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Abstract

■ Accounts of decision-making and its neural substrates have
long posited the operation of separate, competing valuation
systems in the control of choice behavior. Recent theoretical
and experimental work suggest that this classic distinction be-
tween behaviorally and neurally dissociable systems for habitual
and goal-directed (or more generally, automatic and controlled)
choice may arise from two computational strategies for reinforce-
ment learning (RL), called model-free and model-based RL, but
the cognitive or computational processes by which one system
may dominate over the other in the control of behavior is a matter
of ongoing investigation. To elucidate this question, we leverage

the theoretical framework of cognitive control, demonstrating
that individual differences in utilization of goal-related contextual
information—in the service of overcoming habitual, stimulus-
driven responses—in established cognitive control paradigms
predict model-based behavior in a separate, sequential choice
task. The behavioral correspondence between cognitive control
and model-based RL compellingly suggests that a common set
of processes may underpin the two behaviors. In particular,
computational mechanisms originally proposed to underlie con-
trolled behavior may be applicable to understanding the inter-
actions betweenmodel-based andmodel-free choice behavior. ■

INTRODUCTION

A number of theories across neuroscience, cognitive
psychology, and economics posit that choices may arise
from at least two distinct systems (Dolan & Dayan, 2013;
Kahneman, 2011; Balleine & OʼDoherty, 2009; Daw, Niv,
& Dayan, 2005; Loewenstein, 1996). A recurring theme
across these dual-system accounts is that the systems rely
differentially upon automatic or habitual versus delib-
erative or goal-directed modes of processing.
A popular computational refinement of this idea,

derived initially from computational neuroscience and
animal behavior, proposes that the two modes of choice
arise from distinct strategies for learning the values of
different actions, which operate in parallel (Daw et al.,
2005). In this theory, habitual choices are produced by
model-free reinforcement learning (RL), which learns
which actions tend to be followed by rewards. This is
the approach taken by prominent computational models
of the dopamine system (Schultz, Dayan, & Montague,
1997). In contrast, goal-directed choice is formalized by
model-based RL, which reasons prospectively about the
value of candidate actions using knowledge (a learned
internal “model”) about the environmentʼs structure and
the organismʼs current goals. Whereas model-free choice

requires merely retrieving the (directly learned) values of
previous actions, model-based valuation is typically envi-
sioned as requiring a sort of mental simulation—carried
out at decision time—of the likely consequences of can-
didate actions, using the learned internal model. Informed
by these characterizations, recent work reveals that, under
normal circumstances, reward learning by humans exhibits
contributions of both putative systems (Daw, Gershman,
Seymour, Dayan, & Dolan, 2011; Gläscher, Daw, Dayan,
& OʼDoherty, 2010), and these influences are behaviorally
and neurally dissociable.

Under this framework, at any given moment both the
model-based and model-free systems can provide action
values to guide choices, inviting a critical question: How
does the brain determine which systemʼs preferences
ultimately control behavior? Despite progress character-
izing each system individually, little is yet known about
how these two systems interact, such as how the brain
arbitrates between each systemʼs separately learned action
values. How these two systems jointly influence behavior
is important, in part, because disorders of compulsion
such as substance abuse have been argued to stem from
an imbalance in expression of the two systemsʼ values,
favoring the more habitual, model-free influences (Voon
et al., in press; Kahneman, 2011; Everitt & Robbins, 2005).

A separate research tradition, grounded in neuro-
psychiatry and human cognitive neuroscience, has inves-
tigated a similar question: How individuals hold in mind
contextual, task-related information in order to flexibly
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adapt behavior and direct cognitive processing in accor-
dance with internally maintained goals? One key example
of this sort of cognitive control is the ability for internally
maintained goals to overcome prepotent and/or stimulus-
driven responses, as most famously operationalized in
the classic Stroop task (Cohen, Barch, Carter, & Servan-
Schreiber, 1999). This work has stemmed a rich set of
experiments and models describing the brainʼs mecha-
nisms for cognitive control (Braver, 2012).

Considering these two traditionally separate lines of
work together yields a compelling but underexplored
conceptual similarity: cognitive control and model-based
RL both characteristically entail leveraging higher-order
representations to overcome habitual, stimulus-driven
actions (Braver, 2012). In particular, we hypothesize that
model-free action tendencies are analogous to prepotent
color reading in Stroop, and the ability to instead act in
accord with the evaluations of a model-based system is
equivalent to biasing behavior toward higher-level rep-
resentations of goals and context—in the RL case, the
representation of the internal model. Interestingly, the
two literatures have a complementary relationship in
terms of their key questions. Historically, the RL work
speaks little to how higher-order representations inter-
act with the simpler ones to influence choice and instead
focuses on how each system learns and computes action
values. The cognitive control literature, on the other
hand, contains much research on how contextual infor-
mation is used to override prepotent actions but concen-
trates less (though see Collins & Frank, 2013) on how
these different competing representations are learned
in the first place.

Highlighting this thematic correspondence, theoretical
accounts of cognitive control and goal-directed choice
posit complementary or even overlapping computational
mechanisms (Alexander & Brown, 2011; Daw et al., 2005;
Botvinick, Braver, Barch, Carter, & Cohen, 2001), and
neural data on either function suggest the involvement of
nearby (or overlapping) prefrontal structures (Economides,
Guitart-Masip, Kurth-Nelson, & Dolan, 2014; Holroyd &
Yeung, 2012; Alexander & Brown, 2011; Rushworth,
Noonan, Boorman, Walton, & Behrens, 2011). Here we
hypothesize that the same mechanisms characterized
by well-known cognitive control tasks may also support
the expression of model-based over model-free behav-
iors in sequential choice. One previous result supporting
this notion comes from the category learning literature,
wherein older adultsʼ Stroop and set-shifting performance
was predictive of task-appropriate, rule-based learning
(which may be analogous to model-based RL) over another
incremental learning strategy (which may be analogous to
model-free RL; Maddox, Pacheco, Reeves, Zhu, & Schnyer,
2010).

Across two experiments, we test the operational rela-
tionship between the two constructs. Specifically, we
examine how individual differences in cognitive control,
assessed using two separate paradigms, predict the behav-

ioral contributions of model-based RL in a separate, se-
quential choice task. Indeed, stable individual differences
in cognitive control ability are thought in part to reflect dif-
ferences in controlled or executive-dependent processing
(Kane & Engle, 2003). If the two functions share common
underpinnings, then we should expect their behavioral
expression in disparate tasks to correlate.

