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Learning and executive functions such as task-switching share common neural substrates, notably

prefrontal cortex and basal ganglia. Understanding how they interact requires studying how cognitive

control facilitates learning but also how learning provides the (potentially hidden) structure, such as

abstract rules or task-sets, needed for cognitive control. We investigate this question from 3 comple-

mentary angles. First, we develop a new context-task-set (C-TS) model, inspired by nonparametric

Bayesian methods, specifying how the learner might infer hidden structure (hierarchical rules) and decide

to reuse or create new structure in novel situations. Second, we develop a neurobiologically explicit

network model to assess mechanisms of such structured learning in hierarchical frontal cortex and basal

ganglia circuits. We systematically explore the link between these modeling levels across task demands.

We find that the network provides an approximate implementation of high-level C-TS computations, with

specific neural mechanisms modulating distinct C-TS parameters. Third, this synergism yields predic-

tions about the nature of human optimal and suboptimal choices and response times during learning and

task-switching. In particular, the models suggest that participants spontaneously build task-set structure

into a learning problem when not cued to do so, which predicts positive and negative transfer in

subsequent generalization tests. We provide experimental evidence for these predictions and show that

C-TS provides a good quantitative fit to human sequences of choices. These findings implicate a strong

tendency to interactively engage cognitive control and learning, resulting in structured abstract repre-

sentations that afford generalization opportunities and, thus, potentially long-term rather than short-term

optimality.
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Life is full of situations that require us to appropriately select

simple actions, like clicking Reply rather than Delete to an e-mail,

or more complex actions requiring cognitive control, like changing

modes of operation when switching from a Mac to a Linux

machine. These more complex actions themselves define simple

rules, or task-sets, that is, abstract constructs that signify appro-

priate stimulus–response groupings in a given context (Monsell,

2003). Extensive task-switching literature has revealed the exis-

tence of task-set representations in both mind and brain (functional

magnetic resonance imaging: Dosenbach et al., 2006; monkey

electrophysiology: Sakai, 2008; etc.). Notably, these task-set rep-

resentations are independent of the context in which they are valid

(Reverberi, Görgen, & Haynes, 2011; Woolgar, Thompson, Bor, &

Duncan, 2011) and even of the specific stimuli and actions to

which they apply (Haynes et al., 2007) and are thus abstract latent

constructs that constrain simpler choices.

Very little research addresses how such task-sets are constructed

during uninstructed learning and for what purpose (i.e., do they

facilitate learning?). Task-switching studies are typically super-

vised: The relevant rule is explicitly indicated, and the rules

themselves are either well known (e.g., arrows pointing to the

direction to press) or highly trained (e.g., vowel–consonant dis-

criminations). In some studies, participants need to discover when

a given rule has become invalid and switch to a new valid rule

from a set of known candidate options (Hampton, Bossaerts, &

O’Doherty, 2006; Imamizu, Kuroda, Yoshioka, & Kawato, 2004;

Mansouri, Tanaka, & Buckley, 2009; Nagano-Saito et al., 2008;

Yu & Dayan, 2005) without having to learn the nature of the rules

themselves. Conversely, the reinforcement learning (RL) literature

has largely focused on how a single rule is learned and potentially
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adapted, in the form of a mapping between a set of stimuli and

responses.

However, we often need to solve these two problems simulta-

neously: In an unknown context, the appropriate rules might be

completely new and hence need to be learned, or they might be

known rules that only need to be identified as valid and simply

reused in the current context. How do humans simultaneously

learn (a) the simple stimulus–response associations that apply for

a given task-set and (b) at the more abstract level, which of the

candidate higher order task-set rules to select in a given context (or

whether to build a new one)? Though few studies have confronted

this problem directly, a few of them have examined simultaneous

learning at different hierarchical levels of abstraction. For exam-

ple, subjects learned more efficiently when a simplifying rule-like

structure was available in the set of stimulus–action associations to

be learned (“policy abstraction”; Badre, Kayser, & D’Esposito,

2010). Collins and Koechlin (2012) showed that subjects build

repertoires of task-sets and learn to discriminate between whether

they should generalize one of the stored rules or learn a new one

in a new temporal context. Both studies thus showed that when

structure was available in the learning problem (signified by either

contextual cues or temporal structure), subjects were able to dis-

cover such structure and make efficient use of it to speed learning.

However, these studies did not address whether and how subjects

spontaneously and simultaneously learn such rules and sets of

rules when the learning problem does not in some way cue that

organization. One might expect such structure building in part

because it may afford a performance advantage for subsequent

situations that permit generalization of learned knowledge.

Here, we develop computational models to explore the impli-

cations of building task-set structure into learning problems,

whether or not there is an immediate advantage to doing so. We

then examine how, when confronted with new contexts, humans

and models can decide whether to reuse existing structured repre-

sentations or to create new ones.

We have thus far considered how rules requiring cognitive

control (task-sets) are created and learned. We now turn to the

reciprocal question needed to close the loop: How does cognitive

control facilitate learning?

For example, the computational RL framework typically as-

sumes that subjects learn for each state (e.g., observed stimulus) to

predict their expected (discounted) future rewards for each of the

available actions. These state–action reward values are used to

determine the appropriate action to select (e.g., Daw & Doya,

2006; Frank, Moustafa, Haughey, Curran, & Hutchison, 2007;

Samejima, Ueda, Doya, & Kimura, 2005; Sutton & Barto, 1998).

Most RL studies assume that the relevant state space is known and

fully observable. However, there could be uncertainty about the

nature of the state to be learned, or this state might be hidden (e.g.,

it may not represent a simple sensory stimulus but could be a

sequential pattern of stimuli or could depend on the subject’s own

previous actions). When given explicit cues informative about

these states (but not which actions to take), participants are much

more likely to discover the optimal policy in such environments

(Gureckis & Love, 2010). Without such cues, learning requires

making decisions based on the (partially) hidden states. Thus,

cognitive control may be necessary for hypothesis testing about

current states that act as contexts for learning motor actions (e.g.,

treating the internally maintained state as if it was an observable

stimulus in standard RL).

Indeed, recent behavioral modeling studies have shown that

subjects can learn hidden variables such as latent states relevant for

action selection, as captured by Bayesian inference algorithms or

approximations thereof (Collins & Koechlin, 2012; Frank & Ba-

dre, 2012; Gershman, Blei, & Niv, 2010; Redish, Jensen, Johnson,

& Kurth-Nelson, 2007; Todd, Niv, & Cohen, 2008; Wilson & Niv,

2011). In most of these studies, there is a clear advantage to be

gained by learning these hidden variables, either to optimize learn-

ing speed (Behrens, Woolrich, Walton, & Rushworth, 2007) or to

separate superficially similar conditions into two different latent

states. Thus, learning often implicates more complex strategies,

including identification and manipulation of hidden variables.

Some studies have shown that subjects even tend to infer hidden

patterns in the data when they do not exist and afford no behavioral

advantage (Yu & Cohen, 2009) or when it is detrimental to do so

(Gaissmaier & Schooler, 2008; Lewandowsky & Kirsner, 2000).

Thus, humans may exhibit a bias to use more complex strategies

even when they ‘are not useful, potentially because these strategies

are beneficial in many real-life situations.

We can thus predict that subjects might adopt this same ap-

proach to create task-set structure—identifying cues as indicative

of task-sets that contextualize lower level stimulus–response map-

pings—when learning very simple stimulus–action associations

that require no such structure. This prediction relies on the three

previously described premises found in the literature:

1. When cued, rules requiring cognitive control can be

discovered and leveraged;

2. Learning may involve complex cognitive-control-like

strategies that can in turn improve learning; and

3. Subjects have a bias to infer more structure than needed

in simple sequential decision tasks.

The first two points define the reciprocal utility of cognitive

control and learning mechanisms. The third point implies that there

must be an inherent motivation for building such structure. One

such motivation, explored in more detail below, is that applying

structure to learning of task-sets may afford the possibility of

reusing these task-sets in other contexts, thus affording general-

ization of learned behaviors to future new situations. Next, we

motivate the development of computational models inspired by

prior work in the domain of category learning but extended to

handle the creation and reuse of task-sets in policy selection.

Computational Models of Reinforcement Learning,

Category Learning, and Cognitive Control

Consider the problem of being faced with a new electronic

device (e.g., your friend’s cell phone) or a new software tool.

Although these examples constitute new observable contexts or

situations, figuring out the proper actions often does not require

relearning from “scratch”. Instead, with just a little trial and error,

we can figure out the general class of software or devices to which

this applies and act accordingly. Occasionally, however, we might

need to recognize a veridical novel context that requires new

learning, without unlearning existing knowledge (e.g., learning

191CREATING TASK-SET STRUCTURE DURING LEARNING



actions for a Mac without interfering with actions for a PC). In the

problems we define below, people need to learn a set of rules

(hidden variables) that is discrete but of unknown size, that is

informed by external observable cues, and that serves to condition

the observed stimulus–action–feedback contingencies. They also

need to infer the current hidden state/rule for action selection in

any given trial. Three computational demands are critical for this

sort of problem:

1. The ability to represent a rule in an abstract form, disso-

ciated from the context with which it has been typically

associated, as is the case for task-sets (Reverberi et al.,

2011; Woolgar et al., 2011), such that it is of potentially

general rather than local use;

2. The ability to cluster together different arbitrary contexts

linked to a similar abstract task-set; and

3. The ability to build a new task-set cluster when needed,

to support learning of that task-set without interfering

with those in other contexts.

This sort of problem can be likened to a class of well-known

nonparametric Bayesian generative processes, often used in Bayes-

ian models of cognition: Chinese restaurant processes (CRPs; Blei,

Griffiths, Jordan, & Tenenbaum, 2004).1 Computational ap-

proaches suitable for addressing the problem of inferring hidden

rules (and where the number of rules is unknown) include Dirichlet

process mixture models (e.g., Teh, Jordan, Beal, & Blei, 2006) and

infinite partially observable Markov decision processes (iPOMDP;

Doshi, 2009). This theoretical framework has been successfully

leveraged in the domain of category learning (e.g., Gershman &

Blei, 2012; Gershman et al., 2010; Sanborn, Griffiths, & Navarro,

2006, 2010), where latent category clusters are created that allow

principled grouping of perceptual inputs to support generalization

of learned knowledge, even potentially inferring simultaneously

more than one possible relevant structure for categorization

(Shafto, Kemp, Mansinghka, & Tenenbaum, 2011). Furthermore,

although optimal inference is too computationally demanding and

has high memory cost, reasonable approximations have been

adapted to account for human behavior (Anderson, 1991; Sanborn

et al., 2010).

Here, we take some inspiration from these models of perceptual

clustering and extend them to support clustering of more abstract

task-set states that then serve to contextualize lower level action

selection. We discuss the relationship with our work and the

category learning models in more detail in the general discussion.

In brief, the perceptual category learning literature typically fo-

cuses on learning categories based on similarity between multidi-

mensional visual exemplars. In contrast, useful clustering of con-

texts for defining task-sets relies not on their perceptual similarity

but rather in their linking to similar stimulus–action–outcome

contingencies (see Figure 1), only one “dimension” of which is

observable in any given trial. We thus extend similarity-based

category learning from the mostly observable perceptual state

space to an abstract, mostly hidden but partially observable rule

space.

In a mostly separate literature, computational models of cogni-

tive control and learning have been fruitfully applied to studying a

wide range of problems. However, these too have limitations. In

the vast majority, learning problems are modeled with RL algo-

rithms that assume perfect knowledge of the state, although some

recent models include state uncertainty or learning about problem

structure in specific circumstances (Acuña & Schrater, 2010; Bot-

vinick, 2008; Collins & Koechlin, 2012; Frank & Badre, 2012;

Green, Benson, Kersten, & Schrater, 2010; Kruschke, 2008; Nas-

sar, Wilson, Heasly, & Gold, 2010; Wilson & Niv, 2011).

Thus, our contribution here is to establish a link between the

clustering algorithms of category learning models on the one hand

and the task-set literature and models of cognitive control and RL

on the other. The merger of these modeling frameworks allows us

to address the computational tradeoffs inherent in building versus

reusing task-sets for guiding action selection and learning. We

propose a new computational model inspired by the Dirichlet

process mixture framework, while including RL heuristics simple

enough to allow for quantitative trial-by-trial analysis of subjects’

behavior. This simplicity allows us to assume a plausible neural

1 The name “Chinese restaurant process” (Aldous, 1985) derives from
the example typically given to motivate it, of how customers arriving in a
restaurant aggregate around tables, where there an infinite number of tables
and infinite capacity on each table. This process defines a probability
distribution on the distribution of customers around tables (and is thus
informative about their clustering pattern) without needing to know in
advance a fixed number of clusters. In our situation, a task-set or rule is
akin to a table, and a new context is akin to a customer, who might either
sit at an existing table or select a new one. The rules are unobservable;
nevertheless, the CRP can define a prior probability on the hidden state (on
a potentially infinite space), the identity of which the subject needs to infer
to determine the rule with which the new context should be linked.
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Figure 1. Task-set clustering versus perceptual category clustering. A

task-set defines a set of (potentially probabilistic) stimulus–action–

outcome (S-A-O) contingencies, depicted here with deterministic binary

outcomes for simplicity. To identify similarity between disparate contexts

pointing to the same latent task-set (left), the agent has to actively sample

and experience multiple distinct S-A-O contingencies across trials (only

one S and one A from the potentially much larger set are observable in a

single trial). In contrast, in perceptual category learning, clustering is

usually built from similarity among perceptual dimensions (shown sim-

plistically here as color grouping, right), with all (or most) relevant dimen-

sions observed at each trial. Furthermore, from the experimenter perspec-

tive, subject beliefs about category labels are observed directly by their

actions; in contrast, abstract task-sets remain hidden to the experimenter

(e.g., the same action can apply to multiple task-sets and a single task-set

consists of multiple S-A contingencies). C � context; TS � task-set.
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implementation of this approximate process, grounded by the

established and expanding literature on the neurocomputational

mechanisms of RL and cognitive control. In particular, we show

that a multiple-loop corticostriatal gating network using RL can

implement the requisite computations to allow task-sets to be

created or reused. The explicit nature of the mechanisms in this

model allows us to derive predictions regarding the effects of

biological manipulations and disorders on structured learning and

cognitive control. Because it is a process model, it also affords

predictions about the dynamics of action selection within a trial

and, hence, response times.

Neural Mechanisms of Learning and Cognitive

Control

Many neural models of learning and cognitive control rely on

the known organization of multiple parallel frontal corticobasal

ganglia loops (Alexander, DeLong, & Strick, 1986). These loops

implement a gating mechanism for action selection, facilitating

selection of the most rewarding actions while suppressing less

rewarding actions, where the reward values are acquired via do-

paminergic RL signals (e.g., Doya, 2002; Frank, 2005). Moreover,

the same mechanisms have been coopted to support the gating of

more cognitive actions, such as working memory updating and

maintenance via loops connecting more anterior prefrontal regions

and basal ganglia (Frank, Loughry, & O’Reilly, 2001; Gruber,

Dayan, Gutkin, & Solla, 2006; O’Reilly & Frank, 2006; Todd et

al., 2008).

In particular, O’Reilly and Frank (2006) have shown how mul-

tiple prefrontal cortex–basal ganglia (PFC-BG) circuits can learn

to identify and gate stimuli into working memory and to represent

these states in active form such that subsequent motor responses

can be appropriately contextualized. Todd et al. (2008) provided

an analysis of this gating and learning process in terms of

POMDPs. Recently, Frank and Badre (2012) proposed a hierar-

chical extension of this gating architecture for increasing effi-

ciency and reducing conflict when learning multiple tasks. Noting

the similarity between learning to choose a higher order rule and

learning to select an action within a rule, they implemented these

mechanisms in parallel gating loops, with hierarchical influence of

one loop over another. This generalized architecture enhanced

learning and, when reduced to a more abstract computational level

model, provided quantitative fits to human subjects’ behavior, with

support for its posited mechanisms provided by functional imaging

analysis (Badre, Doll, Long, & Frank, 2012; Frank & Badre,

2012). However, neither that model nor its predecessors can ac-

count for the sort of task-set generalization to novel contexts

afforded by the iPOMDP framework and observed in the experi-

ments reported below. We thus develop a novel hierarchical ex-

tension of the corticobasal ganglia architecture to simultaneously

support the selection of abstract task-sets in response to arbitrary

cues and of actions in response to stimuli, contextualized by the

abstract rule.

The remainder of the article is organized as follows. We first

present the context-task-set (C-TS) model, an approximate non-

parametric Bayesian framework for creation, learning, and clus-

tering task-set structure, and show that it supports improved per-

formance and generalization when multiple contextual states are

indicative of previously acquired task-sets. We consider cases in

which building task-set structure is useful for improving learning

efficiency and also when it is not. We then show how this func-

tionality can be implemented in a nested corticostriatal neural

network model, with associated predictions about dynamics of

task-set and motor response selection. We provide a principled

linking between the two levels of modeling to show how selective

biological manipulations in the neural model are captured by

distinct parameters within the nonparametric Bayesian framework.

This formal analysis allows us to derive a new behavioral task

protocol to assess human subjects’ tendency to incidentally build,

use, and transfer task-set structure without incentive to do so. We

validate these predictions in two experiments.

C-TS Model Description

We first present the C-TS model for building task-set structure

given a known context and stimulus space. Below, we extend this

to the general case allowing inference about which input dimen-

sion constitutes context, which constitutes lower level stimulus,

and whether this hierarchical structure is present at all.

C-TS Model

We begin by describing the problem in terms of the following

structure. As in standard RL problems, at each time t, the agent

needs to select an action that, depending on the current state

(sensory input), leads to reinforcement rt. We confront the situa-

tion in which the link between state and action depends on higher

task-set rules that are hidden (and of unknown size; i.e., the learner

does not know how many different rules exist). To do so, we

assume that the state is itself determined hierarchically. Specifi-

cally, we assume that the agent considers some input dimensions

to act as higher order context ct potentially indicative of a task-set

and other dimensions to act as lower level stimulus st for deter-

mining which motor actions to produce. In the examples we

consider below, ct could be a color background in an experiment,

and st could be a shape.

We further assume that at any point in time, a nonobservable

variable indicates the valid rule or task-set TSt and determines the

contingencies of reinforcement:

P�rt�st, at, ct� � �TSi
P�rt�st, at, TSi� P�TSi�ct�.

For simplicity, we assume probabilistic binary feedback, such that

P�rt�st, at, TSt� are Bernoulli probability distributions. In words, the

action that should be selected in the current state is conditioned on

the latent task-set variable TSt, which is itself cued by the context.

Note that there is not necessarily a one-to-one mapping from

contexts to task-sets: Indeed, a given task-set may be cued by

multiple different contexts. We assume that the prior on clustering

of the task-sets corresponds to a “Dirichlet” process (CRP): If

contexts �c1:n� are clustered on N � n task-sets, then, for any new

context cn�1��c1:n�,

P�TS � N � 1�cn�1� � � ⁄ A

P�TS � i�cn�1� � Ni ⁄ A
, (1)

where Ni is the number of contexts clustered on task-set i, � � 0

is a clustering parameter, and A � � � �k�1 . . . N Nk � � � N is

a normalizing constant (Gershman et al., 2010). Thus, for each
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new context, the probability of creating a new task-set is propor-

tional to �, and the probability of reusing one of the known

task-sets is proportional to the popularity of that task-set across

multiple other contexts.

We do not propose that humans solve the inference problem

posed by such a generative model. Indeed, near optimal inference

is computationally extremely demanding in both memory and

computation capacities, which does not fit with our objective of

representing the learning problem as an online, incremental, and

efficient process in a way that may be plausibly achieved by

human subjects. Instead, we propose a RL-like algorithm that

approximates this inference process well enough to produce ade-

quate learning and generalization abilities but simply enough to be

plausibly carried out and to allow analysis of trial-by-trial human

behavior. Nevertheless, as a benchmark, we did simulate a more

exact version of the inference process using a particle filter with

large number of particles. As expected, learning overall is more

efficient with exact inference, but all qualitative patterns presented

below for the approximate version are similar.

