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Abstract Model tracing tutors represent a technology designed to mimic key elements of

one-on-one human tutoring. We examine the situations in which such supportive computer

technologies may devolve into mindless student work with little conceptual understanding or

student development. To analyze the support of student intellectual work in themodel tracing

tutor case, we adapt a cognitive demand framework that has been previously applied with

success to teacher-guided mathematics classrooms. This framework is then tested against

think-aloud data from students using a model tracing tutor designed to teach proportional

reasoning skills in the context of robotics movement planning problems. Individual tutor

tasks are coded for designed level of cognitive demand and compared to students’ enacted

level of cognitive demand. In general, designed levels predicted how students enacted the

tasks. However, just as in classrooms, student enactment was often at lower levels of demand

than designed. Several contextual design features were associated with this decline. Impli-

cations for intelligent tutoring system design and research are discussed.

Keywords Model tracing tutor � Cognitive demand framework � Student task

engagement

1 Introduction

A persistent problem of practice in mathematics classrooms is raising the level of student

thinking. For reasons that range from poor curricula, to unforgiving bell schedules, to an
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over-reliance on standardized tests, student thinking in the majority of American math

classrooms is highly routinized, consisting of memorizing content or reproducing teacher-

demonstrated procedures to solve problems (Stigler and Hiebert 2004).

Over the past 20 years, however, there have been some strides. Many students are now

at least exposed to more complex tasks that challenge them to think, reason, and make

sense of new ideas (NRC 2004). This has happened primarily because of standards-setting

initiatives—beginning in the late eighties and early nineties—of professional groups such

as the National Council of Teachers of Mathematics. After surveying the changing world

of work, advances in the discipline, and the challenges of a globalized economy, NCTM

presented arguments for why the nature of classroom work needed to become more cog-

nitively complex, developing in our students a host of skills that go beyond the ability to

memorize or to repeat back what has already been taught (National Council of Teachers of

Mathematics 1989). The standards, in turn, prompted a great deal of teacher professional

development along with the design of new curricula that promised to bring twenty-first

century skills to our nation’s children. Similar work continues in the United States today

under the Common Core State Standards.

The mathematics curriculum-based reforms of the nineties were soon followed by

research studies that critically examined whether and how the presence of higher-level,

curriculum-based tasks actually improved students’ learning (e.g., Huntley et al. 2000;

Senk and Thompson 2003). In theory, the tasks found in the new curricula should lead to

more rigorous forms of thinking and learning. A key finding, however, was that these tasks

often changed their character once unleashed in real classrooms settings (Boston and Smith

2009; Stein et al. 1996; Stigler and Hiebert 2004). In particular, teachers often lowered the

cognitive demands of tasks by breaking them into smaller subtasks (Smith 2000) and/or

focusing on the accuracy of procedures and answers rather than students’ thinking and

reasoning processes (Henningsen and Stein 1997). Research has also shown that the level

of cognitive demand of the enacted instructional tasks (not the written tasks) is associated

with student gains on measures that target high-level thinking and reasoning. Consistent

results over the past 25 years have shown that students learn best when they are in

classrooms in which a high-level of cognitive demand is maintained throughout lessons

(Boaler and Staples 2008; Hiebert and Wearne 1993; Stein and Lane 1996; Stigler and

Hiebert 2004; Tarr et al. 2008).

The above research has been conducted solely with teachers using print-based curricula

in conventional classrooms. However, there have also been many computer-assisted efforts

to improve student learning in mathematics, efforts that have taken a different form. Model

tracing tutors, for example, were developed to assist students to learn how to solve

mathematics problems without the teacher. Based on extensive research demonstrating the

importance of having both procedural and conceptual knowledge in solving complex tasks

(Hiebert 2013; Rittle-Johnson and Alibali 1999; Rittle-Johnson et al. 2001), these tutors

focus students on practicing critical aspects they have not yet mastered (Anderson 1996;

Ritter et al. 2007). Model tracing tutors aim to reduce the cognitive burden on students,

often by ‘‘taking over’’ or heavily guiding them through certain elements in the problem-

solving space so that they are free to focus on those elements that still need to be practiced

(VanLehn et al. 2000). At the same time, model tracing tutors may have taken over too

much of the task, allowing students to practice without attention to the appropriateness of

mathematical approaches.