METHODS

In each of two experiments, participants completed two
tasks: a test of cognitive control and a sequential choice
task in which the behavioral contributions of model-
based versus model-free learning can be independently
assessed (Daw et al., 2011). We then examined the rela-
tionship between individual differences in behavior across
the two tasks.

Experiment 1

Participants

Forty-seven participants undertook two behavioral tasks:
a Stroop task and a sequential decision-making task. These
participants constituted a subsample of the data of Skatova,
Chan, and Daw (2013), where other aspects of their behav-
ior were reported. Two participants exhibited an error rate
greater than 25% on the Stroop task, and their data were
excluded, leaving 45 participants for the reported results.
All participants gave written consent before the study and
were paid a fixed amount plus a bonus contingent on their
decision task performance. The study was approved by
the University Committee on Activities Involving Human
Subjects of New York University.

The Stroop Task

Participants performed a computerized version of the
Stroop task (Besner, Stolz, & Boutilier, 1997), which re-
quired them to identify, as quickly and as accurately as
possible, in which one of three colors the word on the
screen was presented. In each trial, before the stimulus,
participants saw a fixation cross in the center of the
screen for 200 msec. One of three color words (“RED,”
“GREEN,” or “BLUE”) was displayed either in red, green,
or blue on a black background, in 20-point Helvetica
bold font, until participants responded. Participants
responded using labeled keys on the keyboard (“b” =
blue, “g” = green, “r” = red). There was an intertrial
interval of 250 msec.
Participants received two blocks, each of 120 trials. In

one block (“incongruent infrequent”), 80% of the trials
were congruent (e.g., RED in red type) and 20% were
incongruent (e.g., RED in blue type), whereas in the other
block type (“incongruent frequent”), these proportions
were reversed. The order of blocks was counterbalanced
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across participants. Participants were not informed about
the differences between the blocks and were given a short
break between blocks. Before each experimental block,
participants received a block of 24 practice trials. In the
practice trials, but not the experimental trials, participants
received feedback on the screen indicating whether their
response was correct or not. Trials in which participants
made errors (averaging 2.1%) were excluded from analysis.

Two-step Decision-making Task

Each participant undertook 350 trials of the two-stage
decision task (Figure 1A) described in detail by Daw et al.
(2011). On each trial, an initial choice between two options
labeled by Tibetan characters led probabilistically to
either of two second-stage “states,” represented by dif-
ferent colors. Each first-stage choice was associated with
one of the second-stage states and led there 70% of the
time. In turn, each of the second-stage states demanded
another choice between another pair of options labeled
by Tibetan characters. Each second-stage option was asso-
ciated with a different probability of delivering a monetary
reward (vs. nothing) when chosen. To encourage par-
ticipants to continue learning throughout the task, the
chances of payoff associated with the four second-stage
options were changed slowly and independently through-
out the task, according to Gaussian random walks. In each
stage, participants had 2 sec to make a choice. Interstimuli

and intertrial intervals were 500 and 300msec, respectively,
and monetary reward was presented for 500 msec.

Data Analysis

For each participant, we first estimated their Stroop in-
congruency effect (IE) on correct trials for incongruent
trials in each block type using a linear regression with
RTs as the outcome variable and explanatory variables
that crossed the block type (incongruent infrequent vs.
frequent) with indicators for congruent and incongruent
trials. Before being entered into the regression, RTs were
first log-transformed to remove skew (Ratcliff, 1993) and
then z-transformed with respect to RTs on all correct trials.
Furthermore, the linear model contained an additional
nuisance variable to remove the influence of stimulus repe-
titions, documented to facilitate faster RTs (Kerns et al.,
2004). Each participantʼs individual regression yielded two
coefficients of interest: the IE for the incongruent-infrequent
block and the IE for the incongruent-frequent block.

To assess model-based and model-free contributions
to trial-by-trial learning, we conducted a mixed-effects
logistic regression to explain participantsʼ first-stage choices
on each trial (coded as stay or switch relative to previous
trial) as a function of the previous trialʼs outcomes (whether
or not a reward was received on the previous trial and
whether the previous transition was common or rare).
Within-participant factors (the intercept, main effects of

Figure 1. (A) The structure
of the two-stage RL task. In

each trial, participants chose
between two initial options,
leading to either of two second-

stage choices (pink or blue
states), these for different,

slowly changing chances of
monetary reward. Each
first-stage option led more

frequently to one of the second-
stage states (a “common”

transition); however, on 30%
of trials (“rare”), it instead led
to the other state. (B) A

model-based choice strategy
predicts that rewards after rare

transitions should affect the
value of the unchosen first-stage
option, leading to a predicted

interaction between the factors
of reward and transition
probability. (C) In contrast,

a model-free strategy predicts
that a first-stage choice resulting

in reward is more likely to be
repeated on the subsequent
trial regardless of whether

that reward occurred after a
common or rare transition.
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reward and transition, and their interaction) were taken as
random effects across participants, and estimates and
statistics reported are at the population level. To assess
whether these learning effects covaried with the Stroop
effect, the four variables above were each additionally
interacted, across participants, with the infrequent IE and
frequent IE, entered into the regression as z-scores. The
full model specification and coefficient estimates are pro-
vided in Table 2.

The mixed-effects logistic regressions were performed
using the lme4 package (Pinheiro & Bates, 2000) in the
R programming language. Linear contrasts were computed
in R using the “esticon” function in the doBy package
(Højsgaard & Halekoh, 2009). The individual model-based
effects plotted in Figure 2A and B are the estimated per-
participant regression coefficients from the group analysis
(conditioned on the group level estimates) superimposed
on the estimated group-level effect.

Experiment 2

Participants

We recruited 83 individuals on Amazon Mechanical Turk,
an online crowd-sourcing tool, to perform the dot pattern
expectancy (DPX) task (MacDonald, 2008) followed by the
sequential choice task. Mechanical Turk (www.mturk.com)
allows users to post small jobs to be performed
anonymously by “workers” for a small amount of compen-
sation (Crump, McDonnell, & Gureckis, 2013; McDonnell
et al., 2012). Participants were all U.S. residents and paid a
fixed amount ($2 USD) plus a bonus contingent on their
decision task performance, ranging from $0–1 USD.