The crucial aims of the C-TS model are (a) to create represen-

tations of task-sets and of their parameters (stimulus–response–

outcome mappings), (b) to infer at each trial which task-set is

applicable and should thus guide action selection, and (c) to

discover the unknown space of hidden task-set rules. Given that a

particular TSi is created, the model must learn predicted reward

outcomes following action selection in response to the current

stimulus P(r|s, a, TSi). We assume beta probability distribution

priors on the parameter of the Bernoulli distribution. Identification

of the valid hidden task-set rule is accomplished through Bayesian

inference, as follows. For all TSi in the current task-set space and

all contexts cj, we keep track of the probability that this task-set is

valid given the context, P(TSi|cj), and the most probable task-set

TSt in context ct is used for action selection. Specifically, after

observation of reward outcome, the estimated posterior validities

of all TSi are updated:

Pt�1(TSi|ct) �
P�rt|st, at, TSi� � P�TSi|ct�

�j�1...NTS
�t� P�rt|st, at, TSj� � P�TSj|ct�

, (2)

where NTS(t) is the number of task-sets created by the model up to

time t (see details below), and all probabilities are implicitly

conditioned on past history of trials. This ex-post calculation

determines the most likely hidden rule corresponding to the trial

once the reward has been observed. We assign this trial defini-

tively to that particular latent state, rather than keeping track of the

entire probability history. This posterior then determines (a) which

task-set’s parameters (stimulus–action associations) are updated

and (b) the inferred task-set on subsequent encounters of context

ct. Motor action selection is then determined as a function of the

expected reward values of each stimulus action pair given the

task-set, Q(st, ak) � E(r|st, ak, TSt), where the choice function can

be greedy or noisy, for example, softmax (see Equation 4, below).2

The last critical aspect of this model is the building of the hidden

task-set space itself, the size of which is unknown. Each time a

new context is observed, we allow the model the potential to be

linked to a task-set in the existing set or to expand the considered

task-set space, such that NTS(t � 1) � NTS(t) � 1. Thus, upon each

first encounter of a context cn � 1, we increase the current space

of possible hidden task-sets by adding a new (blank) TSnew to that

space (formally, a blank task-set is defined by initializing P(r|s, a,

TSnew) to an uninformative prior). We then initialize the prior

probability that this new context is indicative of TSnew or whether

it should instead be linked to an existing task-set, as follows:

P(TS* � . |cn�1)

�� P�TS* � TSnew�cn�1� � � ⁄ A

∀ i � new, P�TS* � TSi�cn�1� � �j P�TSi�cj� ⁄ A
. (3)

Here, � determines the likelihood of visiting a new task-set state

(as in a Dirichlet/CRP), and A is a normalizing factor: A �

� � �i,j P�TSi�cj�. Intuitively, this prior allows a popular task-set

to be more probably associated to the new context, weighed

against factor � determining the likelihood of constructing a new

hidden rule. The � can be thought of as a clustering parameter,

with lower values yielding more clustering of new contexts to

existing task-sets.3 Note that the new task-set might never have

been estimated as valid either a priori (and thus never chosen) or

a posteriori (and thus remain blank). Therefore, multiple contexts

could feasibly link to the same task-set and the number of filled

(not blank) task-sets does not need to increase proportionally with

the number of contexts. We can estimate the expected number of

existing task-sets by summing across all potential task-sets their

expected probability across contexts. Finally, note that since there

is no backward inference and only one history of assignments is

tracked (partly analogous to a particle filter with a single particle),

we use probabilities rather than discrete number assignments to

clusters to initialize the prior. The approximation made in the

Bayesian inference, which in its exact form would require

keeping track of all possible clustering of previous trials and

summing over them, which is computationally intractable,

means that at each trial, we collapse the joint posterior on a

single high probability task-set assignment. We still keep track

of and propagate uncertainty about that assignment and the clus-

tering of contexts but forget uncertainty about the specific earlier

assignments.

Flat Model

As a benchmark, we compare the above structured C-TS mod-

el’s behavior to a “flat” learner model, which represents and learns

all inputs independently from one another (i.e., so that contexts are

treated just like other stimuli). We refer readers to the Appendices

for details. Briefly, the flat model represents the “state” as the

conjunction of stimulus and context and then estimates expected

reward for state–action pairs, Q((ct, st), at).

Policy is determined by the commonly used softmax rule for

action selection as a function of the expected reward for each

action:

2 More detailed schemes of suboptimal noisy policies are also explored
to account for other aspects of human subject variability in the experimen-
tal results. In particular, in addition to noise at the level of motor action
selection, subjects may sometimes noisily select the task-set or may mis-
identify the stimulus. See Appendix A for details.

3 In CRP terms, the new context “customer” sits at a new task-set “table”
with a probability determined by �, and otherwise at a table with proba-
bility determined by that table’s popularity.
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pflat�a� � softmax�a� �
exp��Q��ct, st�, a��

�a' exp��Q��ct, st�, a'��
, (4)

where � is an inverse temperature parameter determining the

degree of exploration versus exploitation, such that very high �
values lead to a greedy policy.

Generalized Structure Model

The C-TS model described earlier arbitrarily imposes one of the

input dimensions (C) as the context cuing the task-sets and

the other (S) as the stimulus to be linked to an action according to

the defined task-set. We denote the symmetrical model that would

have made the contrary assignment of input dimensions as S-TS.

A more adaptive inference model would not choose one fixed

dimension as context but instead would infer the identity of the

contextual dimension. Indeed, the agent should be able to infer

whether there is task-set structure at all. We thus develop a

generalized model that simultaneously considers potential C-TS

structure, S-TS structure, or flat structure and makes inferences

about which of these generative models is valid. For more details,

see the Appendices.

C-TS Model Behavior

Initial Clustering

We first simulated the C-TS model to verify that this approxi-

mate inference model can leverage structure and appropriately

cluster contexts around corresponding abstract task-sets when such

structure exists. We therefore first simulated a learning task in

which there is a strong immediate advantage to learning structure

(see Figure 2, top left). This task included 16 different contexts and

three stimuli, presented in interleaved fashion. Six actions were

available to the agent. Critically, the structure was designed so that

eight contexts were all indicative of the same task-set TS1, while

the other eight signified another task-set TS2. Feedback was binary

and deterministic.

As predicted, the C-TS model learned faster than a flat learning

model (see Figure 2, bottom). It did so by grouping contexts

together on latent task-sets (building mean N � 2.16 latent task-

sets), rather than building 16 unique ones for each context—and

successfully leveraged knowledge from one context to apply to

other contexts indicative of the same task-set. Thus, the model

identifies hidden task-sets and generalizes them across contexts

during learning. Although feedback was deterministic for illustra-

tion here, we also confirmed that the model is robust to nondeter-

ministic feedback by adding 0.2 random noise on the identity of

the correct action at each trial. Initial learning remained signifi-

cantly better for the C-TS model than a flat model (t � 9.46, p �

10�4), again due to creation of a limited number of task-sets for

the 16 contexts (mean N � 2.92). As expected, the number of

created task-sets and its effects on learning efficiency varied

inversely with parameter � (Spearman’s � � 0.99, p � .0028, and

� � �0.94, p � .016, respectively). This effect is explored in more

detail below, and hence, the data are not shown here.
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Transfer After Initial Learning

In a second set of simulations, we explore the nature of transfer

afforded by structure learning even when no clear structure is

present in the learning problem. These simulations include two

successive learning phases, which for convenience we label train-

ing and test phase (see Figure 2, bottom left). The training phase

involved just two contexts (C1 and C2), two stimuli (S1 and S2),

and four available actions. Although the problem can be learned

optimally by simply defining each state as a C-S conjunction, it

can also be represented such that the contexts determine two

different, nonoverlapping task-sets, with rewarded actions as fol-

lows: TS1: S1-A1 and S2-A2; TS2: S1-A3 and S2-A4. In the

ensuing transfer phase, new contexts C3 and C4 are presented

together with old stimuli S1 and S2 in an interleaved fashion.

Importantly, the mappings are such that C3 signifies the learned

TS1, whereas C4 signifies a new TS4 that overlaps with both old

task-sets (see Figure 2, bottom). Thus, a tendency to infer structure

should predict positive transfer for C3 and negative transfer for C4

(see below).

The inclusion of four actions (as opposed to two, which are

overwhelmingly used in the task-switching literature, but see Mei-

ran & Daichman, 2005) allows us to analyze not only accuracy but

also the different types of errors that can be made. This error

repartition is equally informative about structure building and

allows for a richer set of behavioral predictions. Specifically, the

learning problem is designed such that for any input, the set of

three incorrect actions could be usefully recoded in a one-to-one

fashion to a set of three different kinds of errors:

• A neglect-context error (NC), meaning that the incorrect ac-

tion would have been correct for the same stimulus but a different

context;

• A neglect-stimulus error (NS), meaning that the incorrect

action would have been correct for the same context but a different

stimulus; or

• A neglect-all error (NA), where the incorrect action would not

be correct for any input sharing the same stimulus or same context.

Thus, any incorrect action choice could be encoded as NC, NS, or

NA in a one-to-one fashion, given the stimulus for which it was

chosen.

The model is able to learn near optimally during the initial

learning phase (not shown here because this optimal learning is

also possible in a flat model). Notably, during the test phase, this

model recognizes that a new context is representative of a previous

task-set and thus reuses rather than relearns it. Accordingly, it

predicts better performance in the transfer (C3) than new (C4)

condition due to both positive transfer for C3 and negative transfer

for C4 (see Figure 2, bottom right). Negative transfer occurs

because a rewarding response for one of the stimulus–action pairs

for C4 will be suggestive of one of the previously learned task-sets,

increasing its posterior probability conditioned on C4, leading to

incorrect action selection for the other stimulus and also slower

recognition of the need to construct a new task-set for C4. This is

observable in the pattern of errors, with those corresponding to

actions associated with an old task-set more frequently than other

errors. Specifically, this model predicts preferentially more NC

errors (due to applying a different task-set than that indicated by

the current C) in the new (C4) condition (see Figure 2, bottom right

inset).

Recall that parameter � encodes the tendency to transfer previ-

ous hidden task-set states versus create new ones. We systemati-

cally investigated the effects of this clustering across a range of �
values and simulated 500 times per parameter set (see Figure 2,

bottom left). We observed the expected tradeoff, with C3 transfer

performance decreasing and C4 new performance increasing as a

function of increasing �. For large �s (equivalent to a flat model),

performance was similar in both conditions, thus no positive or

negative transfer.

In sum, the C-TS model proposes that the potential for structure

is represented during learning and incidentally creates such struc-

ture even when it is not necessarily needed. This allows the model

to subsequently leverage structure when it is helpful, leading to

positive transfer, but can also lead to negative transfer. Below, we

show evidence for this pattern of both positive and negative

transfer in humans performing this task.

Generalized Structure Model Behavior

For clarity of exposition, above we imposed the context C to be

the input dimension useful for task-set clustering. However, sub-

jects would not know this in advance. Thus, we also simulated

these protocols with the generalized structure model (see Figure

A2 in Appendix A). As expected, this model correctly infers that

the most likely generative model is C-TS rather than S-TS or flat.

For the structure transfer simulations, all three structures are

weighted equally during learning (since the task contingencies are

not diagnostic), but the model quickly recognizes that C-TS struc-

ture applies during the test phase (and could not have done so if

this structure was not’ incidentally created during learning); all

qualitative patterns presented above hold (see the Appendices).

We proposed a high-level model to study the interaction of

cognitive control and learning of C-TS hidden structure and for

reusing this structure for generalization. This model does not

however address the mechanisms that support its computations

(and hence, it does not consider whether they are plausibly imple-

mented), nor does it consider temporal dynamics (and hence re-

action times). In the next section, we propose a biologically

detailed neural circuit model that can support, at the functional

level, an analogous learning of higher and lower level structure

using purely RL. The architecture and functionality of this model

are constrained by a wide range of anatomical, physiological data,

and it builds on existing models in the literature. We then explore

this model’s dynamics and internal representations and relate them

to the hidden structure model described above. This allows us to

make further predictions for human behavioral experiments de-

scribed thereafter.

Neural Network Implementation

Our neural model builds on an extensive literature of the mech-

anisms of gating of motor and cognitive actions and RL in corti-

costriatal circuits, extended here to accommodate hidden structure.

We first describe the functionality and associated biology in terms

of a single corticostriatal circuit for motor action selection, before

discussing extensions to structure building and task-switching. All

equations can be found in the Appendices.
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In these networks, the frontal cortex “proposes” multiple com-

peting candidate actions (e.g., motor responses), and the basal

ganglia selectively gate the execution of the most appropriate

response via parallel reentrant loops linking frontal cortex to basal

ganglia, thalamus, and back to cortex (Alexander et al., 1986;

Frank & Badre, 2012; Mink, 1996). The most appropriate response

for a given sensory state is learned via dopaminergic RL signals

(Montague, Dayan, & Sejnowski, 1996), allowing networks to

learn to gate responses that are probabilistically most likely to

produce a positive outcome and least likely to lead to a negative

outcome (Dayan & Daw, 2008; Doya, 2002; Frank, 2005; Houk,

2005; Maia, 2009). Notably, in the model proposed below, there

are two such circuits, with one learning to gate an abstract task-set

(and to cluster together contexts indicative of the same task-set)

and the other learning to gate a motor response conditioned on the

selected task-set and the perceptual stimulus. These circuits are

arranged hierarchically, with two main “diagonal” frontal-BG con-

nections from the higher to the lower loop striatum and subtha-

lamic nucleus. The consequences are that (a) motor actions to be

considered as viable are constrained by task-set selection and (b)

conflict at the level of task-set selection leads to delayed respond-

ing in the motor loop, preventing premature action selection until

the valid task-set is identified. As we show below, this mechanism

not only influences local within-trial reaction times but also ren-

ders learning more efficient across trials by effectively expanding

the state space for motor action selection and thereby reducing

interference between stimulus–response mappings across task-sets.

The mechanics of gating and learning in our specific implemen-

tation (Frank, 2005, 2006) are as follows (described first for a

single motor loop). Cortical motor response units are organized in

terms of “stripes” (groups of interconnected neurons that are

capable of representing a given action; see Figure 3). There is

lateral inhibition within cortex, thus supporting competition be-

tween multiple available responses (e.g., Usher & McClelland,

2001). But unless there is a strong learned mapping between

sensory and motor cortical response units, this sensory-to-motor

corticocortical projection is not sufficient to elicit a motor re-

sponse, and alternative candidate actions are all noisily activated in

premotor cortex (PMC) with no clear winner. However, motor

units within a stripe also receive strong bottom-up projections

from, and send top-down projections to, corresponding stripes

within the motor thalamus. If a given stripe of thalamic units

becomes active, the corresponding motor stripe receives a strong

boost of excitatory support relative to its competitors, which are
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input features are represented in two separate input layers. Bottom: Schematic representation of the two-loop

corticostriatal gating network. Color context serves as input for learning to select the task-set (TS) in the first
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then immediately inhibited via lateral inhibition. Thus, gating

relies on selective activation of a thalamic stripe.

Critically, the thalamus is under inhibition from the output nucleus

of the basal ganglia, the globus pallidus internal segment (GPi). GPi

neurons fire at high tonic rates, and hence, the default state is for the

thalamus to be inhibited, thereby preventing gating. Two opposing

populations of neurons in the striatum contribute positive and negative

evidence in favor of gating the thalamus. These populations are

intermingled and equally represented, together comprising 95% of all

neurons in the striatum (Gerfen & Wilson, 1996). Specifically, the

“go” neurons send direct inhibitory projections to the GPi. Hence, go

activity in favor of a given action promotes inhibition and disinhibi-

tion of the corresponding stripes in GPi and thalamus, respectively,

and hence gating. Conversely, the “no-go” neurons influence the GPi

indirectly, via inhibitory projections first to the external segment of

the globus pallidus (GPe), which in turn tonically inhibits GPi. Thus,

whereas go activity inhibits GPi and disinhibits thalamus, no-go

activity opposes this effect. The net likelihood of a given action to be

gated is then a function of the relative difference in activation states

between go and no-go populations in a stripe, relative to that in other

stripes.

The excitability of these populations is dynamically modulated by

dopamine: Whereas go neurons express primarily D1 receptors, no-go

neurons express D2 receptors, and dopamine exerts opposing influ-

ences on these two receptors. Thus, increases in dopamine promote

relative increases in go versus no-go activity, whereas decreases in

dopamine have the opposite effect. The learning mechanism leverages

this effect: Positive reward prediction errors (when outcomes are

better than expected) elicit phasic bursts in dopamine, whereas neg-

ative prediction errors (worse than expected) elicit phasic dips in

dopamine. These dopaminergic prediction error signals transiently

modify go and no-go activation states in opposite directions, and these

activation changes are associated with activity-dependent plasticity,

such that synaptic strengths from corticostriatal projections to active

go neurons are increased during positive prediction errors, while those

to no-go neurons are decreased, and vice versa for negative prediction

errors. These learning signals increase and decrease the probability of

gating the selected action when confronted with the same state in the

future.

This combination of mechanisms has been shown to produce

adaptive learning in complex probabilistic reinforcement environ-

ments using solely RL (e.g., Frank, 2005). Various predictions

based on this model, most notably using striatal dopamine manip-

ulations, have been confirmed empirically (see, e.g., Maia &

Frank, 2011, for a recent review). Moreover, an extension of the

basic model includes a third pathway involving the subthalamic

nucleus (STN), a key node in the BG circuit. The STN receives

direct excitatory projections from frontal cortical areas and

sends direct and diffuse excitatory projections to the GPi. This

“hyperdirect” pathway bypasses the striatum altogether and, in

the model, supports a “global no-go” signal that temporarily

suppresses the gating of all alternative responses, particularly

under conditions of cortical response conflict (Frank, 2006; see

also Bogacz, 2007). This functionality provides a dynamic regu-

lation of the model’s decision threshold as a function of response

conflict (Ratcliff & Frank, 2012), such that more time is taken to

accumulate evidence among noisy corticostriatal signals to prevent

impulsive responding and to settle on a more optimal response.

Imaging, STN stimulation, and electrophysiological data com-

bined with behavior and drift diffusion modeling are consistent

with this depiction of frontal-STN communication (Aron, Behrens,

Smith, Frank, & Poldrack, 2007; Cavanagh et al., 2011; Frank,

Moustafa, et al., 2007; Isoda & Hikosaka, 2008; Wylie, Ridderink-

hof, Bashore, & van den Wildenberg, 2010; Zaghloul et al., 2012).

Below, we describe a novel extension of this mechanism to mul-

tiple frontal-BG circuits, where conflict at the higher level (e.g.,

during task-switching) changes motor response dynamics.

Base Network—No Structure

We first apply this single corticostriatal circuit to the problems

simulated in the more abstract models above (see Figure 3, top).

Here, the loop contains two input layers, encoding separately the

two input dimensions (e.g., color and shape). The premotor cortex

layer contains four stripes, representing four motor actions avail-

able. Each premotor stripe projects to a corresponding striatal

ensemble of 20 units (10 go and 10 no-go) that encode a distrib-

uted representation of input stimuli and that learn the probability of

obtaining (or not obtaining) a reward if the corresponding action is

gated. Input-striatum weights are initialized randomly, while input

projections to PMC units are uniform. Only input-striatum synap-

tic weights are plastic (subject to learning; see Appendix B for

weight update equations). This network is able to learn all basic

tasks presented using pure RL (i.e., using only simulated changes

in dopamine, without direct supervision about the correct re-

sponse) in very efficient time. However, it has no mechanisms for

representing hidden structure and is thus forced to learn in a “flat”

way, binding together the input features, similar to the flat com-

putational model. Thus, it should not show evidence of transfer or

structure in its pattern of errors or reaction times.

