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Models of physical systems range from those of initial individual cognition to
mathematical representations on a computer which are accepted as the developed
final models. It is conjectured that a formalization of the qualitative cognitive models
will help us to understand how they are formed and will eventually help us to
produce better computer models. The structure of these models would provide
qualitative descriptions and explanations of behaviour which could be assimilated by
non-specialists. It is argued that cognitive models should be produced with an
awareness of the possible form of the final computer model. To illustrate this, a case
study of the development of the cognitive and computer models of a naturally
parallel physical process is presented. This early work is part of the broader goal of
producing an appropriate computing environment through which various models and
techniques are combined for producing explanations. A procedure for developing
models from the primitive stage to computer implementation is suggested. Theories
in cognitive science and research on mental models are briefly discussed.
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1. Introduction

The forming of cognitive models (CM) of physical behaviour (e.g. water flowing in a
pipe or the behaviour of a beam under loading) is an important topic in cognitive
science. These models are qualitative and are usually referred to, in the terminology
of cognitive science, as being primitive theories. Most physical behaviour models
(PM) are quantitative, are based on physical laws, are expressed in mathematical
form and are implemented on a computer. The development of CMs and their
relationships with PMs merits careful examination.

The purpose of this paper is to examine how the early CMs are built and the
nature of their relationships with the final PM models for three reasons. Firstly the
cognitive modelling process is important in its own right. It appears to be based on
analogical patterns, the understanding of which are important in the evolutionary
development of all models, Secondly the structure of a CM is important for the final
computer model PM if the latter is to be a faithful representation of the CM and
able to provide explanations. The primitives within the CM will be used to describe
qualitative behaviour which is derived quantitatively in the PM. Thirdly if PMs are
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to be developed so that they can provide qualitative explanations of physical
processes, within for example engineering design, then the language and vocabularly
used should be that of the CM.

The success of common-sense reasoning about physical processes is a powerful
reason to examine closely theories of qualitative physics. Models that can be built
from primitives that have only local effects but which interact to form more complex
global behaviour are potentially important. However the standard quantitative
theories of physics expressed in mathematical form are so well established and
useful that it is important to include them.

It will be argued that there is a need to find a formalism for the development of
early cognitive models. This formalism should have an appropriate structure into
which mathematical models can be embedded and quantitative data can be mapped
into qualitative explanations. There is some support for this view from work on
mental models (Gentner & Stevens, 1983; Staggers & Norrcio, 1993). There is a
conjecture, for example, that human beings identify a set of functional objects and a
topology in their minds which they can “run”. Pylyshyn (1989) describes a functional
architecture to mode! the structure of some physical processes especially if the
computer is used to explain rather than calculate behaviour. De Kleer and Brown
{1984) believe that human beings may use a kind of qualitative causal calculi to
manipulate knowledge about the physical world. A concept of appropriate physics
(Chandra, 1992) which incorporates various levels of representations, from the
qualitative to the mathematical, may well emerge from the work described here.
This will enable the development of levels of contextual explanations, both
qualitative and guantitative, in a form understandable to the novice or the expert.
Engineering designers routinely test the results of quantitative analyses against their
own cognitive models to gain confidence in those results. On occasions when such
results are counter-intuitive to the CM an interesting interaction will develop
resulting in real learning either in the CM or PM or both.

The example of natural parallelism is used here to illustrate the process of
development and implementation of CM and PM. Specifically a problem in
structural dynamics is chosen since it is generally accepted that physical processes
are composed of the aggregation of naturally parallel simpler processes but this
natural parallelism is not reflected in the presently developed PM. Rather ad hoc
task parallelism is identified and implemented. The work is motivated by the
development of an IOPM (Interacting Objects Process Model—Section 6.0) which
incorporates both practical and theoretical advances (see also Chandra, 1992, 1993,
1994).

2. Mental models

The term mental model is now widely accepted in human-computer interaction
literature. However, other terms used to describe these models are cognitive models,
conceptual models, component models or causal models. There is growing evidence
that cognitive scientists and researchers in human—computer interaction are particu-
larly interested in the differences between the models of experts and novices.
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However, it is acknowledged that such research is difficult since the measurement of
internal models is problematic (Staggers & Norcio, 1993).

Mental models are believed by many to be organized patterns or structures which
may be represented as objects and relationships (Gentner & Stevens, 1983
Williams, Hollan & Stevens, 1983; Staggers & Norcio, 1993). Staggers and Norcio
(1993) believe that objects in mental models are related to perceptual entities.
Gentner and Stevens (1983) postulate that these models are formed by structuring
analogies and metaphors, especially in unfamiliar domains. A mental model is
regarded as a naturally evolving appropriate dynamic representation in the mind
about any system or object in the real world (Norman, 1983). Mental models are the
conceptual models that scientists and designers use to describe theories and artifacts.
The operations at this level are not based on axioms and the notions are intuitive
and not directly evident. Even at the root of scientific theories and axiomatic
systems (mathematics) there is a layer that is primitive in the sense that it is not
explicitly explained or justified within the system. It was recognized by Geothe
(Zajonc, 1976; Gentner & Stevens, 1983) who believed that any scientific explana-
tion begins with common-sense reasoning about disparate and isolated cases.
According to Goethe, what then follows is a process of sifting through the cases,
finding successively the more general and fundamental ones which serve as
principles. Common concepts such as space, time, force, energy, and heat are
intuitive at the highest level of the modelling process (Trainor & Wise, 1979). They
have been accepted through the scientific process of discovery of similar inter

subjective collective experiences and made dependable by measurement (Blockley,
1980).