As Internet behavioral data collection characteris-
tically entails a proportion of participants failing to engage
fully with the task—and, in particular, as in pilot studies

using other tasks we noted a tendency toward lapses
in responding and in the computerʼs focus on our taskʼs
browserwindow, which some queried participants indicated
was due to “multitasking” (Boureau & Daw, unpublished
observations)—for this study, we employed principled
a priori criteria for participant inclusion in our analyses of
interest, following recent recommendations (Crump et al.,
2013). First, we excluded the data of 17 participants who
missed more than 10 response deadlines in the DPX task
and/or 20 deadlines in the two-stage task. Next, to ensure
that the control measures yielded by the DPX task reflect
understanding of the task instructions and engagement
with the task, we excluded the data of 13 participants
who exhibited a d 0 of less than 2.5 in classifying target
versus nontarget responses. Critically, d 0 is agnostic to
performance on specific nontarget trials (that is, a low d 0

could arise from incorrect target responses during AY,
BX, and/or BY trials), and therefore, the engagement
metric is not biased toward either of our putative measures
of control. Finally, following our previous work (Otto,
Gershman, Markman, & Daw, 2013), we employed a
further step to remove participants who failed to demon-
strate sensitivity to rewards in the decision task. In par-
ticular, using second-stage choices (a separate measure
from the first-stage choices that are our main dependent
measure), we excluded the data of two participants who
repeated previously rewarded second-stage responses—
that is, P(stay|win)—at a rate less than 50%. A total of
51 participants remained in our subsequent analyses.

DPX Task

Participants first performed the DPX task. In each trial, a
cue stimulus (one of six blue-dot patterns; we refer to the
single valid cue as the A cue, and the invalid cues as the
B cues [see Figure 3]) appeared for 500 msec, followed

Figure 2. Visualization of relationship between Stroop IE and model-based contributions to choice in Experiment 1. The model-based index is
calculated as individual participantsʼ model-based effect sizes (arbitrary units) conditional on the group-level mixed-effects logistic regression.

(A) Infrequent IE negatively predicts model-based contribution to choice in the two-stage RL task. (B) Frequent IE effect does not significantly predict
model-based choice contribution. Regression lines are computed from the group-level effect of infrequent IE (A) and frequent IE (B). Dashed gray
lines indicate standard errors about the regression line, estimated from the group-level mixed-effects regression.
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by a fixation point for 2000 msec (the delay period),
followed by a probe stimulus for 500 msec (one of six
white-dot patterns; we refer to the single valid probe as
the X probe, and the invalid probes as the Y probes),
followed by blank screen in which participants had
1000 msec to make a target or nontarget response using
the “1” and “2” keys, respectively. Participants were in-
structed that the target cue–probe pair was AX, and all
other sequences (AY, BX, BY) were nontargets. Feedback
(“CORRECT,” “INCORRECT,” or “TOO SLOW”) was pro-
vided for 1000 msec, and the next trial began immediately.
Following past work that sought to optimize the psycho-
metric properties of the task to yield maximum sensitivity
to individual differences (Henderson et al., 2012), partici-
pants completed four blocks of 32 trials consisting of
68.75% AX trials, 12.5% AY trials, 12.5% BX trials, and
6.25% BY trials. The predominance of AX trials ensures
that the target response is a prepotent response.
Immediately after the DPX task, participants were given

choice task instructions and completed 10 practice trials
to familiarize themselves with the two-stage task structure
and response procedure, at which point they completed
200 trials of the full task. The two-stage task in Experiment 2
was the same as in Experiment 1, excepting three changes.
First, the Tibetan characters used to represent the options
at each stage were replaced with fractal images. Second,
the intertrial interval and ISI were each set to 1000 msec.
Third, participants completed 200 trials, following Daw
et al. (2011), rather than 350.

Data Analysis

To measure the influence cue-triggered contextual infor-
mation in the DPX task, we considered individual differ-
ences in RT slowing for two nontarget (and nonprepotent)
trial types of interest (AY and BX). Following Experiment 1,
we first applied a log-transformation of RTs to remove
skew. We then standardized (i.e., z-scored) these RTs
within each participant to equate participants with respect
to global response speed and variance (Chatham, Frank,
& Munakata, 2009; Paxton, Barch, Racine, & Braver, 2008).
We then measured cognitive control according to the
mean (z-scored) RT for each of two nontarget trial types
of interest. This analysis parallels the regression-based
approach for assessing RTs in Experiment 1, the only dif-
ference being the inclusion of an additional explanatory
variable factoring out stimulus repetition effects in the
Stroop task, which were not a significant factor in the
DPX. Response slowing on AY trials and speeding on BX
trials, relative to all trials, is interpreted as reflecting control
(Braver, Satpute, Rush, Racine, & Barch, 2005). We also
assessed accuracy by calculating d0-context for each par-
ticipant, which is robust to overall bias toward making
target or nontarget responses (Henderson et al., 2012).
This quantity indexes task sensitivity (i.e., the traditional
d0 from signal detection theory) using the hit rate from
AX trials and the false alarm rate from BX trials.

Across three logistic regressionmodels of RL task behavior
(see Results section), we examined the interaction between
either or both of these between-subject control measures
and within-subject trial-by-trial learning variables (previous
reward and transition type). The RT measures were entered
into the regressions as z-scores, and the within-subject co-
efficients were taken as random effects over subjects. Indi-
vidual model-based effect sizes (Figure 4A and B) were
calculated from the respective reduced models (Tables 4
and 5), in the samemanner as in Experiment 1; the individual
contrast reported in Figure 4C is calculated from linear
contrasts taken on the regression model (Table 3).

RESULTS

Experiment 1

Here we demonstrate that interference effects in the Stroop
color-naming task relate to the expression of model-based
choice in sequential choice. We first measured participantsʼ
susceptibility to interference in a version of the Stroop task
(Kerns et al., 2004), in which participants respond to the ink
color of a color word (e.g., “RED”) while ignoring its seman-
tic meaning. In the Stroop task, cognitive control facilitates
biasing of attentional allocation—strengthening attention
to the task relevant feature and/or inhibiting task-irrelevant
features—which in turn permits the overriding of inappro-
priate, prepotent responses (Braver & Barch, 2002). Of key
interest was the “incongruency effect” (IE): the additional
time required to produce a correct response on incongru-
ent (“RED” in blue type) compared with congruent (“RED”
in red type) trials. Incongruent trials require inhibition of
the prepotent color-reading response, thought to be a
critical reflection of cognitive control. We then examined
whether an individualʼs IE predicted the expression of
model-based strategies in sequential choice.