Hidden Structure Network

We thus extended the network to include two nested corticos-

triatal circuits. The anterior circuit initiates in the PFC, and actions

gated into PFC provide contextual input to the second posterior

PMC circuit (see Figure 3, bottom, and Figure 4). The interaction

between these two corticostriatal circuits is in accordance with

anatomical data showing that distinct frontal regions project pref-

erentially to their corresponding striatal region (at the same ros-

trocaudal level) but that there is also substantial convergence

between loops (see Calzavara, Mailly, & Haber, 2007; Draganski

et al., 2008; Haber, 2003; Nambu, 2011). Moreover, this rostro-

caudal organization at the level of corticostriatal circuits is a

generalization of the hierarchical rostrocaudal organization of the

frontal lobe (Badre, 2008; Koechlin, Ody, & Kouneiher, 2003). A

related neural network architecture was proposed in Frank and

Badre (2012), but we modify it here to accommodate hidden

structure, to include BG gating dynamics including the STN and

GP layers, and pure RL at all levels.4

4 The Frank and Badre (2012) model utilizes the prefrontal cortex basal
ganglia working memory (PBWM) modeling framework (O’Reilly &
Frank, 2006), which abstracts away the details of gating dynamics in code
and uses supervised learning of motor responses. Here, it was important for
us to simulate gating dynamics to capture reaction-time effects and to
include only RL mechanisms for learning because subjects in the associ-
ated experiments received only reinforcement and not supervised feedback.
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As in the Bayesian C-TS model, we do not consider here the

learning of which dimension should act as context or stimulus but

assume they are given as such to the model and investigate the

consequential effects on learning. We extend and discuss this point

further down in the article. Thus, only the context (e.g., color) part

of the sensory input projects to PFC, whereas the stimulus (e.g.,

shape) projects to posterior visual cortex. The stimulus represen-

tation in parietal cortex (PC) is then contextualized by top-down

projections from PFC. Weights linking the shape stimulus inputs to

PC are predefined and organized (top half of layer reflects Shape

1 and bottom half Shape 2). In contrast, projections linking color

context inputs to PFC are fully and randomly connected with all

PFC stripes, such that PFC representations are not simply frontal

“copies” of these contexts; rather, they have (initially) no intrinsic

meaning but, as we shall see, come to represent abstract states that

contextualize action selection in the lower motor action selection

loop.

There are three PFC stripes, each subject to gating signals from

the anterior striatum, with dynamics identical to those described

above for a single loop—but with PFC stripes reflecting abstract

states rather than motor responses. When a PFC stripe is gated in

response to the color context, this PFC representation is then

multiplexed with the input shape stimulus in the PC, such that PC

units contain distinct representations for the same sensory stimulus

in the context of distinct (abstract) PFC representations (Reverberi

et al., 2011). Specifically, while the entire top half (all three

columns) of the PC layer represents Shape 1 and the bottom half

Shape 2, once a given PFC stripe is gated, it provides preferential

support to only one column of PC units (and the others are

suppressed due to lateral inhibition). Thus, the anterior BG-PFC

loop acts to route information about a particular incoming stimulus

to different PC “destinations”, similar to a BG model proposed by

Stocco, Lebiere, and Anderson (2010). In our model, the multi-

plexed PC representation then serves as input to the second PMC
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loop for motor action selection. The PMC loop contains four

stripes, corresponding to the four action choices, as in the single

circuit model above.

Dopaminergic reinforcement signals modify activity and plas-

ticity in both loops. Accordingly, the network can learn to select

the most rewarding of four responses but will do so efficiently only

if it also learns to gate the different input color contexts to two

different PFC stripes. Note, however, that unlike for motor re-

sponses, there is no single a priori “correct” PFC stripe for any

given context—the network creates its own structure. Heuristi-

cally, PFC stripes represent the hidden states the network gradually

learns to gate in response to contexts. The PMC gating network

learns to select actions for a stimulus in the context of a hidden

state (via their multiplexed representation in parietal cortex), thus

precisely comprising the definition of a task-set. Consequently,

this network contains a higher level PFC loop allowing for the

selection of task-sets (conditioned on contexts, with those associ-

ations to be learned) and a lower level MC loop allowing for the

selection of actions conditioned on stimuli and the PFC task-sets

(again with learned associations). In accordance with the role of

PFC for maintaining task-set in working memory, we allow PFC

layer activations to persist from the end of one trial to the begin-

ning of the next.

Cross-loop “diagonal” projections. We include two addi-

tional new features in the model whereby the anterior loop

communicates along “diagonal” projections with the posterior

BG (Nambu, 2011, e.g.). First, it is important that motor action

gating in the second loop does not occur before the task-set has

been gated in the first loop. Indeed, this would lead to action

selection according only to stimulus, neglecting task-set. This is

accomplished by incorporating the STN role as implemented in

Frank (2006), but here, STN in the motor loop detects conflict

in PFC from the first loop instead of just conflict between

alternative motor responses. Indeed, PFC to STN projection is

structured in parallel stripes, so that coactivation of multiple

PFC stripes elicits greater STN activity and thus a stronger

global no-go signal in the GPi. Thus, early during processing,

when a task-set has not yet been selected, there is coactivation

between multiple PFC stripes, and gating of motor actions is

prevented by the STN until conflict is resolved in the first loop

(i.e., a PFC stripe has been gated). See specific dynamics in

Figure 4, bottom.

Second, we also include a diagonal input from the PFC to the

striatum of the second loop, thereby contextualizing motor

action selection according to cognitive state (see also Frank &

Badre, 2012). This projection enables a task-set preparatory

effect: The motor striatum can learn associations from the

selected PFC task-set independently of the lower level stimulus,

thus preferentially preparing both actions related to a given

task-set. As discussed earlier, these features are in accordance

with known anatomy: Indeed, although the corticobasal ganglia

circuits involve parallel loops, there is a degree of transversal

overlap across parallel loops, as required by this diagonal

PFC-lower loop striatum projection, as well as influence of

first-loop conflict on second-loop STN (Draganski et al., 2008).

It should be emphasized that the tasks of interest are expected

to be difficult to learn by such a structured network without

explicit supervision and using only RL across four motor re-

sponses, especially due to credit assignment issues. Indeed,

initially, both task-set and action gating are random. Thus,

feedback is ambiguously applied to both loops: An error is

interpreted both as an inappropriate task-set selection to the

color context and an incorrect action selection in response to the

shape stimulus within the selected task-set. However, this is

the same problem faced by human participants, who do not

receive supervised training and have to learn on their own how

to structure the representations.

Neural Network Results

Although such networks include a large number of parameters

pertaining to various neurons’ dynamics and their connectivity

strengths, the results presented below are robust across a wide

range of parameter settings. We validate this claim below.

Neural Network Simulations: Initial Clustering Benefit

As for the C-TS model, we first assess the neural network’s

ability to cluster contexts onto task-sets when doing so provides an

immediate learning advantage. We do so in a minimal experimen-

tal design permitting assessment of the critical effects. We ran 200

networks, from which three were removed from analysis due to

outlier learning. Simulation details are found in Appendix A and

Figure 5.

Rapid recognition of the fact that two contexts C0 and C1 are

indicative of the same underlying task-set should permit the ability

to generalize stimulus–response mappings learned in each of these

contexts to the other. As such, if the neural network creates one

single abstract rule that is activated to both C0 and C1, we expect

faster learning in contexts C0 and C1 than in C2, which is indic-

ative of a different task-set. Indeed, Figure 5 (left) shows that the

network’s learning curves were faster for C0 and C1 than for C2

(initial performance on first 15 trials of all stimuli: t � 7.8, p �
10�4).

This performance advantage relates directly to identifying one

single hidden rule associated to contexts C0 and C1. Because the

network is a process model, we can directly assess the mechanisms

that give rise to observed effects. For each network simulation, we

determined which PFC stripe is gated in response to contexts C0,

C1, and C2 (assessed at the end of learning, during the last five

error-free presentations of each input). All networks selected a

different stripe for C2 than for C1 and C0, thus correctly identi-

fying C2 as indicative of a distinct task-set. Moreover, 75% of

networks (147) learned to gate the same stripe for C0 and C1,

correctly identifying that these corresponded to the identical latent

task-set. The remaining 25% (50) selected two different stripes for

C0 and C1, thus learning their rules independently—that is, like a

flat model.

Importantly, the tendency to cluster contexts C0 and C1 into a

single PFC stripe was predictive of performance advantages.

Learning efficiency in C0/C1 was highly significantly improved

relative to context C2 for the clustering networks (see Figure 5, top

left; N � 147, t � 9.4, p � 10�4), whereas no such effect was

observed in nonclustering networks (see Figure 5, bottom left; N �
50, t � 0.3, p � .75). Directly contrasting these networks, clus-

tering networks performed selectively better than nonclustering

networks in C0/C1 (t � 4.9, p � 10�4), with no difference in C2

(t � �0.94, p � .35).
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Within the clustering networks, we computed the proportion of

trials in which the network gated the common stripe for TS1 in

contexts C0 and C1 as a measure of efficiency in identifying a

common task-set. This proportion correlated significantly with the

increase in C0/C1 performance (see Figure 5, bottom middle; r �
.72, p � 10�4), with no relation to C2 performance (r � �0.01,

p � .89).

Neural Network Simulations: Structure Transfer

Neural network dynamics lead to similar behavioral predic-

tions as C-TS model. This second set of simulations investigate

structure transfer after learning, as described above for the C-TS

model. Recall that these simulations include two consecutive

learning phases, labeled training phase followed by a test phase.

During the training phase, interleaved inputs include two contexts

(C1 and C2) and two stimuli (S1 and S2). During the test phase,

new contexts are presented to test transfer of a previously used

task-set (C3-transfer), or learning of a new task-set (C4-new).

The two-loop nested network was able to learn the task, with

mean time to criterion 22.1 (	 2.6) repetitions of each of the four

inputs.5

Moreover, as in the C-TS model, a clear signature and potential

advantage of structure became clear in the test phase. First, learn-

ing was significantly faster in the C3-transfer condition than in the

C4-new condition, thus positive transfer (see Figure 6a). Second,

the repartition of error types was similar to that expected by the

C-TS model (and as we shall see below, exhibited by human

subjects). In particular, the network exhibited more errors corre-

sponding to the wrong task-set selection (NC) than other errors,

especially in the new condition (see Figure 6a, inset). As explained

earlier, this is a sign of negative transfer—the tendency to reapply

previous task-sets to situations that ultimately require creating new

task-sets.

To further investigate the source of negative transfer, we also

tested networks with a third test condition, “C5-new-

incongruent”, which was new but completely incongruent with

previous stimulus–response associations. While both C4 and C5

involved learning new task-sets, in the C5 test condition, the

task-set did not overlap at all with the two previously learned

task-sets: If either was gated into PFC, it led to incorrect action

selection for both stimuli. This situation contrasts with that for

C4, in which application of either of the previous task-sets leads

to correct feedback for one stimulus and incorrect for the other,

making inference about the hidden state more difficult. Indeed,

networks were better able to recruit a new stripe in the C5

compared to C4 test condition (p � .02, t � 2.4; see Figures 6b

and 6c), leading to more efficient learning. Although initial

performance was better in the C4 overlap condition (t � 3.7,

p � 5 
 10�4; see Figure 6a) due to the 0.5 probability of

reward resulting from selection of a previous task-set, subse-

5 Although this is notably slower learning than the single-loop network
(7 	 0.7), this is expected due to the initial ambiguity of the reinforcement
signal (credit assignment to task-set vs. motor action selection) and the
necessity for the network to self-organize. Indeed, in contrast to the earlier
problem, there was no expected immediate advantage to structuring this
learning problem because there was no opportunity to cluster multiple
contexts onto the same task-set (there was also no advantage for the C-TS
compared to flat Bayesian models in this learning). Furthermore, the
learning speed of hidden state networks corresponds reasonably well to
those of human subjects in the experiments presented below.

Figure 5. Neural Network Simulation 1. Results are plotted for 200 simulations. Error bars indicate standard

error of the mean. Top right: Experimental design summary. Left: Learning curves for different conditions. Top:

75% of networks adequately learned to select a common PFC representation for the two contexts corresponding

to the same rule and thus learned faster (clustering networks). Bottom: The remaining 25% of the networks

created two different rules for C0 and C1 and thus showed no improved learning. Bottom middle: Performance

advantage for the clustering networks was significantly correlated with the proportion of trials in which the

network gated the common PFC representation. Bottom right: Quantitative fits to network behavior with the

C-TS model showed a significant increase in inferred number of hidden TSs for clustering compared to

nonclustering simulations. C � context; PFC � prefrontal cortex; TS � task-set.
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quent learning curves were steeper in the C5 condition due to

faster identification of the necessity for a new hidden state.

Again, we can directly assess the mechanisms that give rise to these

effects. Similarly to the previous simulations, for each network sim-

ulation, we determined which PFC stripe was gated in response to

contexts C1 and C2 at the end of learning, corresponding to TS1 and

TS2. We then assessed during the test phase which of the three stripes

was gated for each transfer condition.

This analysis largely confirmed the proposed mechanisms of task-

set transfer. In the C3 transfer condition (see Figure 6b), more than

70% of the networks learned to reselect stripe TS1 in response to the

new context, thus transferring TS1 stimulus–action associations to the

new situation, despite the fact that the weights from the units corre-

sponding to C3 were initially random. The remaining 30% of net-

works selected the third previously unused (“blank”) task-set stripe

and thus relearned the task-set as if it were new. In contrast, in the C4

new test condition (see Figure 6c), �90% of networks appropriately

learned to select the blank task-set stripe. The remaining 10% of

networks selected either the TS1 or TS2 stripes due to overlap

between these task-sets and the new one, leading to negative transfer.

In this small number of cases, rather than creating a new task-set,

networks simply learned to modify the stimulus–action associations

linked to the old task-set; eventually, performance converged to

optimal in all networks.

To confirm the presumed link between the generalization advan-

tage in the C3 transfer condition and the gating of a previously learned

task-set, we investigated the correlation between performance and the

proportion of blank task-set stripe selection. This analysis was con-

ducted over a wide array of simulations, including those designed to

explore the robustness of the parameter space (see Figure 7). The

selection of the blank stripe was highly significantly (both ps �

10�13) anticorrelated with C3 transfer performance (r � �0.11) and

positively correlated with C4 new-overlap performance (r � .55).6

Thus, these first analyses show that the neural network model

creates and reuses task-sets linked to contexts as specified by the

high level C-TS computational model. Below, we provide a more

systematic and quantitative analysis showing how each level of

6 Note that the correlation is expected to be stronger for the new-overlap
condition, in which selection of an old stripe actively induces poor perfor-
mance in that condition, whereas in the transfer condition, selecting the
new stripe only prevents the network from profiting from previous expe-
rience but does not’ hinder fast learning as if the task-set was new.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

trials per input pattern

%
 c

o
rr

e
c
t

NC NS NA
0

10

20

30

% errors

50 0 50
0

20

40

60

80

100

TS1 stripe Unused stripe

%
 s

tr
ip

e
 u

s
e

Switch Stay
800

850

900

950

R
T

 (
m

s
)

 

NC NS NA
0

1

2

3
e
rr

o
rs

 (
%

)

 

Switch
Stay

NC NS
850

900

950

1000

1050

R
T

 (
m

s
)

trials per input pattern

a)

b) c)

d) f )e)

Figure 6. Neural network results. Results are plotted for 100 simulations. Error bars indicate standard error

of the mean. Top (a–c): Test-phase results for transfer (blue), new-overlap (green), and new-incongruent (red)

conditions. Left: Proportion of correct trials as a function of input repetitions; inset: proportion of NC, NS, and

NA errors. Positive transfer is visible in the faster transfer than new learning curves; negative transfer is visible

in the interaction between condition and error types and in the slower slope in new-overlap than new-incongruent

conditions. Right: Proportion of TS1 (Panel b) and blank TS (Panel c) hidden state selections as a function of

trials, for all conditions. Positive transfer is visible in the reuse of TS1 stripe in the transfer condition, and

negative transfer in the reduced recruitment of the new TS stripe for new-overlap compared to new-incongruent

conditions. Bottom: Asymptotic learning-phase results. d: Reaction-time (RT) switch-cost. e: Error type and

switch effects on error proportions. f: Slower reaction times for neglect L than neglect NC than NS errors. NA �

neglect-all errors; NC � neglect-context errors; NS � neglect-stimulus errors; TS � task-set.
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modeling relates to the other. But first, we consider behavioral

predictions from the neural model dynamics.

Neural network dynamics lead to behavioral predictions:

switch-costs, reaction times, and error repartition. While we

have shown that the neural network affords similar predictions

as the C-TS structure learning model in terms of positive and

negative transfer, it also allows us to make further behavioral

predictions most notably related to dynamics of selection. We

assess these predictions during the asymptotic learning phase.

The persistence of PFC activation states from the end of one

trial to the beginning of the next (a simple form of working

memory) resulted in performance advantage for task-set repeat

trials or, conversely, a switch-cost, with significantly more errors

(see Figure 6e) and slower reaction times (see Figure 6d) in switch

trials. This is because in a switch trial, gating of a different PFC

stripe than that in the previous trial took longer than simply

keeping the previous representation active. This longer hesitation

in PFC layer led to three related effects.

First, it initially biased the PC input to the second loop to reflect

the stimulus in context of the wrong task-set, thus leading to an

increased chance of an error if the motor loop responds too quickly

and hence an accuracy switch-cost (and a particular error type).

Second, when the network was able to overcome this initial bias

and respond correctly, it was slower to do so (due to the additional

time associated with updating the PFC task-set and then processing

the new PC stimulus representation), hence a reaction-time switch-

cost.

Third and counterintuitively, the error repartition favored NS

errors over NC errors over NA errors (see Figure 6e). This pattern

arose because the hierarchical influence of PFC onto posterior

(motor) striatum led to a task-set preparatory effect where the two

actions associated with the task-set were activated before the

stimulus was itself even processed. Thus, actions valid for the

task-set (but not necessarily the stimulus) were more likely to be

gated than other actions, leading to more NS errors. In contrast,

NC errors resulted from impulsive action selection due to appli-

cation of the previous trial’s task-set (particularly in switch trials).

Indeed, during switch trials, error reaction times were significantly

faster for NC errors than NS errors (see Figure 6f). If these

dynamics are accurate, we thus predict a very specific pattern of

errors by the end of the learning phase:

• Presence of an error and reaction-time switch-cost when ct �

ct�1, but not st � st�1;
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Figure 7. Neural network parameter robustness. Exploration of systematic modulations of key network

parameters across a wide range. For each parameter, the significance values are plotted for each of five main

behavioral effects (see descriptions in main text), from top to bottom: (a) transfer versus new-overlap perfor-

mance difference, (b) asymptotic learning-phase error repartition effect, (c) asymptotic learning-phase error

reaction times NC � NS, (d) test-phase old � new PFC stripe selection for the transfer condition, and (e)

test-phase new � old PFC stripe selection for the new condition. Simulations were conducted 100 times each,

in each case with the other four parameters fixed to the corresponding white bar value, and one parameter varied

along a wide range. First line: corticostriatal learning rate (here, fixing learning rates to be the same for both

loops); second line: motor-cortex striatum learning rate; third line: PFC-striatum learning rate; fourth line:

diagonal PFC-posterior striatum relative projection strength; fifth line: STN to second-loop GPi relative

projection strength. Results across all five effects were largely robust to parameter changes. GPi � globus

pallidus internal segment; NC � neglect-context errors; NS � neglect-stimulus errors; PFC � prefrontal cortex;

STN � subthalamic nucleus.
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• Prevalence of within-task-set errors (neglect of the stimulus),

rather than perseveration errors (neglect of the context), on switch

trials; and

• Faster within- than across-task-sets errors.

We also ensured that all the behavioral predictions were robust

to parameter manipulation of the network. In particular, we show

in Figure 7 that the majority of predicted effects hold across

systematic variations in key parameters, including corticostriatal

learning rates and connection strengths between various layers,

including PFC-striatum and STN-GPi. The main results presented

above were obtained with parameters representative from this

range.

Linking Levels of Modeling Analysis

In this section, we show that the approximate Bayesian C-TS

formulation provides a good description of the behavior of the

network and moreover that distinct mechanisms with the neural

model correspond to selective modulation of parameters within the

higher level model. To do so, we quantitatively fit the behavior

generated by the neural network simulations (including both ex-

perimental protocols) with the C-TS, by optimizing the parameters

of the latter model that maximize the log likelihood of networks’

choices given the history of observations (Frank & Badre, 2012).

