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Cognitive Arithmetic Across Cultures

Jamie I. D. Campbell and Qilin Xue
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Canadian university students either of Chinese origin (CC) or non-Asian origin (NAC) and Chinese
university students educated in Asia (AC) solved simple-arithmetic problems in the 4 basic operations
(e.g., 3 + 4, 7 - 3, 3 X 4, 12 •*• 3) and reported their solution strategies. They also completed a
standardized test of more complex multistep arithmetic. For complex arithmetic, ACs outperformed both
CCs and NACs. For simple arithmetic, however, ACs and CCs were equal and both performed better than
NACs. The superior simple-arithmetic skills of CCs relative to NACs implies that extracurricular
culture-specific factors rather than differences in formal education explain the simple-arithmetic advan-
tage for Chinese relative to non-Asian North American adults. NAC's relatively poor simple-arithmetic
performance resulted both from less efficient retrieval skills and greater use of procedural strategies.
Nonetheless, all 3 groups reported using procedures for the larger simple subtraction and division
problems, confirming the importance of procedural knowledge in skilled adults' performance of ele-
mentary mathematics.

Knowledge of elementary arithmetic (i.e., simple addition, mul-
tiplication, subtraction, and division) is a pervasive requirement of
everyday modern life, providing the essential means for dealing
with a widely diverse variety of numerical-problem-solving situ-
ations. Basic arithmetic also provides the foundation for the more
advanced mathematical skills that are central to all modern scien-
tific disciplines. Consequently, understanding this fundamental
intellectual skill is an important goal for cognitive science (Ash-
craft, 1995; Geary, 1994). In this study, Chinese adults educated in
the People's Republic of China and Canadian adults educated in
Canada, either of Chinese or non-Asian origin, solved simple
arithmetic problems involving the four basic operations (e.g.,
3 + 4, 7 - 3, 3 X 4, 12 -=- 3). Participants also reported their
strategy (i.e., direct memory retrieval vs. procedural strategies)
after each problem. The purpose was to address three important
questions of current research in cognitive arithmetic. First, when
adults solve simple-arithmetic problems, what is the relative bal-
ance of direct memory retrieval versus use of procedural strategies
such as counting or transformation (e.g., 6 + 7 = 6 + 6+1 =
13)? Recent evidence suggests that even skilled adults make sub-
stantial use of procedures (e.g., LeFevre, Sadesky, & Bisanz,
1996), but no study has attempted to assess this for the entire
domain of elementary arithmetic. Second, what determines the
problem-size effect (PSE) in cognitive arithmetic? The PSE is the
virtually ubiquitous phenomenon that the difficulty of simple-
arithmetic problems increases as problem size increases. The PSE
has been recognized and studied systematically for over 75 years
(e.g., Clapp, 1924), but our study was the first to estimate the
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relative contributions of retrieval and nonretrieval strategies to the
PSE for all four operations. Third, what are the sources of differ-
ences in the simple-arithmetic performance of North American and
Asian adults? Several studies have found that Asian adults gener-
ally outperform North American adults on simple arithmetic
(Geary, 1996b; Geary et al., 1997; LeFevre & Liu, 1997). By
examining performance as a function of the type of strategy
reported, we hoped to identify whether differences in the effi-
ciency of retrieval processes, procedural strategies, or both under-
lie the overall performance difference.

Direct Retrieval Versus Procedural Strategies in Skilled
Performance of Simple Arithmetic

It is widely accepted that young children's performance of
arithmetic is often based on counting or other procedural strate-
gies, although some retrieval is evident even during the preschool
years, especially for small problems such as 1 + 2 (Siegler &
Shrager, 1984). What happens as arithmetic skill develops, how-
ever, is more uncertain and controversial (Baroody, 1994). One
view is that with accumulating exposure to the basic arithmetic
combinations, procedural strategies are gradually replaced by di-
rect memory retrieval. The switch to retrieval is assumed to begin
during the early public school grades and to proceed gradually
over ensuing years as more and more specific facts are committed
to memory (Koshmider & Ashcraft, 1991; Siegler, 1988; Siegler &
Shrager, 1984). By the time the typical learner reaches college age,
most of the basic arithmetic facts presumably have been encoun-
tered so frequently that memory retrieval is the predominant strat-
egy. Indeed, many reaction time (RT) and error phenomena pro-
duced by skilled adults performing simple addition and
multiplication problems are well explained by retrieval-based
models (Ashcraft, 1992; Campbell, 1995; Graham & Campbell,
1992; McCloskey, Harley, & Sokol, 1991).

Although the development of simple arithmetic skill generally
proceeds from reliance on procedures to reliance on retrieval, it
may be rare to achieve exclusive reliance on direct retrieval. North
American university students do not report exclusive reliance on
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retrieval for simple addition (Geary & Wiley, 1991; LeFevre,
Sadesky, & Bisanz, 1996), multiplication (LeFevre, Bisanz, et al.,
1996), division (LeFevre & Morris, 1999), or subtraction (Geary,
Frensch, & Wiley, 1993). Geary, Frensch, and Wiley (1993)
found, however, that older American adults (61 to 80 years)
reported almost exclusive reliance on retrieval (97%). Thus, the
substantial use of procedures reported by younger North American
adults may be a relatively recent phenomenon.

In contrast to the findings for American samples, university
students from China appear to rely almost completely on direct
retrieval for the solution of simple addition (Geary, 1996b) and
multiplication (LeFevre & Liu, 1997) problems. Little is known,
however, about simple division and subtraction of East Asian
adults, and we know of no studies to date comparing East Asian
and American adult samples on these operations. East Asian sam-
ples typically present superior arithmetic performance relative to
American samples, but it does not necessarily follow that the
former develop exclusive reliance on retrieval for all simple-
arithmetic problems. For example, knowledge of the complemen-
tary relation between addition and subtraction (e.g., 4 + 3 = 7
corresponds to 7 — 3 = 4) and between multiplication and division
(e.g., 4 X 9 = 36 corresponds to 36 •*• 9 = 4) permits skill in one
operation to mediate performance on the complementary opera-
tion. Furthermore, such mediation may be very efficient (Camp-
bell, 1997, 1999). In this case, people may not develop direct
memory for the majority of simple subtraction and division prob-
lems because of the availability of efficient procedural methods.
Nonetheless, if we assume that our native Chinese participants
represent a group whose educational experiences ought to produce
the highest level of performance of simple arithmetic, then this
group may be most likely to show exclusive reliance on retrieval
if such exclusive reliance commonly develops.

Sources of the Problem-Size Effect

It is probably safe to say that the PSE is the most studied
phenomenon in the history of mathematical cognition research (cf.
Ashcraft, 1992, 1995; Clapp, 1924; Groen & Parkman, 1972;
Norem & Knight, 1930). Virtually every study that has examined
effects of problem size for simple arithmetic has found that both
RTs and error rates tend to increase with the numerical size of the
problem (but see Geary, 1996b, Experiment 1). For adults, corre-
lations of about .6 to .8 are observed between the sum or product
of a problem's operands and mean RT for a correct response
(Campbell, 1995). Our goal here is to identify sources of the PSE
for all four operations.

Three factors potentially contribute to the PSE: (a) Retrieval
processes may be more efficient for small-number relative to
large-number problems, (b) procedural strategies, although less
efficient than retrieval overall, may be more efficient for small-
number than for large-number problems, and (c) use of procedures
may be less common for small-number than for large-number
problems. One reason that use of procedures may be less likely for
smaller-number problems is that small-number problems are en-
countered more frequently and therefore are more likely to have
high memory strength relative to large-number problems (Ashcraft
& Christy, 1995; Geary, 1996b; Hamann & Ashcraft, 1986).
Small-number problems may also be less susceptible to associative
interference, making memorization and retrieval relatively easy
compared with larger-number problems (Campbell, 1995; Siegler,

1988; Zbrodoff, 1995). Thus, when retrieval is used it generally is
slower and less accurate for large-number problems. Furthermore,
a higher probability of procedure use for large-number problems
would produce a PSE because procedural strategies generally are
less efficient (i.e., slower and more error prone) than direct re-
trieval (e.g., LeFevre, Bisanz, et al., 1996; LeFevre, Sadesky, &
Bisanz, 1996; Siegler, 1988). Regardless of differential usage of
procedures for small-number and large-number problems, how-
ever, use of procedural strategies would give rise to a PSE because
procedures tend to be more difficult or complex for larger-number
problems. For example, a counting strategy for addition generally
would involve more incrementing steps for larger-number than for
smaller-number problems (LeFevre, Sadesky, & Bisanz, 1996;
Siegler & Shrager, 1984).

In summary, lower efficiency of retrieval processes for large-
number problems, lower efficiency of procedures for large-number
problems, and greater use of procedures for large-number prob-
lems may all contribute to the PSE. In principle, the contributions
of these three factors to the PSE may vary independently. In the
following study, we have obtained strategy reports on a trial-by-
trial basis for all the basic problems in each operation. By analyz-
ing the magnitude of the PSE separately for reported retrieval and
reported procedure trials, it has been possible to estimate the
contribution of retrieval and procedural processes to the PSE in all
four basic operations. As we discuss next, these analyses also have
permitted us to isolate factors that may contribute to cross-cultural
differences in adults' basic calculation skills.

Differences Between Asian and American Adults in
Arithmetic Performance

An enormous amount of research has examined cross-cultural
differences in early mathematics education and achievement (e.g.,
Chen & Stevenson, 1995; Stevenson, Chen, & Lee, 1993). One
consistent finding is that East Asian children develop numerical
and arithmetic skills that are superior to North American children
matched for level of education and IQ (e.g., Geary, Bow-Thomas,
Fan, & Siegler, 1996; Stevenson et al., 1985). This advantage is
not found for other cognitive domains (e.g., spatial cognition) or
academic domains (e.g., science; Beaton et al., 1996). The arith-
metic advantage for East Asian children probably reflects differ-
ences both in the formal education system (e.g., greater concen-
tration on mathematics instruction; Stigler, Lee, & Stevenson,
1987) and in cultural or social factors, such as attitudes toward
mathematics achievement and the responsibilities of students and
parents to skill development (Chen & Stevenson, 1989, 1995;
Geary, Bow-Thomas, et al., 1996).