Forty-five participants completed two blocks of the
Stroop task, with infrequent (20%) or frequent (80%)
incongruent trials. We included the frequent condition
as a control, because frequent incongruent trials should
allow for stimulus–response learning (Bugg, Jacoby, &
Toth, 2008; Jacoby, Lindsay, & Hessels, 2003) and/or
adjustments in strategy or global vigilance (Bugg, McDaniel,
Scullin, & Braver, 2011; Carter et al., 2000) to lessen the
differential reliance on control in incongruent trials.1

There were significant IEs in both the infrequent
blocks (M= 99.89 msec, t= 7.41, p< .001) and frequent
blocks (M = 61.76 msec, t = 7.63, p < .001), and follow-
ing previous work employing the proportion congruent
manipulation (Carter et al., 2000; Lindsay & Jacoby,
1994; Logan & Zbrodoff, 1979), the IE was significantly
larger in the infrequent compared with the frequent con-
dition (t = 2.43 p < .05). Table 1 reports the full pattern
of median RTs and accuracies across conditions.

To identify contributions of model-based andmodel-free
choice, participants subsequently completed a two-stage
RL task (Daw et al., 2011; Figure 1). In each two-stage trial,
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participants made an initial first-stage choice between two
options (depicted as Tibetan characters), which probabi-
listically leads to one of two second-stage “states” (colored
green or blue). In each of these states, participants make
another choice between twooptions, whichwere associated
with different probabilities of monetary reward. One of the
first-stage responses usually led to a particular second-stage
state (70% of the time), but sometimes led to the other
second-stage state (30% of the time). Because the second-
stage reward probabilities independently change over
time, participants need to make trial-by-trial adjustments
to their choice behavior to effectively maximize payoffs.

Model-based and model-free strategies make qualita-
tively different predictions about how second-stage rewards
influence subsequent first-stage choices. For example,
consider a first-stage choice that results in a rare transition
to a second stage, wherein that second-stage choice was
rewarded. A puremodel-free strategy would predict repeat-
ing the same first-stage response because it ultimately
resulted in reward. The predisposition to repeat previously
reinforced actions in ignorance of transition structure is, in
the dual-system RL framework adopted here (Daw et al.,
2005), a characteristic behavior of habitual control. A
model-based choice strategy, utilizing a model of the envi-
ronmentʼs transition structure and immediate rewards to
prospectively evaluate the first-stage actions, would predict
a decreased tendency to repeat the same first-stage option
because the other first-stage action was actually more likely
to lead to that second-stage state.

These patterns by which choices depend on the pre-
vious trialʼs events can be distinguished by a two-factor
analysis of the effect of the previous trialʼs reward (re-
warded vs. unrewarded) and transition type (common
vs. rare) on the current first-stage choice. The predicted
choice patterns for a purely model-based and a purely
model-free strategy are depicted in Figure 1B and C, re-
spectively. A purely model-free strategy predicts that only
reward should impact whether or not a first-stage action
is repeated (a main effect of the reward factor), whereas a
model-based strategy predicts that this effect of reward
depends on the transition type, leading to a characteristic
interaction of the reward effect by the transition type. In
previous studies, human choices—and analogous effects
on choice related BOLD signals—exhibit a mixture of
both effects (Daw et al., 2011).

Following Daw et al. (2011), we factorially examined
the impact of both the transition type (common vs. rare)

and reward (rewarded vs. not rewarded) on the previous
trial upon participantsʼ tendency to repeat the same first-
stage choice on the current choice. Consistent with pre-
vious studies (Otto, Raio, Chiang, Phelps, & Daw, 2013;
Daw et al., 2011), group-level behavior reflected a mix-
ture of both strategies. A logistic regression revealed a
significant main effect of reward ( p < .0001), indicating
model-free learning, and an interaction between reward
and transition type ( p < .01), the signature of model-
based contributions (the third through fifth coefficients
in Table 2).
To visualize the relationship between susceptibility to

Stroop interference and model-based contribution to
behavior, we computed a model-based index for each
participant (the individualʼs coefficient estimate for the
previous Reward × Transition type interaction as in
Figure 1B) and plotted this index as a function of in-
frequent IE. Figure 2 suggests that an individualʼs sus-
ceptibility to Stroop interference (i.e., more slowing,
interpreted as poorer cognitive control) negatively pre-
dicts the contribution of model-based RL. Statistically,
in testing infrequent IE as a linear covariate modulating
model-based choice, we found a significant three-way
interaction between infrequent IE, reward, and transition
type ( p < .05, Table 2), revealing that Stroop inter-
ference predicts a decreased model-based choice con-
tribution. There was no significant effect of infrequent
IE upon previous reward ( p = .307), suggesting that
the predictive effect of susceptibility to response conflict
was limited to model-based rather than model-free choice
contribution.
The finding that individual susceptibility to Stroop

interference negatively predicts the contribution of model-
based learning to choices suggests an underlying cor-
respondence between cognitive control ability and the
relative expression of dual-system RL. But a less specific
account of performance could in principle explain the
cross-task correlation—namely, some more generalized
performance variation, such as in gross motivation or task
attentiveness, might manifest in a pattern where generally
poor-performing participants showed both larger IEs and
less reliance on the more cognitively demanding (model-
based) strategy on the RL task. If this were the case, we
would expect that IE in both Stroop conditions (infrequent
and frequent) would similarly predict model-based choice.
However, we found no significant (or even negatively
trending) relationship between frequent IE and model-

Table 1. Average Error Rates and Median RTs for Congruent versus Incongruent Trials in the Stroop Task

Condition Trial Type Error Rate (SD) RT (msec) (SD)

Incongruent infrequent Congruent 0.02 (0.02) 567.47 (70.86)

Incongruent 0.08 (0.07) 697.6 (147.89)

Incongruent frequent Congruent 0.04 (0.06) 573.21 (81.33)

Incongruent 0.04 (0.04) 602.07 (88.0)
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based choice ( p = .143; Figure 2B), and this relationship
was significantly different from the effect of infrequent
IE ( p < .05, linear contrast), demonstrating a specificity
in the across-task relationship and mitigating against an
account in terms of generalized performance variation.
Experiment 2 examines individual differences in con-

text processing more precisely, revealing how utilization
of task-relevant contextual information—a more specific
hallmark of cognitive control (Braver, Barch, & Cohen,
1999)—predicts model-based tendencies in choice be-
havior. This provides a complimentary demonstration of
the relationship between cognitive control and RL, using
a structurally different task termed the AX-CPT (AX-Contin-
uous Performance Task; Cohen et al., 1999), which has
been used to understand context processing deficits
in a variety of populations (Braver et al., 2005; Servan-
Schreiber, Cohen, & Steingard, 1996). In doing so, we also
probe the more general task engagement account be-
cause the AX-CPT includes a condition in which successful
cognitive control may actually hinder performance.