Parameters optimized include the clustering parameter �, the ini-

tial beta prior strength on task-sets n0 (potentially reported as i0 �
1/n0 for a positively monotonous relationship with a learning rate

equivalent), and a general action selection noise parameter, the

softmax �. For comparison, we also fit a flat model, including

parameters n0 and �, taking model complexity into account by

evaluating fits using the Akaike information criterion (AIC;

Akaike, 1974), as well as exceedance probability on AIC (Stephan,

Penny, Daunizeau, Moran, & Friston, 2009).

Simulation 1: Initial Clustering Benefit

First, the C-TS structure model fit the networks’ behavior sig-

nificantly better than a flat model (t � 5.45, p � 10�4, exceedance

probability p � .84) for both clustering networks (t � 5.06, p �
10�4) and nonclustering networks (t � 2.17, p � .035), with no

significant difference in fit improvement between groups (t �
0.49, ns).7 Correlation between empirical and predicted probabil-

ities choice (grouped in deciles) over all simulations was high

(r2 � 0.965, p � 10�4). Mean pseudo-r2 value comparing the

likelihood of the precise sequence of individual trials to chance

was also strong at 0.46.

Given that the fits were reasonable, we then assessed the degree

to which network tendencies to develop a clustered gating policy

corresponded to inferred number of task-sets from the C-TS struc-

ture model. If a gated PFC stripe corresponds to use of an inde-

pendent task-set, then the clustering networks (which by definition

use fewer PFC stripes) should be characterized by lower inferred

number of latent task-sets in the fits. As expected, the inferred

number of task-sets was significantly lower for the clustering

networks compare to nonclustering ones (see Figure 5, bottom

right; t � 2.28, p � .023). Within the clustering networks, the

proportion of common final TS1 stripe use for C0 and C1 was

significantly correlated with the fitted number of task-sets inferred

by the models (p � .027, r � �0.18).

Notably, there were no differences in the prior clustering pa-

rameter � across the two groups of networks, as expected from

their common initial connectivity structure. Rather, differences in

clustering were produced by random noise and choices leading to

different histories of action selection, which happen to sometimes

reinforce a common stripe gating policy or not. Due to its approx-

imate inference scheme, C-TS is also sensitive to specific trial

order. We investigate systematically the effect of priors below by

manipulating the connectivity. The fact that the hidden structure

C-TS model can detect these differences in clustering due to

specific trial history (without having access to the internal PFC

states) provides some evidence that the two levels of modeling use

information in similar ways for building abstract task-sets while

learning from reinforcement. This claim is reinforced by subse-

quent simulations below.

Simulation 2: Structure Transfer

We applied the same quantitative fitting of network choices with

the C-TS model for the second set of simulations for the structure

transfer task. Again, the C-TS structure model fits better than a flat

model, penalizing for model complexity (t � 5.8, p � 10�6, true

for 46 out of 50 simulations, exceedance probability p � 1.0).

Moreover, these fits indicated that networks were likely to reuse

existing task-sets in the C3 transfer condition, whereas networks

were more likely to create a new task-set in C4 and C5. Indeed, the

inferred number of additional task-sets created in the transfer

phase (beyond the two created for all simulations during the

learning phase) was E(N) � 0.05 for C3 versus 0.84 for C4 (p �

10�4, t � �13.8). Networks were even more likely to create a new

task-set for the C5 new-incongruent condition, E(N) � 0.99,

significantly greater than C4 (p � .0009, t � �3.53).

Together with the previous simulation, this result establishes a

link between the gating of a PFC stripe—with no initial meaning

to that stripe—to the creation (or reuse) of a task-set, as formalized

in the C-TS model. The C-TS model has no access to the latent

PFC states of the network but, based on the sequence of choices,

can appropriately infer the number of stripes used. A strong

prediction of this linking is that if we do give access to the C-TS

model of the PFC state selected by the network in individual trials,

the fit to network choices should improve. Indeed, model fits

improved significantly when we conditioned predicted choice

probabilities not only on the past sequence of inputs, action

choices, and rewards (as is typically done for RL model fits to

human subjects) but also on the sequence of model-selected PFC

stripes (p � .0025, t � �3.2). The reason for this improvement is

that when the network gates an unexpected PFC stripe (which can

happen due to network dynamics including random noise), the

predicted motor response selected by the network now takes into

account the corresponding task-set, thus allowing the model fits to

account for variance in types of errors.

7 Although the nonclustering networks do not group C0 and C1 on a
single task-set, they still rely on task-sets while learning and are fitted
better by C-TS than by flat. For example, they may group C1 and C2
together initially, leading to errors that are characteristic of task-set clus-
tering until they discover that these two contexts should be separated.
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Parametric Manipulations on Neural Network

Mechanisms Are Related to Parametric Influences on

Specific C-TS Model Computations

Thus, we have shown the C-TS model can mimic functionality

of the nested corticostriatal circuit. This analysis provides the basis

for exploring whether and how specific mechanisms within the

neural model give rise to the higher level computations. To do so,

we parametrically manipulated specific neural model parameters

and studied their impact on both behavior and the fitted parameters

within the C-TS model framework.

We report below the links investigated but refer the readers to

the Appendices for a more detailed analysis.

1. PFC-STN diagonal projection: conditionalizing actions

by task-sets. A fundamental aspect of the C-TS model is

that action values are conditionalized not only by the

stimulus but by the selected higher level task-set choice

Q(s, ak) � E(r|st, ak, TSt). When implemented in a

dynamic process model, how does the lower level corti-

costriatal motor loop ensure that its action values are

properly contextualized by task-set selection? As de-

scribed earlier, the diagonal projection from PFC to

motor-STN is critical for this function, preventing pre-

mature responding before task-sets are selected and shap-

ing the structure that is learned. In particular, when the

STN is lesioned in the network, learning is slowed to

37 	 2.3 input iterations to criterion (as opposed to

22.1 	 2.6 with the STN; see Appendix B). To investi-

gate this effect, we parametrically manipulated the effi-

cacy of STN projections and examined its effect on fitted

C-TS model parameters. We predicted that STN efficacy

would affect the reliability of task-set selection (i.e.,

lower STN projection strengths would lead to ignorance

of the selected task-set during motor action selection).

Indeed, we observed a strong correlation between neural

network STN projection strength and fitted parameter

�TS (see Figure 8, left; r � .62, p � .01), but no effect on

other parameter values (r � 0.33, p � .2). That is, despite

the fact that STN strength influences learning speed, the

C-TS model recovers this effect by correctly assigning it

to variance in task-set selection and hence more interfer-

ence in learning, rather than in learning rate or in noise in

motor action selection.

2. PFC-striatum diagonal projection: task-set action prep-

aration. Similarly, the C-TS model proposes that once a

task-set is selected, the available actions are constrained

by that task-set, such that any errors are more likely to

compose of within-task-set errors (actions that are valid

for that task-set but ignoring the lower level stimulus).

We investigated how the PFC-motor striatum diagonal

projection is involved in preparing actions according to

the selected task-set and hence can lead to errors of this

type. Indeed, parametric manipulations of the strength of

this projection yielded a very strong correlation with the

fitted within-task-set noise parameter εTS (r � .97, p �

3.10�4; see Figure 8, right). Thus, PFC biasing of motor

striatum increases action preparation within task-sets,

leading to a specific type of error, namely, those associ-

ated with neglecting the stimulus (NS errors).8

3. Organization of context to PFC projections: clustering.

Another key component within the C-TS model is the

tradeoff in the decision of whether to build a new task-set

when encountering a new context or whether to cluster it

into an existing task-set. In the neural network, the ten-

dency to activate a new PFC state or reuse an existing one

can be altered by varying the organization of projections

from the context layer to PFC. We parametrically ma-

nipulated the connectivity from contextual inputs to PFC,

from full-random connectivity (enabling clustering by

allowing multiple contexts to activate common PFC rep-

resentations) to one-to-one (where networks are encour-

aged to represent distinct contexts in distinct PFC

stripes).9 We hypothesized that differential scaling of

these two connectivities would modulate the tendency to

cluster contexts and hence correspond to an effect on the

� clustering parameter in the C-TS model fits. Indeed,

Figure 9 shows that stronger priors were associated with

a greater tendency to select the new stripe in the transfer

test conditions (r � .68, p � .001; see Figure 9, bottom),

which coincides with a decrease in transfer performance

(r � �0.59, p � .007; see Figure 9, top) and an increase

in new-overlap performance (r � .86, p � 10�4; see

Figure 9, top). This effect on transfer performance is

analogous to the result displayed earlier with the C-TS

computational model, in which we found a similar rela-

tionship with Dirichlet � (see Figure 2). Thus, as pre-

dicted, we observed a strong correlation between the

network manipulated parameter and C-TS fitted � (r �

.76, p � 2 
 10�4; see Figure 8, middle left). Multivar-

iate linear regression of network parameter against fitted

parameters showed that only Dirichlet � accounted sig-

nificantly for the variability.

4. Motor corticostriatal learning rate: stimulus–action

learning. Finally, the C-TS model includes a free param-

eter n0 affecting the degree to which stimulus–action

associations are updated by new outcome information. In

the neural model, this corresponds to the learning rate

within the lower motor corticostriatal projections. We

thus parametrically manipulated this learning rate and

assessed the degree to which it affected the recovered n0

8 Although there was also a significant correlation with other fitted noise
parameters due to collinearities, a multiple regression revealed that only
εTS accounted for the variance created in manipulating PFC-motor-striatum
connectivity (p � 10�4, p � .49 for other parameters).

9 This is an oversimplification of the input modeling of the problem. It
is meant to represent the effects that various attentional factors or prior
beliefs might have on representation of the input before reaching PFC,
which are expected to be more adaptable than the hard-wired changes in
connectivity used here. This could be modeled, for example, by incorpo-
rating an intermediate self-organizing layer between context and PFC,
allowing for a prior likelihood in clustering contexts based on perceptual
similarity in context space (and where the degree of overlap could be
adaptable based on neuromodulatory influences on inhibitory competition).
We limit the complexity of the network by summarizing these input effects
as described.
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parameter. Multivariate linear regression of network

learning rate against the four fitted parameters showed

that only n0 accounted significantly for the variability.

More specifically, we looked at i0 � 1/n0 as a marker of

learning speed and found a significant positive correla-

tion between fit i0 and motor striatal learning rate (r �
.85, p � .0008; see Figure 8, middle right). This contrasts

with the above effects of STN strength, which affected

overall learning speed without impacting the learning rate

parameter due to its modulation of structure and interfer-

ence across task-sets.

In summary, the fittings described in this section revealed that

the C-TS model can be approximately implemented in a nested

two-loop corticobasal gating neural network. Although we do not

argue that the two levels of modeling execute the exact same

computations (see discussion), we argue that the neural network

represents a reasonable approximate implementation of the formal

information manipulations executed by the high-level computa-

tional model. Indeed, both levels of modeling behave similarly at

the action selection level, as shown by similar qualitative predic-

tions and by quantitative fits. Fits also reveal a good concordance

between hidden variables manipulated by the functional model

(abstract task-sets) and their equivalents in the neural network

model (abstract prefrontal stripes). Finally, these simulations ver-

ified that the fitting procedure can appropriately recover parame-

ters such as � for simulated subjects in which we explicitly

manipulate the likelihood of visiting new task-set states.

The two levels of modeling make distinct but concordant pre-

dictions about the nature and dynamics of task-set selection and

switching. In the following section, we present two behavioral

experiments designed to test some of these predictions.

Experiments

The models make a key prediction that subjects conditionalize

action selection according to task-sets and that a predisposition to use

this strategy may exist even when it is not immediately necessary, as

revealed in various measures of transfer and error repartition. The

reasoning for this possibility is discussed in the introduction. We thus

tested this prediction by using the structure transfer paradigm simu-

lated by the models above, in which there is no immediate advantage

to creating and learning structure. In the following, we first describe

the precise experimental procedure, then summarize the models’

predictions and develop alternative models predictions, then present

experimental results and model fits validating our theory.

Experimental Paradigm: Experiment 1

The experiment (see Figure 10) consisted of two sequential learn-

ing phases. Both phases required learning correct actions to two-

dimensional stimuli from reinforcement feedback, but for conve-

nience, we refer to the first phase as the learning phase and the second

phase as the test phase. The first phase was designed such that there

would be no overt advantage to representing structure in the learning

problem. The second test phase was designed such that any structure

built during learning would facilitate positive transfer for one new

context but negative transfer for another. Note also that we define

these phases functionally for the purpose of the experimental analysis;

to the subject, these phases transitioned seamlessly one after the next

with no break or notification.

Specifically, during the initial training phase, subjects learned to

choose the correct action in response to 4 two-dimensional visual

input patterns. Inputs varied along two features, taken from pairs

(colored texture), (number in a shape), (letter in a colored box).

Because the role of the input features was counterbalanced across

subjects (in groups of six) and their identity did not’ affect any of

the results,10 we subsequently refer to those features as color (C)

and shape (S), which also conveniently correspond to context (or

cue) and stimulus, without loss of generality. Thus, the initial

phase involved learning the correct action—one of four button

presses—for four input patterns consisting of two colors and two

shapes.

After input presentation, subjects had to respond within 1.5 s by

selecting one of four keys with index or middle finger of either

hand. Deterministic audiovisual feedback was provided, indicating

whether the choice was correct (ascending tone, increment to a

10 More precisely, within each pair of dimensions, no dimension was
found more likely to correspond to context versus stimulus. Across pairs,
no pair was found more likely to lead to structure than any other.
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cumulative bar) or incorrect (descending tone, decrement to a

cumulative bar) 100 ms after response. If subjects did not respond

in time, no feedback was provided. Subjects were encouraged not

to miss trials and to respond as fast and accurately as possible.

Intertrial interval was fixed at 2.25 s.

The learning phase comprised a minimum of 10 and a maximum

of 30 trials for each input (for a total of 40 to 120 trials) or up to

a criterion of at least eight of the last 10 trials correct for each

input. An asymptotic performance period in which we assessed

switch-costs (due to changes in color or shape from one trial to the

next) ensued at the end of this learning phase, comprised of 10

additional trials per input (40 trials total). Sequence order was

pseudorandomized to ensure identical number of trials in which

color (or shape) remained identical (C stay trial or S stay trial) or

changed (C switch trial or S switch trial) across successive inputs.

After the asymptotic performance period, a test phase was

administered to test for prior structure building and transfer. Sub-

jects had to learn to select actions to four new inputs consisting of

two new colors but the same shapes as used in the original learning

phase. The test phase comprised 20 trials of each new input (80

trials total), pseudorandomly interleaved with the same constraint

of equal number of stay and switch on both dimensions.

As a reminder (see modeling section for details), the pattern of

input–action associations to be learned was chosen to test the

incidental structure hypothesis: Learning of the training phase

could be learned in a structured C-TS way but could also be

learned (at least) as efficiently in a flat way. However, the test

phase provided an opportunity to assess positive transfer based on

C-TS learning in the C3 condition (corresponding to a learned

task-set) and negative transfer in the C4 condition (corresponding

to a new task-set overlapping with previously learned task-sets).11

Sample. Thirty-eight subjects participated in the main exper-

iment. Five subjects failed to attend to the task (as indicated by a

large number of nonresponses) and were excluded from analysis.

Final sample size was N � 33 subjects (17 female) ages 18 to 31

years (M � 22 years). Subjects were screened for neurological and

psychiatric history. All subjects gave written informed consent,

and the study was approved by the Brown University (Providence,

RI) ethics committee.

Model Predictions

Although we made general predictions above, we recapitulate

them here for the specific purpose of this experimental paradigm

and contrast them to those from other models.

We considered three different families of computational models

representing different ways in which the experiment could be

learned and that make qualitatively distinct predictions about

transfer and error types. Models are confronted with the exact

same experimental paradigm as experienced by the subjects.

Flat models. The first class of model is “full-flat”, de-

scribed earlier as a benchmark for comparison of the structure

model. With appropriate parametrization, this full flat model is

able to behave optimally during the learning phase, learning the

correct actions for each input in a maximum of four trials. For

the test phase, it predicts that learning is independent for each

input (i.e., each combination of color and shape comprises a

new conjunctive state), so that performance and learning curves

should be identical in both C3 and C4 conditions (see Figure

11b).

We also considered a second form of flat models (see Figure

11c, details in the Appendices). This model takes into account

individual dimensions (color or shape) of inputs separately in

different experts, as well as their conjunction. This model is also

able to learn near optimally during the initial phase. It could show

an advantage during test phase over the basic flat model because

the shape expert can apply correct actions for the stimuli learned

during the training phase to the test phase and decrease the need

for exploration. However, since that advantage is equated across

C3 and C4, this model predicts no transfer effects. The use of

previously valid actions for similar stimuli is manifested in fewer

NS and NA errors than NC errors (neglect color) for both C3 and

C4 (see Figure 11d, inset).

Task-set model. We now revisit models that (in contrast to

the above models) incorporate hidden structure, formalized above

by the C-TS model, denoted here as C-TS(s), indicating that colors

C cue task-sets TS, that operate on shape S.

As described earlier, the C-TS(s) model included one of the input

dimensions (color) as the context cuing the task-sets and the other

11 Note that correct actions for the new C4-stimuli pairs were selected
from actions that had been valid for similar stimuli previously, such that
any difference between C3 and C4 cannot be explained by a learned
stimulus–action choice bias.

Figure 9. Effects of context-prefrontal cortex (C-PFC) prior connectiv-

ity. There were 50 neural network simulations per C-PFC prior parameter

value. The C-PFC parameter scales the weight of the organized (one-to-

one) context input to task-set PFC layer projection relative to the fully

connected uniform projection. Mean (standard error) performance (top

panel) and proportion of new stripe selection (bottom panel) on the transfer

(blue) and new-overlap (green) test conditions as a function of C-PFC prior

parameter. The stronger the prior for one-to-one connectivity, the more

likely the network is to select a new stripe for new contexts in the test

phase, thereby suppressing any difference in performance between the

three test conditions. Conversely, a greater ability to arbitrarily gate con-

texts into PFC stripes allows networks to reuse stripes when appropriate.

207CREATING TASK-SET STRUCTURE DURING LEARNING



(shape) acting as stimulus to be linked to an action according to the

defined task-set. However, the model could equally have chosen

shape as the higher order context dimension, defining the S-TS(c)

model (see Figure 11e). Because we only introduce new colors (with

old shapes) in the test phase, the predictions for this structure are

different. Indeed, for the S-TS(c) model, the new colors C3 and C4 are

interpreted as new stimuli to be learned within the existing task-sets

cued by shapes S1 and S2. Thus, this variant of the structure model

does not predict a difference in C3 compared to C4 performance

because, in both cases, the particular stimulus–action associations

have yet to be learned (see Figure 11d). However, this model predicts

more NC errors than NS or NA errors across both colors C3 and C4.

In particular, because the model assumes that task-set is determined

by shape, it favors actions that applied previously for the same shapes,

without discriminating between the two previously unseen colors.

This tendency results in more NC errors for both new colors. The

generalized structure model presented earlier, comprising both struc-

tures, makes similar qualitative predictions to the C-TS model be-

cause it can infer during the test phase that the C-TS structure is more

relevant (see Appendix A, Figure A2).12

We also tested other models making alternative assumptions about

hidden states. None of these models made predictions that similarly

matched subjects’ qualitative pattern of behavior, and none afforded a

better quantitative fit. For example, it is possible that contextual

information does not signal a task-set but instead an “action-set,” that

is, that specific actions that are used together in a given context tend

to be reused together. Although this particular model did predict better

C3 than C4 performance (because the correct actions for C4 were

never used together in the learning phase), it predicted a qualitatively

different pattern of errors than the one indicative of negative transfer

previously described.13

Moreover, as noted earlier, the C-TS model makes specific

predictions about the patterns of learning, generalization, and error

types that are distinguishable from those of alternative reasonable

models. Next, we present experimental results testing these key

predictions in human participants.

Experiment 1 Results

Subjects were able to learn the task adequately: It took them on

average 18.6 (	 1) trials to reach a criterion maximum two errors

in the last 10 instantiations of each input (so an average of 74.4 	

4 trials overall). Note that this is of the same order as the 22.1 trials

needed by the networks to reach optimal asymptotic performance

(defined as no errors on the following five trials of each input

pattern).