The purpose of the research reported here is to examine the enactment of, and student

learning from, computer-based mathematics tasks using a framework that has guided

cognitive demand research in mathematics classrooms using print-based materials.
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2 Literature Review

2.1 Different Views of Cognitive Demand

Mathematics educators and psychologists have approached the idea of cognitive demand in

different ways. Since the call for a shift toward more thinking, reasoning, and problem

solving (NCTM 1989), two popular areas of focus of mathematics education researchers

has been the nature of students’ conceptual understanding (Hiebert and Carpenter 1992)

and the relationship between teachers’ instruction and students’ opportunities to learn

(Hiebert and Grouws 2007). Although instruction has been studied in various ways [e.g.,

through classroom discourse (e.g., O’Connor 2001); teacher questioning (e.g., Boaler and

Brodie 2004); intellectual authority (e.g., Wilson and Lloyd 2000)], over the past two

decades, the role of challenging and well-structured learning tasks has emerged as a

prominent instructional component associated with initiating and sustaining learning

processes in mathematics classrooms (Brophy 2000; Baumert et al. 2010; Seidel and

Shavelson 2007). Whether referred to as ‘‘cognitively activating’’ (Baumert et al. 2010) or

‘‘high cognitive demand’’ (Stein et al. 1996), there is general consensus regarding what

constitutes low- versus high-levels of challenge. Here we use the taxonomy devised by

Stein et al. (1996) (see Table 1).

Research has shown, however, that the vast preponderance of tasks used in American

classrooms are low level (Grouws et al. 2004; Stigler and Hiebert 2004); as such, a

common goal of much teacher professional development has been on learning how to

select, set up, and enact tasks at higher levels of cognitive demand.

The model tracing tutor approach, on the other hand, is more consistent with cognitive

load theory (Paas et al. 2004; van Merrienboer and Sweller 2005), which postulates that

humans have limited cognitive capacity and learning tasks should therefore minimize

cognitive demand. In particular, any given learning environment can be analyzed using

cognitive load theory to identify three kinds of cognitive loads: intrinsic, the load asso-

ciated with doing the conceptual task itself; extrinsic, the load associated with operating

Table 1 Levels of cognitive demand ordered from lowest to highest, their definitions, and examples

Level of

demand

Definition Example

Memorization

(lowest)

Students recall previously learned facts,

rules, formulae, or definitions

What is the Per-unit calculation for

computing proportions called?

Procedures

without

connections

Students follow previously demonstrated

algorithms to solve problems without

linking them to underlying concepts,

meaning or understanding

Divide the number in the left column of the

table by the number in the right column to

get the unit rate

Procedures

with

connections

Students follow suggested pathways to

solve problems, but do so in a manner

that maintains close connections to the

underlying mathematical concepts

Use the diagram [a diagram picturing 3

wheel rotations covering 12 cm] to figure

how far the robot will travel in 6 rotations

Doing

mathematics

(highest)

Students are required to solve problems that

demand complex nonalgorithmic thinking

for which they do not have a

predetermined pathway

‘‘Shade 6 small squares in a 4 9 10

rectangle. Using the rectangle, explain

how to determine the fractional part that

is shaded’’ (Stein et al. 2009)
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within the external task environment (e.g., finding information, operating an interface); and

germane, the load associated with reflecting on task performance and learning to improve

task performance. Here, cognitive capacity means how much can be handled at once by the

human brain and cognitive demand refers to aspects of the problem situation (i.e., cog-

nitive load) that could overtax that capacity.

Model tracing tutors are often designed to minimize all three forms of cognitive load

such that the learner is not overwhelmed with a total load that is beyond their cognitive

capacity. To minimize intrinsic load, larger tasks are typically divided into steps that each

require a response, and the components of larger tasks are practiced to the point of

automaticity. Sometimes conceptually irrelevant components of the larger task are solved

automatically for the student (e.g., via a calculator). The tutor’s computer interface is also

often used to show intermediate values or an overall situation model, thereby allowing the

external environment to serve as a replacement for internal memory demands (Jang and

Schunn 2014; Jang et al. 2011). To minimize extrinsic load, interfaces are made highly

regular across problems so students learn where to expect to find information and enter

responses. To minimize germane load, immediate feedback is presented whenever a step is

done incorrectly, which includes hints about what was done incorrectly and what action

would be correct. All of this suggests a very different approach to raising students’ level of

thinking and reasoning; instead of focusing on the whole task and the processes that

students are encouraged to use to solve it, cognitive load theory divides the task into

manageable pieces until mastery is reached and the pieces can be combined.