Experiment 2

In Experiment 2, we examined the relationship between
model-based choice and cognitive control more directly.
Fifty-one participants completed theDPX task (MacDonald,
2008), which is structurally equivalent to the AX-CPT
(Cohen et al., 1999). In each trial, participants were briefly
presented with a cue (a blue dot pattern, A or B), followed
by a delay period, and then a probe (a white dot pattern, X
or Y; Figure 3). Participants are required to make a “target”
response only when they see a valid cue–probe pair,
referred to as an AXpair. For all other cue–probe sequences,

participants are instructed to make a “nontarget” response.
The invalid, nontarget cues and probes are called B and
Y, respectively, yielding four trial types of interest: AX, AY,
BX, and BY. Because the AX trial occurs by far most fre-
quently (more than 2/3 of trials), it engenders a preparatory
context triggered by the A cue and a strong target response
bias triggered by the X probe. These effects manifest in
difficulty on AY and BX trials, relative to AX (the prepotent
target) and BY (where neither type of bias is present).

In the DPX task, the BX trials index the beneficial effects
of context on behavior (provided by the cue stimulus), be-
cause the X stimulus, considered in isolation, evokes in-
appropriate, stimulus-driven “target” responding. Utilizing
the context evoked by the B cue supports good perfor-
mance (fast and accurate nontarget responses) here, be-
cause the cue-driven expectancy can be used to inhibit
the incorrect target response (Braver & Cohen, 2000).
Importantly, contextual preparation has opposite effects
on BX and AY trials, because the predominant X cue, re-
quiring a target response, is even more likely following A.
For this reason, although the usage of context improves
performance on BX trials, it tends to impair performance
on AY trials; conversely, less utilization of contextual infor-
mation (or more probe-driven behavior) causes BX perfor-
mance to suffer but results in improved AY performance.
Thus, performance measures on the two trials, in effect,
provide mutual controls for each other. Accordingly, we
sought to examine how RTs on correct AY and BX trials,
which both index utilization of contextual information
(Braver et al., 2005), predict model-based contributions
in the two-stage RL task.

DPX accuracy and RTs at the group level (Table 3) mir-
rored those of healthy participants in previous work

Table 2. Logistic Regression Coefficients Indicating the Influence of the Stroop IE (Separately for Incongruent Infrequent and
Incongruent Frequent Blocks), Outcome of Previous Trial, and Transition Type of Previous Trial, upon Response Repetition

Coefficient Estimate (SE) p

(Intercept) 0.65 (0.10) <.0001*

Stroop (infrequent) −0.10 (0.11) .361

Stroop (frequent) −0.02 (0.11) .868

Reward 0.16 (0.03) <.0001*

Transition 0.04 (0.02) .116

Reward × Transition 0.08 (0.03) .001*

Reward × Stroop (infrequent) 0.02 (0.03) .648

Transition × Stroop (infrequent) −0.02 (0.02) .307

Reward × Stroop (frequent) 0.00 (0.03) .933

Transition × Stroop (frequent) 0.04 (0.02) .103

Reward × Transition × Stroop (infrequent) −0.06 (0.03) .031*

Reward × Transition × Stroop (frequent) 0.04 (0.03) .143

*p ≤ .05.
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(Henderson et al., 2012)—that is, participants made faster
and more accurate responses on target AX trials and non-
target BY trials compared with AY and BX trials (Cue ×
Probe Accuracy interaction, F(1, 49) = 78.54, p < .001;
RT interaction, F(1, 49) = 32.65, p < .01). Overall, d0-
context, which provides an estimate of sensitivity cor-
rected for response bias, mirrored that of controls in
previous studies using the DPX task (Henderson et al.,
2012; M = 3.32, SD = 0.76). Finally, AY and BX RTs
manifested a moderate, negative correlation (r(49) =
−0.41, p < .01) in line with the antagonistic relationship
between the two performance measures.

In the two-stage RL task, group-level behavior re-
vealed the same mixture of model-free and model-based
strategies (Table 4) as Experiment 1. We first examined if
BX RTs—which, in theDPX, should be smaller for individuals

Figure 3. DPX task. (A) An example sequence of cue–probe stimuli and the type of response (target or nontarget) required. The valid cue is referred
to as “A,” and the valid probe is referred to as “X.” Non-“A” cues are referred to as “B” cues, and non-“X” probes are referred to as “Y” probes.

Participants are instructed to make a “target” response only when an “X” probe follows an “A” cue; nontarget responses are required for all other
stimuli. (B) Stimuli set for DPX task. Cues are always presented in blue, whereas probes are always presented in white. (C) Schema depicting the

four trial types, required responses, and presentation rates. See main text for additional task details.

Table 3. Average Error Rates and Median RTs for the Four Trial
Types in the DPX Task

Trial Type Error Rate (SD) RT (ms) (SD)

AX 0.02 (0.02) 543.01 (110.20)

AY 0.13 (0.13) 686.98 (100.29)

BX 0.15 (0.13) 482.74 (153.19)

BY 0.02 (0.07) 507.08 (184.54)

Table 4. Logistic Regression Coefficients Indicating the
Influence of BX RTs, Outcome of Previous Trial, and Transition
Type of Previous Trial, upon Response Repetition

Coefficient Estimate (SE) p

(Intercept) 1.57 (0.14) <2e−16

BX RT 0.13 (0.14) .324

Reward 0.86 (0.09) <2e−16

Transition −0.01 (0.04) .791

Reward × Transition 0.16 (0.08) .058

BX RT × Reward 0.16 (0.08) .058

BX RT × Transition −0.10 (0.04) .013*

BX RT × Reward × Transition −0.17 (0.07) .020*

*p ≤ .05.
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using contextual information—predicts model-based con-
tributions to choice. Plotting the model-based index as
a function of BX RT (Figure 4A) suggests that individ-
uals who were worse performers (slower relative RTs)
on BX trials exhibited diminished model-based choice
contributions. Put another way, successful BX performance
requires inhibition of the prepotent response, the same
sort of inhibition required in incongruent Stroop trials in
Experiment 1 (Cohen et al., 1999). Interpreted this way,
the BX relationship corroborates the Stroop effect rela-
tionship reported in Experiment 1 (Figure 2A). Indeed,
the full trial-by-trial multilevel logistic regression (Table 4)
indicates that BX RT negatively and significantly predicted
model-based choice (i.e., the interaction between BX RT
and the Reward × Transition interaction, the signature of
model-based learning, was significant).
We hypothesized that AY performance should also pre-

dict model-based choice, but that the effect should have
the opposite (positive) direction because, on these trials,
increased use of the contextual information interferes
with performance, producing larger RTs. Note that under
the hypothesis that all our effects are driven by some

more generalized, confounding performance variation,
such as differences in gross motivation or engagement
between participants, predicts the opposite effect:
Poorer performance on the AY trials, like Stroop and