Across all subjects, the pattern of results in the test phase

confirmed predictions from the C-TS(s) model (see Figures 11f

and 11g). First, we observed moderately but significantly faster

learning in the transfer (C3) condition relative to the new (C4)

12 Note that we present C-TS predictions with noiseless, optimal action
selection parameters, contrary to what is expected from subjects. As such,
we report qualitative predictions that are robust across parameterizations—
main effect of C3 versus C4 and interaction with error type—rather than
other predictions that are not robust (e.g., the effect of C4 � C3 when
restricted to NS and NA errors would disappear with less greedy action
choice, as is observed in subjects in Experiment 1’s test-phase behavioral
results).

13 As suggested by a reviewer, positive transfer could also arise from a
model assuming no latent structure by simply grouping together actions
that correspond to a single dimension. For example, a simple feedforward
network linking stimuli to actions would represent actions A1 and A2 as
similar due to their associations with a single context C1. Thus, actions
used together during learning in one context would be represented as more
similar and hence be more likely to be reused together in a new context (as
opposed to actions A1 and A4). Such a model leads to identical predictions
to the action-sets model and is not considered further here because, while
it correctly predicts positive transfer, it fails to predict the correct distinc-
tive pattern of errors characteristic of negative transfer, which is crucially
dependent not just on actions being grouped together but on stimulus–
action mappings being grouped together. Moreover, this model would not
predict that the degree of transfer would depend in any way on switch-costs
during learning. Finally, this model also would not be able to cluster
together contexts indicative of the same task-set in the first paradigm used
to assess initial clustering benefit, where contexts are interleaved during
learning (see Figure 2).
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Figure 10. Experimental protocol. Left: Experimental phases. The learning phase is comprised of pseudoran-

domly intermixed colored shapes (in this example), comprising shapes S1 and S2 and colors C1 and C2. Each

input combination is presented up to a fixed learning criterion, followed by a 10-trial (per input) asymptotic

learning phase. Next, the test phase comprises 20 trials per four new inputs, comprising previous shapes in new

colors. There is no break between phases. Middle: Correct input–action associations. Right: Example of correct

input–action associations with colors and shapes as context and stimuli. Note that correct actions for red shapes

in the learning phase can be reapplied to the blue shapes in the test phase. Thus, we refer to the blue condition

as “transfer”. In contrast, in the “new” (green) condition, there is no single previous task-set that can be

reapplied (one shape–action taken from red and the other from yellow), thus a new task-set. Colors and shapes

are used here for simplicity of presentation, but other visual dimensions could play the role of C or S in a

counterbalanced across-subjects design. Associations between fingers and actions were also randomized. A �
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condition (t � 2.37, p � .024; see Figure 12a; measured as

difference in mean accuracy in first five trials of each input pattern

for C3 compared to C4, but results remain significant for other

measures, in particular, separately for S1 and S2 stimuli, and very

early [first two or three trials]). Furthermore, we observed the

predicted pattern in terms of the distribution of errors, as evidenced

by main effects of error type and color condition (F � 8.22, p �
10�3, and F � 4.99, p � .027, respectively; see Figure 12a, inset),

as well as an interaction between the two factors (F � 3.58, p �
.03). In particular, only in the new (C4) condition, subjects made
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(blue) and the new condition (green): Proportion of correct responses as a function of input repetition; inset:

proportion of trials of type; neglect color (NC), neglect shape (NS), or neglect all (NA) errors. Model simulations
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over 1,000 repetitions. Error bars represent standard error of the mean. a: Flat model. All input–action

associations are represented independently of each other (i.e., conjunctively). b: The flat model predicts no effect

of test condition on learning or error type. c: Dimension-experts model. Appropriate actions for shapes and colors

are represented separately. In the test phase, the shape expert does not have any new links to learn (no new

shapes, no new correct actions for the old shapes in new colors), while the color expert learns links for the new

colors. d: No effect of test condition in this model, but a main effect of error type. e: S-TS(c) structure model.

Shape acts as a context for selecting task-sets that determine color stimulus–action associations, so that new

test-phase colors are new stimuli to be learned within already-created task-sets. Predictions for this model are

qualitatively the same as for the dimension-experts model d, f: C-TS(s) structure model. Color context

determines a latent task-set that contextualizes the learning of shape stimulus–action associations. The C3

transfer context may be linked to TS1, whereas the C4 new context should be assigned to a new task-set. Curbed

arrows indicate different kinds of errors: NS, NC, or NA. g: C-TS(s) model predicts faster learning for test

transfer condition than test new condition, and an interaction between condition and error type. A � action; C �

color; TS � task-set.
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significantly more NC errors than either NS or NA errors (both

ts � 4, ps � 3.5 
 10�4; all others, t � 1.1, p � .28), indicating

that their C4 errors were preferentially related to an attempt to

reuse a previous task-set. Indeed, as described above, C4 was

designed such that the reapplication of a previous task-set would

support correct actions for one of the two shapes but then a specific

error for the other shape: It would correspond to selecting an action

that would be valid if that shape was presented in the other color

(hence NC errors). These two results (generalization and error

distributions) are predicted by the C-TS model, which assumes

subjects use the C dimension as a context to infer hidden states that

determine which task-set is valid on each trial.

However, recall that during learning phase, C and S input

dimensions are arbitrary: Input dimensions (taken from color,

geometrical shape, character, or texture) were orthogonalized

across subjects to serve as C or S dimension, to ensure that no

effect was observed due to one dimension being more salient

than another. Thus, even if all subjects were building hidden

structures, we should only expect half of them to carry C-TS(s)

structure, thus showing positive and negative transfer effects,

while the other half would build S-TS(c) structure, conse-

quently showing no transfer effects. We investigated these

individual differences further by assessing an independent mea-

sure during the learning phase to probe whether subjects were

likely to use the C or the S dimension as higher order.

In particular, if subjects indeed learn task-sets initially, the

asymptotic learning phase corresponds to a self-instructed task-

switching experiment. Thus, depending on which dimension is

used as a context for the current task-set, we should expect to see

corresponding switch-costs (Monsell, 2003) when this dimension

changes from one trial to the next (as predicted by the neural

network model; see Figure 6, bottom left). We assessed these

switch-costs during the asymptotic learning-phase period, when

subjects have potentially already learned the stimulus–action as-

sociations and are thus effectively performing a self-instructed

task-switching experiment. We computed two different switch-

costs, first assuming a C-TS(s) structure and then assuming an

S-TS(c) structure. The first switch-cost was defined as the differ-

ence in reaction times between trials in which the input color

changes from one trial to the next, relative to when it stays the
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Figure 12. Test-phase behavioral results. a, c, d, e: Proportion of correct responses as a function of input

repetition. Insets: proportion of errors of type neglect color (NC), neglect shape (NS), or neglect all (NA). Blue:

C3 transfer condition. Green: C4 new condition. Error bars represent standard error of the mean. a: Whole-group

results (N � 33). As predicted by the C-TS(s) model, there was faster learning in the transfer condition and a

significant interaction between error type and condition. b: The color minus shape switch-cost difference is

predictive of performance differences between transfer and new conditions across the first 10 trials. Switch-costs

are normalized sums of reaction-time and error switch-cost in arbitrary measure. c: Group 1 (N � 11 highest

color-switch-cost subjects). There was a significant positive transfer effect on learning curves and a negative

transfer effect on error types, as predicted by the C-TS(s) model. d: Group 2 (N � 11). Again, there was a

significant positive transfer effect on learning curves, though a nonsignificant negative transfer effect. e: Group

3 (N � 11 highest shape-switch-cost subjects). There was no positive transfer effect and a main effect of error

type on error proportions, as predicted by the S-TS(c) model.
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same. The second switch-cost was defined analogously, where

switch is determined along the shape dimension rather than color.

Thus, subjects building C-TS(s) structure should have greater

C-switch-cost than S-switch-cost and should show transfer effect

during the test phase where new colors were introduced. In con-

trast, those building the opposite S-TS(c) structure would show

greater S-switch-cost than C-switch-cost and show no transfer

effect. Indeed, we observed a significant positive correlation be-

tween performance improvement in C3 compared to C4 and the

difference between these two switch-cost measures (r � .39, p �
.019; see Figure 12b). Thus, the reaction-time switch-cost during

asymptotic learning phase was indicative of the nature of the

structure built during learning and predicted subsequent transfer of

learned task-sets. Similar results held for switch-cost assessed by

error rates rather than reaction time (data not shown).

In order to further investigate these individual differences, we

separated subjects into three equal-sized groups according to their

reaction-time switch-costs. Groups 1 and 3 comprised the 11

subjects with greatest C- and S-switch-costs, respectively, and

Group 2 comprised the remaining 11 subjects with less differen-

tiable switch-costs. Intuitively, Groups 1 and 3 should thus be

expected to have built task-set structure with color and shape,

respectively, serving as contexts, while Group 2 might be expected

to have not built any structure. Accordingly, Group 1 subjects

showed significantly greater C- than S-switch-cost (t � 7.8, p �
10�4) and thus should be expected to correspond to subjects

building C-TS(S) structure and behave according to the C-TS(S)

model. Similarly, Group 3 subjects showed significantly greater S-

than C-switch-cost (t � 6.18, p � 10�4) and thus should be

expected to correspond to subjects building S-TS(c) structure and

behave according to the S-TS(c) model. Finally, Group 2 showed

no significant difference between switch-costs (t � 0.4, p � .7),

which could indicate either that its members did not build any

structure or that we were simply not able to detect it from switch-

cost measures.

Consistent with these predictions, for Group 1, performance was

significantly better in the C3 transfer condition than in the C4 new

condition (t � 2.42, p � .036; see Figure 12c). Furthermore, the

error repartition showed the predicted interaction between condi-

tion and error type (F � 4.99, p � .01; see Figure 12c, inset),

reflecting negative task-set transfer in the new condition, with

significantly more NC errors than NS and NA errors (both ts �
2.44, ps � .035). Conversely, for Group 3, performance in the

transfer condition was not significantly better than in the new

condition (t � �0.99, p � .35; see Figure 12e). Furthermore, as

predicted, there was no interaction between condition and error

type (F � 0.57, p � .45; see Figure 12e, inset) but a main effect

of error type (F � 10.8, p � 10�3) indicating a greater amount of

NC errors than NS or NA across both C3 and C4 conditions (both

ts � 2.64, ps � .025) just as in the S-TS(c) model (see above).

Surprisingly, Group 2 subjects (see Figure 12d) also showed

significantly better transfer than new performance (t � 2.53, p �
.029), although no significant effects of error repartition (ps �
0.07).

Error repartition during the asymptotic learning phase (in addi-

tion to that in the transfer phase described above) was also pre-

dicted by the nature of the structure built, in terms of switch-costs.

For both Group 1 and Group 3, we could identify a higher level (H)

input dimension that served as a context for task-sets (color and

shape, respectively, for Groups 1 and 3) as well as a lower level

(L) input dimension, serving as stimulus (shape and color, respec-

tively). Because NC and NS errors should have opposite roles for

both groups, we reclassified learning-phase errors as NH or NL—

neglect higher dimension (corresponding to NC for Group 1 and

NS for Group 3) or neglect lower dimension (the opposite). Sim-

ilarly, a change in color from one trial to the next should be

indicative of a task-set switch for Group 1 but not for Group 3.

Thus, we also reclassified switch versus stay trials according to

each subject’s H dimension (switch H vs. stay H) or L dimension

(switch L vs. stay L). We then performed a 2 (Group 1 vs. Group

3) 
 3 (error type NH, NL, NA) 
 2 (switch H vs. stay H) 
 2

(switch L vs. stay L) analysis of variance (ANOVA) on the

proportion of errors exhibited by the 22 subjects in Groups 1 and

3 (see Figure 13). Group factor did not interact with any other

factor (p � .22); thus, we collapsed across groups and only report

further effects of a 3 
 2 
 2 ANOVA including both switch

factors and error type factor. All effects reported below remain true

when the ANOVA is conducted separately on each group.

There was a main effect of switch versus stay on the high input

dimension H, as expected for an accuracy-based switch-cost (F �

17.65, p � 10�3). There was also main effect of error type (F �

27.43, p � 10�3), with more NL errors than NH errors (t � 4.57,

p � 10�4) and more NH errors than NA errors (t � 2.21, p � .03).

Furthermore, these two components to errors (switch vs. error

type) interacted (F � 11.55, p � 10�3): While the effect of errors

remained significant both for high dimension switch and stay trials

(F � 29.7, p � 10�4; F � 4.2, p � .021, respectively), the

increase in errors due to switches on the higher dimension was

selectively associated with increased neglect of the lower dimen-

sion (t � 5.6, p � 10�5; other errors, p � .24). Note that this effect

cannot be interpreted as purely driven by attention due to the

dimensional switch: Such an account would predict a similar effect

of switches on the lower dimension leading to neglecting the

higher dimension, but this was not observed. Instead, further data

(see next paragraph) allow us to understand this result as indicating

that subjects correctly update the task-set from one trial to the next

based on the higher order dimension but that they sometimes fail

to properly apply it—thus leading to within-set errors, rather than

perseverative errors. Note that this pattern of errors is predicted

correctly by the neural network model. Although it is not directly

predicted by the structure model C-TS, it can be accounted for by

within-task-set noise parameter εTS, as shown earlier in the section

linking modeling levels.

Finally, we analyzed reaction times in error trials to provide a

clue as to whether higher and lower dimensions might be pro-

cessed in temporal sequence as predicted by the structured models.

We found that on a high-dimension switch, NH errors were sig-

nificantly faster than corresponding NL errors (t � 4.08, p � 10�4;

see Figure 13). This pattern supports the view that NH errors

reflect the impulsive application of the previous trial’s task-set,

whereas NL errors occur after the time-consuming process of

(successful) task-switch. Again, this behavioral result was pre-

dicted by the neural network model.

Next, we fit models to subjects’ behavior to determine whether

it was well captured by the C-TS model. Later, we show that the

array of qualitative patterns of behavior observed here is robust by

replicating it in a second experiment.
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C-TS Model Fittings

We first focused on comparing the flat model to the two variants

of task-set-structure model, C-TS(s) and S-TS(c). Model fittings

were accomplished by selecting parameters that maximized the

likelihood of observed sequence of choices, given the model and

past trials. Fits were evaluated using pseudo-r2 (assessing the

proportion of improvement in likelihood relative to a model pre-

dicting chance on all trials; Camerer & Hua Ho, 1999; Daw &

Doya, 2006; Frank, Moustafa, et al., 2007). For models with

different numbers of parameters, we evaluated fit with ’AIC,

which penalizes fit for additional model parameters (Akaike, 1974;

Burnham & Anderson, 2002). Because alternative models predict

nearly identical behavior in initial learning, we restricted the trials

considered for the likelihood optimization to the asymptotic learn-

ing phase and test phase, without loss of generality.

The flat model included three parameters: n0, the strength of the

beta prior p0 � P(r � 1|(c, s), a), p0  beta(n0, n0), which played

the role of learning speed (since updates to reward expectations are

reduced with stronger priors); an inverse temperature softmax

parameter (�); and an undirected stimulus-noise parameter ε.

Task-set-structure models also included three parameters: the clus-

tering � parameter, the softmax � parameter, and the undirected

stimulus-noise parameter ε. We checked that inclusion of all three

parameters provided better fit of the data than any combination of

two of them (fixing the third to canonical values ε � 0 or n0 � 1,

and � to the mean fit over the group), again controlling for added

model complexity using AIC. For the C-TS model, we also con-

firmed that inclusion of a supplementary softmax parameter on

task-set selection did not improve fits and hence use greedy

selection of the most likely task-set.

Comparing model fit across the three models and the three

groups yielded no main effect of either factor (both Fs � 1.85,

ps � 0.17; i.e., there was no overall difference in model fits across

the group or in average fits between groups) but a strong interac-

tion between them (F � 10.6, p � 1.5 
 10�6). Post hoc tests

confirmed what is expected from all three groups: Indeed, for

Groups 1 and 3, task-set-structure models fit significantly better

than the flat model (both ts � 2.2, p � .05; see Figure 6, top),

which was not the case for Group 2 (t � 0.15, p � .88). Further-

more, for Group 1, C-TS(s) structure fit significantly better than

S-TS(s) structure (t � 2.75, p � .02), while the contrary was true

for Group 3 (t � 4.76, p � 7 
 10�4; see Figure 14, top).

The above model fits made a somewhat unrealistic assumption

that each group had a learning method fixed at the onset of the

experiment, including which input dimension should be used as a

context in the structured case. We therefore also considered the

possibility that all three options were considered in parallel, in a

mixture of three experts, and weighted against each other accord-

ing to estimated initial priors in favor of each expert and their

prediction capacities (cf. Frank & Badre, 2012). This model was

presented earlier as the generalized structure mixture model.

Controlling for added model complexity with AIC, we found

that this model fit better than any of the three experts embedded

within. Mean pseudo-r2 was 0.58. We then confirmed previous

results by exploring the relative mean fitted weights over the test

phase assigned to each expert by each group. Again, we observed

no main effects but a significant interaction between group and

expert (F � 3.06, p � .023; see Figure 14, bottom). Interestingly,

Group 2 subjects had significantly stronger flat expert weights than

both other groups (t � 2.24, p � .03). Furthermore, within struc-
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ture weights, the preference for C-TS(s) was significantly stronger

for Group 1 than for Group 3 (t � 2.56, p � .019).

Thus, model-fitting results confirmed that Groups 1 and 3

seemed to build task-set structure according to color and shape,

respectively. It should be noted that this is not a trivial result: The

assignment of subjects to groups was not determined by their

performance in the transfer phase but rather by their reaction-time

switch-cost during the asymptotic learning phase, to which the

model-fitting procedure had no access (reaction times are not used

for fitting). Nevertheless, the results for Group 2 remain ambigu-

ous: Although it seems that they relied more on flat expert than the

other two groups, consistent with their low switch-cost on either

dimension, the flat model did not fit significantly better than

structured models, and structured weights remained significantly

positive, as could be expected from the presence of a transfer effect

for Group 2.

Fitted parameters between groups differed only in the initial

priors assigned to each expert. For Group 1, the prior for C-TS(s)

structure was significantly greater than for the other groups (t �
2.7, p � .01). Conversely, for Group 2, the prior for flat structure

was significantly greater than for the other groups (t � 2.23, p �
.03). All other parameters showed no group effects (Fs � 0.84, ns),

except for a nonsignificant trend for parameter ε (p � .07). Of

note, there was no group effect on parameter � (mean � � 4.5,

F � 0.57, ns), suggesting that individual differences in transfer

were not due to differential tendencies to revisit previous task-sets

but instead seem to reflect differences in the prior tendencies.

Experiment 2: Replication and Extension

This replication experiment was similar to that in Experiment 1,

with the following changes.

• Most significantly, given that we had some success in pre-

dicting the nature of transfer according to reaction-time switch-

cost during the learning phase of Experiment 1, in Experiment 2

we assessed the switch-cost during the experiment itself and used

that information to decide which visual input dimension should be

considered context. Specifically, if color switch-cost was greater

than shape switch-cost, the test-phase inputs corresponded to two

new colors and old shapes. This procedure allowed us to test

whether subjects would generalize their knowledge in the test

phase to new contexts regardless of which one they chose to be the

“higher” dimension during learning and committed to the switch-

cost metric for assessing structure.

• Visual input dimensions were color and shape for all subjects.

• Motor responses were given with four fingers of the main

hand.

• We controlled the task sequence in the transfer phase such

that the first correct response of the two new contexts associ-

ated with stimulus S1 was defined as C3. This allowed us to test

transfer without regard for a possible higher level strategy

participants could apply. Specifically, some subjects may as-

sume a one-to-one mapping between the four possible actions

and the four different inputs during each experimental phase.

This strategy can cause subjects to be less likely to repeat action

A1, even though it actually applies to both C3 and C4, which

would reduce the likelihood in observing transfer if they hap-

pened to respond correctly to C4 first. Of course, if analyzed as

such, there would be a bias favoring transfer because C3-S1

performance is by definition better early during learning than

C4-S1. To avoid this bias, we limited all assessment of transfer

to the S2 stimuli. Task-set generalization was thus expected to
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improve performance on S2 for C3, but not C4, without being

influenced by S1 stimuli.