2.1. AUTONOMOUS OBJECTS

Williams er al. (1983) consider that mental models are composed of a set of
autonomous objects with an associated topology.

*“Central to this conception of mental models is the notion of an autonomous object. An
autonomous object is a mental object with an explicit representation of state, an explicit
representation of topological connections to other objects, and a set of internal
parameters. Associated with each autonomous object is a set of rules which modify its
parameters and thus specify behaviour. Running a mental model corresponds to
modifying the parameters of the model by propagating information using internal rules
and specified topology.™

Autonomous objects are regarded in this work as containing knowledge with
variables that can be instantiated. The computational metaphor is object-oriented
computer data structures, These objects can be regarded as abstractions that have
definite boundaries. Williams regards the behaviour of autonomous objects as being
governed strictly by internal rules reacting 1o internal parameter changes and to
highly constrained external provocation.

Inherent in the concept of autonomous objects is an explicit representation of the
“connectedness™ of the objects. Objects interact with a limited number of other
connected objects by passing changes in parameter values. Though objects can be
regarded as opaque, they can be decomposed. This embedding results in a new
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mental model, itself composed of autonomous objects of a given topology, which can
be used to produce explanations of the initial higher level objects. The decomposi-
tion of these autonomous objects yields a muiti-level hierarchical modelling of a
system. In this work, it is believed that the computer representations must be based
on the identification of objects which represent actual physical processes or entities
whose behaviour on aggregation represent a portion of a physical process. However
mental models can be incomplete, inaccurate and parsimonious. Individuals can
over-generalize or over-map if they import existing models or use multiple mental
models,

It seems that there is now a consensus emerging about several issues. Mental
models are internal representations of systems in particular knowledge domains.
These internal representations are formed through knowledge (imstruction) or
experience or a combination of the two and the resulting medel is a private
enterprise, an individual matter. How mental models are constructed is not known.
Some authors, however think that humans construct models by using analogies or
metaphors of past represented objects or interactions. In general, authors think
models are composed of both concrete and abstract objects in a relational structure
which emulates the actual situation. Humans have the ability to “run” models in
their heads for both descriptive and causal hypothesis testing. In this way models
may be modified and constructed. Mental models seem to be more process than
outcome entities because of their dynamic and changing nature.

The role of vocabulary in explaining phenomena remains crucial. Different
sciences, for example, explain phenomena in different ways. This is more than a
superficial question of terminology. Scientists cannot choose a vacabulary entirely
for its interest and convenience, though they can augment and refine the vocabulary
to suit their needs. Explaining is a special activity the success of which depends on
how the explanation relates to the way we describe the phenomenon to be
explained. A typical way to explain phenomena in natural science is to cite
nomological, or universal laws and relate them to descriptions of phenomena
couched in the same vocabulary as that of the laws (or to descriptions of the
phenomena defined in terms of this vocabulary). The thesis put forward by Pylyshyn
(1989) is that some phenomena seem to demand explanations couched in a certain
vocabulary. Phenomena can be described using a variety of terms that taxonomize
the world in various ways. A hierarchy of relationships exists among such terms. At
each level, important and interesting generalizations exist. The most efficient
explanations are those related to the earliest CM. It is common to find, for example,
that access to knowledge is highly context dependent. Subjects often have good
access to problem-solving tactics if the problem is worded one way, but not when the
problem is worded another way (Hayes & Simon, 1976). The concept of tacit
knowledge—as a generalization and an extension of the everyday notion of
knowledge (much as physicist’s concept of energy is an extension of the everyday
notion}—is one of the most powerful ideas to emerge from conternporary cognitive
science, though much remains to be worked out regarding the details of its form and
function. It is already clear, however, that tacit knowledge cannot be freely accessed
or updated by every cognitive process within the organism, nor can it enter freely
into any logically valid inference; contradictions are much too common for that to be
true.
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Pylyshyn (1989) states that cognitive science is founded on the assumption that
there exists a natural set of generalizations that can be captured by using cognitive
terms, To succeed, we must adopt the right taxonomy or descriptive vocabulary.
Another equally important goal is to capture the generalizations in a manner that
does more than merely tap our informal knowledge of the way people behave. We
also want to be able to relate these generalizations to possible physically realizable
mechanisms.

3. Computation and cognition

In this section it will be argued that the formal development of the model is through
the identification of constraining parameters that fix the basic characteristics of the
system.