There has been relatively little research, however, examining
adults' cognitive processes in arithmetic across different sociocul-
tural settings. Several studies have found that the arithmetic per-
formance advantage of East Asian children relative to North
American children is also observed in young adults' performance
(e.g., Geary, 1996b; Geary, Salthouse, Chen, & Fan, 1996; LeFe-
vre & Liu, 1997). Geary (1996b, Experiment 2) compared Chinese
and American university students' performance of simple addition.
Relative to the American group, the Chinese group presented faster
RTs and a smaller PSE and reported exclusive reliance on direct
retrieval for simple addition problems. The American group re-
ported direct retrieval for only 73% of addition problems. LeFevre
and Liu (1997) compared the simple multiplication performance of
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North American (mostly Canadian) and Chinese adults attending
college in Canada. The Chinese adults solved multiplication prob-
lems more quickly and accurately and produced a much smaller
PSE. In contrast to these findings with young adults, Geary et al.
(1997) found that the arithmetic competencies of older Chinese
and American adults (60 to 80 years old) did not differ. This
suggests that the cross-cultural differences in arithmetic perfor-
mance observed in children and young adults may be a recent
development and reinforces the conclusion that the achievement
gap is due to cultural (i.e., educational and other social influences)
rather than biological or linguistic factors.

In this study, we investigated further the sources of cross-
cultural differences in young adults' simple-arithmetic perfor-
mance. Specifically, we addressed three questions. First, what are
the sources of the performance differences? As discussed previ-
ously in connection with the PSE, differences among the groups
may be attributed to three sources: (a) differential usage of re-
trieval versus procedural strategies for small-number and large-
number problems, (b) size-related differences in the efficiency of
retrieval processes, and (c) size-related differences in the effi-
ciency of procedures. The present study permitted us to estimate
the contributions of these factors to performance differences
among the groups. Second, do these differences extend equally
across all four operations, or are the cross-cultural differences
operation dependent? Third, whereas Chinese adults educated in
China typically outperform North Americans educated in the
United States or Canada, are the same differences observed be-
tween Chinese adults educated in Canada and Chinese adults
educated in China? If cultural factors other than formal education
(e.g., parental expectations or positive attitudes toward math)
contribute substantially to acquisition of arithmetic skills, then
arithmetic performance of Chinese Canadians may be superior to
that of non-Asian Canadians but similar to that of native Chinese
adults (cf. Chen & Stevenson, 1995).

The Current Study

In the current study, the main analyses of the simple-arithmetic
data were based on the so-called standard set of problems (LeFe-
vre, Sadesky, & Bisanz, 1996), which excludes problems involv-
ing 0 or 1 as an operand or answer. The 0 and 1 problems are often
analyzed separately because many of these items may be solved by
general rales (i.e., x + 0 = x, x — 0 = x, x — * = 0, jc X 0 = 0,
Q + x = Q,xXl=x, x + x = l,x + I = x). Here, we tested zero
and one problems in all four operations intermixed with problems
from the standard set. Previous research had indicated that the
rale-governed zero and one problems are solved by retrieving the
appropriate rale rather than retrieving a specific fact (Sokol, Mc-
Closkey, Cohen, & Aliminosa, 1991). These items therefore pro-
vided an opportunity to test whether the groups differed with
respect to knowledge and execution of the rales for zero and one
problems.

After each arithmetic trial, participants indicated the strategy
they had used by selecting from a list that included transform,
count, remember, and other as options (cf. Campbell & Timm,
2000). These options corresponded to categories of simple-
arithmetic strategies identified in previous research using a full-
report method in which participants described their specific activ-
ities after each trial (LeFevre, Bisanz, et al., 1996; LeFevre,
Sadesky, & Bisanz, 1996). Note that the rales for solving most 0

and 1 problems are unique to these items. We did not include a rule
strategy option because explaining these rale-based strategies
would amount to instructing participants to select rule for zero and
one problems. A general concern about strategy reports is whether
collection of strategy information changes the way people perform
arithmetic (Kirk & Ashcraft, 2001). Using a strategy selection
method essentially identical to the current study, Campbell and
Timm (2000) compared performance between groups (ns = 50)
who did or did not provide strategy reports for 144 multiplication
or division problems. There was no evidence that collecting the
strategy reports affected performance in any substantial way.

We also measured performance on a more complex paper-and-
pencil arithmetic test: the French kit arithmetic fluency subtests
(Ekstrom, French, & Harman, 1976). Arithmetic subtests of the
French kit had been used in several cross-cultural comparisons of
arithmetic ability (e.g., Geary et al., 1997; Geary, Salthouse, et al.,
1996; LeFevre & Liu, 1997). The subtests we used comprise pure
blocks of complex multistep addition or division problems and
mixed blocks of multistep subtraction and multiplication prob-
lems. The French kit, in addition to measuring simple arithmetic
skills, entails a substantial component involving more complex
procedural skills and working memory management (e.g., carry-
ing, borrowing, or place keeping; Geary & Widaman, 1992). This
allowed us to determine if group differences on the simple arith-
metic task generalize to more complicated mental arithmetic prob-
lems. Thus, in summary, we measured performance with respect to
four types of arithmetic: (a) use and efficiency of retrieval strate-
gies for simple arithmetic, (b) use and efficiency of procedural
strategies for simple arithmetic, (c) efficiency of rale-based re-
trieval for zero or one problems, and (d) relatively complex mul-
tistep arithmetic, as measured by the French kit.

Method

Participants

Seventy-two students registered in undergraduate or graduate programs
at the University of Saskatchewan participated in this experiment. Partic-
ipants were recruited from advertisements posted on the university campus
and were tested more or less in the order in which they contacted the
experimenter. Twenty-four of the students (12 men and 12 women) were
non-Asian Canadian (NAC) who had been born in Canada and had com-
pleted their elementary and secondary education within Canada. Their
mean age was 22 years. Another 24 (12 men and 12 women) were Chinese
Canadian (CC). Ten were born either in Hong Kong or in mainland China
(average age at immigration was 5 years 1 month), and 14 were born in
Canada. All of this group had completed elementary and secondary school
in Canada. Their mean age was 22 years. All of this group claimed they
were fluently bilingual (English and Cantonese). A third group of 24
students (12 men and 12 women) were Asian Chinese (AC), studying at the
University of Saskatchewan on student visas. They all had completed their
elementary and secondary education in China. Their mean age was 28
years.

The majority of the AC group were graduate students (19 of 24),
whereas the two Canadian groups comprised mainly undergraduates. Given
that basic arithmetic skills are acquired and consolidated primarily during
elementary education and that all the Chinese university students experi-
enced similar selection pressures before university entrance, it is unlikely
that there were significant differences between Chinese undergraduate and
graduate students in basic arithmetic competency. For similar reasons, even
though our AC group generally had better foreign language skills relative
to their peers in China (i.e., due to the English or French language
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proficiency requirements for admission to Canadian universities), they
were likely to be equivalent in basic arithmetic skills (cf. LeFevre & Liu,
1997).

Procedure

Each participant was tested in a quiet lab room in a single session lasting
about 1.5 h. The experimenter explained that the study concerned process-
ing of numerical information and that several tasks would be administered
in the following order: an arithmetic fluency test (the French kit); a block
of 41 number-naming trials; four blocks of about 55 arithmetic trials that
included addition, subtraction, multiplication, and division; another block
of number naming; four more blocks of simple arithmetic; and then a final
block of number-naming trials. LeFevre and Liu (1997) found that Asian
Chinese university students studying in Canada reported much less preuni-
versity calculator use than Canadian university students. To pursue this in
connection with our samples, we ended the session with a questionnaire in
which we inquired about calculator use: "How often did you use a calcu-
lator when doing arithmetic problems (e.g., 65 + 34, 23 X 17)?" Partic-
ipants provided two ratings on a scale ranging from 1 (never) to 5 (always),
one relating the question to their experiences during elementary school and
one relating the question to their experiences during secondary school.

Administration of the French kit required about 15 min. Participants
were given a brief break after the second set of naming trials. For naming
and simple arithmetic trials, NAC and CC participants responded in En-
glish, and AC participants responded in Mandarin. Instructions and exam-
ples were given in English to all three groups. In the case of difficulty of
a Chinese participant understanding English instructions, Chinese expla-
nations were also provided by the experimenter. No feedback about per-
formance was provided. Participants received $10 for the experiment.

Naming and arithmetic stimuli were presented on two high-resolution
monitors using an IBM personal computer with one monitor viewed by the
experimenter and the other by the participant. Stimuli were presented
horizontally as white characters against a dark background. The participant
wore a lapel microphone that activated a relay switch connected to the
computer's serial port. The sound-activated relay controlled a software
clock accurate to 1 ms.

French Kit

Before the number-naming and simple-arithmetic trials, all participants
completed the three arithmetic subtests of the French kit (Ekstrom et al.,
1976). The three subtests consist of two pages of multistep addition,
followed by two pages of division problems, followed by two pages of
mixed sets of multistep subtraction and multiplication. Each page con-
tained six rows of 10 problems. Overall, there were 120 addition, 120
division, 60 subtraction, and 60 multiplication problems. For the
subtraction-multiplication test, subtraction and multiplication problems
alternated across rows. Each participant was given 2 min per page to solve
the problems as quickly and accurately as possible.

In the addition subtest, the participant added three 1- or 2-digit numbers,
and for the division task, the participant divided 2- or 3-digit numbers by
single-digit numbers. For the mixed subtraction and multiplication subtest,
the participant had to subtract 2-digit numbers from 2-digit numbers and
multiply 2-digit numbers by single-digit numbers. Instructions for the
French kit were presented in English to all participants. We might expect
some facilitative transfer of practice from the French kit to the simple-
arithmetic task (Chamess & Campbell, 1988; but see Frensch & Geary,
1993), but such transfer would be practically equivalent for the three
groups.

Number-Naming Task

We tested number naming to estimate contributions of answer produc-
tion times to arithmetic RTs. The 41 naming stimuli used in the experiment

included all single- and double-digit integers ranging from 0 to 20 inclu-
sively plus the products >20 for the simple multiplication facts through
0 X 0 to 9 X 9. All these numbers were presented in Arabic form to each
participant in each of three randomized blocks of naming stimuli. The first
block was placed immediately before the arithmetic trials, the second after
the fourth block of arithmetic trials, and the third at the end of the
arithmetic trials.

In each block of naming trials, the 41 numbers to be named were
presented individually in a random order on the computer monitor. The
participant was asked to name each number as quickly as possible. For each
trial, a fixation dot appeared at the center of the screen for 1 s and then
flashed twice over a 1-s interval. The number appeared at the fixation point
on what would have been the third flash. Timing began when the number
appeared and was stopped when the sound-activated relay was triggered by
the response. When the response was detected, the number disappeared
immediately and was replaced by the fixation dot for the next trial.