• The experiment was repeated three times (with different

shapes/colors) for each subject.

Sample

Forty subjects participated in the replication experiment. Tech-

nical software problems occurred for two subjects, and three

subjects failed to attend to the task (as indicated by a large number

of nonresponses) and were thus excluded from analysis. Final

sample size was N � 35 subjects.

Experiment 2 Results

First, it should be noted that half of the subjects (N � 18)

utilized color as the context dimension as assessed by the switch-

cost comparison procedure, while the other half utilized shape,

thus confirming our earlier findings that (at least in this experi-

mental protocol) there was no overall bias to treat one dimension

or another as context or higher order.

Moreover, this replication experiment confirmed most of the

previously described results. Positive transfer, defined as early

performance improvement in transfer test condition C3 compared

to new test condition C4, was significantly positive (p � .036, t �
2.12, restricted to first iteration of the experiment: p � .034, t �
2.2). Although the interaction typical of negative transfer was not

significant, we got a similar trend: Subjects made significantly

more NH errors in the C4 condition than in C3 (p � .048, t �
2.05), while the difference for NL or NA errors was not significant.

This pattern especially holds if restricted to the first iteration of the

experiment for each subject (NH: p � .01; NL: p � .47; and

interaction: p � .1).

We also replicated the asymptotic learning-phase error effects.

In particular, there was a strong main effect of switch H versus stay

H on error proportion (t � 6.13, p � 10�4), consistent with an

error switch-cost associated to the reaction-time switch-cost used

to define dimension H. While there was also a main effect of

switch L (p � .005, t � 3), this effect was significantly weaker

than the switch H effect (p � .025, t � 2.34). Most importantly,

the effect of switch versus stay H, but not L, interacted with error

type. NL errors were significantly more important than NH errors

for switch H (p � .0001, t � 4.52), but not for stay H (p � .82,

difference t � 4.8, p � 10�4). Conversely, for the low dimension,

NL errors were overall more numerous than NH errors, irrespec-

tive of switch or stay L (both ps � 0.01, difference p � .74). This

is the exact same pattern we obtained in the main experiment.

Furthermore, switch H NH errors were significantly faster than

switch L NL errors, again replicating main experiment results (first

iteration p � .0024, all data p � .0038).

Discussion

In this article, we have confronted the interaction between

learning and cognitive control during task-set creation, clustering,

and generalization from three complementary angles. First, we

developed a new computational model, C-TS, inspired by non-

parametric Bayesian methods (approximations to Dirichlet process

mixtures allowing simple online and incremental inference). This

model specifies how the learner might infer latent structure and

decide whether to reuse that structure in new situations (or across

different contexts) or to build a new rule. This model leverages

structure to improve learning efficiency when multiple arbitrary

contexts signal the same latent rule and also affords transfer even

when structure is not immediately evident during learning. Second,

we developed a neurobiologically plausible neural network model

that learns the same problems in a realistic time frame and exhibits

the same qualitative pattern of data indicative of structure building

across a wide range of parameter settings, while also making

predictions about the dynamics of action selection and hence

response times. We linked these neural mechanisms to the higher

level computations by showing that the C-TS model mimics the

behavior of the neural model and that modulation of distinct

mechanisms was related to variations in distinct C-TS model

functions. Third, we designed an experimental paradigm to test

predictions from both of these models. In particular, we assessed

whether human subjects spontaneously build structure into the

learning problem when not cued to do so, whether evidence of this

structure is predictive of positive and negative transfer in subse-

quent conditions, and whether the pattern of errors and reaction

times is as predicted by model dynamics. We showed across two

experiments that the C-TS model provided a good quantitative fit

to human subject choices and that dynamics of choice were con-

sistent with the mechanisms proposed.

We have thus proposed a new computational model that ac-

counts for the observed behavioral findings. This model learns

discrete abstract hidden states that contextualize stimulus–action–

feedback contingencies, corresponding to the abstract construct of

task-sets. Crucially, task-set representations cannot be substituted

with the contexts that predict them (contrary to some models of

other tasks; see, e.g., Frank & Badre, 2012). Rather, the probabi-

listic link between specific contexts and task-sets is learned over

time and used for task-set selection on each trial via a priori

inference of the hidden state. This feature is essential for further

generalization, since it allows new contexts to potentially be clus-

tered with existing task-sets as diagnostic of a previously learned

task-set, rather than automatically assigned to a distinct state.

Although this abstract hidden state representation of a task-set

feature is present in the model of Collins and Koechlin (2012), that

model relies on the assumed episodic stability of external contin-

gencies for task-set inference. Thus, to our knowledge, the model

presented here is the first to allow for simultaneous learning of

multiple abstract task-sets in an intermixed procedure that facili-

tates subsequent generalization.

Behavioral Patterns and Model Fits Indicate

Incidental Structure Building

Indeed, the behavioral results robustly indicate that subjects

applied cognitive control in a simple learning problem, using

one input feature as a higher level context indicative of a

task-set and the other feature as the lower level stimulus.

Transfer of these task-sets to new situations led to improved

performance when generalization was possible but also to over-

generalization and negative transfer in ambiguous new con-

texts. Moreover, at the individual level, the degree to which

these transfer effects were observed was predicted by the nature

of the structure built by each subject as inferred by an inde-
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pendent measure (reaction-time switch-costs during the learn-

ing phase). This same inferred structure was also predictive of

the repartition of error types during both learning and transfer

phase, strengthening their validity for identifying the specific

hidden structure built by each subject.

In the first experiment, Subject Groups 1 and 3, who had

clearly differentiable switch-costs, showed unambiguous results

in favor of the notion that subjects learn hidden structure.

Indeed, predictions were confirmed regardless of whether the

structure incidentally built turned out to be favorable (Group 1)

or unfavorable (Group 3) to subsequent generalization in the

transfer phase of the experiment. Model fittings also confirmed

that subjects from these groups seemed to be learning by

building hidden task-set structures. However, results for Group

2 were more ambiguous and leave open the question as to

whether all subjects tend to infer structure when learning.

Indeed, Group 2 subjects were identified as those in whom we

could not detect a reliable difference in reaction-time switch-

costs between input dimensions, which is requisite if one serves

as higher level context and the other as stimulus. Surprisingly,

these subjects nevertheless showed some evidence for positive

transfer and a nonsignificant but numerical trend towards neg-

ative transfer. Two distinct explanations are possible for these

seemingly paradoxical results. The first explanation might be

that Group 2 subjects actually belong to Group 1 or 3 but that

the reaction-time switch-cost measure was not sensitive enough

to detect it. This would explain the presence of transfer effects

and would imply that all groups tended to build hidden structure

during the learning phase. Alternatively, Group 2 subjects

might indeed not have built any structure during the learning

phase, instead learning in a flat way, as suggested by switch-

cost and model-fitting results. However, to account for ob-

served transfer effects, we would then have to suppose that

during the test phase, subjects build a posteriori structure ret-

rospectively, performing backwards inference and reorganizing

learning-phase observations as a consequence of test-phase

observations (evidence for backward inference, although on

simpler schemes, is abundant even in infants; Sobel & Kirkham,

2007). Relatedly, it is possible that these subjects kept track of

different possible structures during learning, including both flat

and structured experts, and then adjusted their attentional

weights toward structured expert during transfer when the ev-

idence supported C-TS structure over the others, as was the case

in the generalized structure model presented above. These dif-

ferent possibilities cannot easily be discriminated based on the

current findings but may be addressed in future research.

Group 2 findings notwithstanding, we showed that most subjects

tend to build hidden structure in a simple learning paradigm that

does not require or even benefit from it during acquisition. We

replicated this finding in a second experiment in which, by design,

all subjects were in Group 1 or 2 (i.e., they were all afforded the

potential to transfer task-set knowledge defined by the structure

they most likely built). We emphasize again that when viewed only

from the perspective of the acquisition phase in this particular task,

the tendency to create structure does not seem optimal in terms of

quantity of information to be stored and complexity of the model

needed to represent structure. Regarding quantity, building task-

sets requires formation of six links (two C-TS links, two stimulus–

action links per task-set), while learning in a flat way requires only

four (one per input). As for the complexity, building structure

complicates the credit assignment problem: It requires the agent to

disambiguate the hidden state associations and involves wasting

some information when an event is assigned to the incorrect

hidden state. Indeed, structured models show slightly less efficient

initial learning compared to flat models in this task (in contrast to

the other task, in which there is a benefit to initial clustering). This

was especially evident in the neural network, in which we found

that the flat single-loop neural model acquired the learning con-

tingencies more rapidly than the structured two-loop model (but

the latter model showed more similar learning speeds to human

subjects). The important question thus remains: Why do subjects

recruit cognitive control to structure learning in simple RL prob-

lems if it does not’ afford an obvious advantage and even comes

with a computational cost? We propose several directions for this

question.

One possibility is that building structure, while apparently

unnecessary during learning, may provide an advantage for

potential subsequent generalization (despite the fact that sub-

jects are not aware of the ensuing transfer phase). If the poten-

tial to generalize learned structure is common in the environ-

ment, it might be optimal in the long run to attempt to build

structure when learning new problems. Such an incidental strat-

egy for building structure during learning may have therefore

developed throughout learning or even evolution in terms of the

architecture of cognitive action planning. Indeed, recent neuro-

imaging and model-fitting experiments suggest that subjects’

tendency to apply hierarchical structure in a task in which there

is an advantage to doing so is related to greater activations in

more anterior frontostriatal loops at the outset of the task—as if

they search for structure by default (Badre & Frank, 2012;

Badre et al., 2010). Indeed, rather than showing increases in

such activations with learning, these studies revealed that sub-

jects learned not to engage this system in conditions where it

was detrimental to do so, as evidenced by declining activation

as a function of negative reward prediction errors (Badre &

Frank, 2012). At the behavioral level, this is the same line of

argument as proposed by Yu and Cohen (2009) for subjects’

“magical thinking”, or inference of sequential structures in

random binary sequences (see also Gaissmaier & Schooler,

2008, who demonstrated that seemingly suboptimal probability

matching is related to the tendency to search for patterns). This

interpretation raises the question of whether structure building

is unique to humans or primates and/or whether deficiencies in

the associated mechanisms may relate to developmental learn-

ing disabilities involving poor generalization, such as autism

(Solomon, Smith, Frank, Ly, & Carter, 2011; Stokes, 1977).

A second possible explanation resides in the nature of input

representations. Indeed, when we have described the flat ideal

learner, we have assumed perfect pattern separation of the four

inputs into four states. Because each of these inputs constitutes

overlapping two-dimensional images, there may be some interfer-

ence between them at either perceptual or working memory stages

(e.g., proactive interference; Jonides & Nee, 2006). In our task,

recalling the actions that have been selected for a given colored

shape could be rendered more difficult by the presentation of other

intervening and conflicting colored shapes. Thus, learning in a flat

way would incur a cost to resolving the interference between the

input representations. That cost may be absent in the structured
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representations: Depending on the task-set selected, the same

stimulus may be assigned a distinct representation. Thus, learning

structure might be helpful in separating conflicting representations

of the task, apart from its potential advantage in further general-

ization.

A third possible explanation for why subjects create structure is

that learning in a flat way requires identifying which of the four

inputs and which of the four actions are currently relevant. Learn-

ing in a structured way, however, cuts these four-way decisions

into two successive two-way decisions: first identifying which of

the two contexts and hence which task-set are applicable, then

which of the two stimuli and hence which action are appropriate.

Learning in a hierarchical structure might then be seen as a way to

transform one difficult decision problem into two simpler sequen-

tial decisions, or a “divide and conquer” strategy. This issue is of

particular interest in light of the debate on the functional organi-

zation of prefrontal cortex, which is crucially involved in cognitive

control and task-set selection, with more posterior premotor areas

involved in simple stimulus–action selection. Indeed, the rostro-

caudal axis has been known to encode a gradient of representations

for cognitive control, with the nature of this gradient being at the

heart of the debate. There have been arguments for a pure level

of policy abstractness gradient (Badre, 2008), for a pure tem-

poral gradient (Fuster, 2001), or for a mixture of both (Koechlin

et al., 2003). While task-set selection may typically be consid-

ered structure abstraction, in our models it also involves a

sequential decision-making process and thus also involves a

temporal gradient.

Our data provide one argument in favor of this sequential

interpretation. When task-switching failed, the nature of errors

depended on the speed with which subjects (and networks)

responded, with the pattern implying an initial time-consuming

task-set selection process followed by action selection within

the task-set. Specifically, fast errors corresponded to an impul-

sive reapplication of the previously selected (but now incorrect)

task-set. In contrast, slow errors reflected correct task-set up-

dating but then a misidentification of the lower level stimulus.

Note that the vast majority of the task-switching literature has

made it impossible to separate these types of errors due to the

use of two-response tasks (so that an error always corresponds

to a single response). The error switch-cost has been mostly

attributed to two mechanisms: the persistence of the previous

task-set and the reconfiguration of the new task-set (Monsell,

2003; Sakai, 2008). We have shown here that errors following

task-set switches more often result from inappropriate applica-

tion of the task-set to the current stimulus than to perseveration

of the previous trial’s task-set.14

Model Suboptimality and Limitations

Although the C-TS model is inspired by the optimal nonpara-

metric Bayesian approach (specifically, Dirichlet process mix-

tures), we do not claim that optimal computation of the defined

probabilistic model of the environment. Indeed, the model includes

several non-Bayesian approximations, which also makes it more

similar to the neural implementation. The main approximation

consists of a discrete and definitive inference of the hidden state,

by taking the mode of the distribution (as has been done in similar

clustering models of category learning; e.g., Anderson, 1991;

Sanborn et al., 2006). We adopted this approach both a priori for

selecting a task-set (and hence an action selection strategy) and a

posteriori for using feedback information to update structure-

dependent stimulus–action contingencies. More exact inference

requires keeping track of the probability distribution over the

partitions of contexts into hidden states and the hyperparameters

defining structure-dependent stimulus–action–outcome probabili-

ties. This highly complex inference is computationally very costly.

We found that our simple approximation resulted in the same

overall qualitative pattern of predictions as the more exact version

and is largely sufficient to afford computational advantage in

learning efficiency when multiple contexts signify the same task-

set (though it would possibly fail in much more complex situa-

tions). One limitation of the approximation is the inability to

retrospectively go backwards in time and reassign a particular trial

to a different hidden state when subsequent experiences indicate

this should be the case (as is one hypothesis for Group 2), as might

be done—in a probabilistic sense—by exact inference.

Another limitation in the model is in the absence of sequential

structure. We make two assumptions of temporal nature. First, on

a large scale, we assume a stable environment with nonvarying

associations between contexts and task-sets. This assumption can

be seen as a first-order approximation, and more work is required

to deal with nonstationary relation between contexts and task-sets.

Second, on a smaller time scale, we assume no trial-to-trial de-

pendence on action selection (so that the model, in this form,

cannot account for working memory tasks such as, e.g., 12AX;

O’Reilly, 2006). Indeed, while the selection of task-sets on each

trial is dependent on learned value, it is independent of the identity

of the previous trial’s context or inferred task-set (unlike the neural

model, which has persistent activation states making previous trial

task-sets more efficiently reused on the current trial and hence

accounting for reaction-time effects). Certainly, one could modify

the C-TS model specification to accommodate this probability, but

that would require also confronting the normative reasons for

doing so, of which there are several possibilities that are beyond

the scope of this article.

Neural Network and Relationship Between Levels of

Modeling

We related the algorithmic modeling level to mechanisms em-

bedded within a biologically inspired neural network model. Al-

14 One other study sought to dissociate the nature of error switch-costs
by including four responses: Meiran and Daichman (2005). Their results
favored more incorrect context–task selection than stimulus–action selec-
tion, contrary to our findings. There are two potential reasons for the
discrepancy between our findings in the learning task and those of Meiran
and Daichman in instructed task-switching. First, the nature of the exper-
imental paradigms may promote different speed–accuracy tradeoffs. In-
deed, their pure task-switching paradigm would naturally emphasize speed
over accuracy, whereas, in our paradigm, responding accurately during the
asymptotic learning phase is paramount (given that there is a learning
criterion to continue the experiment). We showed that faster errors corre-
spond to incorrect task selection, which was a minority in our study but the
majority in theirs, as might be expected from more speed pressure. The
second possible reason for the difference is that the task-sets used by
Meiran and Daichman involved associating a visual location to finger
position, and stimulus–action errors always corresponded to selecting a
response at a different spatial location than the stimulus, thus potentially
biasing the results with a Simon effect (Simon, 1969).
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though (as we discuss at the end of this section) there are some

differences between the core computations afforded by the two

levels of modeling, at this stage we have focused on the comple-

mentary ways of accomplishing similar goals and consider them

largely two levels of description that both account for our novel

experimental data, rather than competing models.

The neural network structure relies on the well-studied cortico-

basal ganglia loops that implement gating mechanisms and unsu-

pervised dopamine-driven RL. The network’s functional structure

accords with recent evidence showing that the basal ganglia play a

crucial role not only in RL but also in modulating prefrontal

activity in various high-level executive functions, including task-

switching (Moustafa, Sherman, & Frank, 2008; van Schouwen-

burg, den Ouden, & Cools, 2010) and working memory (Baier et

al., 2010; Cools, Sheridan, Jacobs, & D’Esposito, 2007; O’Reilly

& Frank, 2006). Similarly to Frank and Badre (2012) and in

accordance with the functional organization of corticostriatal cir-

cuits, we embedded the learning/gating architecture into two

nested loops, with the input of the second loop (both striatum and

STN) constrained by the output of the first. However, the specific

contribution of the model is in the nature of representations

learned. Indeed, the prefrontal loop learns to gate an abstract, latent

representation that only carries “meaning” in the way it influences

the second, premotor loop—via the PC—for the selection of ac-

tions in response to stimuli. This function generalizes that in the

Rougier, Noelle, Braver, Cohen, and O’Reilly (2005) model,

which shows how PFC units can come to represent a particular

abstract construct (e.g., color rule units) through learning and

development. In that case, color rule neurons supported the selec-

tion of actions pertaining to specific colors according to task

demands. In the current network, PFC units come to represent an

entire task-set policy in a hierarchical fashion, dictating how

actions should be selected in response to other stimulus dimen-

sions. Also, unlike the Rougier et al. model, our network does not

require repeated presentation of the same task rule in blocks of

trials for latent representations to develop. The network only

creates these representations as needed, thus inferring not only the

identity of the current hidden task-set but also the unknown quan-

tity of possible task-sets and assignment of specific contexts to

those relevant task-sets. When new contexts are presented, the

network can gate an existing task-set representation, which is then

reinforced if it is valid. Thus, the task-sets are context independent,

as found in the literature (Reverberi et al., 2011; Woolgar et al.,

2011). Moreover, unlike previous BG-PFC gating models (Frank

& Badre, 2012; O’Reilly & Frank, 2006; Reynolds & O’Reilly,

2009; Rougier et al., 2005), which rely on RL for gating PFC

representations but supervised learning at the level of motor re-

sponses, the current model relies on RL at all levels (after all, there

is no overt supervised feedback in the experiments), making it

more challenging. Nevertheless, networks learned in similar num-

ber of training experiences as did human subjects. Finally, the

quantitative fits of the C-TS model to the BG-PFC networks

confirm that the gating of distinct PFC states corresponds well to

the creation, clustering, and reuse of task-sets.

The current model relies crucially on diagonal projections

across loops.15 While large-scale corticobasal ganglia loops

were originally characterized as parallel and segregated, there is

now ample evidence of integration between circuits (Haber,

2003). Here, we included a projection from anterior frontal

regions to the motor STN and motor striatum (Haber, 2003;

Nambu, 2011). The diagonal STN projection plays an important

role in regulating gating dynamics to ensure that motor action

selection is prevented until the appropriate task-set is selected.

While this slows responding somewhat, it parametrically im-

proves learning efficiency by reducing interference and (unlike

the algorithmic model) naturally accounts for the pattern of

reaction times across different error types. Variations in this

projection strength were captured in the C-TS model fits by a

parameter affecting noise in task-set selection in response to

contexts. In contrast, the diagonal striatum projection facilitates

preparation of actions concordant with the selected task-set

independent of the stimulus and accounts for the greater pro-

portion of within-task-set (NL or NS) than across-task-set (NH

or NC) errors during learning. Accordingly, variations in this

projection strength were captured in the C-TS model fits by a

parameter affecting within-task-set noise.