Pylyshyn (1989) notes that if a programmed computer (or even a formally
specified computational process) is to be a serious candidate as an explanatory
model of mental processing, there should be an explicit an account of the way the
model relates to the domain of phenomena it is to explain. If the computational
system is to be viewed as a model of the cognitive process, it must correspond to the
mental process in detail. This essentially means that we have to build an early model
of the structure of the processes we intend to simulate on the computer. This formal
structure of the virtual machine is what Pylyshyn (1989) calls a functional
architecture—thus representing the theoretical definition of, for example, the right
level of specificity (or level of aggregation) at which to view mental processes.

Devices with different functional architectures cannot, in general, directly execute
identical algorithms. Pylyshyn (1989) adds that in order 1o describe an algorithm so
that it can be viewed as a cognitive process, we must present the algorithm in
standard, or canonical form or notation. Typically this means formulating the
algorithm as a program in some programming language; it might also include
graphical presentation or even a natural language description. What is often
overlooked is the extent to which the class of algorithms is conditioned by the
assumptions made regarding the possible basic operations. These include how they
interact, how operations are sequenced, what data structures are possible, and so on.
Such assumptions are an intrinsic part of the descriptive formalism chosen, since it is
that formalism which defines what Pylyshyn (1989) calls the “functional architec-
ture” of the system.

The exploitation of the functional architecture of these computational systems is
central to computer science. From the point of view of cognitive science, though, it
is not only important that we chose the functional properties of the computational
architecture but it is also important to use computational models in an explanatory
mode rather than simply a performance mode.

Thus, a basic architecture of a formal model is required not simply because in this
way we can get to the most primitive level of explanation, but rather because we can
get a principled and constrained (and therefore, not ad hoc) model only if we first fix
those properties which are basic characteristics of the system. Pylyshyn (1989) states
that unless we set ourselves the goal of establishing the correct functional
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architecture properly to constrain our models, we could well find ourselves in the
position of having as many free parameters as we have independent observations.

Thus far a set of criteria for the development of the cognitive model for the
particular problem have been established. These are firstly an object-oriented
functional structures for the model. Secondly, the development of a formal
vocabulary and terminology. Thirdly, a functional architecture that takes note of the
computational architecture and fourthly, the need to use computational models in an
explanatory mode.

4. Composability and locality

Physical systems have mainly been described in the form of models and mechanisms
in three different forms of ontologies, component based, process based, and
constraint based. Qualitative physics (Forbus, 1984; Kupiers, 1984; Forbus &
Flankenhainer, 1990; Leitch, Weigand & Quek, 1990) deals with inferences based on
common sense reasoning about processes. The underlying mechanism in process
based ontology is the influence of one process over another; in the component based
analogy, it is message passing; in the constraint based method, it is the satisfaction of
constraints. In this work PM are process based with a number of independent
processes whose behaviour is influenced by communication (message passing
between neighbours) and satisfaction of constraints that in this particular case are
physical laws and mathematical relations.

In qualitative physics, composability is a requirement which implies that the
description of the process must be derivable from the structure of the system. In
other words, a qualitative description of the typical behaviours of the system should
be available from the structure of the system. The other requirement is that simple
functional models can be composed to form structures to describe more complex
situations. Locality, another requirement from qualitative physics follows from this.
This implies that effects must propagate locally between components of a process
and neighbouring processes. The term structure here refers to the components of the
analysis, component behaviours and connections between components. The term
behaviour refers to the observable changes in the state of the components through
time.

5. Modelling requirements and procedures

The modelling requirements set out in the previous sections can now be sum-
marized. In Section 2.1 it was argued that a multi-level hierarchical model is possible
with computer objects which can represent processes or entities and whose
aggregated behaviour represents a complex process, In Section 3 it was pointed out
that the type of functional architecture that will be available must be considered
before the development of the model if it is to serve as an explanatory vehicle for
the cognitive model. In Section 4 it was argued that composability and locality are
usefu! requirements to set at the cognitive stage for the development of an efficient
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FIGURE 1. Modelling procedure.

model. Figure 1 sets out a modelling procedure that is conjectured as being more
efficient for firstly understanding the evolutionary development of CM and secondly
for using available and proven PM in an environment where the behaviour can be
explained qualitatively in terms of the CM.

6. The Interacting Objects Process Model (IOPM)

A model for a specific physical system has been developed (Chandra 1992, 1993)
which conforms to the ideas described earlier. Analogies are used to build the early
mental models. A graphic representation aids the development of a natural language
description. This description is then formalized by developing a Physical Process
Modelling Language (PPML). This enables the development of a naturally parallel
functional architecture. The physical system behaviour is considered to be the
aggregation of processes (behaviours) which pass messages to each other. Each
individual process is represented by a set of functional objects (components) and
physical laws are the constraints that have to be satisfied.