Simple-Arithmetic Task

^Stimuli and design. The four basic arithmetic operations (addition,
subtraction, multiplication, and division) were tested. Addition problems
were composed of pairs of numbers between 0 and 9 (i.e., 0 + 0 through
9 + 9). There are 55 possible pairings of the numbers 0 through 9 when
commuted pairs (e.g., 5 + 8 and 8 + 5) are counted as one problem. The
set of 55 includes 45 nontie problems (e.g., 4 + 7 and 9 + 6) and 10 tie
problems (e.g., 0 + 0 and 9 + 9). The corresponding subtraction problems
include 45 nontie (e.g., 15 - 7 and 9 - 4) and 10 tie problems (e.g., 2 - 1
and 16 - 8). Similarly, the multiplication problems include 45 nontie (e.g.,
5 X 6 and 9 X 4) and 10 tie problems (e.g., 2 X 2 and 8 X 8), and the
corresponding division problems include 41 nontie problems (e.g., 12 •*• 3
and 72 •*• 8) and 9 tie problems (e.g., 16 + 4 and 49 + 7). The total number
of arithmetic stimuli was 429. All problems were presented in Arabic
format.

Participants received two sets of four blocks of arithmetic trials. Each set
included one block for each of the four operations. Each block included all
the tie problems and one order of all the nontie problems in a given
operation. Approximately half of the nonties were randomly selected to be
tested in one order in the first set of blocks (e.g., 4 + 8, 9 X 4, 16 - 7,
56 + 8), and the reverse order was tested in the second set (e.g., 8 + 4,
4 X 9, 16 - 9, 56 -;- 7). Thus, each order of each nontie was tested once
in the experiment, and each tie was tested twice. The order of problems in
each block was independently randomized for each participant. Within
each group, 1 participant was assigned to each of the 24 possible orderings
for the four operations across blocks. The same sequence of operations was
used for the first and second sets of four blocks.
y Procedure. Participants were told to respond to each problem both
quickly and accurately and, after each answer, to report the strategy used.
The experimenter read through the following instructions regarding strat-
egy reports, and the participant kept a copy of the strategy report instruc-
tions for reference during arithmetic trials:

In this study, you are asked to indicate the strategy (procedure) you
used to solve each arithmetic problem immediately upon solving it.
Studies have indicated that people are consciously or unconsciously
using various strategies to solve arithmetic problems. Four different
strategies (including unclassified strategies) are proposed in the
present experiment: Transform, Count, Remember, and Other. Fol-
lowing are descriptions of each corresponding strategy:

Transform: You solve the problem by referring to related operations
or by deriving the answer from some known facts. Examples are
"4 + 7 equals 11 because it could be transformed into 7 + 3 + 1,"
"15 -7 = 8 because 7 + 8 = 15," and "72 -9 = 8 because 8 X
9 = 72."

Count: You solve the problem by just counting a certain number of
times to get the answer. Please note that here counting is defined as
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one by one strict simple counting. Examples are "I counted in my head
to get the answer" or "I got the answer by counting silently."

Remember: You solve the problem by just remembering or knowing
the answer directly from memory. Here are some examples falling
into this category: "I just remembered the answer 15 after I got the
problem 6 + 9," "The answer 45 just sort of jumps into my head as
I see the problem 5 X 9," or "I just knew the answer 6 as I saw the
problem 36 -*• 6."

Other: You solve the problem by a strategy unlisted here, or you do
not know what strategy that you used to solve the problem. Examples
are "I do not know," "I cannot figure out the exact strategy I used," or
"I guessed the answer."

These four categories will be presented on screen after each problem.
Please select the most appropriate category and report it to the
experimenter. Please note that if you realized that you made an error,
even an operation error (e.g., treat 3 + 3 as 3 x 3), still try to report
the procedure you used to get the wrong answer. If you have any
questions, please ask the experimenter for help.

Once the instructions had been read, the experimenter explained that
after each arithmetic trial, the participant would see a screen with two
highlighted words, Strategy Choices, appearing at the center and the words
Transform, Count, Remember, and Other below the highlighted words. The
four words were separated by six character spaces and always appeared in
the same order. The participant was encouraged to first reflect back on the
mental processes that occurred during the arithmetic trial and then pick out
a corresponding strategy on the screen. The experimenter emphasized that
the presented strategies were not meant to encourage use of a particular
strategy.

The experimenter pressed the space key to initiate each block of trials,
and a message on the computer screen at the beginning of each block
indicated which operation would be tested. Before each arithmetic trial, a
fixation dot appeared and flashed once over a 1-s interval at the center of
the screen. The stimuli appeared on what would have been the third flash
with the operation sign (+, -, X, +) at the fixation point. Timing began
when the stimulus appeared and ended when the response triggered the
sound-activated relay. When a sound was detected, the problem display
was cleared immediately, which allowed the experimenter to mark RTs
spoiled by failures of the voice-activated relay. The experimenter recorded
the stated answer (pressing the enter key in the case of a correct response),
which typically required <1 s. Once the arithmetic answer was entered, the
computer displayed the strategy choice prompts. The experimenter pressed
a key to record the strategy choice, which also cleared the screen and
displayed the fixation dot for the next trial.

Results

Complex Arithmetic: French Kit Performance

For each participant, we computed a single fluency score equal
to the total number of problems answered correctly across the three
subtests of the French kit (i.e., addition, division, subtraction-
multiplication). We conducted a one-way analysis of variance
(ANOVA) on the fluency scores, with group as a between-subjects
variable. The mean scores were AC M = 177, SD = 45.6; CC M -
133, SD = 37.7; NAC M = 112, SD = 35.1; F(2, 69) = 16.64,
MSB = 1,579.14, p < .01. The AC group outperformed the NAC
group by 58%, f(46) = 5.51, SE = 11.8, p < .001, and the CC
group by 33%, f(46) = 3.65, SE = 12.1, p = .001. The relatively
smaller advantage (19%) for the CC group compared with the
NAC group approached significance, r(46) = 1.97, SE = 10.5, p =
.055. Within the CC group, French kit scores did not differ
between those who were born in Canada (M = 139.5, SD = 37.7,

n = 14) and those born in China (M = 123.2, SD = 37.5, n = 10),
f(22) = 1.09, SE = 15.6, p = .307. With regard to error rates
(computed as percentages of total problems completed), the three
groups were comparable, with NAC making 7.9% errors,
CC 7.7%, and AC 6.5%, F(2, 69) = 0.63, MSE = 21.18. Thus
French kit scores were not contaminated by different speed-
accuracy trade-off criteria among the three groups.1

On average, AC had several more years of education relative to
CC and NAC (i.e., more AC than CC or NAC were graduate
students), but it is unlikely that this contributed substantively to
their better French kit performance. LeFevre and Liu (1997) com-
pared Asian Chinese and Canadian university graduate students
(i.e., matched for education level) on the addition, multiplication,
and subtraction subtests of the French kit (i.e., excluding the
division subtest). The mean numbers correct were 120.6 and 91.5
for the Chinese and Canadian samples, respectively, f(36) = 4.29,
SE = 6.8. We observed very similar results in our study for the
corresponding subtests, with means of 121.7 and 85.6 for AC and
NAC, respectively, t(46) = 4.37, SE = 8.25. Thus, the arithmetic
ability differences between our AC and NAC groups were com-
parable to previous research (see also Geary et al., 1997; Geary,
Salthouse, et al., 1996) and do not appear to have been substan-
tively affected by differences in years of education. In the next
sections, we examine simple-arithmetic performance in detail, to
determine if group differences on the French kit generalize to the
most elementary of arithmetic problems. First, however, we
present analyses of the naming task.

Number Naming

The purpose of the naming task was to estimate contributions
of answer production times to the PSE on RT in the arithmetic
task. Consequently, we divided the naming stimuli into sets
corresponding to the answers to the small-number and large-
number problems in addition and multiplication. A problem was
small if m X n s 25; otherwise the problem was large (cf.
Campbell, 1997; Campbell, Kanz, & Xue, 1999; see analyses of
arithmetic task below). For addition, the small-number sums
corresponded to the numbers less than or equal to 11, and the
large-number sums ranged from 11 to 18. For multiplication,
products for the small problems were less than or equal to 25,
and products for the large problems ranged from 27 to 81. Table
1 contains mean naming RTs for the small and large answer sets
as a function of operation and group.

We conducted an ANOVA on naming RTs, with group as a
between-subjects variable and operation and answer size as within-
subject variables. AC produced slower RTs (546 ms) on average
than CC (506 ms) and NAC (504 ms), F(2, 69) = 5.29,
MSE = 10,630.40, p < .01. Overall, participants were slower to

1 Comparisons among the subtests of the French kit are of limited value
because the tests are not matched with respect to difficulty and were tested
in a constant sequence. For completeness, the mean percentages of French
kit items correctly completed for addition were AC = 36.5, CC = 34.3,
NAC = 31.3; for division, AC = 45.9, CC = 26.1, NAC = 22.0; for
multiplication, AC = 58.4, CC = 40.9, NAC = 31.3; and for subtraction,
AC = 71.3, CC = 59.4, NAC = 48.9. Geary et al. (1997), in a comparison
of young Chinese and U.S. adults (12th graders), similarly observed a
greater Chinese advantage for complex subtraction than for complex
addition.
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Table 1
Mean Naming RT for the Sets of Small and Large Answers for
Addition and Multiplication by the Three Groups

Answer set

Operation All L - S

AC
Addition
Multiplication

M
CC

Addition
Multiplication

M
NAC

Addition
Multiplication

M

540
539
540

502
500
501

502
502
502

551
552
552

501
519
510

501
510
506

546
546
546

502
510
506

502
506
504

11
13
12

-1
19
9

-1
8
4

Note. RT is in milliseconds. RT = reaction time; S = small answers; L =
large answers; AC = Asian Chinese; CC = Chinese Canadian; NAC =
non-Asian Canadian.

name the large answers (523 ms) than the small answers (514 ms),
F(l, 69) = 13.46, MSE = 222.64, p < .01. There was some
evidence that answers for multiplication were named slightly
slower (521 ms) than those for addition (517 ms), F(l, 69) = 3.28,
MSE = 114.42, p = .07. No other effects were significant.

AC named addition sums and multiplication products about 40
ms slower than NAC and CC. There was also a slight RT advan-
tage (9 ms) to name the small answers compared with the large
answers. Because the small-answer sets involved a substantial
number of single-digit numbers, whereas the large-answer sets
exclusively involved two-digit numbers, the RT advantage for
small answers could be due to encoding processes, production
processes, or both. Most important, the size effect in naming was
small and did not interact with group or operation. Thus, differ-
ences in answer production times did not complicate interpretation
of the PSE in the simple-arithmetic task.

