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Abstract 

 

Purpose of review 

Pain and cognition share common neural substrates and are known to interact reciprocally. This 

has implications for treatment and management of pain conditions; pain can negatively affect 

cognitive performance, while cognitively demanding tasks may reduce pain perception. This 

article will review recent research investigating the impact of pain on cognition and the 

cognitive modulation of pain.  

Recent findings 

Recent clinical and preclinical studies have provided new evidence for impairment of cognition 

in pain with a focus on the type of cognitive construct affected and the influence of factors such 

as age and pain localisation. Reduced connectivity between important brain structures has 

emerged as a possible underlying mechanism. Imaging studies have continued to identify 

neuroanatomical structures involved in different types of cognitive pain modulation, and 

attempts have been made to delineate the descending pathways by which pain relief is achieved. 

New and established methods to investigate cognitive modulation of pain in animal models 

have revealed insights into the molecular and neurochemical mechanisms involved.  

Summary 

Progress has been made in understanding the complex relationship between pain and cognitive 

function. However, both synthesis of current research findings and further novel research 

studies are required to maximise the therapeutic potential.  

Keywords: Pain, analgesia, cognition, attention, descending pain inhibition  

Introduction 
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Pain and cognition are inherently linked. Under normal circumstances, acute pain acts as a 

warning signal and protective mechanism to prevent harmful tissue damage. Therefore, it is 

associated with memory retrieval relating to previous painful experiences as well as adaptive 

learning and active decision making, collectively termed the cognitive-evaluative dimension 

of pain [1]. It is hypothesised that neural substrates involved in cognition and pain processing 

are linked, and that the two systems modulate one another reciprocally [2]. Increased pain 

would then impair cognitive function, and an increasing non pain-related cognitive load could 

reduce perceived pain. A better understanding of the interaction between pain and cognition is 

necessary to achieve two main therapeutic goals: (i) improved treatment strategies for chronic 

pain patients with pain-related cognitive dysfunction and (ii) the use of cognitive modulation 

as an analgesic approach. This article will review the most recent research on the effect of pain 

on cognition and the potential for pain reduction via cognitive modulation.  

 

Effect of pain on cognitive function: clinical research 

We previously reviewed the literature regarding the effect of pain on cognition, discussing 

preclinical and clinical evidence, potential mechanisms, and common confounds [2]. In clinical 

research, confounds included age, gender, motor impairment, co-morbid affective disorders, 

pain chronicity and analgesic use, as well as heterogeneity in psychometric assessments, 

sample demographics, and type of pain or pain disorder.  

Landrø et al. [3**] recently investigated neurocognitive dysfunction in a multidisciplinary pain 

centre population. An advantage of their study over previous research was the grouping of 

patients based on the nature of their pain, thereby showing that generalised and neuropathic 

pain had a greater effect on cognition than localised pain. Using a comprehensive test battery, 

they found that 20% of chronic pain patients underperformed on tests measuring working 
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memory, verbal learning and memory, psychomotor speed and attention. Importantly, the tests 

distinguished between the different processes involved in sustained attention and attention 

switching, revealing a specific deficit in attentional control within the patient group. This 

finding is supported by previous research showing that experimental pain (cold pressor test) 

was associated with impaired attentional control in healthy participants [4]. A comprehensive 

study by Moore et al [5] also found that attention span, attention switching and divided 

attention were the aspects of attention most affected by experimental heat pain. Taken together, 

these results indicate that pain predominantly interferes with executive cognitive control. 

Landrø and colleagues [3**] speculated that poor attentional control might limit ability to direct 

attention away from pain and contribute to maintenance of clinical symptoms of chronic pain. 

However, conflicting results have also been reported. A study by Oosterman et al [6**] found 

that while chronic pain patients were impaired on tests of mental flexibility and sustained 

attention, the deficit in mental flexibility appeared to be explained by psychomotor slowing. 

Thus, the authors concluded that inhibitory/attentional control was unaffected in chronic pain 

but that there was a specific decline in ability to sustain attention. Veldhuijzen et al [7*] reached 

similar conclusions, as fibromyalgia patients had intact cognitive inhibition but decreased 

processing speeds compared with a matched control group. An important distinction between 

studies may be the use of experimental pain in healthy volunteers versus research involving 

chronic pain patient participants. Attention has been particularly well studied in the context of 

pain interference [8-15], and theoretical models exist to explain the relationship [16]. However, 

recent findings suggest a lack of consensus on the aspects of attention, if any, that are affected 

in chronic pain and on whether factors such as processing speed or type of pain experience 

(experimental vs. chronic) may be a determinant of attentional performance. In contrast, a 

recent systematic review and meta-analysis provides solid evidence for working-memory 

deficits in chronic pain [17**]. While acknowledging high experimental heterogeneity, the 
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authors concluded that chronic pain moderately affected working-memory performance in a 

consistent and significant manner. This type of pooled data analysis is among the most 

compelling evidence for the negative effect of chronic pain on cognition and represents a 

significant advancement of the field. A similar approach for different cognitive domains, as 

well as separate analysis of pooled results for specific pain conditions and pain types, may 

reveal a more precise pattern of impairment, allowing targeted investigation of the underlying 

mechanisms.   

