCHP,  

f [ Z  • [0, s] lifts to a homotopy H : f  ~ - g', say (of length s). By the construction 

of F, we have g'~-g rel p, by a homotopy K which can be chosen of length 

1 - s .  Clearly K and H glue together to give a homotopy f-~ g which lifts F. 

There are a number of consequences of Proposition (2.1). We still assume 

p: D---~A has the WCHP.  

(2.5) Proposition. I f  cte~AZ(u, v), then 

F(cQ: Z,D \ \  u -*  Z ,D \ \  v 

is a bijection. 

The proof is clear since F is a functor from a groupoid. 

This result generalises Lemma 2.1 of [5] which asserts (in our notation) 

that i fp has the CHP, u~-v, and Z is a complex then Z , D \ \ u  is bijective with 
Z , D \ \  v. 

Next let f :  W---~ Z be a map. Then f induces for each map u: Z ~ A a function 

f * :  Z , D \ \ u ~  W , D \ \ u f .  

(2.6) Proposition. I f  I41= Z and f "~ 1, then f *  is a bijection. 

(2.7) Proposition. I f  W= A and f :  A -* Z satisfies u f ~_ 1, then f *  is a surjection. 

(2.8) Proposition. I f  f :  W-* Z is a homotopy equivalence, then f *  is a bijection. 

The proofs of these propositions are of the types of those in [1] w and 

so are left to the reader. 

(2.9) Remark. It is interesting that for Lemmas 2.2, 2.4 we need only the 

R W C H P  (rather weak CHP) which says that any homotopy Z • I - ~ A  of 

p f  is homotopic rel Z • ] to a homotopy which lifts to a h o m o t o p y o f  f This 

property has been considered by Dold-Thom [4] (" rel6vements des homotopies 

homotopes"). The interest of the R W C H P  is simply that p: D--,A has this 

property if and only if p , :  rcDZ-,rrA z is a fibration of groupoids for all Z. 

Further, the first part of Proposition (2.1) is valid for this weaker condition 

on p, but the last clause of Proposition (2.1) has then to be altered to: then 

some representative of ~ lifts to a homotopy f'-~g. The R W C H P  does not seem 

to be invariant under the formation of induced maps; however we do not know 

of maps which have the R W C H P  but not the WCHP. The invariance property 

of the R W C H P  is the following: Suppose p: D-* A has the RWCHP,  q: E--~ A 

is a map and i: E--+ D, r: D-*  E are maps over A. If there is a homotopy 

F: r i-~1~ over a homotopy G: 1,4"-1A such that G is homotopic rel end maps 
to the stationary homotopy at 1 a, then q: E - * A  has the RWCHP.  However 

some of the later proofs break down if we assume the RW CH P  rather than 
the WCHP. 
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3. Homotopy Inverses of Maps of Fibrations 

Suppose given a commuta t ive  diagram 

E ~ ' ~ D  

(3.1) ql 1 v 

B ~---~ A 

Then ~0 and ~o 1 are said to form a map q~: q ---, p over ~o, and the idea ofa  h o m o t o p y  

q~ = r  of  such maps over a h o m o t o p y  ~ o - ~  is well-known. Our  first object 

is to give condit ions on ~o and ~01 which ensure that  q~ has a lef t -homotopy 

inverse. We shall assume th roughout  this section that p and q have the W C H P .  

(3.2) Theorem. Let ~b: A ~  B be a left-homotopy inverse of ~o, and F: ~ ~o~1 

a bordered homotopy. Suppose either (i) ~o 1 is a homotopy equivalence, or (ii) 

q~ i has a left-homotopy inverse ~q such that q ~ l = ~9 p. Then tp has a left-homotopy 

inverse; in fact there is a map ~: p---~ q over ~ and a homotopy qt tp~_ l over F. 

Proof. We consider the diagram 

E ~I~D-Y-%E 

B ~~ O--~B 

and par t  of our  object  is to construct  a lifting ~ of ~ p. Consider  the functions 

D,E\ \~bp e~, E , E \ \ ~ o q  r~t~)~ E , E \ \ q  

where ~ is the class of the h o m o t o p y  F(q x 1): E • I--~ B. 

If we know that  ~o~ is a surjection, then we can choose a class c in D, E \ \  ~b p 

so that  F(a) q~ (c) = cls 1. 