Simple Arithmetic

The main analyses of the simple-arithmetic data were based
on the standard set of problems (LeFevre, Sadesky, et al.,
1996), which excludes problems involving 0 or 1 as an operand
or answer. Separate analyses of zero and one problems are
presented in a later section. There are 64 problems in the
standard set for each operation. To operationalize problem size,
the standard set in each operation was divided into two subsets
representing small and large problems. For both addition and
multiplication, small problems were defined as those with the
product of two operands smaller than or equal to 25, and large
problems were defined as those with the product of two oper-
ands larger than 25 (Campbell, 1997; Campbell et al., 1999).
The small and large problems in subtraction and division were
defined on the basis of the inverse relationships between addi-
tion and subtraction and between multiplication and division.
For example, because both 5 + 8 and 8 + 5 were classified as
large problems, both 13 — 5 and 13 — 8 were then defined as
large problems. Similarly, because both 3 X 4 and 4 X 3 were
classified as small problems, both 12 H- 3 and 12 + 4 were

correspondingly classified as small problems. On the basis of
this classification procedure, the small and large problem sets
contained the same number of problems (32) in each operation.
Per-problem RT and error data broken down by group, opera-
tion, and strategy are available from Jamie I. D. Campbell.

Analyses of the standard set are divided into three parts.
The first part deals with all arithmetic trials regardless of the
strategies reported, the second reports analyses of reported-
retrieval trials only, and the third presents analyses of procedure
trials.

All Trials

Percentage Reported Retrieval (Remember)

Table 2 contains the mean percentage use of direct retrieval
reported (i.e., selection of remember from our strategy list) for
small and large problems as a function of group and operation. An
ANOVA was performed with group as a between-subjects variable
and problem size and operation as within-subject variables (see
Table 3 for the source table). In keeping with previous research,
reported use of direct retrieval was greater for small problems
(90%) than large problems (73%). Reported retrieval also varied
across operations with multiplication (98%) the highest, followed
by addition (88%), subtraction (72%), and division (69%). Size
and operation interacted, however. Specifically, the decreases in
reported retrieval for large relative to small problems were —29%
for subtraction, —21% for division, -14% for addition, and -1%
for multiplication.

With respect to effects of group, NAC reported less use of
retrieval overall (72%) than CC (87%) and AC (85%). The
Group X Operation interaction was significant, however. As Ta-
ble 2 shows, all three groups reported almost exclusive reliance on
retrieval for multiplication (at least 95%), whereas for addition,
subtraction, and division collectively, NAC reported less retrieval
(63.5% on average) than CC (84.0%) and AC (80.2%). The three-
way interaction of Group X Operation X Size approached signif-
icance (p = .054). As Table 2 shows, the three groups showed
similar PSEs on reported retrieval for multiplication, division, and
subtraction, but NAC showed a substantially larger PSE for addi-
tion (23%) relative to CC (8%) or AC (11%).

Reaction Time

Mean correct RTs (regardless of strategy reported) for small and
large problems as a function of operation and group are included
in Table 2. Overall, 1,188 RTs (3.9%) were spoiled due to failures
of the sound-activated relay. The 481 RTs (1.6%) more than 3 SD
from each participant's grand mean for each Operation X Problem
Size cell were discarded as outliers. The RT means in Table 2
received a Group X Operation X Problem Size ANOVA (see
Table 3 for the source table). As expected, RTs were faster for
small problems (854 ms) than large problems (1,092 ms). Mean
RT also differed across operations, with addition fastest (849 ms),
followed by multiplication (930 ms), subtraction (1,026 ms), and
division (1,086 ms). The RT PSE (i.e., mean RT for large minus
mean RT for small) was largest for subtraction (336 ms), then
division (254 ms), multiplication (209 ms), and addition (151 ms).

With respect to effects of group, NAC produced the slowest RT
overall (1,107 ms), followed by CC (917 ms) and AC (893 ms).
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Table 2
Percentage of Retrieval Reported, Mean RT, and Error Rate for Small and Large Problems as a
Function of Group and Operation for All Trials

% retrieval reported

Operation

AC
Addition
Multiplication
Subtraction
Division

M
CC

Addition
Multiplication
Subtraction
Division

M
NAC

Addition
Multiplication
Subtraction
Division

M

S

97
100
93
82
93

99
98
93
86
94

88
98
73
68
82

L

86
100
64
59
77

91
97
65
70
81

64
95
42
46
62

L - S

11
0

29
23
16

8
1

27
17
13

23
3

31
22
20

Mean correct

S

735
806
806
891
809

737
788
820
940
821

848
884
947

1,045
931

L

786
921

1,066
1,134

977

855
949

1,129
1,121
1,014

1,131
1,235
1,386
1,385
1,284

RT

L - S

52
116
261
243
168

119
162
308
181
192

283
351
439
339
353

Mean error %

S

2.1
2.8
3.8
5.9
3.5

3.0
2.7
5.9
5.7
4.3

3.9
3.2
3.1
5.3
4.0

L

3.0
5.6
9.8
7.6
6.5

4.3
8.3
9.4

11.9
8.5

5.3
10.2
7.0
6.9
7.4

L - S

0.9
2.8
6.0
1.7
2.9

1.3
5.7
3.4
6.3
4.2

1.4
6.9
3.8
1.6
3.4

Note. RT is in milliseconds. RT = reaction time; S = small problems; L = large problems; L — S =
problem-size effect; AC = Asian Chinese; CC = Chinese Canadian; NAC = non-Asian Canadian.

The Group X Size interaction was due mainly to a substantially
larger PSE for NAC (353 ms) relative to both CC (192 ms) and AC
(168 ms). There were no other significant effects in the RT
analysis.

Table 3
Analyses of Variance for Mean Percentage of Retrieval, RT, and
Error Rate for All Trials

Source

Group (G)
MSE

Size (S)
G X S

MSE

df

1
69

1
2

69

Mean
Ret% correct RT

Between subjects

11.38** 7.32**
1,215.83 360,946.49

Within subjects: Size

178.86** 132.94**
2.66 7.94**

212.90 61,225.22

E%

0.47
175.73

64.75**
0.75

27.11

Within subjects: Operation

Operation (O)
G X O

MSE

S X O
G X S X O

MSE

3
6

207

Within

3
6

207

96.52** 44.83**
4.70** 0.13

282.74 35,103.83

subjects: Size X Operation

65.95** 14.27**
2.10* 1.08

76.23 15,365.80

17.08**
3.15*

21.43

5.27**
2.32*

20.33

Note. RT is in milliseconds. RT = reaction time; Ret% = percentage of
retrieval reported; E% = mean error percentage.
* p < .05. ** p < .01.

Error Rate

Table 2 includes the mean percentage of errors for small and
large problems as a function of group and operation (see Table 3
for the ANOVA source table). Small problems were less error
prone than large problems (4.0% vs. 7.5%), and error rates differed
across the operations (7.2% for division, 6.6% for subtrac-
tion, 5.5% for multiplication, and 3.6% for addition). The PSE on
error rates varied across operations, however (3.2% for divi-
sion, 4.4% for subtraction, 5.1% for multiplication, and 1.2% for
addition).

There was no overall effect of group on error rates (F < 1;
NAC 5.7%, CC 6.4%, AC 5.1%), but the Group X Operation
interaction and the triple interaction of Group X Operation X
Problem Size were both significant. An examination of Table 2
shows, however, that there was no simple pattern underlying these
effects. Instead, the interactions appeared to arise from a complex
pattern of relatively small differences. For example, the PSE for
error rates was large in multiplication for NAC relative to the other
two groups, relatively large in division for CC, but relatively large
in subtraction for AC. Nonetheless, the groups did not differ in
overall error rate. This makes it possible to interpret the RT data
without concern that the group differences in RT reflect different
overall speed-accuracy trade-off criteria.

Summary

The results indicate that procedural strategies played an im-
portant role in performance of simple arithmetic for all three
groups. CC reported procedure use at rates very similar to AC
(13% and 15%, respectively), whereas on average NAC re-
ported substantially more procedure use (28%). The Chinese
groups reported almost exclusive retrieval for addition and
multiplication facts, but they reported substantial use of proce-
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dures for subtraction and division. All three groups reported
almost exclusive use of retrieval for simple multiplication.
Overall, procedural strategies were reported much more often
for large (27%) than for small (10%) problems. The three
groups were similar overall with respect to the PSE on proce-
dure use, except that NAC presented a larger PSE on procedure
use for addition.

The two Chinese groups were very similar in simple-arithmetic
performance. To assess this, we conducted follow-up Group X
Operation X Size analyses of percentage retrieval, correct RT, and
percentage error that included only the two Chinese groups. The
only significant group effects (i.e., AC vs. CC) were relatively
weak three-way interactions (ps s .04) in the RT and error
analyses (see Table 2). None of the main effects or two-way
interactions in the three analyses approached conventional signif-
icance (ps ~z .12). Thus, the two Chinese groups were remarkably
similar overall in simple-arithmetic performance. In contrast, NAC
produced substantially longer RTs and larger PSEs compared with
CC and AC. For simple arithmetic overall, NAC were 24% slower
than AC and 21 % slower than CC. There were no overall differ-
ences in error rates among the groups. To isolate the sources of the
performance differences, we next present separate analyses for
retrieval and procedure trials.

^
Trials Reported as Retrieval (Remember) •*-

Reaction Time

Overall, retrieval was reported for 90% of small problems
and 73% of large problems (see Table 2). Mean retrieval
RTs for small and large problems as a function of operation
and group are presented in Table 4 (see Table 5 for the corre-

Table 4
Mean RT and Error Rate for Small Problems and Large
Problems as a Function of Group and Operation
for Retrieval Trials

Table 5
Analysis of Variance for Mean RT and Error Rate
on Retrieval Trials

Mean correct RT

Operation

AC
Addition
Multiplication
Subtraction
Division

M
CC

Addition
Multiplication
Subtraction
Division

M
NAC

Addition
Multiplication
Subtraction
Division

M

S

731
806
790
844
793

735
780
795
879
797

826
879
896
955
889

L

768
921
915
921
881

810
929
919
966
906

911
1,146
1,000
1,090
1,036

L - S

37
116
125
78
89

75
149
124
87

109

86
267
104
136
148

S

2.2
2.7
3.3
4.9
3.3

3.0
2.5
5.1
4.7
3.8

3.5
3.2
2.1
4.6
3.3

E%

L

2.4
5.6
7.7
4.6
5.0

3.7
8.0
8.3

10.3
7.6

4.2
10.5
5.8
4.8
6.3

L - S

0.2
2.9
4.4

-0.3
1.8

0.6
5.5
3.2
5.6
3.8

0.7
7.2
3.6
0.2
3.0

Source df

F

Mean
correct RT E%

Between subjects

Group (G)
MSE

2
68

5.00**
167,492.79

0.59
191.87

Within subjects: Size

Size (S)
G X S

MSE

Operation (O)
G X O

MSE

1
2

68

Within

3
6

204

201.89**
5.34**

9,635.57

subjects: Operation

48.27**
1.71

11,977.46

38.04**
1.57

30.38

6.80**
2.72*

28.58

Within subjects: Size X Operation

S X O
G X S X O

MSE

3
6

204

13.50**
2.81*

15,365.80

7.56**
2.43*

20.85

Note. RT is in milliseconds. RT = reaction time; E% = mean error
percentage; S = .smai) problems; L = large problems; AC = Asian
Chinese: CC = Chinese Canadian; NAC = non-Asian Canadian.