Overall, we showed that the full pattern of effects exhibited by

subjects and captured by this model were robust to wide range of

variations in key parameters (see Figure 7).

The different levels of modeling bring different ways of

understanding human behavior and neural mechanisms thereof.

On one hand, the computational C-TS model affords quantita-

tive predictions and fits to subject behavior from a principled

perspective. On the other hand, the neural network, aside from

its clear links to neuroscience data, naturally captures within-

trial dynamics, including reaction times, as well as qualitative

predictions on larger time-scale dynamics. We showed that the

clustering of contexts onto PFC states in the neural model was

related to benefit in initial learning when task structure was

present and to generalization during transfer. Quantitative fits

showed that the behavior of the more complex neural model

was well captured by the C-TS model (see also Frank & Badre,

2012; Ratcliff & Frank, 2012, for similar approaches), with

roughly the same fit as that to human subject choices. More-

over, the latent variables inferred by C-TS corresponded well to

the PFC state selected by the neural network, and the effects of

biological manipulations were captured by variations in distinct

parameters within the C-TS framework. For example, paramet-

ric manipulations of the prior tendency to represent distinct

contexts as distinct PFC states were directly related to the fitted

� parameter, suggesting that this tendency can be understood in

terms of visiting new states in a Dirichlet process mixture. In

this task context, thus, the nested gating neural network might

be understood as implementing an approximate inference in a

Dirichlet process mixture.

15 Reynolds and O’Reilly (2009) and Frank and Badre (2012) also used
diagonal projections. However, these were used for different purposes.
Reynolds and O’Reilly relied on diagonal PFC-striatal projections for
contextualizing an input gating process for working memory updating,
whereas Frank and Badre used it for output gating (selecting which PFC
representation to guide behavior). Here, PFC-striatal projections serve
closer to an output gating function at the motor response level, but rather
than uniquely determining which response to gate, they only constrain the
problem to prepare all actions that are consistent with the selected task-set.
Moreover, neither of the previous models simulates the role of the STN and
hence does not include diagonal PFC-STN projections, which are arguably
more critical to the current model.
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However, although the neural model was well fitted by the C-TS

model across multiple tasks and manipulations, there remain some

significant functional differences. Most notably, the C-TS model is

able to infer a posteriori the nature of the hidden state regardless of

the state that it selected for that trial a priori (by computing

likelihoods given both selected and nonselected task-sets) and uses

that inference to guide learning. In contrast, the neural network

only learns the value of the PFC task-sets (and motor actions) that

have been gated in each trial and does not learn about unselected

task-sets. To examine this difference more carefully, we conducted

an auxiliary simulation in which the C-TS model mimicked this

more restricted network capacity, so that there was only a poste-

riori updating of the a priori selected task-set and action. This

simulation produced only slightly less efficient behavior and pro-

vided very similar fitting results to human subjects’ behavior. This

result suggests that human learning is well captured by approxi-

mations to Bayesian computations consistent with the implemen-

tation in our neural network. However, it is entirely possible that

our task paradigm was not sensitive enough to differences in the

two forms of learning, and other paradigms may show that human

learning and inference capacities may exceed that of the neural

network. Another difference resides in the specific prior for clus-

tering contexts within task-sets, which we implemented in the

simplest way possible in the network, since it was not critical for

the simulated experiments. An interesting avenue for further ex-

perimental and modeling research is to test whether subjects in-

deed rely on the assumed Dirichlet process prior for building

task-sets (i.e., do they attempt to reuse them in proportion to their

popularity across multiple contexts?). Such a finding would mo-

tivate the use of simple mechanisms to build this prior into the

neural network.

Finally, the neural model also allows us to make specific pre-

dictions for future experiments with neurological populations,

pharmacological manipulations, and neuroimaging. For example,

probabilistic tractography can be used to assess whether projec-

tions from PFC to STN are predictive of individual differences in

the reaction-time differences between NH and NL errors, as pre-

dicted by our model.

Relationship to Hierarchical Reinforcement Learning

The models can be seen as a hierarchical model for learning

cognitive control structure. Indeed, stimulus–action selection at

the lower level is constrained by its parallel higher level C-TS

selection. Apart from the models already discussed, specifically

aimed at learning task-set hierarchy, other models have focused

on hierarchical RL (Botvinick, 2008). This framework aug-

ments standard RL by allowing the agent to select not only

“primitive” motor actions but also higher level “options” that

constrain primitive action selection (in the same way that task-

sets do). However, the crucial distinction between this hierar-

chical framework and the one we propose here lies in the nature

of the hierarchy considered. Indeed, the options framework

builds a sequential hierarchy: It transforms a Markov decision

process into a semi-Markov decision process by allowing entire

sequences of actions to be selected as an option. The hierarchy

here thus lies in the temporal sequencing and resolution of the

decision process. In our case, however, the hierarchical struc-

ture is present within each trial and does not affect sequential

strategy (see also Frank & Badre, 2012, for more discussion on

the potential overlap with the options framework at the mech-

anism level). Thus, these models address different aspects of

hierarchical cognitive control. Nevertheless, if we extend our

task-set paradigms to situations in which the agent’s action

affects not only the outcome but also the subsequent state (i.e.,

the transition functions are nonrandom), then the selection of a

task-set is similar to the selection of an option policy. Indeed,

in preliminary simulations not presented here, we found that the

C-TS model provides a similar advantage to the options frame-

work in learning extended tasks with multiple subgoals needed

to reach an end goal (the “rooms” grid-world problem discussed

in Botvinick, 2008).16 In contrast, the options framework does

not consider structure in the state space for determining which

policy applies (it focuses on structure within hierarchical sets of

actions). Thus, it has no mechanism to allow clustering contexts

indicative of the same option—its ability to generalize options

applied toward larger goals relies on observing the identical

states in the subgoals as observed previously.

Relationship to Category Learning

As noted in the introduction, our approach also borrows from

clustering models in the category learning literature (Anderson,

1991; Sanborn et al., 2006). Whereas category learning typi-

cally focuses on clustering of perceptual features onto distinct

categories, our model clusters together contextual features in-

dicative of the same latent, more abstract task-set. Thus, the

clustering problem allows identification of the correct policy of

action selection given states, where the appropriate policies are

likely to be applicable across multiple contexts.

Note that the similarity between different contexts can only

be observed in terms of the way the set of stimulus–action–

outcome contingencies, as a group, is conditioned by these

contexts. Thus, whereas, in category learning experiments, a

category exemplar is present on each trial, in the task-set

situation, only one “dimension” of a latent task-set is observed

on any one trial (i.e., only one of the relevant stimuli is

presented and only one action selected). Thus, whereas category

learning models address how perceptual features may be clus-

tered together to form a category rule, potentially even inferring

simultaneously different relevant structures as we do (Shafto et

al., 2011), here we address how higher level contextual features

can be clustered together in terms of their similarities in iden-

tifying the applicable rule. Furthermore, unlike in perceptual

category learning, the identity of the appropriate task-set is

never directly observable by subjects through feedback: Feed-

back directly reinforces only the appropriate action, not the

overarching task-set. For the same reasons, subjects’ beliefs

about which task-set applies are not directly observable to

experimenters (or models).

16 These simulations were conducted using a “pseudoreward” during
initial training of individual rooms, as was used in Botvinick (2008).
However, it should be noted that more recent work (Botvinick, 2012) has
made efforts to automatically learn useful pseudorewards. Although C-TS
does not’ solve this issue, it handles a similar complex problem in the
creation of useful abstractions and in building a relevant task-set space.
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Other category learning models focus on the division of labor

between BG and PFC in incremental procedural learning versus

rule-based learning but do not consider rule clustering. In

particular, the COVIS model (Ashby, Alfonso-Reese, Turken,

& Waldron, 1998) involves a PFC component that learns simple

rules based on hypothesis testing. However, COVIS rules are

based on perceptual similarity and focus on generalization

across stimuli within rules rather than generalization of rules

across unrelated contexts. Thus, although COVIS could learn to

solve the tasks we study (in particular, the flat model is like a

conjunctive rule), it would not predict transfer of the type we

observed here to other contexts. Other models rely on different

systems (such as exemplar, within-category clusters, and atten-

tional learning) to allow learning of rules less dependent on

similarity (Hahn, Prat-Sala, Pothos, & Brumby, 2010;

Kruschke, 2011; Love, Medin, & Gureckis, 2004). Again, these

models allow generalization of rules not across different con-

texts but only potentially across new stimuli within the rules.

Conclusion

Cognitive control and learning behavior are mostly studied

separately. However, it has long been known that they implicate

common neural correlates, including PFC and BG. Further-

more, they are strongly intermixed in most situations: Learning,

in addition to slow error-driven mechanisms, implicates exec-

utive functions in a number of ways, including working mem-

ory, strategic decisions, exploration, hypothesis testing, and so

on. Reciprocally, cognitive control relies on abstract represen-

tations of tasks or rules that often take a hierarchical structure

(Badre, 2008; Botvinick, 2008; Koechlin & Summerfield, 2007)

that needs to be learned. It is thus crucial to study both simul-

taneously. We have proposed a computational and experimental

framework that allowed us to make strong predictions on how

cognitive control and learning interact. Results confirm model

predictions and show that subjects have a strong tendency to

apply more cognitive control than immediately necessary in a

learning problem: Subjects build abstract representations of

task-sets preemptively and are then able to identify new con-

texts to which they can generalize them. This tendency to

organize the world affords advantages when the environment is

organized but potential disadvantage when it is ambiguously

structured. We explored a potential brain implementation of this

interaction between cognitive control and learning, with pre-

dictions to be investigated in future research.
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Appendix A

Algorithmic Models Details

C-TS Model Details

For all TS i in the current task-set space {1, . . . , nTS(t)} and all

contexts cj experienced up to time t, we keep track of the proba-

bility that this task-set is valid given the context p(TSi|cj), implic-

itly conditionalized on past trial history. The most probable task-

set TSt in context ct at trial t is then used for action selection:

TSt � argmaxi�1. . .nTS�t� P�TSi�ct�.
Specifically, action selection is determined as a function of the

expected reward values of each stimulus–action pair given the

selected task-set TSt, Q(st, ak) � E(r|st, ak, TSt). The policy

function as a function of Q can be a softmax action choice (see

Equation 4 in the main text) but is detailed in the section Noise and

Interindividual Variations, below.

Belief in the applicability of all latent task-sets is updated after

observation of reward outcome rt. Specifically, the estimated pos-

teriors for all TSt � �i � 1... nTS�t�� are updated to

Pt�1(TSi�ct� �
P�rt�st, at, TSi� � P�TSi�ct�

�j�1...NTS(t) P�rt�st, at, TSj� � P�TSj�ct�
,

(A1)

where NTS(t) is the number of task-sets created by the model up to

time t (see details below). We then determine, a posteriori, the

most likely task-set associated to this trial: TSt
' �

argmaxi�1. . .nTS�t�Pt�1(TSi|ct). This determines the single task-set

for which state–action learning occurs in this trialA1:

P�r�st, at, TSt
'�, ~Bernoulli�	�, 	~beta�n0 � nt�1�TSt

',st,at�, m0 �

mt�1�TSt
',st,at�� where (n0, m0) correspond to the prior initialization

on the task-set’s Bernoulli parameter and (nt, mt) are numbers of

successes (r � 1) and failures (r � 0) observed before time t for

(TS'
t,st,at), such that we increment (nt�1�TSt

',st,at� �

nt�TSt
',st,at� � rt, and mt�1�TS'

t,st,at� � mt � �1 
 rt�.

For each new (first encounter) context cn�1, we increase the

current space of possible hidden task-set by adding a new TSnew to

that space. This task-set is blank in that it is initialized with prior

belief outcome probabilities P(r|si, ai)  Bernoulli(�), �  beta(n0,

m0), with n0 � m0. We then initialize the prior probability that this

new context is indicative of TSnew or whether it should instead be

clustered to any existing task-set, as follows:

P(TS* � . |cn�1)

�� P�TS* � TSnew�cn�1� � � ⁄ A

∀ i � new, P�TS* � TSi�cn�1� � �j P�TSi�cj� ⁄ A
. (A2)

Here, � determines the likelihood of visiting a new task-set state

(as in a Dirichlet/Chinese restaurant process), and A is a normal-

izing factor: A � � � �i,jP(TSi|cj).

Flat Model

The most common instantiation of a flat model is the delta

learning rule (equivalent to Q learning in a first-order Markovian

environment). Here, the state comprises the conjunction of stim-

ulus and context (e.g., shape and color), and the expected value of

each state–action pair is updated separately in proportion to reward

prediction error:

Q��ct, st�, at� � Q��ct, st�, at� � learning rate

� �rt 
 Q��ct, st�, at��. (A3)

For coherence when comparing with more complex models, we

instead implement a Bayesian version of a flat learning model:

A1 This specific approximation is similar to maximum a posteriori learn-
ing used in some models of category learning (Sanborn et al., 2006).
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for each input–action pair, we model the probability of a reward as
a belief distribution P(rt|(ct, st), at)  Bernoulli(�), with prior � 
beta(n0 � nt, m0 � mt). Each positive or negative outcome is
treated as an observation, allowing straightforward Bayesian in-
ference on the beta distribution, with nt and mt indicating the
number of positive and negative outcomes observed up to trial t,
and n0 and m0 defining the prior.

Policy is determined by the commonly used softmax rule for

action selection as a function of the expected reward for each

action, as defined in Equation 4 in the main text.

Generalized Structure Model

The mixture of experts includes a C-TS(c) expert, an S-TS(c)

expert, and a flat expert (similar to Frank & Badre, 2012; see

Figure A1). All experts individually learn and define policies as

specified previously. Learning and choice contributions are

weighted in proportion to expert reliability as follows:

p�a� � wflat � pflat�a� � wC
TS�s� � pC
TS�s��a�

� wSTS�c� � pS�a�, (A4)

where weights reflect the probability that each expert is valid, as

inferred using learned likelihoods of observed outcome after each

trial (learning for each expert is similarly weighted by reliability).

For example, wC�TS(s)(t � 1) � wC�TS(s)(t) 
 P(rt|st, at, TSt).

Weights were initialized with initial estimated parameters with

constraint that they sum to 1, so that wflat(0) � wF, wC�TS(s)(0) �
(1 � wF) 
 wC, and wS�TS(c)(0) � (1 � wF) 
 (1 � wC). We also

allowed for forgetting in the update of weights to make them tend

to drift towards initial prior (allowing for the possibility that the

correct expert describing the task structure may have changed) so

that at each trial,

wexpert�t� � � � wexpert�t� � �1 
 �� � wexpert �0�. (A5)

Finally, for model-fitting purposes, we assumed the possibility

of differential learning speed between flat- and task-set-expert

models, given that the flat (conjunctive) expert includes more

individual states (Collins & Frank, 2012).

To implement the generalized structure within the generative

model itself, we mixed predicted outcomes from each potential

structure into a single policy, rather than mixing policies from

distinct experts. This model considers the predicted outcome given

each of the potential structures, P(r|a, I), where information I

indicates stimulus and most likely task-set for each of the struc-

tures, or the (C, S) conjunctive pair for the flat model. In this

formulation, a global expected outcome is predicted by mixing

these expected outcomes according to uncertainty w in the validity

of which structure applies. A single softmax policy is then used for

action selection based on this integrated expected outcome. This

version is a different approximation to the mixture-of-experts

implementation, but both lead to very similar behavior in simula-

tions. We give an example simulation in Figure A2.

Noise and Interindividual Variations

To account for suboptimal behavior and individual differences

when we fit this model to human and neural network models, we

allow for three natural levels of noisy behavior. Recall that in the

model described above, the most likely task-set was always se-

lected prior to action selection. We replace this greedy task-set

selection with a softmax choice rule, with parameter �TS: The

probability of selecting TSi is

��TSi� �
�TSP�TSi�ct�

�j�1. . .nTS
�TSP�TSj�ct�

.

Learning about the task-sets is then also weighed by their

likelihood.

Given the selected task-set, we include noisy/exploration pro-

cesses on action selection. In addition to the usual action explo-

ration through softmax as a function of Q(s, ak) � E(r|st, ak, TSt),

we also allow for noise in the recognition of the stimulus on which

the task-set is applied:

p�ak�st, TSt� �  � softmax�ak�TSt, s � st�

� �1 
 � � softmax�ak�TSt, st�, (A6)

where ε estimates noise in stimulus classification within a task-set

(or noise in task-set execution) and allows for a small percentage

of trials in which the stimulus is misidentified while the task-set is

selected appropriately.
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Figure A1. Generalized structure model. In the above depiction, we

consider models for representing different sorts of structure, C-TS, S-TS,

or flat. The generalized structure model represents all of these as potential

descriptors of the data and infers which one is more valid. We considered

two ways to approach this issue: The first uses a mixture-of-experts

architecture in which each expert learns assuming a different sort of

structure and then weights them according to their inferred validity for

action selection. The second strategy considers all of the potential struc-

tures within the generative model itself. Both models produce similar

behavior and predictions. a � action; c � color; r � reinforcement; s �

shape; TS(c) � task-set on color stimuli; TS(s) � task-set on shape stimuli.
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Finally, we parameterize the strength of initial priors on the new

task-sets’ Bernoulli parameter by setting them to beta(n0, n0). A

noninformative prior would be set with n0 � 1, but we allow n0 to

vary, thus effectively influencing the learning rate for early obser-

vations. It is reported as i0 � 1/n0, to be positively correlated with

a learning speed.

Flat Model Variant: Mixture of Dimension Experts

In this model, we allow for the specific nature of input states to

be taken into account, namely, their representation as two-

dimensional variables. Action selection results from a mixture of

three flat experts (see Figure 11c in the main text): a conjunctive

(C-S) expert, identical to the previously described flat model, a C

expert, and an S expert. Both single-dimensional experts are iden-

tical to the full flat expert, except that the input state (ct, st) is

replaced by the appropriate single-dimensional input ct or st,

respectively. Action selection is determined by a weighted mixture

of the softmax probabilities (see Equation 4 in the main text)

defined by all three experts:

p�a� � wflat � pflat�a� � wC � pC�a� � wS � pS�a�. (A7)

Weights reflect the estimated probability of each expert being

valid, inferred using learned outcome likelihoods: For example,

wC(t � 1) � wC(t) 
 P(rt|ct, at).

Depending on the parameters chosen, this model is also able to

learn near optimally during the initial phase. During the transfer

phase, the S expert should initially predict outcomes better than the

full flat expert because valid actions are taken from the actions

previously valid for similar shapes (i.e., visuomotor bias). It thus

predicts that the S expert should contribute more to action selec-

tion in the test phase. Since that advantage is identical in both C3

and C4 conditions, the model predicts no difference in learning

curve between them (see Figure 11d in the main text). However,

the preponderant role of the S expert can be observed in that more

errors corresponding to the S-correct actions for the other color are

committed than other errors. Specifically, this model predicts more

NC errors (neglect color) than NS (neglect shape) or NA (neglect

all) errors for both C3 and C4 (see Figure 11g, inset, in the main

text).

Appendix B

Neural Model Implementational Details

The model is implemented using the emergent neural simulation

software (Aisa, Mingus, & O’Reilly, 2008), adapted to simulate

the anatomical projections and physiological properties of basal

ganglia (BG) circuitry in reinforcement learning (RL) and decision

making (Frank, 2005, 2006). Emergent uses point neurons with

excitatory, inhibitory, and leak conductances contributing to an

integrated membrane potential, which is then thresholded and

transformed to produce a rate code output communicated to other

(Appendices continue)
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Figure A2. Generalized structure model results: example simulation of general structure model. Results are

plotted over 100 simulations. Error bars indicate standard error of the mean. Left panel: Model performance on

transfer task. Qualitative results are similar to C-TS model predictions. Right panel: Average attentional weights.