If ~l  is a representative of c, then ~l  lifts ~ p and, since F is bordered,  F(q x 1) 

lifts to a h o m o t o p y  ~b 1 ~o i ~- 1. This would prove the result. 

If qh is a h o m o t o p y  equivalence, then @~ is a bijection (Proposi t ion (2.8)) 

and so a surjection. This settles case (i). In case (ii), we consider the diagram 

E , E \ \ q  ' ~  D,E\\q~b~ ~~ E , E \ \ q ~ q ~  

JI }1 
o,e\\ p e,e\\  oq 

Since ~91 ~o i '~ 1, we have ~o* ff~' = ( ~  ~0i)* is a bijection, and so q~* is a surjection 

in this case also. 

(3.3) Example. It is not  true that  q~ has a lef t -homotopy inverse if q~ and qh 

both  do so. As a counter  example, let q~ be the map 

R q ~S a 

S i ~ , S ~ 

23 Math. Z,, Bd. 113 
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where q is the covering map. Then ~0 t = q has a left-homotopy inverse because 

R is contractible, and ~o = 1. However q~ cannot have a left-homotopy inverse, 

as is easily seen by considering 1-dimensional homology. 

For the next result, we still refer back to diagram (3.1). 

(3.4) Theorem. I f  q) and ~o 1 are homotopy equivalences, then so also is q~. In 

fact, let 0 be any homotopy inverse of q~ and let F: 0 q) ~- 1, G: ~o 0 ~- 1 be bordered 

homotopies. Then there is a map qt: p ~ q over 0, a homotopy Oq~-1 over F, 

and a homotopy q~ O ~- 1 over the sum 

(3.5) G+goF(O x 1) -  G(go 0 x 1). 

Proof. We apply (3.2) (i) to define 0 and construct the homotopy 0 ~0-1 

over F. Then we again apply (3.2) (i) but with q~ replaced by 0;  we deduce that 

~0 has a left-homotopy inverse q; such that the homotopy q~'O~-1 covers G. 

The composite homotopy 

q,O~_q,'Oq, O~_q,'O~_l 

is then a homotopy as required. 

(3.6) Corollary. Theorem 1.2 is true if p, q,f, g all have the WCHP, and in this 

case the quadruple (~b, ~ol, cpa , q~) is a homotopy equivalence of squares. 

Proof. We choose a homotopy inverse O of (p and we choose homotopies 

F: 0 ~o-~ 1, G: (p 0"~ 1. By Theorem (3.4) we can construct a homotopy inverse 

qt=(01, 0) of ~0=(cp 1, ~0), and also a homotopy inverse 0 ' = ( 0 2 , 0 )  of 

~o' -- (O2,(P). Also the homotopies 0 ~o-~ 1, 0 '  q; -~ 1 cover F: 0 (P ~- 1, and the 

homotopies q~ 0__.1, q;0'__-i also cover the same homotopy q~ 0 _ 1  (viz the 

homotopy given by (3.5)). The result follows. 

Theorem (3.4) generalises Theorem (6.1) of [3] : Suppose in (3.1) that B = A, 

cp=l. Then ~01 is said to be a fibre homotopy equivalence if there is a map 01: 

D---, E over 1 A, and there are homotopies 01 (Pl ~- 1, ~o 1 01 -~ 1 over the stationary 

homotopy of 1A. 

(3.7) Corollary (Dold). I f  in diagram (3.1), q~ = 1 and qh is a homotopy equiv- 

alence, then cpl is a fibre homotopy equivalence. 

Proof. In Theorem (3.4), let 0 = 1: A ~ A, and let F, G be stationary homo- 

topies. Then the homotopy in (3.5) is also stationary, so the corollary is a special 

case of Theorem (3.4). 

(3.8) Remark. It seems difficult to better the curious "conjugate" homotopy 

(3.5) of Theorem (3.4). In particular, it is not always possible to find a map 

~O: p--* q over 0 such that there are bomotopies qt q~_~ 1 over F and ~o 0 ~ 1 

over G. As a counter-example, let q = p be a covering map, and let (p = 1, 0 = 1. 

If F: 1 ~ 1 is stationary, and 01 - 1 is a homotopy over F, then 01 must equal 1. 