Note. RT is in milliseconds. One participant from the NAC group was
excluded because of no reported retrieval trials for large division problems.
RT = correct reaction time; E% = mean error percentage.
*p < .05. **/> < .01.

spending ANOVA source table). With procedure trials ex-
cluded, the PSE was still robust (114 ms; 940 vs. 826 ms for
large and small problems, respectively). Thus, less efficient
retrieval for large problems contributed substantially to the
PSE. Mean retrieval RTs differed across operations, with addi-
tion the fastest (797 ms), followed by subtraction (883 ms),
multiplication (910 ms), and division (943 ms). The PSE on
retrieval RT varied across operations, however: 66 ms for
addition, 122 ms for subtraction, 177 ms for multiplication, and
100 ms for division.

The groups differed in overall retrieval RT: NAC produced a
substantially slower overall RT (962 ms) than CC (852 ms)
and AC (837 ms). NAC also showed an overall PSE (148
ms) that was larger than those of CC (109 ms) and AC (89 ms).
This effect was qualified by the significant three-way interac-
tion of Group X Size X Operation. As can be seen in Ta-
ble 4, the triple interaction was due primarily to the large
retrieval PSEs for NAC in multiplication and division relative
to those for CC and AC. In fact, with NAC excluded (i.e.,
performing the RT analysis including AC and CC only), there
were no significant main or interaction effects involving the
group factor.

To estimate the contribution of the retrieval PSE to the
overall PSE for each group and operation, we expressed the
PSE for retrieval trials (L - S in Table 4) as a percentage of the
PSE for all trials (L - S in Table 2). These percentages appear
in Figure 1. For NAC, 42% of the overall PSE was associated
with retrieval trials; the proportions were 57% for CC and 53%
for AC. As expected, given the high percentages of retrieval
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Figure 1. Mean percentage of the reaction time problem-size effect (RT
PSE) in the all-trials analysis (large minus small in Table 2) accounted for
by the RT PSE for retrieval trials (large minus small in Table 4) as a
function of group, operation, and problem size. AC = Asian Chinese;
CC = Chinese Canadian; NAC = non-Asian Canadian.

trials reported for multiplication, the retrieval PSE for multi-
plication accounted for the largest proportion of the overall PSE
(76%, 92%, and 100% for NAC, CC, and AC, respectively). For
the two Chinese groups, retrieval PSE accounted for the ma-
jority of the PSE in addition (over 60%), but for all three
groups, retrieval PSE accounted for less than 50% of the overall
PSE observed in subtraction and division (from 24% to 48%).

Error Rate

Table 4 includes the error rates for small and large problems as
a function of operation and group (see Table 5 for the source
table). For retrieval trials, small problems were less error prone
than large problems (3.5% versus 6.4%). The error rate for re-
trieval trials also differed across operations: 3.1% for addi-
tion, 5.4% for multiplication, 5.4% for subtraction, and 5.6% for
division. The PSE on retrieval errors varied across operations:
0.5% for addition, 5.2% for multiplication, 3.7% for subtrac-
tion, and 1.8% for division.

The three groups did not differ in overall error rate for trials
reported as retrieval (F < 1; NAC = 5.0%, CC = 5.7%,
AC = 4.2%). The significant Group X Operation interaction was
due mainly to the higher error rates of CC for subtraction and
division and to the higher error rate of NAC for multiplication. The
three-way Group X Size X Operation interaction was also signif-
icant. As Table 4 shows, the interaction was due mainly to the
larger PSE on errors for NAC on multiplication and for CC on
multiplication and division. Because there were no differences in
overall error rates among the three groups, different speed-
accuracy trade-off criteria did not contaminate retrieval RT com-
parisons across groups.

Summary

For all groups and operations, there was a PSE for trials reported
as retrieval based, both in terms of RT and errors. Thus, less
efficient retrieval processes for large relative to small problems
apparently contributed substantially to the PSE. For reported re-
trieval trials, NAC presented overall longer RTs and a larger PSE
compared with the two Chinese groups. The three groups showed
substantial variations across operations in the contribution of the
retrieval PSE to the overall PSE (see Figure 1). In the following
section, we estimate quantitatively the relative contributions of
retrieval and procedures to the group differences in RT and the
PSE.

Relative Contribution of Retrieval Versus Procedures to
Group Reaction Time Differences

A comparison of the RT data in Table 2 and Table 4 provides
an estimate of the contributions of retrieval and procedural
processes to the group differences in RT and the PSE. We
contrasted NAC to the combined results for the two Chinese
groups, given the similarity of the RT data for the two Chinese
groups. The mean RT for all trials was 1,107 ms for NAC
compared with 905 ms for the Chinese groups. In contrast, for
retrieval trials, the mean for NAC was 960 ms compared with
845 ms for the Chinese groups. Thus, the RT disadvantages for
NAC were 202 ms for all trials and 115 ms for retrieval trials;
therefore, procedure trials accounted for 87 ms or 43% of
NAC's RT disadvantage.

The PSE for all trials was 353 ms for NAC compared with
180 ms for the Chinese groups (see Table 2). For retrieval trials,
the PSE for NAC was 154 ms compared with 99 ms for the
Chinese groups. Thus, the PSE for all trials was 173 ms greater
for NAC, whereas the PSE for retrieval trials was 55 ms greater
for NAC; therefore, procedural trials accounted for 118 ms or
68% of the overall larger PSE for NAC relative to the Chinese
groups.

Trials Reported as Procedural Strategies

Rates of Counting, Transformation, and Other

Table 6 contains the percentage of trials reported as transfor-
mation, counting, or other procedural strategies as a function of
operation and group. Transformation accounted for 90%, 91%, and
95% of procedure trials for NAC, CC, and AC, respectively. We
did not record the specific transformation strategies on a trial-by-
trial basis, but when participants volunteered details, it was com-
mon to report use of addition facts to solve subtraction problems
and use of multiplication to solve division problems. NAC re-
ported some use of counting for addition (4.6%) and subtraction
(3.8%), whereas the two Chinese groups rarely reported counting
for these operations (0.2% and 0.2% for CC, and 0.3% and 0.6%
for AC). There was virtually no reported use of counting for
multiplication and division problems by any of the three groups.
Overall, the other category accounted for less than 1% of reported
procedural strategies. Because of the overall infrequent use of
procedures for addition and multiplication (about 7% of trials
overall; see Table 2), we analyzed RTs and error rates on proce-
dure trials for subtraction and division only.
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Reaction Time

Table 7 contains mean RTs for small and large division and
subtraction problems for the three groups. There were 23
NACs, 16 CCs, and 14 ACs with RTs available for all four cells.2

Mean RTs for procedures were faster for small problems (1,334
ms) than for large problems (1,564 ms), F(\, 50) = 47.58,
MSE = 59,332.68, p < .01. We would expect faster procedure
RTs for small problems because strategies such as transformation
involve smaller (typically faster) mediating number facts for small
problems than for large problems. There was no other significant
effect (all other Fs < 1). Thus, although the overall RT means
varied substantially, the three groups were not statistically differ-
ent in speed of procedural strategies for simple subtraction and
division (AC M = 1,299 ms, CC M = 1,466 ms, NAC M = 1,530
ms).

Error Rate

Procedural strategy error rates for small and large problems for
subtraction and division appear in Table 7. There were 23
NACs, 17 CCs, and 15 ACs with procedure trials reported for all
four cells. The three groups differed in overall error rate, F(2,
52) = 3.48, MSE = 281.21, p < .05. The mean error rates were
AC = 11.7% (SD = 8.4), CC = 14.6% (SD = 11.2), and
NAC = 7.7% (SD = 5.4). Post hoc analysis (Tukey's honestly
significant difference) confirmed fewer errors for NACs than for
CCs, whereas ACs did not differ from NACs or CCs. There was no
PSE on errors made on procedure trials (F < 1). The Size X
Operation interaction approached conventional significance levels,
however, F(l, 52) = 3.18, MSE = 170.44, p = .08. As Table 7
shows, the PSE on errors for division (0.4%) tended to be larger
than that for subtraction (—4.5%). We presently have no explana-

Table 6
Percentage Use of Procedural Strategies for the Four
Operations by the Three Groups

Table 7
Mean RT and Error Rate for Small and Large Subtraction and
Division Problems for Procedure Trials

Operation

AC
Addition
Multiplication
Subtraction
Division

M
CC

Addition
Multiplication
Subtraction
Division

M
NAC

Addition
Multiplication
Subtraction
Division

M

Counting

0.3
0.0
0.6
0.0
0.2

0.2
0.0
0.2
0.1
0.1

4.6
0.0
3.8
0.0
2.1

Strategy

Transforming

7.3
0.0

19.8
29.3
14.1

4.4
1.3

19.6
20.3
11.4

18.8
3.1

37.9
41.4
25.3

Other

0.5
0.3
0.8
0.4
0.5

0.4
1.0
1.2
1.5
1.0

0.5
0.6
1.0
1.3
0.8

Total

8.1
0.3

21.2
29.7
14.8

5.0
2.3

21.0
21.9
12.5

23.9
3.7

42.7
42.7
28.2

Mean correct RT E%

Operation

AC
Subtraction
Division

CC
Subtraction
Division

NAC
Subtraction
Division

S

1,203
1,215

1,362
1,367

1,350
1,384

L

1,388
1,389

1,543
1,593

1,680
1,705

L - S

185
174

181
226

330
321

S

19.4
7.0

13.8
13.5

7.8
8.7

L

11.0
9.3

11.1
20.2

7.1
7.0

L- S

-8.4
2.3

-2.7
6.7

-0.7
-1.7

Note. RT is in milliseconds. RT = reaction time; E% = mean error
percentage; S = small problems; L = large problems; AC = Asian
Chinese; CC = Chinese Canadian; NAC = non-Asian Canadian.

tion for the trend within procedure trials for small subtraction
problems to be more error prone than larger subtraction problems.