At base, the mathematics education view of cognitive demand and cognitive load theory

agree that students should learn how to think, reason, and problem solve; the mathematics

education view would also endorse the idea of ‘‘off-loading’’ procedural elements (as in the

case of a student who uses a graphing calculator to plot a line graph so as to be ‘‘freed up’’

to focus on characteristics of the graph and how they relate to parameters in the equation).

However, the two theories differ in regards to where the emphases have been placed, with

model tracing tutors focusing on lowering cognitive demand to building efficient proce-

dural performance/conceptual understanding and mathematics educators focusing on as-

sisting teachers’ capacities to set up and support student thinking during high-demand

tasks.

2.2 The Advantages of a Task-Based Framework

The tasks with which students become engaged are important because they determine not

only what substance students learn, but also how they come to think about, develop, use,

and make sense of that substance. Tasks provide signals not only about what is important to

learn, but also how one should learn it and what ‘‘counts’’ as important intellectual activity.

The classification of mathematical instructional tasks into various levels of cognitive

demand using the Task Analysis Guide (TAG; Stein et al. 2009) coupled with the tracking

of tasks from the pages of textbooks to their actual enactment in classrooms using the

Mathematics Task Framework (MTF; Stein et al. 1996) have proven to be useful tools for

both research and practice. For researchers, these tools have allowed us to document how

the cognitive demand of instructional tasks can change as they progress through phases:

first, as curricular or instructional materials (print), second as they are set up by the teacher

in the classroom (set up), and, finally, as implemented by students during the lesson

(enactment) (Boston and Smith 2009; Henningsen and Stein 1997; Stein et al. 1996; Stein

and Kaufman 2010). This pattern of shifts relates to work by Bosch et al. (2006) on

didactical transpositions and by Venezky (1992) on the ‘‘curricular chain’’ that includes the
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desired, prescribed, delivered, and received curriculum. Practitioners, teachers and teacher

educators find that the TAG and MTF provide a language for them to talk about things that

often happened in classrooms but for which they had no way of expressing. Here we

explore the utility of the TAG and MTF for examining student learning with model tracing

tutors: will it also help explain the depth of student thinking during tutor-based learning

tasks?

Following research in mathematics education, we will also use instructional tasks as our

unit of analysis. However, instead of three phases (print, set up, and enactment), in tutoring

environments, the first two phases are combined into one phase; there is no teacher in the

environment to ‘‘set up’’ the task. Thus, the task is delivered to the student exactly as

intended by the designers with no opportunities for a drop in demand until the task is

actually enacted by the students. However, there is still the opportunity for students to

decline cognitive demand during enactment, and we hypothesize that features of the task

environment can predict the circumstances under which students are more likely to decline

cognitive demand.

In sum, we examine whether the TAG and MTF framework (based in one notion of

cognitive demand) can be usefully applied to analyzing learning in model-tracing tutors,

whose design was rooted in a different notion of cognitive demand. Can the TAG and MTF

provide useful insights into the level and kind of thinking in which students engage while

working on computer-based tasks, especially the model tracing tutors that are designed to

be teacher-less? If, indeed, the decline in cognitive demand in mathematics education

studies was often rooted in teacher actions, might these model tracing tutor environments

be better positioned to maintain the level of thinking and reasoning of students as they

engage with the tasks?

More specifically this research asks three questions related to the mathematics task

framework and students’ enactment of an intelligent tutor built within a popular model

tracing tutor environment:

1. Does the cognitive demand of the designed task predict the cognitive demand when the

students enact the task in a model tracing tutor context?

2. Is the students’ level of thinking while enacting model tracing tutor tasks associated

with learning?