6.1. THE PROBLEM DOMAIN

The problem domain is structural dynamics. The intention is to model the behaviour
of a physical system after it is impacted or disturbed from its initial position by
external action. The first requirement of modelling is description. Description
attempts to create an image of behaviour and draws on the emergence of repetitive
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patterns, order, relation and structure. Description leads to the synthesis of natural
laws. With properties that appear to be related in some form and specified in some
form of definiteness, it becomes possible to express the relation in precise language.
Lindsay (1968) sees a physical law as a compact description of a routine of human
experience, Space and time are notions essential for mental imagery of physical
systems and Lindsay identified the concept of space in three forms: (1) the private
space of each individual, (2) public or physical space, (3) conceptual or mathemati-
cal space. Leibnitz defined private space as the “order of co-existent sense
impressions”. Even when space is regarded as a private concept it is necessary to
involve the idea of time. This can be identified in the same manner. Private space
and time is inadequate for science since it is based on individual sensory perceptions.
It has been essential to replace these with an abstraction of the mind where the
relation of a physical object to an observer is determined by the properties of an
ideal space. This enables measurement and an isotropic and homogeneous physical
space.

Similarly the difficult concept of time serves as an independent variable which,
along with definitions of space, enables changes in physical experience to be
represented. The abstraction of space and time leads to the ability to measure
change. The measurement is made on the attributes of the physical system under
consideration. Rosen (1985) regards these attributes as “observables”.

Reactive behaviour is assumed here to be a common part of all physical systems.
For systems that involve more than one “physical”” object like a train of masses and
springs, information transfer between these objects is required. An obvious analogy
is that with wave motion. Representation of behaviour either as waves or as particles
is a classic duality in physics which has been reconciled at appropriate definitions
(Feynman, 1965, Conrad, Home & Josephson, 1988). Burton (1968) uses the wave
motion analogy as an information transfer mechanism. For example, if a disturbance
is initiated at any point in a medium, the disturbance moves with a velocity. The
regions that are further away from the point of disturbance “do not know” that a
disturbance has been applied at that point in time. Burton used an analogy of traffic
which frequently behaves like a vibratorv sysiem and explains that the rate of
information flow that moves along the stream of traffic can be described in the form
of a wave motion. The information received by the drivers of the cars results in
reactions that are transmitted along the stream of traffic.

Analogically a physical system can be represented as a set of objects each of which
received information about its neighbours and reacts to the messages. We will
assume that information transfer is via a wave motion mechanism which then
operates in the following way:

(1) a disturbance travels at a certain velocity which depends on the physical
properties of the medium;

(2) objects react to an external action from a meta system or to a message from a
neighbour;

(3) all objects behave independently at a given instant of time after receiving
messages.

The velocity of propagation of sound in a solid media can be measured and used
to set the time required for a message to travel from one object to another.
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6.2. QUALITATIVE MODELLING OF A SIMPLE PHYSICAL SYSTEM

The concept of the IOPM presented in this paper can be described by developing
the early cognitive models about a simple physical system which is naturally parallel.
This natural parallelism implies that spatially unconnected events will not influence
each other at a particular instant of time—but will do so later as messages are
transmitted through the system. In other words complex behaviour can be
represented by the aggregation of relatively simple processes over a period of time.
This is illustrated by describing a simple physical system in such a way that the
natural parallelism is utilized at an early stage in the building of the model. The
arguments developed earlier in this paper are then used to develop a modelling
language, identify a set of functional objects and develop mathematical models that
can be embedded into the objects. This illustration serves the purpose of producing
encapsulated behaviour descriptions for each object in the system from which typical
sub-objects (that have to be encoded with PM knowledge) can be identified. This
description in natural language of the imagery of the behaviour of a typical physical
system should help in the formal definitions and the development and the
constraining of a functional architecture for the system.

Consider the following example of a train of masses and springs, as shown in
Figure 2, Mass O4 is an object joined to a boundary by spring R4 and the other
masses are objects connected by springs as shown. Let ¢, be a time interval for the
message (wave) to take to reach 02 from Ol. At any given instance of time, all
objects have attributes (or state variables) which describe the position of the object
in space. If object OI is disturbed, the sequence of events can be reasoned
qualitatively as follows using time steps of f; as multiples of ¢,. Consider that each
mass and the attached spring is an object, in the form of a mental model with
specified boundaries. The objects can behave either

{1) due to an external disturbance from a meta system and/or
(2) due to messages from nearest neighbours.

In-messages are messages received by each object and out-messages are messages
sent by each object.

6.2.1. At time step t,

01 receives two in-messages. One is an external action (a disturbance or force) and
the other is a null message from O2 (since O2 is passive). OI behaves (reacts to the
force) and produces a new set of state variables (position, velocity and acceleration)
and sends an out message (wave) to O2. The other objects remain passive.

6.2.2. At time step t,
01! continues to receive an im message from an external disturbance (a force) and a
null message from O2, since the wave has not reached 02, O2 receives two in
messages, the out message from O/ and the null message from O3 sent out during
time step t;. Both objects behave and send messages to their neighbours. Objects
03, 04 remain passive.