On the other hand suppose there is a homotopy G: 1 ~ 1: B---, B and an element 

beB such that the loop t--~G(b, t) does not lift to a loop in E; then no homotopy 

0 1 - 1  can cover G. 
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Afibration of pairs is a map q: (E,E')---~ (B,B') such that the map E-+ B 

determined by q has the WCHP,  and E ' =  q-l(B'). (This implies, of course, 

that E ' ~  B' has the WCHP.) Suppose now given a map of fibrations of pairs 

(E, E') ~',  (D, O') 

(B, B') ~ , (A, A') 

(3.9) Corollary. I f  qo: (B, B')--~ (A, A') and q)l: E--*D are homotopy equiva- 

lences, then q)l : (E, E')--, (D, D') is a homotopy equivalence of pairs. 

Proof. It is straightforward to check that if we choose $ and F: $ (r 

G: ~0 ~ - 1  so that $ and F, G are maps and bordered homotopies of pairs 

then the map ~ and the homotopies ~ ~o 1 _~ 1, ~ol ~b 1 ~_ 1 given by Theorem (3.4) 

are also maps and homotopies of pairs. 

(There is an easy generalisation of this to M -  ads.) 

It is convenient to place the following corollary in this section, because it is 

in the same circle of ideas, although its proof uses (1.4) which is a corollary 

of the coglueing theorem proved in the next section. 

(3.10) Corollary. Let p: (D,D')--~ (A,A') be a fibration and let q~: (B,B')--~ 

(A,A') be a homotopy equivalence. Then qIl: (q)*(D), q)*(D'))--~ (D,D') is a homo- 

topy equivalence. 

Proof. By Corollary (1.4), q01: q)*(D)--. D is a homotopy equivalence. So 
the result follows from Corollary (3.9). 

Corollary (3.10) seems to be assumed in the proof of Lemma 9.2.2 of [8] 1 

although the proof there can be carried through by using homology and the 
5-1emma. 

One result we have not been able to prove or disprove is the following: 

if p: D--~ A has the W C H P  and B is a strong deformation retract of A, then 

E =p- I (B)  is a strong deformation retract of D. This seems to be assumed in 

the proof of Corollary 8.5.4 of [8] 1 although here again the proof can be carried 

through either by a homology argument or by the following result, which is 

convenient to place here even though the only result used from this paper 
is Corollary (1.4). 

Let p: D-*  A have the CHP, let B be a closed subset of A such that (A, B) 

has the HEP,  let E=p-I (B)  and let q: E--~ B be the restriction. 

(3.11) Proposition. I f  the inclusion B--~A is a homotopy equivalence, then q 

is a strong deformation retract of p. 

Proof. By 7.4.1 (Corollary2) of [1], there is a retracting homotopy 

R: A x I ~ A which is stationary on B and retracts A onto B. Let F: D x 0 w E x 

I--~D be the identity on D and stationary on E. By Theorem 4 of [9] 

R (p x 1): D x I - *  A lifts to a homotopy H: D x I--~ D which extends F. Then H 

and R define the required homotopy p x I--~ p retracting p onto q. 

1 We are grateful to R. M. F. Moss for these observations on [8]. 

23* 
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4. The Double Mapping Track 

In order to deduce Theorem (1.2) from Corollary (3.6) we need to replace 

the maps f, g in diagram (1.1) by fibrations. This process is well known but 
needs, for our purposes, to be clarified. 

Since (I, ]) has the HEP, the restriction map B ~  B i is a Hurewicz fibration. 

It follows, using the obvious homeomorphism Bi--> B • B, that the map 

O: B'-~ B •  2- (2 (0 ) ,  ~(1)) 

is a Hurewicz fibration. 

Let g: Y--~B, q: E--~B be maps. Their double mapping track is P(g,q) 

defined by the pull-back 

P(g, q) ' B I 

~ q) 1 10 

Y x E  g• B x B  

Notice that O(g, q) also is a Hurewicz fibration. In terms of elements P(g, q) 

can be taken as the subset of Yx E x B I of elements (y, e, 2) such that g(y)= 2(0), 
q (e)= 2 (1). So there is a homeomorphism 

P(g, q) ~ P(q, g) (y, e, 2) -~ (e, y, - 2). 

For i=0 ,  1, let el: Bt---~B be the evaluation mapping 2~2( i ) .  
Let P~(q) be defined by the pull-back 

Pi(q) ' Br 

E q , B  

and let qi: Pi(q) --~B be the mapping (e, 2)~-,2(1-i). Then we have homeo- 
morphisms 

~o: Po(q)--~ P(q, 1), ~a: Pl(q)--~ P(1, q), 

(e, 2) ~ ( e ,  2(0, 2), (e, 2)--~(2 (0), e, 2). 