3. What, if any, factors are associated with the maintenance of cognitive demand from

design to student enactment in a model-tracing tutor?

Theoretically, the study tests the generalizability of the MTF and TAG to less teacher-

centric learning environments. Pragmatically, the study can provide guidance on how to

improve intelligent tutor design by revealing which design features tend to produce

problematic student learning behaviors.

3 Methods

3.1 Participants

This work was conducted at a small suburban public school district over the course of

3 weeks totaling 16 h of student engagement with the tutor system. Given the tutor’s use of

robotics as a motivating context (see below), the project was presented to students, grades

6–8, enrolled in the districts robotics club as a way to gain experience with robots, which

were used as part of the district’s competitive robotics team, and to build mathematics
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skills. In total, the twenty-seven students in the robotics club were contacted for partici-

pation in the program. Of the twenty-seven contacted, nine showed interest and six males

and one female (M = 12.1, SD = .7, range 11–13) ultimately completing the program.

Each of the seven students completed 8 units in the system consisting of approximately

10–18 tutor pages per unit.

3.2 The Tutoring Environment

This project analyzed an Intelligent Tutoring System (ITS) called the Robot Algebra

Project (RAP). The RAP was developed within the model tracing tutor framework used to

create many different systems (algebra, geometry, and physics), enacted by large numbers

of students throughout the world (VanLehn et al. 2000, 2005; Ritter et al. 2007; Koedinger

and Corbett 2006). Studying an ITS of this type provides relevance to a broad class of

systems in the tutoring world. Hallmarks of these tutors are: (1) they track skills through

students’ actions; (2) feedback is tailored to the particular skills they appear to be missing;

and (3) practice focuses on topics for skills which the students have not developed (Ma

et al. 2014).

The RAP design team, made up of researchers with decades of experience in tutor

design, robotics education, and mathematics education, designed a system to improve

students’ proportional reasoning in the context of rich robotics problems. The studied

version of RAP had been iteratively improved across 10 months of testing in different

classroom and after-school contexts, building upon a computational framework (CTAT;

http://ctat.pact.cs.cmu.edu) that allowed for rapid tutor development. That is, the studied

tutor was likely representative of the popular model tracing tutors deployed throughout the

world, rather than a poorly designed system produced with little development effort or by

designers not well trained in the design task.

Proportional reasoning is a key proficiency that students need to develop during the

middle school years (Lamon 2007). Although students typically learn to execute an al-

gorithm for solving proportional reasoning problems quite easily (cross multiplication),

they struggle with the underlying concept of what is meant by a proportional relationship

(the simultaneous coordination of changes in two interrelated quantities) and the devel-

opment of flexible use of multiple representations and strategies for solving problems that

involve proportionality (Lobato et al. 2010; Harel et al. 1994; Thompson and Saldanha

2003).

Ideally, the designed tutor would function independent of other strong instructional

resources, such as mathematics teachers, so that the learning could take place in technology

classrooms or various informal learning environments (e.g., home schooling, summer

camps, after school clubs). Building upon prior computer-based materials that successfully

taught proportional reasoning using LEGO robotics activities (Silk et al. 2011), the design

team built a system that integrates the use of a LEGO robot and NXT software with a

model tracing tutor to introduce both robotics and proportional reasoning to students

ranging in grades four through eight. LEGO robotics provides a good fit to proportional

reasoning because most aspects of motion programming in these simple robots involve

proportional relationships (e.g., linear distance, linear speed, turn angle, and turn speed are

all linear functions of wheel size and motor rotations; turn angle and turn speed is also a

linear function of axle width). The system also provides a physical model in which rea-

soning can happen. This physicality appears to support students’ ability to reason about

mathematical relationships by making more salient the critical aspects of the robot that

produce proportional relationships (Silk and Schunn 2011; Silk et al. 2011; Liu and Schunn

A. M. Kessler et al.
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2014), similar to other kinds of embodiment support for learning (Alibali and Nathan

2012).