At any time step ¢,, each object receives messages from its neighbours, behaves,
changes state and sends out messages to its neighbours which will be taken into
account in the next time step. This process will continue until all the energy in the
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system is dissipated. This model, to be called the IOPM, can be generalized in a
formal language, that will facilitate the identification of objects that have to be
encoded with deeper knowledge.

6.3. THE PHYSICAL PROCESS MODELLING LANGUAGE (PPML)

(1) The IOPM is a set of Interacting Objects, which interact by simultaneously
communicating with neighbouring Interacting Objects. The process of communica-
tion and the resultant means of physical process representation is described by a
PPML.

(2) An Object is a holon described in a (set of) meta languages and discriminated
from its environment at an appropriate level of definition and from an appropriate
perspective in order to solve a problem.

(3) A holon is an entity which is both a part and a whole. It is a part of a wider
system (meta system) and is itself a system (of sub-systems).

(4) An Object is represented by a class which has characteristics. Characteristics are
external (public) or internal (hidden). Characteristics may include attributes
(features), behaviours (transformations) and constraints (conditions).

(5) Attributes (features) are predicates which define the state of an object.
Attributes have names and values. Names remain static whereas the values of the
attributes may change.

(6) A Behaviour is a procedure which changes the state of an object.

(7) A Constraint is a condition which defines the domain of behaviour of the object,
(8) An Interacting Object consists of sub-objects which are node objects, behaviour
objects, and message objects.

(9) A neighbouring interacting object is an interacting object with which a given
interacting object communicates by sending messages along a communication
channel.

(10) A Node object represents a mass point in space and time. Node objects contain
attributes inherited from an interacting object and neighbouring interacting objects.
(11) Attributes of an interacting object are its name, position in space, at a given
instant of time, and relevant characteristics such as displacements, velocities and
accelerations.

(12) A behaviour object is a class which contains procedures which change the state
of an interacting object, according to physical laws. The behaviour object consists of
sub-objects, which are external action objects, reaction objects and boundary
objects.

(13) An external action object is a class which consists of procedures which input an
impulse applied over a time interval, from a meta system. This inputs energy into
the IOPM.

(14) A reaction object has procedures for the reactive behaviour in the interacting
object. The reactive behaviour of an interacting object is dependent on the
knowledge in the relation object. The reaction object is a constraint on the
behaviour of the interacting object.

{15) A boundary object represents a sub-class of a behaviour object with attributes
fixed in value, at a given instant in time, in the meta system. Boundary objects have
knowledge that are constraints on the behaviour of an interacting object,
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(16) A relation object is a class which contains specific knowledge for the reactive
behaviour of an interacting object in a given situation. The knowledge is based on
models of physical behaviour at an appropriate level of definition. It consists of
sub-objects which define aspects of that behaviour. For an elastic solid media, these
would be mass and stiffness objects.

(17) A message object is a class which contains an interface protocol for
communication with neighbouring interacting objects.

(18) A message is a procedure which transmits the value of an attribute along a
communication channel. A set of messages is a (set of) values(s) of the attributes of
a interacting object. Messages are in the form of in-messages or out-messages.

(19) An in-message from a neighbouring interacting object, is processed by an
interacting object and converted to an out-message by a behaviour. This causes the
interacting object to change its state. The out-message is then sent to a (set of)
neighbouring interacting objects.

(20) A communication channel is a degree of freedom of the interacting object.
(21) The degree of freedom of an interacting object is the capacity of the interacting
object to permit transmission of the attributes in a defined coordinate direction
separate and independent of other messages.

(22) The definition of a nearest neighbour for an interacting object is dependent on
the spatial discretization of the physical process which the IOPM represents.

(23) A spatial discretization of the physical process is dependant on the transit time
and the details of the physical process at an appropriate level of definition.

(24) The transit time is the time required to transmit a message requesting a change
of state of an neighbouring interacting object. This time is dependent on the features
of the physical properties and the knowledge for the reactive behaviour in the
relation object.

(25) The transit time is the time taken by a disturbance in a physical process to
travel the exact distance from one neighbour to the other and is also known as the
critical time interval.

(26) For those IOPMs containing more than one type of disturbance, the critical
time interval may be the minimum of the critical time intervals for the different
types of disturbances occurring at that instant of time.

(27) A disturbance in a physical process is caused by external action.

(28) An event is the occurrence of a particular set of states for a set of objects at a
given instant of time.

(29) A process is a set of temporally ordered discrete events separated by a time
interval (step). Thus a process is a sequence of events.

(30) Every process is discrete and occurs in parallel.

(31) A process is passive if there are no changes in the values of the messages being
passed between the objects in the process.

(32) A process is active when there is a change of state in any of the objects in the
process.

(33) An IOPM which has reached the end of a process and is passive is in a state of
static equilibrium.