 

Effect of pain on cognitive function: the role of age 

Age has been identified as an important factor in the relationship between pain and cognitive 

function. In rodent models, pain-related deficits in cognition have been shown to be age-

specific [18], and clinical studies have shown mixed results regarding the impact of age on the 

relationship between pain and cognition. The most recent investigation of the effect of age on 

the pain-cognition interaction confirmed, using interaction analyses, that age moderates the 

relationship [19**]. Executive function and memory were inversely correlated with pain 

ratings in younger patients (19-40 years old); however, in older patients (50-80 years old) there 

was no relationship between pain ratings and memory, and a positive relationship between pain 

and executive function was observed. These results have important implications for sampling 

in future studies. Furthermore, the findings may be key to elucidating a mechanism for the 

effect of pain on executive function, as the authors hypothesise that the positive correlation in 

the older group may indicate “age-related reduced integrity of a shared neural substrate”. 

Interestingly, a neuroimaging study by Ceko et al [20*] found that structural alterations in 

fibromyalgia patients were also age-dependent, with older patients (51-60 years old) showing 

reduced grey-matter volume and white-matter integrity while younger (29-40 years old) 
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patients showed grey matter increases. Moreover, these authors found reduced connectivity 

between the insula and the dorsal anterior cingulate cortex (ACC; a region highly involved in 

cognitive processing), specifically in younger patients. These findings concur with another 

study showing abnormal patterns of grey-matter aging in chronic pain patients [21]. Future 

studies should aim to link these neuropsychological and neuroimaging results.  

 

Effect of pain on cognitive function: animal models 

Back-translation of human pain-related cognitive deficits to rodents provides additional 

support to the clinical literature and allows more detailed investigation of the mechanisms 

involved. Recent reviews have highlighted the contribution of rodent studies to investigation 

of the impact of pain on cognition [2, 22*]. The latest research shows that following nerve 

injury, rats display long-term (6 months post-injury) attentional deficits [23**], and impaired 

social-recognition memory [24**]. Notably, the social-recognition memory deficit was 

restored by treatment with duloxetine and gabapentin [24], which are used clinically to treat 

neuropathic pain. One of the most significant studies over the past 12-18 months was that of 

Leite-Almeida et al [25**], who found differential effects of pain on behaviour depending on 

nerve-injury lateralisation. Animals that underwent left spared-nerve injury (SNI) showed 

increased anxiety-like behaviours but intact cognitive function, while right-SNI animals did 

not display changes in anxiety-like behaviours but were impaired on cognitive tasks assessing 

spatial working memory, attentional set-shifting and impulsivity.  

 

It has been shown previously that rats with chronic inflammatory pain adopt a “risk-prone” 

strategy in a gambling task, similar to chronic pain patients in analogous human tasks [26]. 

Using this paradigm, Pais-Vieira et al [27**] recorded neuronal activity in the orbitofrontal 

cortex (OFC) of rats performing the gambling task before and after induction of inflammatory 
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pain. Pain appeared to be associated with a reduction in the proportion of OFC cells that were 

able to encode reward. These results have implications for the study of pain and cognition as 

normal functioning in the OFC was found to be compromised by pain, and this region is known 

to be involved in processing choice/reward information and other executive-type functions. 

Two other studies by Cardoso-Cruz et al provide mechanistic insights into the effect of pain on 

cognition [28**,29**]. The first [28**] found that spatial working-memory performance was 

impaired in rats that had undergone SNI, and that this deficit was associated with 

electrophysiological changes in the fronto-hippocampal circuit. These changes included altered 

firing activity in the medial prefrontal cortex (mPFC) and an overall reduction in information 

flow in the circuit. The second [29**], in this case in a model of inflammatory pain, also found 

deficits in spatial working memory associated with a decrease in functional connectivity 

between mPFC and mediodorsal thalamus. As interactions within these circuits play a crucial 

role in learning, memory and cognition, these studies suggest a mechanism for pain-related 

cognitive impairment based on reduced connectivity between cognitive-associated brain 

regions. Future translational research should aim to determine if similar deficits in connectivity 

occur in chronic pain patients experiencing cognitive difficulties.  