Figure 4. Visualization of relationship between DPX task performance and model-based contributions to choice in Experiment 2. Model-based

index is calculated the same way as in Figure 2. (A) BX RTs negatively predict model-based choice. (B) AY RTs in the DPX task positively predict
model-based contributions to choice in the two-stage RL task. (C) Contrast of AY RT and BX RT effects in the full model reveals the unique
contribution of AY RTs to prediction of model-based choice contribution. Dashed gray lines indicate standard errors about the regression line,

estimated from the group-level mixed-effects regression.

Table 5. Logistic Regression Coefficients Indicating the
Influence of Outcome of AY RT, Outcome of Previous Trial, and
Transition Type of Previous Trial, upon Response Repetition

Coefficient Estimate (SE) p

(Intercept) 1.57 (0.14) <2e−16

AY RT 0.09 (0.14) .525

Reward 0.86 (0.09) <2e−16

Transition −0.01 (0.04) .837

Reward × Transition 0.17 (0.07) .027*

AY RT × Reward −0.04 (0.09) .672

AY RT × Transition 0.09 (0.04) .018*

AY RT × Reward × Transition 0.15 (0.07) .045*

*p ≤ .05.
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BX, should track decreasing model-based contributions.
This relationship is plotted in Figure 4B. We indeed
found a significant positive relationship between AY RT
and the Reward × Transition interaction term (the full
model coefficients are reported in Table 5). As in Experi-
ment 1, neither AY nor BX RTs interacted significantly
with previous reward (Tables 4 and 5), suggesting that
the locus of the predictive effect of the cognitive control
variables was in the model-based, rather than the model-
free, domain.

Finally, we considered the effects of both of these
measures of control (AY and BX RTs) together in a mul-
tiple regression. To the extent that these effects may
both reflect a common underlying control process or
tradeoff, we might expect that there would not be enough
unique variance to attribute the relationship with model-
based RL uniquely to one or the other. Accordingly, their
effects upon model-based signatures (expressed as the
three-way interactions of AY and BX RT with Reward ×
Transition) did not reach significance individually in the
presence of one another (Table 6). However, the contrast
between these effects (equivalently, in a linear model, the
interaction of Reward × Transition with the average of
the two cognitive control measures, AY and BX RTs, or with
the differential score AY-BX, similar to Braver, Paxton,
Locke, & Barchʼs, 2009, proactive RT index) was significant
( p = .015; Figure 4C). Mirroring the separate regressions
above, the contrast between AY and BX RTʼs interactions
with reward was not significant ( p > .5), suggesting that
these predictive effects were limited to the model-based
domain. We also attempted the foregoing analyses using
BX and AY error rates instead of RTs as predictor variables,
finding no significant relationships upon choice behavior,

but we suspect this was due to insufficient variance
and/or floor effects in these measures.

DISCUSSION

We probed the connection between cognitive control
and the behavioral expression of model-based RL in se-
quential choice. We examined individual differences in
measures of cognitive control across separate task do-
mains to reveal a correspondence between behavioral
signatures of the two well-established constructs. In
short, we found that individuals exhibiting more goal-
related usage of contextual cues—a hallmark of cognitive
control (Braver & Barch, 2002)—express a larger contri-
bution of deliberative, model-based strategies, which
dominate over simpler habitual (or model-free) behavior
in sequential choice. Put another way, difficulty in pro-
ducing appropriate actions in the face of prepotent, inter-
fering tendencies, operationalized separately across two
different experiments via response latencies, was asso-
ciated with diminished model-based choice signatures
in a separate decision-making task. The two experiments
reveal a previously unexamined, but intuitive, corre-
spondence between two qualitatively different behavioral
repertoires—cognitive control and model-based RL.

Individual Differences in Control and RL Strategies

It is worth noting that the relationship between cognitive
control and choice observed here cannot be explained
merely in terms of global task engagement, whereby
more attentive or grossly motivated individuals bring
their full resources to bear on both tasks. This is because
utilizing contextual information in the DPX is not globally
beneficial but, instead, results in better performance in
some circumstances (BX trials) but worse performance
in other circumstances (AY trials). Accordingly, partici-
pants who exhibited the slowest RTs in AY trials actually
exhibited the strongest contributions of model-based
choice behavior in the two-step RL task (Figure 4A). In
other words, contrary what is expected from nonspecific
performance differences, poorer behavior in one type of
situation in the DPX task predicted better behavior in the
sequential choice task (whereas, of course, the comple-
mentary pattern of performance was also observed for
BX and Stroop interference). A panoply of recent studies
demonstrates how manipulations (e.g., working memory
load, acute stress, disruption of neural activity; Otto,
Gershman, et al., 2013; Otto, Raio, et al., 2013; Smittenaar,
FitzGerald, Romei, Wright, & Dolan, 2013) or individual
differences such as age (Eppinger, Walter, Heekeren, &
Li, 2013), psychiatric disorders (Voon et al., in press), or
personality traits (Skatova et al., 2013) all attenuate model-
based behavioral contributions. The present result high-
lights the specificity of this choice measure, as being
distinct from performance more generally.

Table 6. Logistic Regression Coefficients Indicating the
Influence of AY RT, BX RT, Outcome of Previous Trial, and
Transition Type of Previous Trial, upon Response Repetition

Coefficient Estimate (SE) p

(Intercept) 1.57 (0.13) <2e−16

AY RT 0.18 (0.15) .232

BX RT 0.21 (0.15) .157

Reward 0.86 (0.08) <.0001*

Transition −0.01 (0.04) .876

Reward × Transition 0.17 (0.07) .022*

AY RT × Reward 0.04 (0.09) .679

AY RT × Transition 0.06 (0.04) .142

BX RT × Reward 0.18 (0.09) .058

BX RT × Transition −0.06 (0.04) .135

AY RT × Reward × Transition 0.09 (0.08) .244

BX RT × Reward × Transition −0.13 (0.08) .115

*p ≤ .05.