(34) A passive process can be changed 10 a active process by an external action.
(35) A process stops when all of the external energy from the actions is dissipated
bv the IOPM.
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(36) Energy is dissipated in the IOPM by the behaviours of interacting objects.
(37) A steady state process is a repeated active process, after a external action, if
there is no dissipation of energy.

(38) Energy dissipation is modelled at an appropriate level of definition, in the
behaviour of an interacting object.

(39) The IOPM is a closed world model at an appropriate level of definition.

(40) The IOPM can be a open world model at an appropriate level of definition.

6.4 STRUCTURE OF THE 10FPM
From the structure of the PPML, and the IOPM described through the simple

physical system illustrated above, the structure of an interacting object can be
developed.

6.4.1. Hierarchical structure of an interacting object

The lower level objects that can be encoded with knowledge are as follows.

(1) Message object

The message object is identified as an encoding that can receive messages
(in-messages) from neighbouring interacting objects and send messages (out-
messages) to neighbouring interacting objects. The messages in the present model
contain the quantitative state vector. The vector is a message packet that contains
attributes of the interacting object and its nearest neighbours.

(2) Node object

The node object is an internal memory of the interacting object with a reference
system, which can transform local (internal) representations to a global representa-
tion that can be used by the message object to communicate with other interacting
objects. The node object retains information of the interacting object’s attributes
and the attributes of its neighbours.

(3) Behaviour object

A behaviour object processes messages from mneighbouring interacting objects,
external action objects and relation objects with in the interacting object, based on
physical laws or theories encoded in the behaviour object. A behaviour object
computes a new set of state variables for the interacting object at every time step.
(4) External action object

The external action object effectively inputs energy into the system. It processes
messages from a meta system, and consists of procedures which input impulses
applied over a time interval into the behaviour object.

(5) Reaction object

A reaction object computes the reactive behaviour of an interacting object with the
knowledge encoded in it. The reactive behaviour in solid mechanics may, for
example, consist of the inertial force, damping force, and the restoring force which is
from the stiffness of a spring or medium associated with the objects. A reaction
object inherits knowledge from a relation object, which is encoded with a database
of material and geometric response knowledge.

(6) Boundary object

A boundary object provides constraints on the behaviour of the system and has
knowledge to separate the physical system from an external environment at an
appropriate level of definition. For exampie in Figure 2 object O4 is connected 10 a
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Interacting object _l

Messages | | Behaviowr | | Node |
| Extemalaction | [ Reaction |
| Boundary l ' Helation I

FiGurE 3. Conceptual structure of an interacting object.

boundary object O5. This object effectively has no reaction to the messages from O4
and also transmits null messages. A boundary can be silent in certain channels and
active in others. Knowledge of the boundary is encoded in the boundary object.

(7) Relation object

A relation object, as defined in the PPML contains knowledge of the behaviour of
the intervening medium between two interacting objects and will represent the
behaviour of springs in a mass-spring system or the intervening medium between
two nodes in a continuum. This knowledge representation can be qualitative or
mathematical based on physical laws.

The models embedded in the interacting objects (IOs) are described briefly in
Section 7. The attributes of each IO have been chosen based on accepted spatial and
temporal terminology in the form of displacements, velocities and accelerations,
Kupiers (1984) and others for example use qualitative attributes to describe
positional changes of physical objects. Here we presently use quantitative attributes
although there is in principal no reason why any calculus should not be embedded
into the objects. A typical structure of an IO is shown in Figure 3 although many
variants will exists depending on the problem to be solved.

6.5. MESSAGE PASSING BETWEEN INTERACTING OBJECTS

The message passing protocol between interacting objects should enable com-
munication between these objects even when they are placed on different processors
in a concurrent computing environment. The IOPM has been designed such that the
objects behave autonomously after receiving the messages. The message passing
interface in the message object sends message packets which contain the attributes
of an interacting object and received message packets which contain the attributes of
the nearest neighbours. This concept has been implemented on a few parallel
architectures. Typically, communication between interacting objects is as shown in
Figure 4. The development of the mathematical model and implementation on
parallel computers is discussed in detail in Chandra (1992).
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FIGURE 4. Message passing between interacting objects.

6.6. THE PHYSICAL LAWS

The reactive behaviour of common physical systems can be expressed using
Newton’s third law of action and reaction. The reactive behaviour can itself be
identified as inertial force (from Newton's first law), the damping force which
represents the dissipation of energy, and the restoring force, which is the reaction of
the interacting object along with the medium associated with it. The behaviour is
represented as follows:

interacting object::behaviour

for all nearest neighbours: receive in message
external action

Teaction

acceleration = (external action-reaction)/mass
change state {

new position = old position + displacement

}

for all nearest neighbours: sent out_message
The reaction object is encoded as

object::reaction

{
damping force
restoring force

}

7. The mathematical model

Penrose (1989) describes mathematical modelling as a spontaneous and mysterious
process. Aside from the controversy associated with beliefs in strong Al or in the
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extra-ordinary connection between mathematics and reality, it is a thesis of this
paper that early qualitative models can be evolved into mathematical models which
can be represented on computers.