Summary

For procedure trials for subtraction and division, the three
groups did not differ in overall RT or in the magnitude of the PSE
measured in RT. Note that the analyses of procedure RTs were
based on relatively small percentages of trials (see Table 6) and
fewer participants. Therefore, the analyses had less power to detect
group differences relative to the analyses of retrieval trials. Over-
all, procedure RTs were longer for large than for small problems,
but there was no overall PSE on error rates for reported procedure
trials. Whereas there were no statistical differences among the
groups on procedure RTs, error rates on reported procedure trials
did vary among the groups, with NACs presenting the fewest
procedural errors. The finding that NACs' RTs were not statisti-
cally different from the Chinese groups for procedural strategies
while NACs made fewer errors suggests that NACs were equal to
or perhaps slightly better than the two Chinese groups with respect
to procedure use for simple subtraction and division. Efficiency of
procedural strategies (Table 7) apparently did not contribute sub-
stantially to the overall subtraction and division advantage of the
two Chinese groups (Table 2).

Zero and One Problems

We also examined the efficiency with which the three groups
performed zero and one problems in the four operations. All the
zero problems can be solved by general rules: addition (x + 0 =

Note. AC = Asian Chinese; CC = Chinese Canadian; NAC = non-Asian
Canadian.

2 More AC and CC participants than NAC participants were excluded
due to insufficient procedure-use observations, but there was no evidence
that the analyses of procedure RTs involved a subset of substantially lower
skilled AC and CC participants. For the 18 AC and CC participants
excluded, the mean French kit score was 164.1 (SD - 52.5), and for the 30
included, the mean was 149.2 (SD = 43.4), r(46) = 1.06, SE = 14.0, p =
.29. Similarly, with respect to overall arithmetic retrieval RTs (averaged
over problem size and operation), the mean RT for excluded participants
(811 ms, SD = 136.0) did not differ significantly from those included (864
ms, SD = 130.8), «46) = 1.34, SE = 39.6, p = .19.
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x, 0 + x - x), subtraction (x - x = 0, x - 0 = x), multiplication
(x X 0 = 0, 0 X x = 0), and division (0 H- x = 0). For one
problems, only multiplication (x X 1 = x, 1 X x = x) and division
(x + x= l,x + 1 — x) problems correspond to rules; one addition
(x + 1 = ?, 1 + x = ?) and one subtraction (x - 1 = ?, x - m =
1?) problems must be solved by retrieval of a specific fact or by
using a procedure such as counting. We assumed that the remem-
ber strategy was reported to indicate retrieval of a rule or a specific
fact (e.g., x + 0 = x, 5 — 4 = 1). Participants in all three groups
reported almost exclusive reliance on retrieval for zero problems
(>96%). The two Chinese groups also reported retrieval almost
exclusively for one problems (s96%), but NACs reported proce-
dures (counting or transforming) 13% of the time for one additions
and 17% for one subtractions. Among the zero and one items, only
one-addition and one-subtraction problems cannot be solved by a
rule, and it was only for these specific problems that participants
reported use of counting or transformation strategies.3 The follow-
ing analyses examined speed and accuracy of performance sepa-
rately for zero and one problems. Table 8 contains the mean RTs
and error rates as a function of group and operation for zero
problems and one problems.

Table 9
Analyses of Variance for Mean Correct RT and Error Rate for
Zero and One Problems

Source

Group (G)
MSE

Operation (O)
G X O

MSE

df

2
69

3
6

207

Zero problems

RT E%

Between subjects

13.13** 0.90
47,079.11 32.79

Within subjects: Operation

40.79** 13.92**
7.97** 1.96

12,911.67 21.91

One

RT

7.21
62,128.87

problems

E%

** 3.76*
20.57

77.90** 6.57*
8.90** 2.31*

6,430.58 11.93

Note. RT is in milliseconds. RT = reaction time; E% = mean error
percentage.
*/><.05. **/><.01.

Zero Problems

Reaction time. The three groups differed significantly in over-
all RT (see Table 9 for source table). NACs had a slower overall
RT (883 ms) than CCs (744 ms) and ACs (745 ms). RT differed
across operations. The rank order from the fastest to the slowest
was addition (707 ms), multiplication (741 ms), subtraction (814
ms), and division (900 ms). The Group X Operation interaction
was significant. As Table 8 shows, the interaction was due mainly
to the much slower RTs of NACs for subtraction and division.

Table 8
Mean Correct RT and Error Rate for Zero and One Problems
as a Function of Group and Operation

Zero problems One problems

Operation RT E% RT E%

AC
Addition
Multiplication
Subtraction
Division

M
CC

Addition
Multiplication
Subtraction
Division

M
NAC

Addition
Multiplication
Subtraction
Division

M

722
726
736
796
745

676
704
767
828
744

724
793
940

1,077
883

3.1
6.3
3.3
1.4
3.5

1.7
3.1
5.0
0.5
2.6

0.8
6.9
5.0
1.4
3.5

737
695
753
784
742

700
661
767
852
745

778
735
910

1,024
862

1.2
0.9
1.9
0.9
1.2

2.8
0.5
1.6
3.7
2.1

2.8
1.2
2.5
5.6
3.0

Note. RT is in milliseconds. One-addition and one-subtraction problems
cannot be solved by general rules. RT = reaction time; E% = mean error
percentage; AC = Asian Chinese; CC = Chinese Canadian; NAC =
non-Asian Canadian.

Error rate. The three groups did not differ in overall error
rates (see Table 9 for source table). The error rates differed across
operations, however. The rank order from the least error prone to
the most error prone was division (1.1%), addition (1.9%), sub-
traction (4.4%), and multiplication (5.4%). The Group X Opera-
tion interaction was marginally significant (p = .07), but this did
not seem to reflect any simple pattern in the data.

One Problems

Reaction time. The three groups differed in overall RT for one
problems (see Table 9 for source table). NACs had a slower overall
RT (862 ms) than CCs (745 ms) and ACs (742 ms). RT differed
across operations. The rank order from the fastest to the slowest
was multiplication (697 ms), addition (738 ms), subtraction (810
ms), and division (887 ms). The Group X Operation interaction
was significant. As Table 8 shows, the interaction owed mainly to
the much slower RTs of NACs for subtraction and division.

Error rate. The three groups differed in overall error rates (see
Table 9 for source table). The error rate for NACs was 3.0%
compared with 2.1% for CCs and 1.2% for ACs. The error rates
differed across operations. The rank order from the least error
prone to the most error prone was multiplication (0.9%), subtrac-
tion (2.0%), addition (2.3%), and division (3.4%). The Group X
Operation interaction also was significant. As can be seen from
Table 8, this interaction was due mainly to the much higher error
rates for NACs and CCs for division.

3 Because we did not provide a rule strategy option, one might ask why
our participants chose remember rather than other for rule-based zero and
one problems. One possibility could be that the experience of remembering
a rule is similar to the experience of retrieving a specific fact (e.g., no
intervening calculations) but contrasts clearly with the experience of per-
forming counting or transformation strategies. This is not a peculiarity of
our strategy-selection method. Kirk and Ashcraft (2001), using a full-report
method, found that people often did not distinguish between retrieval of
rules and retrieval of answers in their strategy reports for zero and one
items.
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Summary

All three groups reported almost exclusive reliance on retrieval
for zero problems. For one problems, the two Chinese groups
reported retrieval almost exclusively, but NACs reported substan-
tial (about 15%) counting or transforming for one-addition and
one-subtraction problems. Relative to the two Chinese groups,
NACs produced longer RTs for zero and one problems, especially
for subtraction and division. NACs were also more error prone in
solving one problems. In general, performance of zero and one
problems was similar to retrieval performance for small-number
problems in the standard set. Indeed, the pattern of Group X
Operation RT means observed for zero and one problems was very
similar to the pattern observed for small-problem retrieval trials
(Table 4): The 12 Group X Operation RT means for small prob-
lems in Table 4 correlated .88 and .81 (ps < .001) with the
corresponding zero and one RT means in Table 8.

Calculator Use: Relation to Simple and Complex
Cognitive Arithmetic

LeFevre and Liu (1997) found that Asian Chinese university
students studying in Canada reported much less calculator use than
Canadian university students. Only 10% of their Chinese students
reported using a calculator before entering a university, whereas
60% of the Canadian sample claimed to use calculators for simple
arithmetic well before they entered a university. We wanted to
determine if this pattern held for our samples and whether reported
calculator use was predictive of arithmetic performance. The scale
used here to rate calculator use ranged from 1 (never) to 5 (al-
ways). The mean ratings for frequency of calculator use were AC
M = 1.5, CC M = 2.6, NAC M = 2.5, F(l, 68) = 153.5,
MSE = 0.39, p < .001. Participants reported using a calculator
more often in secondary (2.9) than in elementary (1.6) school, F(l,
68) = 19.17, MSE = 0.86, p < .001, but the increase was greater
for the two Canadian groups than for the AC group, F(2,
68) = 10.18, MSE = 0.39, p < .001. The mean ratings for
calculator use during elementary school for NACs, CCs, and ACs,
respectively, were 1.6, 1.9, 1.2, whereas the respective means for
secondary school were 3.4, 3.3, and 1.9.

Use of calculators was reportedly rare in elementary school for
all groups, but especially for AC; 83% of ACs reported never using
a calculator in elementary school compared with 44% for NACs
and CCs collectively. Among CCs and NACs, 81% reported using
a calculator at least sometimes in secondary school (48% reported
using a calculator often or always). In contrast, only 25% of ACs
reported using a calculator at least sometimes in secondary school,
and 46% reported never using a calculator in secondary school. In
summary, our results indicated that calculator use was relatively
rare for ACs before university. In contrast, CCs and NACs were
more likely to begin using a calculator in elementary school, and
reliance on calculators was substantial by the time they were in
secondary school.

Across the 72 participants, reported calculator use (averaged
over elementary and secondary school ratings) was negatively
correlated to French kit performance, r(70) = —.33, p = .004. In
contrast, with respect to simple arithmetic, calculator use was not
reliably predictive of overall mean RT on the simple-arithmetic
tasks, r(70) = .15, p = .216, overall simple-arithmetic error rate,
r(70) = .20, p = .096, or overall percentage use of retrieval for

simple arithmetic, r(70) = -.19,p = .118. Thus, lower calculator
use was specifically associated with greater mental proficiency at
the relatively complex procedural operations required for the
French kit (i.e., carrying, borrowing, or place keeping). French kit
scores were negatively related to simple-arithmetic RT, r(70) =
-.73, p < .001; however, as would be expected, French kit
performance increased as time to perform the elementary compo-
nent problems decreased (Geary & Widaman, 1992). In a multiple
regression analysis with French kit performance as the dependent
measure, calculator use (j3 = -.29, SE = 4.48, p = .005) and
simple-arithmetic RT (|3 = -.70, SE = 0.02, p < .001) each
accounted for significant variability, R2 = .59, F(2, 69) = 49.3,
MSE = 963.39, p < .001.