The tutoring environment is accessed via an Internet-connected computer, and the

activities also depend upon using a LEGO robot and the NXT software that is used to

program the robot. Students work individually with the tutor. Although some learning

contexts require students to share robots for cost reasons, the studied context provided one

robot per student. Figure 1 shows a typical page in RAP that requires students to utilize the

robot to gain information necessary to complete a tutor task. Note that the computer

interface provides many of the on-screen supports to minimize student cognitive load in the

mathematics tasks (i.e., step-by-step guidance on the larger task; required intermediate

calculations; feedback and hints as needed). Not included on this page, but present on all

problem pages, is a skillometer, which shows students their progress on various component

proportional reasoning skills being assessed by the tutor.

The entire RAP tutor consists of nine instructional units (see Fig. 2): one unit intro-

ducing the student to robot basics (e.g., how to install programs on the robot and run the

programs), three short units that teach measurement of different aspects of robotics motion,

a challenge problem involving many measurement tasks, three longer units on proportional

relationships in motion, and then a challenge problem involving motion programming. We

selected the unit on proportional distance as the focal point for this study because it is

Fig. 1 A RAP example page
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where the key mathematics concepts underlying proportional reasoning are first introduced

(i.e., where the most conceptual work related the proportional reasoning is done).

Successful proportional reasoning involves being able to flexibly apply different

strategies to solve proportional problems according to the problem situation (Lobato et al.

2010). One key strategy choice is the distinction between unit-rate and scaling factor

strategies. Consider the problem: if one robot moves 10 cm with 30 motor rotations, then

how many rotations are required to move 20 cm? A unit rate strategy would involve

determining that the robot moves 1 cm per 3 motor rations, and thus 20 cm would require

3 9 20 = 60 rotations. By contrast, a scaling strategy would involve seeing that the new

distance is twice the old distance, and thus the new distance would require 2 9 30 = 60

rotations. In this problem, both strategies are easy. But depending on the numbers

involved, one strategy can be much easier than the other strategy, and thus it is useful to be

able to flexibly apply both strategies. Across the instructional units, students are positioned

to learn both unit-rate and scaling strategies.

3.3 Measures

3.3.1 Designed Level of Cognitive Demand

To answer the first research question, the designed level of cognitive demand for each task

was established. First, we defined the boundaries of a task as the images, tables, feedback,

and answer options associated with each tutor question. Therefore, a single tutor page

could consist of up to 7 individual tasks. The analysis of designed cognitive demand level

was completed before students began work on the tutor. Screen capture images of each

tutor question and all possible combinations of answers and feedback for that question

were used to code for the designed level of cognitive demand using the same levels as

described in Table 1 (see Fig. 3 for an example). Next, the questions on the screen shots of

the tutor pages were coded by a second researcher to establish an inter-rater reliability of

95 % agreement (Miles and Huberman 1994).

Fig. 2 The sequence of units in RAP, and the unit selected for analysis (proportional distance)

A. M. Kessler et al.
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3.3.2 Enacted Cognitive Demand

All three research questions required coding the enacted cognitive demand of each task.

Due to the low number of Memorization and Doing Mathematics tasks (4 and\1 %

respectively) that were identified at the designed level, coding for the enacted level of

cognitive demand focused only on questions that were given a designed code of the

Procedures With Connects (PWC) and Procedures Without Connections (PWOC). Within

the cognitive demand literature, PWC are considered high level tasks and PWOC are

considered low level tasks. Thus, dropping Memorization and Doing Mathematics from

analysis does not limit the study’s main goal of predicting high and low cognitive demand

of student enactment.

Students’ cognition as they individually worked on the RAP tasks (the enacted cognitive

demand) was measured using student think-aloud protocols (Ericsson and Simon 1993;

Carmel et al. 1992). This allowed the research team to examine student thinking in more

depth than the log data analysis strategies typically used by other tutor researchers

(VanLehn et al. 2005). Additionally, in comparison to test or survey-based methods, the

think aloud method provides direct access to students’ reasoning during learning. Finally,

it produces many data points for each participant (i.e., the total number of data points can

be large enough to support quantitative analyses as well) providing data amenable to

qualitative analysis. A limitation of using a think aloud method is a reliance on a relatively

small number of participants. As such, it is important to select a variety of students who

would likely engage with the system, which we have done in both gender and age.