The mathematical model that has to be encoded as knowledge in the interacting
object has to use the information that is received by the message object of the
interacting object (in the form of attributes) and process it according to the physical
laws encoded in the mathematical model. A model currently implemented in the
JOPM are equations of motion:

mi+ci+kx=f (1)

where ¥ is the acceleration, # the velocity, and x the displacement of a particle or
object at a given instant of time. In the usual notation m¥ is the inertia, cx is the
damping force, and kx the restoring force for a given particle.

Consider a typical physical system as shown in Figure 2, Let each mass be
represented by an interacting object Oi which can be regarded as a computer data
structure encoded with knowledge. The interacting objects have the following
attributes (with respect to position and motion) at a given instant cf time.

displacement x;,
velocity X;,
acceleration %,

Any object O; has two nearest neighbours O;_; and O,;, in the system. The
behaviour of the object O; is influenced by the springs between O; and its
neighbours. At any instant of time, the position of O,_; and O,,,; will be required to
compute the restoring of the interacting object O,. F, is the force from an external
disturbance that is applied at a given instant of time to the object O; and m; is the
mass, k;_; is the stiffness of the spring with respect to its neighbour O,_;, k;.; is the
stiffness of the spring with respect to its neighbour O,,,. ¢; is the viscous damping
constant and the damping force is assumed to depend on the velocity
(Timoshenko, 1974).

The equation of motion for any object Oi can be written as

m¥; +cxXg + ki (6= Xi-3) T (X — x04) + F=0.2 )

where x;,_; and x;,, are the displacements of the neighbours at the previous
time-step. The equation of motion to find out a change of state of any object O, at
the end of a time-step is required. The well known relationship between displace-
ment, velocity and acceleration is given by:

Xpoer=Xg+ Ak, + 0.5%A°%% 3)

Xipps = Xjo+ ALX 4

The accelerations i,,.; at the next instant of time is given by the recursive relation:
mX; v = f; = ¢ — kX, ()

This set of equations are the typical behaviour models encoded in the behaviour
object and sub-objects that are inherited by the behaviour object as discussed in
detail in Chandra (1992),
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8. IOPM on parallel computers

Most parallel computer models to date have been developed by exploiting the
algorithmic or task parallelism in already developed mathematical models. However,
if models of parallelism are to mimic the contention that nature is parallel, they
should be designed in a constraining functional architecture at the cognitive level,
that can be carried down to the programming level in a consistent manner.

Physical processes are naturally parallel in that there is always a certain number of
events that are happening simultaneously, Natural parallelism is identified in the
IOPM by localising events so that several independent concurrent processes are
naturally built in. Until parallel computing machines became available, these
processes were modelled using sequential machines. Even with the impressive speed
of the current generation of computers many problems in physical process modelling
still remain intractable. Parallel computing has made some of these problems
tractable.

The three major commercial architectures currently available implement parallel-
ism differently. These are:

(1) Multi-computer (MIMD, distributed memory): data and processing distributed,
(2) shared memory MIMD: only the processing is distributed, and the user does not
need to make explicit the underlying data parallelism, which leads to the parallel
processing,

(3) distributed memory SIMD: data and synchronous processing distributed.

Ideally, to take advantage of the natural parallelism of the IOPM, there should be
an individual processing element in a parallel computer for each process. A typical
architecture is proposed in Figure 5. Utilities are built for implementing the software
on vatious types of parallel hardware. Where the number of interacting objects
exceeds the number of processors the interacting objects are allocated to a
processor. The structure of the programme does not change even though implemen-
tation is heavily hardware dependent because message passing takes place within a

L
O, fom O, out » Py 02 _message Fom
A
o 130 ot fine g,
processary
e
= e fom 02 out_message ¥om O3 out_message from 04

FIGURE 5. Communication and processing architecture for the IOPM.
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processor if a number of interacting objects are on the same processor. Otherwise
the message packet may be sent to another processor via a host or directly
depending on the topology. Some central control is required which is necessary to
monitor the simulation from a front end.

The operation of the IOPM on a transputer based (MIMD) parallel computer and
a massively parallel (SIMD) Connection Machine will now be outlined. More details
are available in Chandra (1992). The transputer is a VLSI design based processor
that has a number of bi-directional links for communication and the topology can be
arranged in an order that will produce the maximum efficiencies. The Meiko
Computing Surface (MCS), a transputer based parallel computer was used. On the
transputer based hardware, MCS provides an operating system and tools (CS Tools)
in UNIX which can be configured to suit our requirement. CS Tools uses a
communicating process approach of organizing data to cooperate¢ on the perfor-
mance of a single task. The computer available was a 24 processor machine.

The program implementation for the IOPM was carried out as conceived at the
primary stage. A utility was designed to route the message packets through the host
processor to different processors. Since a large number of processors were not
available in the transputer based machine, a set of interacting objects were deployed
on each of the processors. This meant that message packets containing the attributes
of a set of nearest neighbour interacting objects were sent across to other processors,
if they did not exist on a single processor. In other cases, the exchange of
information (attributes) was within the processor itself.