Discussion

The discussion is organized around the three main issues devel-
oped in the introduction. We begin by addressing the usage of
retrieval versus procedural strategies in skilled adults' perfor-
mance of simple arithmetic. Next we discuss the PSE and its
sources. Finally, we discuss the sources of the observed differ-
ences in arithmetic performance of North American and Chinese
adults.

Memory Retrieval Versus Procedural Strategies in Skilled
Adults' Simple Arithmetic

Until recently, it was common to assume in cognitive arithmetic
research that skilled adults' simple arithmetic was mediated more
or less exclusively by direct retrieval from memory (cf. Ashcraft,
1992; Campbell, 1995). One purpose of this study was to examine
comprehensively adults' use of retrieval and procedural strategies
for simple arithmetic. Our results were consistent with previous
research indicating Chinese adults' almost exclusive reliance on
retrieval for addition (93%) and multiplication (99%; Geary,
1996b; LeFevre & Liu, 1997). Both ACs and CCs reported a
substantially lower rate of retrieval for subtraction and division
problems, however, especially for large problems (<70%). Rela-
tive to the two Chinese groups, NACs reported less use of retrieval
for addition (76%), subtraction (57%), and division (57%) but
were similar to the other groups in reporting almost exclusive use
of retrieval for multiplication (96%). The greater use of procedures
reported by NACs relative to the two Chinese groups was approx-
imately the same for small and large problems, except for addition
(i.e., there was no overall Group X Size interaction). Thus, use of
procedures by NACs was not, overall, disproportionately greater
for the large problems.

There are both similarities and differences between our strategy
results and previous findings. With respect to simple addition, the
76% retrieval reported by NACs was similar to previous research
testing young North American adults (e.g., 69% in Campbell &
Timm, 2000; 73% in Geary, 1996b; 66% in Hecht, 1999; 71% in
LeFevre, Sadesky, & Bisanz, 1996). The 57% retrieval reported by
NACs for simple subtraction was somewhat lower than the 71%
retrieval for subtraction found by Geary, Frensch, and Wiley
(1993) for American university students. For simple division,
LeFevre and Morris (1999) found 55% reported retrieval for
Canadian undergraduates, which closely matched NACs here
(57%), but both of these results were much lower than the 90%
retrieval found for division by Campbell and Timm (2000). The
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96% retrieval for multiplication reported by our NAC sample was
higher than in previous research examining North American uni-
versity students, although the previous results were quite variable
(i.e., 87% in Campbell & Timm, 2000; 78% in Hecht, 1999; 85%
in LeFevre, Bisanz, et al., 1996; 59% in LeFevre & Morris, 1999).
The variability across studies in reported usage of retrieval sug-
gested that strategy reports were influenced by a variety of factors,
including population or sampling differences, speed-accuracy cri-
teria, experimental design, and strategy instructions (cf. Campbell
& Timm, 2000; Kirk & Ashcraft, 2001; LeFevre & Morris, 1999).
We do not assume, therefore, that our strategy results have abso-
lute validity; but we believe, the pattern of differential use of
retrieval across groups, operations, and problem size is generally
valid. The three groups received the same strategy instructions,
and our instructions did not comment on the merits or normative
usage of specific strategies or indicate that strategy use might vary
systematically with operation or problem size.

Indeed, the pattern of strategy reports and performance data was
coherent and consistent with previous research (e.g., LeFevre,
Bisanz et al., 1996; LeFevre, Sadesky, et al., 1996). Whereas
retrieval was the predominant strategy reported, procedures were
reported more often for large than for small problems. This was
expected because small problems are encountered more frequently
and may generally be easier to memorize (Geary, 1996b). More-
over, RTs were substantially longer for procedure trials than re-
trieval trials, and this effect was greater for large problems (cf.
Tables 4 and 7). This would arise because procedures generally
require more (or more difficult) steps for large than for small
problems. People may initially attempt retrieval before switching
to a procedure (Campbell & Timm, 2000; Siegler & Shrager,
1984), which also would inflate procedure RTs. Procedural strat-
egies were more error prone compared with retrieval (cf. Tables 4
and 7), an effect that would arise from having to perform multistep
procedures under relatively high speed pressure. The strategy
reports for zero and one problems also reinforce the validity of the
reports: Among the zero and one items, only one-addition and
one-subtraction problems cannot be solved by remembering a rule,
and it was for these specific zero or one problems that participants
were most likely to report use of counting or transformation
strategies rather than remembering.

Retrieval use varied across operations, with multiplication
(98%) the highest, followed by addition (88%), subtraction (72%),
and division (69%). Why would retrieval be more common for
addition and multiplication relative to subtraction and division?
There probably were both structural and experiential influences.
Addition and multiplication are commutative operations (i.e., op-
erand order is irrelevant); indeed, transfer studies indicate that
commuted pairs (e.g., 3 X 6 and 6 X 3 ) access a common memory
node (Campbell, 1999; Rickard & Bourne, 1996). In contrast,
division and subtraction are not commutative, and the transfer
studies indicate weak or no transfer between order-reversed pairs
(e.g., 1 8 - ^ 3 = 6 and 18 -=- 6 = 3). This implies that such items
involve separate memory representations. It follows that within the
domain of simple arithmetic, there are many more subtraction and
division facts to be memorized than there are addition and multi-
plication facts to be memorized; consequently, we expected more
associative interference in memorizing subtraction and division
facts. Greater retrieval interference would decrease the relative
efficiency of retrieval and promote use of procedures for subtrac-
tion and division (Campbell & Timm, 2000; Siegler & Shipley,

1995). Another consideration is that addition is learned before
subtraction, and multiplication is learned before division. Conse-
quently, children initially use knowledge of addition and multipli-
cation to solve corresponding subtraction and division problems
(Geary, 1994). The asymmetry whereby addition and multiplica-
tion facts are used to solve subtraction and division problems,
while the reverse is not true, would tend to reinforce and perse-
verate a memory-strength advantage for addition and multiplica-
tion facts relative to subtraction and division. Indeed, in agreement
with the strategy reports, analysis of transfer effects indicates that
skilled adults rely on knowledge of multiplication to perform
division but not vice versa (Campbell, 1997, 1999; LeFevre &
Morris, 1999).

Finally, our data also indicated more use of retrieval for multi-
plication than addition, especially for the larger problems. Because
addition is learned first and multiplication may be solved by
repeated addition, less retrieval for addition is perhaps somewhat
surprising. The explanation may lie in the relative efficiency of
retrieval and procedural strategies for addition and multiplication.
According to Siegler's adaptive strategy choice model (Siegler &
Shipley, 1995), an arithmetic strategy is selected on the basis of
knowledge of its efficiency (i.e., speed and probability of success).
In this view, less retrieval for addition than multiplication implies
an adaptation to the relative efficiency of retrieval versus proce-
dures for addition and multiplication and ought to be reflected in
performance. Indeed, as Table 2 shows, addition performance for
larger problems was faster and less error prone relative to the
corresponding multiplication problems, despite less reported re-
trieval for the larger addition problems. Greater use of retrieval for
multiplication than addition, despite less efficient retrieval for
multiplication (see Table 4), would occur if procedures for multi-
plication generally were even more inefficient relative to proce-
dural strategies for addition. This is plausible. Counting and trans-
formation strategies often entail one or more incrementing (or
decrementing) steps. Even for larger addition problems, these
incrementing steps may simply involve counting by ones or twos
(e.g., 6 + 8 is 6 + 6= 12+ [8-6 = 2] + ! = 13 + 1 = 14),
whereas for multiplication the incrementing steps for large prob-
lems necessarily involve larger, more difficult additions or sub-
tractions (e.g., 6X8 is 6X6 = 36+ [8-6 = 2 X 6 ] = 36 +
6 = 42 + 6 = 48). There were insufficient procedural multipli-
cation trials for a detailed analysis, but the difficulty of procedural
strategies for large multiplication problems was evident in NACs'
multiplication data: The 3% difference in use of procedures be-
tween small (2%) and large (5%) multiplication problems reported
by NACs (see Table 2) accounted for 24% of NACs' overall
multiplication PSE (see Figure 1). A small increase in use of
procedures for large multiplication problems translated into a
substantial increase in the PSE, which suggested that procedural
strategies for large multiplication problems were very inefficient.
In this case, the difficulty of procedural strategies for large mul-
tiplication problems could promote more use of retrieval for mul-
tiplication relative to addition, even though retrieval for multipli-
cation is less efficient than retrieval for addition.

Sources of the Problem-Size Effect

The PSE has been studied systematically for decades (e.g.,
Clapp, 1924; Norem & Knight, 1930), but the present study was
the first to comprehensively examine the PSE in skilled adults for
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all four basic operations. The RT PSE was largest for subtraction
(336 ms), then division (254 ms), multiplication (209 ms), and
addition (151 ms; see Table 2). The classification of trials as
involving retrieval or procedures allowed us to isolate three factors
contributing to the PSE: (a) the relative speed of retrieval pro-
cesses for small and large problems, (b) the relative speed of
procedural strategies for small and large problems, and (c) the
proportions of retrieval versus procedure usage for small and large
problems. In the present experiment, the PSE on RT arose from
more use of procedural strategies for large problems and lower
efficiency of both procedural and retrieval processes for large
problems. Overall, the percentage of procedure use reported was
higher for large problems (27%) than for small problems (10%; see
Table 2). Given that RTs were substantially slower for procedures
compared with retrieval (Tables 4 and 7), the higher rate of
procedure use for large problems would contribute to the PSE on
RT. Furthermore, execution of procedural strategies was slower
for large compared with small problems (Table 7). Thus, use of
procedures contributed to the PSE both through more frequent use
of procedural strategies for large problems and slower execution of
procedures for large problems.

Nonetheless, for all groups and operations, there was a PSE for
trials reported as retrieval based, both in terms of RT and errors.
For retrieval trials only (i.e., with procedure trials excluded), the
RT PSEs across operations were 122 ms for subtraction, 100 ms
for division, 177 ms for multiplication, and 66 ms for addition.
Memory strength for larger problems would be weaker due to
lower normative frequency (and therefore less practice) relative to
smaller problems. Other retrieval-related influences, such as
greater associative interference for larger problems, might also
contribute to the PSE on retrieval trials (Campbell, 1995; Geary,
1996b; Zbrodoff, 1995).