328 Journal of Cognitive Neuroscience Volume 27, Number 2



Relatedly, individual differences in both task domains
are arguably best understood not as reflecting better or
worse (or overall more or less motivated) performance
per se but, instead, as reflecting different strategies or
modes of performing. Indeed, model-free RL is a separate
learning strategy from model-based RL, which can be
overall beneficial (Daw et al., 2005). Similarly, the Dual
Mechanisms of Control theory (Braver, 2012) fractionates
cognitive control—like the dual-system RL framework—
into two distinct operating modes: proactive control is
conceptualized as the sustained maintenance of context
information to bias attention and action in a goal-driven
manner, whereas reactive control is conceived as stimulus-
driven, transient control recruited as needed.
On this view, larger interference costs in the Stroop

task (when incongruent stimuli are uncommon) in Experi-
ment 1 may reflect reliance upon reactive (rather than
a proactive) control to support correct performance on
incongruent trials (Grandjean et al., 2012). Moreover, the
AX-CPT task (or the DPX as used here in Experiment 2)
has been interpreted as more directly dissociating the con-
tributions of reactive and proactive control (Braver, 2012).
In particular, a proactive control mode would support the
effects of representing the A or B context (harming perfor-
mance on AY trails and facilitating it on BX trials), whereas
in the absence of such cue-triggered expectancies (i.e., to
the extent participants rely on purely reactive control), BX
trials evoke inappropriate response tendencies that, as in
Stroop, would require reactive control to override them,
resulting in slowed responses (Paxton et al., 2008). Neurally,
the fractionation of the two control modes occurs on the
basis of temporal dynamics of activity: proactive control is
accompanied by sustained, probe-evoked activation of the
dorsolateral PFC (DLPFC) while reactive control is associ-
ated with transient activation of the DLPFC in response to
the probe (Braver et al., 2009; Paxton et al., 2008).
Together with the present results, the proactive/reactive

interpretation of the AX-CPT data suggests that partici-
pantsʼ more specific reliance on proactive, rather than
reactive, control is what predicts the ability to carry out a
model-based strategy in our sequential choice task. Thus,
larger AY RTs, indicative of a proactive strategy, predict
more usage of model-based RL, whereas larger BX RTs
and infrequent-condition Stroop interference effects,
indicative of the reactive strategy, predict less model-based
strategy usage. As proactive control is characterized by its
reliance on contextual information about the preceding
cues (Braver, 2012) and a similar sort of higher-order rep-
resentation (here, of the internal model) is required to
carry out model-based choice, we believe that the Dual
Mechanisms of Control theory provides an intuitive frame-
work for understanding the observed patterns of behavior.
Such an interpretation would refine the relatively broad
account that cognitive control, more generally, is needed
to support model-based action.
However, at least two questions remain. First, it is not

entirely clear on this view why reactive control (which

also supports correct responding on AY and incongruent
trials, albeit at an RT cost, perhaps by retrieving the goal
information while suppressing the prepotent response)
would not also be effective in enabling model-based re-
sponding. It may be that there is nothing about the RL
choice situation—analogous to an incongruent cue—that
specifically evokes or engages reactive control, so that a
tendency to utilize the internal model must in this setting
be proactively generated.

A second concern is that it might have been expected
that, in the Stroop task, proactive control is engaged most
strongly when incongruent stimuli are frequent, (Bugg
et al., 2011). Thus, we might have expected that inter-
ference effects in the incongruent-frequent condition—
diminished by the engagement of proactive control—
would, in turn, negatively correlate with model-based
strategy usage in the RL task, potentially even more
strongly than in the incongruent-frequent condition.
One possibility is that, under the conditions of our study,
good incongruent-frequent performance was more driven
by stimulus–response learning about the individual in-
congruent items rather than global, proactive control
(Bugg et al., 2008; Jacoby et al., 2003). Because such learn-
ing is itself similar to model-free RL, which presumably
competes with model-based RL, this interpretation might
be consistent with the trend toward the opposite effect
(faster incongruent-frequent RTs, interpreted as better
stimulus–response learning, tracking worse model-based
RL) in our data. However, a full test of this interpretation
would require separately manipulating list-level and item-
level incongruency (Bugg et al., 2008; Jacoby et al., 2003)
to dissociate global strategic adjustments in control from
associative learning.

Neural Substrates of Cognitive Control and RL

Interestingly, human neuroimaging and primate neuro-
physiology work suggest that the brain regions critical
in cognitive control and goal-directed choice span nearby
sections of the medial wall of PFC. In particular, BOLD
activity in the ACC is well-documented to accompany
error or conflict in tasks like the Stroop (Kerns et al.,
2004) and has been argued to be implicated in allocation
of control (e.g., via conflict or error monitoring; Botvinick,
Cohen, & Carter, 2004). Strikingly, Alexander and Brown
(2011) propose a computational model of these responses
in which they reflect action–outcome learning of a sort
essentially equivalent to model-based RL. Meanwhile, value-
related activity in RL and decision tasks is widely reported
in a nearby strip of PFC extending from adjacent rostral
cingulate and medial PFC down through ventromedial
and medial orbitofrontal PFC (Hare, Camerer, & Rangel,
2009; Daw, OʼDoherty, Dayan, Seymour, & Dolan, 2006).
This activity has been suggested to underlie goal-directed
or model-based learning, because it is sensitive to devalua-
tion and contingencymanipulation (Valentin, Dickinson, &
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OʼDoherty, 2007) and more abstract model-based infer-
ence (Daw et al., 2011; Hampton, Bossaerts, & OʼDoherty,
2006). Meanwhile, in rodents, lesions in prelimbic cortex (a
potentially homologous ventromedial prefrontal area) abol-
ish goal-directed behavior (Balleine & OʼDoherty, 2009),
and in primates, neurons in the OFC encode goal-specific
utilities, divorced from sensory or motor representations
(Padoa-Schioppa & Assad, 2006).

Recent neuroscientific work also hints at a more lateral
neural substrate underpinning both cognitive control and
model-based RL. Studies utilizing multistep choice tasks
highlight a crucial role for the DLPFC and lateral PFC in
decision-makersʼ learning and utilization of the model of
the environment—the defining characteristic of model-
based RL (Lee, Shimojo, & OʼDoherty, 2014; Gläscher
et al., 2010). Furthermore, Smittenaar et al. (2013) dem-
onstrated that disruption of DLPFC activity selectively
attenuates model-based choice. Similarly, in simple context-
processing tasks, DLPFC activation accompanies utiliza-
tion of goal-related cues—the hallmark of cognitive control
(Braver et al., 2009; Egner & Hirsch, 2005; Kerns et al.,
2004), whereas disruption of activity in the same region
can impair context-dependent responding (DʼArdenne
et al., 2012).