The Connection Machine is basically a SIMD machine with a very large number
of small processors. A fully configured CM-2 can have 64000 processors and is
capable of general and grid communication. The grid communication system is more
structured and efficient. Using C*, a parallel implementation of C enables a
declaration of parallel variables that can be placed on each processor. Each
interacting object with its attributes was designed as a nested C structure and was
placed on separate processors. If the size of the problem is large, the concept of a
virtual processor is utilized. The SIMD architecture enables access to attributes of
all the interacting objects at the same time and as a result explicit user message
passing was unnecessary in the general communication approach.

9. An appropriate computational environment for description,
simulation and explanation

A single unifying framework and computational environment to provide a wide
variety of modelling concepts, relationships and techniques for description, simula-
tion and explanation of physical processes is desirable, It is important in solving a
given problem, to be able to choose models that represent processes adequately with
efficient utilization of resources. Inherent in the building of this framework is the
belief a concept of appropriate physics can be employed. The term refers to the
selection of a level of definition for the problem on hand, that is dependent on the
knowledge and resources available to solve the problem. Using the IOPM a fiexible
frame work can be generated to accommodate objects that can be encoded with
different kinds of knowledge.

In the development of the IOPM, some progress has been made in identifying
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building blocks which can be encoded with appropriate knowledge either from
qualitative physics or mathematical models. Further identification and construction
of such functional objects will allow a hierarchy of possibilities and modelling of
relationships between differing levels of definition. In this work the possibility has
been explored of providing such a framework to represent simple physical processes
in solid mechanics which could be extended to other models.

In order to be able to assimilate the results of a simulation easily some form of
qualitative explanation is required. A procedure for mapping quantitative attributes
of the physical system into qualitative attributes and operating with them is
described in Chandra, Blockley and Woodman (1993). An IOPM simulation

(a)
® Level 2 and Level 3 —
External disturbance 30ﬂera!i1*atif}n atthe o
"'I':EI end of the simulation Level 3 generalization
Level 1 — generalization *

at a given instant of time [ Level 2 generalization l

Example of an axially loaded
bar discretized in space and | Level 1 generalization
over a number of Lime steps

I )

W

""DISCRETIZED SPACE, .
L P S 1 Qualitative attributes
Vs ool T-—-b-i Map usi
; : . ap using neural
Object | Object 2 Object 3 Objectd (oo | Object 2 Objoct_ 3 Object_ 4 ? tetworks
Quantitative anributes
FIGURE 6. (a) Structure of the explanation system. —: Inheritance; - - - -- messages; ANN: artificial neural

networks. (b) Levels of generalization adopted.
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produces a vast amount of quantitative data. The quantitative attributes are
converted into a set of qualitative attributes in the form of, for example, values of
low, high, medium etc. Neural networks are used to compress these attributes into
generalizations which can be regarded as explanations for queries. The system has
been designed such that Natural language and the PPML is part of the vocabularly
of the system. Figures 6(a) and (b) show the basic structure of the system.

10. Discussion

A structured methodology to build cognitive models into computational models has
been demonstrated. Naturally parallel modelling of a physical system has been used
to illustrate the procedure proposed. This is done by designing a functional
architecture for the model through natural language description defining a formal
language, developing functional objects, identifying physical laws and mathematical
models which are embedded in the objects and parallel computer implementations.
It is believed that such a hierarchical and structured methodology can aid efficient
and stable process modelling development. A relatively simple procedure has been
proposed to document the development of early models, which we hope can evolve
into a more formal procedure on the accumulation of empirical evidence, if found
successful in other systems. Such experimences we believe may, provide some
understanding of how primitive models are generated.

A practical structure has been provided for a complete system that can be used 1o
describe, simulate and explain the behaviour of a physical system. In particular the
possibility has been explored for providing qualitative explanations from simulations
that produce vast amounts of quantitative data, which is easy to assimilate. The
mode! uses established physical laws and mathematical models that have been
falsified by experiment and engineering judgement. Non quantitative concepts and
relations, such as those developed in qualitative physics and reasoning, could also be
embedded as qualitative knowledge into the objects in further development of these
ideas.

11. Conclusion

A natural model for the concept of appropriate physics is a set of autonomous
objects enceded with knowledge, which can be used as building blocks that will
provide a choice of modelling concepts and relationships. This will allow a hierarchy
of possibilities and modelling of relationships between differing levels of definition.
This paper has explored the possibility of such a framework to represent simple
physical processes in solid mechanics, which can be extended to other models.
The I0PM can be used to demonstrate the development of cognitive models,
using functional architecture to constrain the model. It provides a suitable
language, for identifying physical laws, mathematical representations and com-
puter models for parallel computers. It is believed that such a hierarchical and
structured methodology can help in the development of efficient and stable process
models.
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