In overview, on the basis of the classification of arithmetic trials
into retrieval and procedure categories, the present data indicated
that the PSE was due to three main factors: greater use of relatively
slow procedural strategies for larger problems and slower execu-
tion of both procedures and retrieval processes for larger problems.
A comparison of the magnitude of the RT PSE for all trials to the
RT PSE for retrieval trials only indicated that on average the
percentages of the all-trials' PSE due to retrieval were 42% for
NACs, 57% for CCs, and 53% for ACs. Thus, roughly speaking,
about half of the PSE on RT was due to lower efficiency of
retrieval for large problems, and half was due to greater use of
slower procedural strategies for large problems.

Sources of Cross-Cultural Differences
in Arithmetic Performance

Simple Arithmetic

The two Chinese groups were practically equivalent in all as-
pects of their simple-arithmetic performance, and both were sub-
stantially better than the NAC group. For the standard set of
simple-arithmetic problems, NACs were 24% slower overall than
ACs and 21% slower than CCs. The slower RTs and greater PSEs
produced by NACs reflected more use of relatively slow proce-
dural strategies for both small and large problems and also slower
retrieval processes especially for large problems. The analysis of
zero and one problems tested whether the groups differed in
accessing the relevant rules, facts, or procedures for these items. In

general, the pattern of group differences on zero and one problems
paralleled that for the results for small problems in the standard
set: AC and CC were very similar, and both were faster than NAC.
Thus, NACs' relatively inefficient performance was observed con-
sistently across the whole domain of simple arithmetic.

An important implication of our study is that receiving formal
mathematics education in China, as opposed to North America, is
not necessarily associated with long-term differences in simple-
arithmetic performance. In fact, ACs and CCs were practically
equivalent in all aspects of their simple-arithmetic performance,
despite the fact that ACs had more years of education on average.
Because CCs and NACs both received their formal mathematics
education in Canada, the simple-arithmetic advantage of CCs over
NACs presumably reflects extracurricular influences. Previous
research (Stevenson, Chen, & Lee, 1993; Stevenson et al., 1990)
has identified extracurricular cultural differences between North
America and East Asia that likely contribute to the differences in
early mathematical development and achievement. Indeed, math-
ematics achievement advantages of Asian American compared
with Caucasian American high school students are associated with
a variety of motivational factors (e.g., parents and peers holding
high academic standards, believing that effort mediates success,
pursuing extracurricular instruction or practice, having positive
attitudes about achievement; Chen & Stevenson, 1995; see also
Whang & Hancock, 1994). The present results suggest that these
informal cultural-specific factors, rather than differences in formal
education, determine the long-term differences in simple-
arithmetic achievement levels of Chinese and North American
adults (e.g., Geary et al., 1997; Geary, Salthouse, et al., 1996).

Complex Arithmetic

Whereas the two Chinese groups were equivalent on the simple-
arithmetic tasks, ACs outperformed both CCs and NACs on the
French kit (33% and 58%, respectively). There also was a trend for
CCs to score higher than NACs (19%). Because the French kit
tested relatively complex mental arithmetic, the advantage of ACs
relative to CCs on the French kit, but not on the simple-arithmetic
tasks, suggested that ACs were specifically better at executing the
relatively complex procedural operations required by the French
kit (e.g., carrying, borrowing, or place keeping). This advantage
could be related to a better understanding of the conceptual struc-
tures that support arithmetic procedures (e.g., Fuson & Kwon,
1992) or other factors that increase the speed of procedural oper-
ations. Geary and Widaman (1992) found that speed of carrying in
addition and multiplication was strongly related to performance on
the French kit. One possibility could be that better performance on
the French kit by ACs is tied to calculator use. The two Canadian
groups reported more calculator use beginning in elementary
school, and this difference was larger for secondary school. Con-
sequently, ACs might have had more practice performing rela-
tively complex arithmetic without the aid of a calculator. This
would promote superior paper-and-pencil skills for complex arith-
metic operations such as carrying, borrowing, and place keeping.

In contrast, the slightly better performance of CCs relative to
NACs on the French kit probably was due to better performance of
the simple-arithmetic components. In fact, covarying out mean
simple-arithmetic RT (i.e., averaging over problem size and oper-
ation) completely eliminated the advantage of CCs relative to
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NACs on the French kit, F(l, 46) < 1, MSE = 632.47.4 None-
theless, for procedure trials in the simple-arithmetic task, CCs
were actually more error prone (but no faster) than NACs (see
Table 7), suggesting that use of procedures for simple arithmetic
(e.g., counting or transforming) might not have been as well
developed for CCs as for NACs. Thus, CCs were clearly better
with respect to retrieval-based performance of simple arithmetic
(Table 4), but procedure-based performance (Table 7) was slightly
less efficient. A trade-off between a retrieval advantage for CCs
relative to NACs, but a small procedural disadvantage, potentially
explains why CCs and NACs presented quite similar performances
on the French kit despite the substantial advantage CC presented
for simple arithmetic.

Other Potential Sources

Apart from cultural differences, what other factors might con-
tribute to cross-cultural differences in basic mathematics perfor-
mance? One consideration is that the arithmetic differences reflect
general differences in cognitive ability or intelligence. Contrary to
this, differences between East Asian and North American samples
are still found when IQ is controlled and are observed for arith-
metic but not for nonarithmetic measures of cognitive or academic
performance (Geary, 1996a; Geary, Salthouse, et al., 1996). An-
other consideration is linguistic experience. Language has complex
effects on arithmetic performance (Cocking & Mestre, 1988;
LeFevre, 1998), and there is evidence that arithmetic memory is at
least partially language based (Campbell et al., 1999; Dehaene,
Spelke, Final, Stanescu, & Tsivkin, 1999; but see Noel, Robert, &
Brysbaert, 1998). Thus, the fact that our two Chinese groups were
fluently bilingual could be a factor in their better simple-arithmetic
performance. Geary, Cormier, Goggin, Estrada, and Lunn (1993)
found, however, that adults' simple addition and multiplication
performance was not affected by degree of bilingualism. Another
possible linguistic influence is that Mandarin uses a consistent
system for constructing number names (e.g., 12 is ten two and 53
is five ten three), whereas English is more irregular (e.g., the teens
words are quite idiosyncratic). These linguistic differences con-
tribute to differences in Chinese- and English-speaking children's
strategies for representing quantity (Fuson & Kwon, 1991, 1992;
Miura et al., 1994; but see Towse & Saxton, 1997). Nonetheless,
whereas linguistic factors apparently confer an advantage for Chi-
nese children's early mathematical development relative to North
American children (Miller, Smith, Zhu, & Zhang, 1995), they
apparently do not constrain the ultimate level of skill that can be
achieved in arithmetic. Geary, Salthouse, et al. (1996) and Geary
et al. (1997) found that arithmetic differences between North
American and Chinese samples were observed for younger adults
but not for older adults (60 to 80 years old) with IQ and years of
education controlled. We would expect an advantage for the older
Chinese cohort if the Chinese language per se conferred a perma-
nent, intrinsic advantage for simple arithmetic. The fact that no
such advantage is observed argues against the possibility that the
arithmetic difference for young adults is due to structural linguistic
factors.

Summary and Conclusions

Our results provide several important insights into the nature of
skilled adults' simple-arithmetic knowledge and sources of cross-

national differences in arithmetic performance. For complex arith-
metic (i.e., the French kit), AC substantially outperformed both CC
and NAC. In contrast, for simple arithmetic, AC and CC were
practically equivalent and both performed substantially better than
NAC. The results demonstrate that cross-cultural differences in
simple and complex arithmetic are dissociable and probably arise
from different influences. ACs' superior performance relative to
CCs on complex arithmetic, given their equivalent simple-
arithmetic performance, implies better developed cognitive skills
for complex arithmetic procedures (e.g., borrowing, carrying,
place holding). In keeping with this, calculator use was negatively
correlated with French kit performance, and ACs reported much
less calculator use before college relative to both Canadian groups.
ACs evidently had more practice performing relatively complex
arithmetic without the aid of a calculator. Interestingly, calculator
use was not predictive of simple-arithmetic performance, indicat-
ing that greater calculator use is not necessarily associated with
weaker elementary arithmetic skills.

Another important conclusion from our experiment is that cross-
cultural differences in young adults' simple-arithmetic skills are
not directly attributable to cross-national differences in formal
education. ACs and CCs, despite receiving their formal math
education in China and Canada, respectively, were practically
equivalent in all aspects of simple arithmetic. In contrast, CCs and
NACs, who both received formal mathematics education in Can-
ada, presented substantively different skill levels. The superior
simple-arithmetic performance of CCs relative to NACs implies
that extracurricular cultural-specific factors (cf. Chen & Steven-
son, 1995; Stevenson, Chen, & Lee, 1993; Stevenson, Lee, et al.,
1990) rather than cross-national differences in formal education
underlie differences in simple-arithmetic performance observed
between Chinese and North American adults. NACs' relatively
poor simple-arithmetic performance resulted both from greater use
of slow procedural strategies (e.g., counting or decomposition) and
from slower retrieval processes especially for numerically larger
problems. In contrast, NACs presented equivalent or perhaps
slightly better efficiency for procedures for simple arithmetic (i.e.,
lower error rates relative to CCs). NACs might simply have been
more practiced at using such strategies. Nonetheless, NACs' over-
all greater use of procedures, which are generally less efficient
than retrieval, contributed to their overall relatively poor simple-
arithmetic performance.

Finally, our study was the first to comprehensively address the
role of retrieval versus procedural strategies in skilled adults' basic
arithmetic, examining performance of all four basic operations by
the same participants. The groups reported very little procedure
use for simple multiplication, but NACs reported substantial pro-
cedure use for basic addition, and all three groups reported relying
substantially on procedural strategies for the larger simple subtrac-
tion and division problems. Overall, about half of the PSE in
simple arithmetic (i.e., longer RTs for large-number problems
relative to small-number problems) was due to slower retrieval for
large problems, and half was due to greater use of slower proce-
dural strategies for large problems. The results indicate that pro-
cedural strategies constitute a major part of educated adults' rep-
ertoire of simple-arithmetic skills. Indeed, exclusive reliance on
retrieval for simple arithmetic probably is a rare achievement.

' Our thanks to an anonymous reviewer for suggesting this analysis.



314 CAMPBELL AND XUE

Even ACs, whose educational and cultural experiences apparently
provide an especially strong foundation for simple arithmetic, did
not report having memorized all the basic number facts. The
findings confirm the central importance of procedural knowledge
in skilled adults' performance of elementary mathematics.
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