It follows easily that %: Po(q)-*P(q, 1) is the composite 

Po(q) r176 1) ~162 Pr~ 

Hence qo is the composite of Hurewicz fibrations; so qo, and similarly ql, 
is a Hurewicz fibration (as is well-known). 

(4.1) Lemma. There are pull-back squares 

P(g, q) , E P(g, q) , P~(q) 

Po(g) g~ Y g , B  
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This is obvious from the explicit formula for P(g, q). 

Let k: E--~P~(q) be the map e~*(e,~) where ~ is the constant path at e. 

Then we have a commutative diagram 

E ~,  P/(q) 

\ /  
B 

It is well-known that k is a homotopy equivalence. 

Suppose further that we have a pull-back square 

Q ~E 

Y g~B 

(4.2) Proposition. I f  q has the WCHP, then the map 

]r Q-+P(g,q), (y,e)--~(y,e,~) 

is a homotopy equivalence. 

Proof. The map fr is induced (or pulled-back) by g from k: E-*  P~(q). But 

ql k=q, and k is a homotopy equivalence. By Corollary (3.7), k is a fibre 

homotopy equivalence. But the pull-back of a fibre .homotopy equivalence 

is a fibre homotopy equivalence, and afor t ior i  is a homotopy equivalence. 

5. Proof of the Coglueing Theorem 

We now go back to the situation of diagram (1.1). 

The constructions P(g, q), Pl(q), Po(g) of the previous section are functorial 

in g and q. So the maps ~o, %, ~o 2 induce a commutative cube 

(5.1) 

P(g, q) 

Po(g) 
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The vertical maps k in the following commutative diagram, and also q~2, are 

homotopy equivalences. 

Y ~ ) X  

Po(g) ~', Po(f) 

It follows that q~3 is a homotopy equivalence. So Corollary (3.6), applied to 

(5.1) instead of (1.1), shows that ~' is a homotopy equivalence. 

However the following diagram is commutative. 

Q ~ ) P  

P(g, q) ~" , P(f, P) 

By Proposition (4.2), the vertical maps k are homotopy equivalences. It 

follows that 45 is a homotopy equivalence, and this is Theorem (1.2). 

6. The Spectral Sequence 

This section is an addendum to the paper of Dress [5]. 

Let q: E--~ B be a map, and let S(B) be the singular complex of B. A local 

system T~ from S(B) to abelian groups is defined as follows: Let A(n) denote 

the standard n-simplex and let a6S,(B). Then a~B 3('). Let F~ be the fibre over 

a of the induced map E A(n)---+ B ~("). Then we set 

T~(a) = H,(F~). 

Now let e : A (n) -* A (m) be a simplicial map preserving the order of the vertices. 

Then e induces a commutative diagram 

(6.1) 
l 

E~(m) e" ~ EA(,) 

I 1 
BA(m) ~"') BA(") 

and we define T,(e) to be the map of homology induced by e'. 

According to [5] the crucial step in constructing the Serre spectral sequence 

is proving that T~ is stable, i.e. that T~(e) is an isomorphism for all e. 

Suppose that q has the WCHP. Then so also do the induced map: E A(n) --~ 

B ~(") for all n. Now e: A(n)---~A(rn) is a homotopy equivalence. So in (6.1), 

e", d" are homotopy equivalences. By Corollary (1.5), e' is a homotopy equiv- 

alence, and so T~(e') is an isomorphism. 



Coglueing Homotopy Equivalences 325 

7. Further Problems 

(7.1) One obvious p rob lem is to generalise the results here to inverse limits. 

Some assumpt ions  on the diagrams over which the limits are taken would 

p robab ly  be required;  in some simple cases one can obta in  results by repeated 

appl icat ions  of those of this paper. 

(7.2) A n  open problem is whether the results of this paper  are true if the words 

" h o m o t o p y  equivalences"  are replaced by "s imple  homotopy  equivalences"  

(one mus t  assume for this that all spaces are CW-complexes).  There is a similar 

p rob lem in the dual  case, which boils down to deciding if the Whi tehead  

group of a free product  with ama lgamat ion  is generated by the images of the 

Whi tehead  groups of the factors. 
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