 

A clinical imaging study previously showed that increased functional connectivity between the 

nucleus accumbens and the PFC may be involved in the transition from acute to chronic pain 

[30*]. As such, it may also be interesting to investigate the possibility of an inverse relationship 

between chronic pain-related and cognition-related connectivity patterns.  Deficits in 

connectivity are likely just one form of neuroplasticity that may underlie pain-related cognitive 

impairment and should also be considered alongside other theoretical models including the 

limited resource theory and the neuromediator theory (see Figure 1 and [2]). 

[Insert Figure 1 here] 
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Cognitive modulation of pain: clinical research 

Pain is a subjective experience [31] and its perception is highly dependent on context and on 

emotional (e.g. stress, anxiety, mood) and psychological (e.g. attention, expectation, beliefs, 

prior experience/conditioning, catastrophizing) factors. Placebo analgesia is one of the best-

known and well-studied examples of cognitive modulation of pain, though simple cognitive 

interventions like distraction also have pain-relieving effects [32,33]. Increasingly, 

psychological techniques such as distraction, mindfulness and meditation are being recognised 

for their analgesic effects and adopted into multidisciplinary pain management programmes. 

Pain reduction is thought to be achieved via a top-down inhibitory process involving multiple 

brain regions [32,34-39] and multiple neurotransmitter systems including the endogenous 

opioid, cannabinoid and monoaminergic systems [33,40,41]. The most recent studies have 

further identified, using neuroimaging techniques, anatomical regions and connectivity 

patterns involved in cognitive modulation of pain. Recent studies have also aimed to investigate 

whether different types of cognitive modulation share common mechanisms. One study tested 

the combination of placebo and distraction on thermal pain perception and found additive 

reductions in pain [42**], suggesting that placebo is not an executive process dependent on 

attention and working memory, and that placebo and distraction therefore represent “separate 

routes” of pain modulation.  

A recent study demonstrated the importance of context in expectation-mediated pain 

modulation [43**]. When a moderately noxious stimulus was presented following a cue 

predicting intense pain, the associated “relative relief” meant that the pain stimulus was 

described positively. Activity in the dorsal ACC and insula was reduced, while activity in the 

ventromedial PFC (vmPFC) increased compared with the control condition. Furthermore, there 

was an increase in the functional connectivity between the reward circuitry and the 
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periaqueductal grey (a component of the descending pain modulatory system) suggesting a 

type of reward-induced analgesia. Another study found that cue-conditioned modulation of 

pain depends on resting-state connectivity between the frontoparietal network and the rostral 

ACC/medial PFC [44**], providing a potential basis for individual variability in the effects of 

expectation on pain.  

 

Zeidan et al [45*] recently reviewed the effects of mindfulness practice on pain and the neural 

substrates involved. Mindfulness appears to operate through a specific mechanism whereby 

higher centres in the PFC are deactivated. This was recently demonstrated by Gard et al. [46**] 

who found decreased activation of the lateral PFC during pain in mindfulness practitioners and 

concomitant increases in activation of the posterior insula/SII (somatosensory cortex II), while 

activity was increased in the rostral ACC in anticipation of pain. Another study by Lutz et al 

[47**] also found increased activity in the dorsal anterior insula and the anterior mid-cingulate 

in expert meditators during pain, while baseline activity in these regions, and in the amygdala, 

was significantly reduced. This differs from the top-down modulation observed in placebo and 

distraction. Conversely, cognitive behavioural therapy in fibromyalgia patients was found to 

be associated with reduced symptoms, increased activation of the ventrolateral PFC (vlPFC) 

and the OFC during pain processing, and increased connectivity between the vlPFC and the 

thalamus [48**]. The effects of cognitive modulation on nociceptive event-related potentials 

(ERPs) have also been investigated. Legrain et al [49**] found that performing a working-

memory task was associated with a reduction in the cortical responses elicited by a nociceptive 

stimulus. This effect could be seen at the earliest stages of pain processing, suggesting that 

working memory may prevent the capture of attention by pain.   
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The effects of cognitive modulation on pain are complex and different cognitive interventions 

may elicit effects through different mechanisms. A challenge for this field of research is to 

develop a unifying theoretical model, such that complementary techniques may be used to 

maximise the therapeutic analgesic potential.  