Relationships between the Computational

Mechanisms of Control and RL

Both RL and cognitive control have been the subject of
intensive computational modeling, and to the extent that
these two constructs overlap, these theories may be rele-
vant across both domains. Theoretical accounts of dual-
system RL tend to conceptualize the arbitration question—
that is, how the brain decides, at choice time, whether to
make the choice preferred by the model-based versus
model-free system-as an even-handed competition be-
tween the two systems. Abstractly, this choice has been
conceptualized as involving a cost–benefit trade-off in their
flexibility and computational expense (Keramati, Dezfouli,
& Piray, 2011; Daw et al., 2005), an idea that explains
considerable data about the task circumstances under
which rodents tend to exhibit either strategy. Little expla-
nation, however, has been offered about this competition
at a process level. Considering the arbitration question in
light of the cognitive control framework—and moreover,
the present results—suggests that, rather than selection
between two preferences, the interaction between the
two systems may be more top–down or hierarchical in
nature. In such an arbitration scheme, cognitive control
might bolster the influence of model-based relative to
model-free choice by actively boosting the influence of
task-relevant representations or actively inhibiting model-
free responses. On this view, responses favored by the
model-free system (such as repeating a previously un-
rewarded response following a rare transition; Figure 1C)
are akin to prepotent (inappropriate) color-reading re-

sponses in the Stroop task or “target” responses to BX
stimuli in the DPX task. Meanwhile, the choices that would
be best taking into account the internal model of the task
structure (akin to contextual or goal-related information in
control tasks) must override them. Indeed, recent func-
tional neuroimaging work finds support for such an in-
hibition scheme (Lee et al., 2014).
Computationally, this view invites reconsideration of

the RL arbitration problem in terms of the mechanisms
modeled in the cognitive control literature, by which
higher-order representations are strengthened and/or
responses are delayed or inhibited to favor controlled
responding (Shenhav, Botvinick, & Cohen, 2013; Cohen
et al., 1999). This points to an altogether different and
more detailed process-level account of competition than
suggested on previous RL work, which might speak par-
ticularly to the within-trial time dynamics of the tradeoff
during the choice process (see also Solway & Botvinick,
2012). Importantly, whereas model-free action values are
directly produced by learning and can simply be retrieved
at choice time (consistent with prepotency), model-
based values are typically viewed as computed at decision
time, through a sort of mental simulation using the inter-
nal model. Because the latter process takes time, it is
naturally matched to control theories envisioning a race
to suppress a prepotent response while a more controlled
process builds up (Frank, 2006).

Possible Future Directions

Another implication of a cognitive control perspective for
RL is that the cognitive control literature has also focused
extensively on trial-to-trial shifts in the engagement of
control and the related phenomenology of sequential
effects such as post-error slowing (Botvinick et al., 2001).
In the same fashion, it is possible that the tendency toward
model-based control shifts from trial to trial as a function of
observed stability in rewards or transition structure as it
may signal a need for increased control of a proactive sort.
Such trial-to-trial adjustments have received relatively little
attention in RL so far, but hints of adjustments in reliance
on model-based RL have been observed in sequential
choice behavior (Lee et al., 2014; Simon & Daw, 2011).
Future work, following the tradition of the cognitive con-
trol literature, should aim to uncover more precisely (1)
what sorts of events in the environment trigger these shifts
and (2) how these shifts may be implemented neurally.
Conversely and again suggesting future theoretical and

experimental work, decision-theoretic treatments of how
the brain balances the costs and benefits of model-based
control in choosing an RL strategy (Pezzulo, Rigoli, &
Chersi, 2013; Keramati et al., 2011; Daw et al., 2005)
can potentially be applied to understanding the costs
and benefits of cognitive control more generally. In par-
ticular, this approach might serve as the basis for an anal-
ogous account of how the brain chooses a more proactive

330 Journal of Cognitive Neuroscience Volume 27, Number 2



or reactive control strategy under different circumstances.
Relatedly, recent work demonstrates that people treat as
costly the subjective “effort” of controlled behavior such
as task switching or workingmemory demand (Westbrook,
Kester, & Braver, 2013; Kool, McGuire, Rosen, & Botvinick,
2010). Individual differences in the disinclination toward
such mental effort might be key source driving the cor-
responding tendencies to use both model-based RL and
proactive control across our tasks. Testing this idea, of
course, would require additionally assessing individual dif-
ferences in subjective effort cost in a study like the current
one.
Separate from the issues of competition considered

thus far, another complementary relationship between
theories RL and cognitive control concerns the role of
learning in establishing the sorts of higher-level contextual
representations or task sets that are supposed to be
privileged by control. Recent research (Collins & Frank,
2013; Collins & Koechlin, 2012; Gershman & Niv, 2010)
aims to extend principles of RL, hierarchically, to learning
at this level.

Broader Implications

Finally, characterizing and understanding the correspon-
dence between cognitive control and decision-making
may be of practical importance. Prominent accounts of
substance abuse ascribe compulsive and drug-seeking be-
haviors to the aberrant expression of habitual or stimulus-
driven control systems at the expense of goal-directed
action (Everitt & Robbins, 2005), respectively instantiated
in dual-system RL as the model-free and model-based sys-
tems. At the same time, impairments in such response
inhibition are observed in populations showing pathologi-
cally compulsive choices such as cocaine abusers and
pathological gamblers (Odlaug, Chamberlain, Kim, Schreiber,
& Grant, 2011; Volkow et al., 2010). Within the dual modes
of control framework, these impairments are thought to
stem from the breakdown of the proactive rather than
reactive control system (Garavan, 2011). The finding that
individuals—within a nonclinical population—who exhibit
more difficulty inhibiting stimulus-driven responding
also show more reliance upon predominately model-free
choice dovetails neatly with both of these accounts.
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Note

1. Note that under a different interpretation, the relationship
between the frequent and infrequent conditions could have the
opposite directionality, because global strategic adjustments—to
the extent they drive performance in the frequent condition and
are most robustly exercised there—themselves may constitute a
particular, proactive form of cognitive control (Bugg et al., 2011;
Carter et al., 2000).
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