During the training phase, no structure is a better predictor of outcomes. However, the model infers the C-TS

structure over the test phase. C � context; C-TS � color structure; NA � neglect-all errors; NC � neglect-

context errors; NS � neglect-stimulus errors; S-TS � shape structure.
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units. There is no supervised learning signal; RL in the model

relies on modification of corticostriatal synaptic strengths. Dopa-

mine in the BG modifies activity in go and no-go units in the

striatum, where this modulation of activity affects both the pro-

pensity for overall gating (go relative to no-go activity) and

activity-dependent plasticity that occurs during reward prediction

errors (Frank, 2005; Wiecki, Riedinger, von Ameln-Mayerhofer,

Schmidt, & Frank, 2009). Both of these functions are detailed

below.

The membrane potential Vm is updated as a function of ionic

conductances g with reversal (driving) potentials E according to

the following differential equation:

Cm

dVm

dt
� ge�t�g�e�Ee 
 Vm��

gi�t�g�i�Ei 
 Vm��

gl�t�g�l�El 
 Vm��

ga�t�g�a�Ea 
 Vm��

...,

(B1)

where Cm is the membrane capacitance and determines the time

constant with which the voltage can change, and subscripts e, l, i

and a refer to excitatory, leak, inhibitory, and accommodation

channels, respectively (and . . . refers to the possibility of adding

other channels implementing neural hysteresis). The reversal or

equilibrium potentials Ec determine the driving force of each of the

channels, whereby Ee is greater than the resting potential and El

and Ei are typically less than resting potential (with the exception

of tonically active neurons in globus pallidus internal segment

(GPi) and globus pallidus external segment (GPe), where leak

drives current into the neuron; Frank, 2006). Following electro-

physiological convention, the overall conductance for each chan-

nel c is decomposed into a time-varying component gc(t) computed

as a function of the dynamic state of the network and a constant gc�

that controls the relative influence of the different conductances.

The excitatory net input/conductance ge(t) is computed as the

proportion of open excitatory channels as a function of sending

activations times the weight values:

ge�t� � 	xiwij
 �
1

n
�

i

xiwij. (B2)

For units with inhibitory inputs from other layers (red projec-

tions in Figure 4 in the main text), predominant in the BG, the

inhibitory conductance is computed similarly, whereby gi(t) varies

as a function of the sum of the synaptic inputs. Dopamine also adds

an inhibitory current to the no-go units, simulating effects of D2

receptors. (See below for a simplified implementation of within-

layer lateral inhibition.) Leak is a constant.

Activation communicated to other cells (yj) is a thresholded (�)

sigmoidal function of the membrane potential with gain parameter

�:

yj�t� �
1

�1 �
1

��Vm�t� 
 ���
� , (B3)

where [x]� is a threshold function that returns 0 if x � 0 and x if

X � 0. (Note that if it returns 0, we assume yj(t) � 0, to avoid

dividing by 0.) As it is, this function has a very sharp threshold,

which does not fit real spike rates. To produce a less discontinuous

deterministic function with a softer threshold more like that pro-

duced by spiking neurons, the function is convolved with a Gauss-

ian noise kernel (� � 0, � � .005), which reflects the intrinsic

processing noise of biological neurons:

yj
*�x� � 
�

� 1

�2��
e
z2⁄�2�2�yj�z 
 x�dz, (B4)

where x represents the [Vm(t) � �]� value, and yj
*�x� is the

noise-convolved activation for that value.

Inhibition Within Layers

For within-layer lateral inhibition, Leabra uses a kWTA (k-

winners-take-all) function to achieve inhibitory competition

among units within each layer (area). The kWTA function com-

putes a uniform level of inhibitory current for all units in the layer,

such that the k � 1th most excited unit within a layer is generally

below its firing threshold, while the kth is typically above thresh-

old. Activation dynamics similar to those produced by the kWTA

function have been shown to result from simulated inhibitory

interneurons that project both feedforward and feedback inhibition

(O’Reilly & Munakata, 2000), and indeed, other versions of the

BG model use explicit populations of striatal inhibitory interneu-

rons in addition to inhibitory projections from striatum to GPi/GPe

and so on (e.g., Wiecki et al., 2009). Thus, the kWTA function

provides a computationally effective and efficient approximation

to biologically plausible inhibitory dynamics.

kWTA is computed via a uniform level of inhibitory current for

all units in the layer as follows:

gi � gk�1
� � q�gk

� 
 gk�1
� �, (B5)

where 0 � q � 1 (.25 default used here) is a parameter for setting

the inhibition between the upper bound of gk
� and the lower bound

of gk�1
� . These boundary inhibition values are computed as a

function of the level of inhibition necessary to keep a unit right at

threshold:

gi
� �

ge
*g�e�Ee 
 �� � glg�l�El 
 ��

� 
 Ei

, (B6)

where ge
* is the excitatory net input.

Two versions of kWTA functions are typically used. In the

kWTA function used in the striatum, gk
� and gk�1

� are set to the
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threshold inhibition value for the kth and k � 1th most excited

units, respectively. Thus, the inhibition is placed to allow k units to

be above threshold and the remainder below threshold.

Cortical layers use the average-based kWTA version, where gk
�

is the average gi
� value for the top k most excited units, and gk�1

�

is the average of gi
� for the remaining n � k units. This version

allows for more flexibility in the actual number of units active

depending on the nature of the activation distribution in the layer

and the value of the q parameter (which is set to default value of

.6). This flexibility is generally used for units to have differential

levels of activity during settling.

Connectivity

The connectivity of the BG network is critical and is thus

summarized here (see Frank, 2006, for details and references).

Unless stated otherwise, projections are fully connected (i.e., all

units from the source region target the destination region with a

randomly initialized synaptic weight matrix). However, the units

in prefrontal cortex (PFC), premotor cortex (PMC), striatum, GPi/

GPe, thalamus, and subthalamic nucleus (STN) are all organized

with columnar structure. Units in the first stripe of PFC/PMC

represent one abstract task-set/motor action and project to a single

column of each of go and no-go units in their corresponding

striatum layer, which in turn projects to the corresponding columns

in GPi/GPe and thalamus. Each thalamic unit is reciprocally con-

nected with the associated column in PFC/PMC. This connectivity

is similar to that described by anatomical studies, in which the

same cortical region that projects to the striatum is modulated by

the output through the BG circuitry and thalamus.

The projection from STN to GPi is fully connected due to the

diffuse projections in this hyperdirect pathway supporting a global

no-go function. Inputs to the STN are nevertheless columnar, that

is, different PFC task-set units project to different STN columns.

In this manner, the total summed STN activity is greater when

there are multiple competing task-sets represented, and the result-

ing conflict signal delays responding in the motor circuit.

Dopamine units in the substancia nigra pars compacta (SNc)

project to the entire striatum, but with different projections to

encode the effects of D1 receptors in go neurons and D2 receptors

in no-go neurons. With increased dopamine, active go units are

excited while no-go units are inhibited, and vice versa with low-

ered dopamine levels. The particular set of units that are impacted

by dopamine is determined by those receiving excitatory input

from sensory (or parietal) cortex and PFC (or PMC). Thus, dopa-

mine modulates this activity, thereby affecting the relative balance

of go versus no-go activity in those units activated by cortex. This

impact of dopamine on go/no-go activity levels influences both the

propensity for gating (during response selection) and learning, as

described next.

Learning

For learning, the model uses a combination of Hebbian and

contrastive Hebbian learning. The Hebbian term assumes simply

that the level of activation of go and no-go units (and their

presynaptic inputs) directly determines the synaptic weight

change. The contrastive Hebbian component computes a simple

difference of a pre- and postsynaptic activation product across the

response selection and feedback phases, which implies that learn-

ing occurs in proportion to the change in activation states from

tonic to phasic dopamine levels. (Recall that dopamine influences

go vs. no-go activity levels by adding an excitatory current via

simulated D1 dopamine receptors in go units and an inhibitory

current via simulated D2 dopamine receptors in no-go units. Thus,

increases in dopamine firing in SNc dopamine units promote

active go units to become more active and no-go units to become

less active; vice versa for pauses in dopamine.)

The equation for the Hebbian weight change is

�hebbwij � xi
�yj

� 
 yj
�wij � yj

��xi
� 
 wij�, (B7)

and for contrastive Hebbian learning,

�CHLwij � �xi
�yj

�� 
 �xi

yj


�, (B8)

which is subject to a soft-weight bounding to keep within the 0–1

range:

�sbCHLwij � ��CHL���1 
 wij� � ��CHL� 
 wij. (B9)

The two terms are then combined additively with a normalized

mixing constant khebb:

�wij � �khebb��hebb� � �1 
 khebb���sbCHL��. (B10)

Here, we set khebb � 0.1, implying a stronger importance of

Hebbian learning compared to contrastive Hebbian learning than

usual. Learning is limited to projections from color input to ante-

rior striatum and from PFC and parietal cortex to posterior stria-

tum.

Striatal Learning Function

Synaptic connection weights in striatal units were learned using

pure RL. In the response phase, the network settles into activity

states based on input stimuli and its synaptic weights, ultimately

gating one of the motor actions. In the feedback phase, the network

resettles in the same manner, with the only difference being a

change in simulated dopamine: an increase of SNc unit firing for

positive reward prediction errors and a decrease for negative

prediction errors (Frank, 2005; O’Reilly, 2006). This change in

dopamine during the feedback phase modifies go and no-go ac-

tivity levels, which in turn affects plasticity, as seen in Equations

B7 and B8 above.

Here, because feedback is deterministic and exact value learning

is not crucial, we simplified the dopamine prediction error to a

simple deterministic feedback corresponding to the binary reward.

Learning rate ε in Equation B10 is one of the crucial parameters

explored systematically and separately for the three different plas-

tic projections to striatum.
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Network Specificities

Layer Specificities

PFC. We simulated a very simple form of persistent working

memory activity in the PFC by carrying forward the final activity

states at the end of one trial to the beginning of the next. This is in

opposition to all other layers, in which activity is not maintained

from one trial to the next.

STN. In the STN neurons, we also implemented an accom-

modation current (see Equation B1), which ensures that significant

build-up of STN activity eventually subsides, even if conflict is not

resolved, thus allowing gating of an action in the second loop and

preventing choice paralysis before learning has occurred.

C-TS Prior Projection

In the primary simulations, the color input to PFC projection

was fully connected with uniform random connectivity, so that

networks could learn arbitrary associations between colors and

different task-set representations (in the different stripes). How-

ever, we also manipulated this ability for the purpose of demon-

strating the impact on structured representations (estimated by

clustering parameter � in the C-TS model). To that effect, we

added a second structured projection, such that the input units

corresponding to each color would project to a single unique PFC

stripe (i.e., the color to PFC stripe mapping was one to one). We

then manipulated the relative weight of this projection compared to

the fully connected one in order to produce a continuum. The

relative weight of the added projection was set to zero in all

simulations except the one explicitly manipulating it.

Noise

Gaussian noise is added to membrane potential of each unit in

PFC and PMC, producing temporal variability in the extent to

which each candidate response is activated before one of them is

gated by the BG. During learning and test phase, noise is small to

ensure a balance of exploitation and exploration during learning

(� � 0.0005, �2 � 0.001).

To explore the nature of the model’s errors after learning, we

simply increase PFC and PMC noise (� � 0.0015, �2 � 0.01), as

well as striatal noise (� � 0.0015, �2 � 0.0015), which makes it

more likely for networks to make errors, hence giving us sufficient

errors to analyze the types that are more likely to occur. This

procedure simply captures the tendency for participants to be less

vigilant after they have learned the task.

Reaction Times

As previously (Frank, Scheres, & Sherman, 2007; Ratcliff &

Frank, 2012; Wiecki et al., 2009), network reaction times are

defined as the number of processing cycles until a motor response

is gated by the thalamus (activation of a given thalamic unit

reaches 50% maximal firing rate, but because this activity is

ballistic once gating occurs the precise value is not critical). To

convert to a time scale of seconds, cycles are arbitrarily multiplied

by 10, which gives similar-magnitude reaction times as human

subjects (the same scaling was applied to examined detailed

reaction-time distributions in Ratcliff & Frank, 2012).

Details

For more detailed network parameters, the network is available

by contacting the authors, and simulations will be made available

in our repository at the following link: http://ski.clps.brown.edu/

BG_Projects/

Neural Network Simulations: Initial Clustering Benefit

These simulations assess the neural network’s ability to cluster

contexts corresponding to the same task-set when doing so pro-

vides an immediate learning advantage. We do so in a minimal

experimental design permitting assessment of the critical effects.

Note that the C-TS model also shows robust clustering effects on

this design, but we present an expanded form of it in the main text,

using a larger number of contexts, stimuli, and actions, such that

the benefit of clustering is more clear.

Specifically, inputs corresponded to three contexts C0, C1, and

C2, and two stimuli S1 and S2, presented in randomized order (see

Figure 5, top right, in the main text). C0 and C1 both indicated

task-set TS1 (S1 ¡ A1, S2 ¡ A2), while C2 indicated a different,

nonoverlapping TS2 (S1 ¡ A3, S2 ¡ A4). C2 was presented twice

as often as C0 and C1, such that TS1 and TS2 were valid equally

often, as were all motor action A1–A4s. We simulated 200 net-

works. Learning occurred in an average of 11.86 	 0.54 epochs.

Three networks were outliers for learning speed (they did not’

reach learning criterion in 100 epochs) and were removed from

further analysis.

Neural Network Simulations: Structure Transfer

The structure transfer simulations include two consecutive

learning phases, labeled training phase, followed by a test phase.

During the training phase, interleaved inputs include two contexts

(C1 and C2) and two stimuli (S1 and S2). The contexts determine

two different, nonoverlapping task-sets TS1 and TS2. Subsequent

test phases include inputs composed of new contexts C3, C4, or

C5, but old stimuli S1 and S2.

The correct input–action associations across all phases were

identical to those described for the C-TS model (and used for

subjects’ experimental design; see Figure 10 in the main text),

including a C3 transfer test condition corresponding to an already

learned task-set and a new C4 condition corresponding to a new

task-set, controlling for low-level stimulus–action bias (new-

overlap). We also added a third baseline test condition (new-

incongruent), in context C5, corresponding to a new task-set for
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which stimulus–action associations were both incongruent with

previously learned task-sets (S1 ¡ A2, S2 ¡ A3). The learning

phase proceeded up to a criterion of five correct responses in a row

for each input. Time to criterion is then defined as the number of

trial repetitions to the first of those five correct in a row. After the

learning phase, the different test-phase conditions were tested

separately, each time beginning with the learned network weights

from the end of the learning phase. The reason for this separate

testing is simply that the main neural network model used has three

PFC stripes, which are sufficient to represent a maximum of three

task-sets. Hence, testing one new context at a time allows the

network to continue to represent the two learned task-sets and to

either reuse one or build a new one in the third stripe. Note that we

also tested an expanded four-PFC-stripe version of the model that

allowed us to test two interleaved new contexts simultaneously,

without biasing task-set selections. Results presented in the text all

held. We nevertheless executed most simulations on the three-

stripe version (because it was constructed first and to speed up

computations).

Parametric Linking Between Neural Network and

C-TS Model

Across the range of explorations below, we simulated a mini-

mum of 50 and a maximum of 200 networks with different initial

random weights per parameter value (depending on the specific

network parameter manipulated and the number of parameter

values explored in each simulation). Across all simulations, fits of

the network by the C-TS model were good (pseudo-r2 range:

0.44–0.47; in the same range as fits to human subject choices).

Diagonal PFC-Motor STN Connectivity Is Related to

Structure Building/Learning: C-TS Task-Set Selection

�TS

We investigated the role the STN plays in supporting the con-

ditionalization of action selection according to task-sets (see Fig-

ure 4, bottom, Projection 2, in the main text). Recall that the STN

prevents the second loop from selecting an action until conflict at

the level of task-sets in PFC is resolved. This mechanism does not

directly affect learning (there is no plasticity), but nevertheless, its

presence can improve learning efficiency by preventing interfer-

ence of learned mappings across task-sets. Indeed, when we le-

sioned the STN (removed from processing altogether), networks

retained their ability to learn and perform correctly but took

considerably longer to do so, reaching criterion in 37 	 2.3 input

repetitions (as opposed to 22.1 	 2.6 with the STN). The presence

of the STN ensured that gating of motor actions in the second loop

occurred more frequently after gating had finished in the first loop.

This functionality ensures that the motor loop consistently takes

into account the selected task-set, thereby reducing interference in

learned stimulus–response weights in the motor loop (because the

same stimulus is represented by a different effective state once

task-set has been chosen). Indeed, in intact networks, parametric

increases in the relative STN projection strengths were associated

with much longer response times (mean switch reaction time 1.2 s

compared to 0.7 s for strong compared to weak STN strength) but

significantly more efficient learning (reductions in epochs to cri-

terion; r � �0.2, p � 2.10�6).

To more directly test whether STN affects the degree to which

selected actions are conditionalized by task-set selection, we fitted

the C-TS model to the behavioral choices of the neural network,

parametrically varying STN strength and estimating the effect on

the reliability with which task-sets are selected in the C-TS model

according to the softmax decision �TS parameter. To remain un-

biased, we also allowed other parameters to vary freely, including

clustering �, task-set prior strength n0, and motor action selection

softmax �. We hypothesized that weaker STN strength should be

accounted for by noisier selection of task-set, rather than noisier

action selection or slower learning parameter.

Note that fits were better with �TS than without, indicating that

the neural network was better represented by a less greedy action

choice rule than strict maximum a posteriori choice.

Diagonal PFC to Motor Striatum Connectivity and

Action-Set Preparation: C-TS Within-Task-Set Noise

�TS

In contrast to the PFC-STN projection, which inhibits action

selection in the motor loop, the diagonal projection from PFC to

motor striatum (see Figure 4, Projection 3, in the main text) is

facilitatory and plastic. Specifically, once a PFC task-set is se-

lected, the motor striatum can rely on this projection to learn which

actions tend to be reinforced given the selected task-set. Thus, this

projection serves to prepare valid actions associated to task-sets

even before the specific stimulus is processed. This same function

can also lead to errors in task-set application by selecting actions

in accordance with the task-set but ignoring the lower level stim-

ulus. In the C-TS model, this functionality is summarized by noise

in within-task-set stimulus identification. In particular, whereas

noise in task-set selection is governed by �TS softmax, noise in

stimulus identification given a task-set is captured by εTS.

We thus investigated the relationship between this parameter

and the PFC-striatum diagonal projection, while also allowing �,

�TS, n0, and ε to vary freely.

Structured Versus Random Context-PFC

Connectivity: C-TS Clustering �

Next, we tested the key mechanism influencing the degree to

which the neural network creates new PFC states versus clusters

new contexts onto previously visited states. More specifically, we

added a projection between the color context input layer and the

PFC layer in which there was a one-to-one mapping between an

input context and a PFC stripe—as opposed to the fully connected

and random connections in the standard projection (see Figure 4,

(Appendices continue)
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Projection 1, in the main text). We then parametrically manipu-

lated a weight-scaling parameter modulating the influence of this

new organized projection relative to the fully connected one. This

allowed us to model an a priori bias to represent distinct contexts

as distinct hidden states, represented by this C-PFC prior param-

eter. A strong initial prior would render the network behavior

similar to a flat network, since each context would be equated to

a task-set.

Multivariate linear regression of network parameter against fit-

ted parameters showed that only Dirichlet � accounted signifi-

cantly for the variability.

Corticostriatal Motor Learning Rate: C-TS Effective

Action Learning Rate n0

Recall that the STN mechanism above affected learning speed

without affecting the learning rate parameter, due to its modulation

of structure and preventing interference in stimulus–response map-

pings across task-sets. It is important to investigate also whether

mechanisms that actually do affect action learning rates in the

neural model are then recovered by the corresponding learning rate

parameters of the C-TS model. Although the C-TS model uses

Bayesian learning rather than RL, the prior parameter n0 affects the

degree to which new reward information will update the action

value posteriors and hence roughly corresponds to a learning rate

parameter. We thus parametrically varied the learning rate of the

corticostriatal projection in the motor loop, which directly affects

the degree to which synaptic weights associated with selecting

motor actions are adjusted as a function of reinforcement.

Fittings again included the same four parameters as previously

(�, �TS, �, and n0).
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