 

Cognitive modulation of pain: animal models 

Similarly to investigation of the effect of pain on cognitive function, the study of cognitive 

modulation of pain would benefit greatly from development and validation of good animal 

models. There has, however, been little progress in this type of research. In October 2012, 

Nolan et al described placebo analgesia in an operant pain model in rats [50**]. Though not 

the first demonstration of a placebo response in rodents, the experiment employed an elegant 

conflict-reward paradigm which allowed for investigation of multiple pain dimensions rather 

than reflex nociceptive responses. The authors found similarities between their model and 

clinical placebo analgesia, in that there was large variability in responses, and the effect could 

be attenuated by administration of the opioid receptor antagonist naloxone. A recent study has 

also shown that the ACC is the key brain region involved in placebo analgesia in rats and that 

the effect is mediated by µ-opioid receptors in this region [51**]. We have previously described 

a rat model of distraction-induced analgesia whereby exposure to a non-aversive distractor 

(novel object) suppressed formalin-evoked nociceptive behaviour [33]. The reduced 

nociceptive behaviour was associated with alterations in monoaminergic transmission in the 

mPFC. Specifically, the serotonin metabolite, 5-HIAA, and the dopamine metabolite, DOPAC, 

were reduced in the mPFC of animals exposed to the novel object distractor.  It is possible, 

therefore, that distraction-induced analgesia may be related to altered metabolism of 

monoamines within the mPFC. These animal models represent new strategies for further 

investigating the mechanisms underlying cognitive modulation of pain.  
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Animal models of stress/fear-induced analgesia are better established; in these paradigms, 

recall of an aversive experience (typically footshock) inhibits pain behaviour, and the 

neurochemical and molecular mechanisms involved have been investigated. The 

endocannabinoid system is known to play a key role in fear-conditioned analgesia (FCA); a 

recent study showed that the immediate early gene zif268 is a molecular correlate of this 

endocannabinoid-mediated FCA, as footshock-conditioned rats had reduced nociceptive 

behaviour and an attenuation of formalin-evoked zif268 expression in the dorsal horn of the 

spinal cord, an effect blocked by systemic administration of the cannabinoid receptor 

antagonist/inverse agonist AM251 [52*]. Another recent study has also shown that the 

mechanism by which the endocannabinoid system mediates FCA in rats may involve 

GABAergic and glutamatergic signalling in the basolateral amygdala, a key structure in the 

descending inhibitory pain pathway [53*]. These studies demonstrate that behavioural and 

pharmacological approaches in animal models can be used to dissect the molecular and 

neurochemical mechanisms involved in cognitive modulation of pain.  

 

Conclusions 

While this review has discussed the impact of pain on cognition and cognitive modulation of 

pain separately, these effects are intertwined and advances in both areas should help to broaden 

our understanding of the complex relationship between pain and cognition. Future research 

should adopt a collaborative, multidisciplinary approach, with translational studies key to 

elucidating the mechanisms underlying these effects. Understanding pain-cognition 

interactions will yield new therapeutic avenues for treatment of disabling chronic pain.  

 

Key Points 
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• The mechanisms by which pain and cognition interact are poorly understood at present 

and research in this area will be of therapeutic benefit for patients suffering with chronic 

pain.  

 

• Recent research investigating the effect of pain on cognitive function has provided new 

insights into the type of cognitive constructs affected and the influences of factors such 

as age and pain localisation, and studies investigating the underlying mechanisms 

suggest the involvement of changes in regional brain connectivity. 

 
• Cognitive modulation of pain has potential as an analgesic approach and recent research 

has aimed to determine the brain regions and neuroanatomical pathways mediating this 

effect.  

 
• Though recent research has advanced our understanding of the relationship between 

pain and cognition, further investigation is required to fully elucidate the mechanisms 

involved and enable the development of improved treatment strategies for pain. 
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Figure 1. Potential mechanisms of pain-related cognitive impairment, a theoretical model. 

Pain-induced changes in resource utilisation, neuromediators and neuroplasticity may affect 

cognition through a network of brain regions. PFC: prefrontal cortex, IC: insular cortex, 

Hipp: hippocampus, Amy: amygdala, PAG: periaqueductal grey, ACC: anterior cingulate 

cortex, LTP: long-term potentiation, EPSP: excitatory post-synaptic potential, BDNF: brain-

derived neurotrophic factor, ECs: endocannabinoids.  (Figure re-produced with permission 

from Moriarty O, McGuire BE, Finn DP. The effect of pain on cognitive function: a review 

of clinical and preclinical research. Progress in Neurobiology. 2011;93(3):385-404. 
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