All screen movements and interactions with the tutor and robot were video taped along

with each student’s verbalization of what they were thinking about as they worked through

the problems. As they talked through their ideas, the students were also asked to read out

Fig. 3 Example cognitive demand coding of tasks within the tutor
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loud what was on the screen. The videos were transcribed, and analyses were based on the

transcripts together with the video of behaviors in the tutor windows to provide context.

Before coding for cognitive demand, the researcher coded for three types of talk

(Reading, Task Talk, and Robot-related Talk). Reading was defined as students reading

verbatim off the tutor screen. Task talk was student talk that revolved around the task

presented to them and included the thinking they were doing around each proportional

reasoning task. Robot-related talk was talk surrounding their efforts to make the robot

function (away from the tutor itself) and was outside the scope of the task presented in the

tutor. For this analysis, only the Task Talk was analyzed because it represented the level of

cognitive thinking exhibited by students during their enactment of tutor tasks.

Specifically, students’ thinking surrounding each PWC and PWOC question on the tutor

screen was coded as Memorization, Procedures Without Connections, Procedures With

Connections or Doing Mathematics, using the same code definitions that were used for

coding of the screen captures. Two raters coding 20 % of the total transcripts had high

agreement (89 % exact match) in coding for enacted cognitive demand. In order to obtain

an ‘‘average’’ enactment code for each question to compare against design codes, the codes

were averaged across the seven students. Again, these calculations were carried out only on

PWC and PWOC questions due to the low number of Memorization and Doing

Mathematics demand questions.

3.3.3 Student Learning Outcomes

Students were given an independent paper and pencil assessment of proportional reason-

ing: a 13-question assessment of proportional reasoning adapted from Weaver and Junker

(2004), previously shown to have high reliability and validity for use with middle school

students. There were two alternative forms administered in a counter-balanced fashion

across the participants. The pre-assessment was administered prior to the beginning of the

Robot Basics Unit. The post assessment was administered after the completion of the

Asteroid Challenge. We assigned two separate codes to each of the student responses on

the Weaver & Junker assessment. The first code represented whether or not the student had

answered the question correctly regardless of the process, strategy, or amount of work

shown. The second code represented the strategy that was used by the student to answer the

question, which was only possible when students showed enough work in order for the

researcher to identify the strategy.

We created five dichotomous variables to represent strategy use. The first simply coded

for an incorrect strategy. Students scored a ‘‘0’’ if they used a wrong strategy or failed to

produce a correct answer. The remaining four dichotomous indicators were scored ‘‘1’’ for

the presence of the unit rate strategy, scale factor strategy, cross multiplication or another

strategy.

3.3.4 Factors Associated with Maintenance or Decline of Task Demand

To determine whether specific contextual factors could predict whether questions designed

at a high level of cognitive demand (n = 29) tended to be enacted at the high level of

demand (or decline), both the screen shots and talk-aloud data were coded using an adapted

set of factors from previous research (Doyle 1983; Stein et al. 1996). The factors, defi-

nitions, and mean percentage of high demand questions that received each code are pre-

sented in Table 2.
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4 Results and Discussion

4.1 Level of Cognitive Demand as Designed

Given the interactive tutoring system context, memorization tasks were quite rare. Further,

given the focus on closed-ended responses that could easily be processed by the tutoring

system, ‘‘doing mathematics’’ tasks were also rare. Therefore, the bulk of the tasks were

PWC and PWOC, with roughly an equal distribution (see Table 3). These results verified

that the designed level of cognitive demand for this tutor contained both high demand,

meaning-oriented tasks shown in research to improve mathematics learning, and low

demand tasks, established with increasing skill proficiency in solving math problems.

4.2 Enacted Levels of Cognitive Demand

Table 4 presents the mean percentage of question responses coded at each level of cog-

nitive demand. Similar to the designed level, PWC and PWOC are the dominant enacted

levels of cognitive demand in this context. However, at the enacted level, PWOC becomes

much more common.

4.3 Relationship Between Designed and Enacted Levels of Cognitive Demand

To address the first research question, each designed question code was compared with the

average level of enactment across all the students for each specific task. Given the rela-

tively small number of participants, here we are testing the robustness of effect of designed

cognitive demand level on enacted cognitive demand level by examining the robustness of

the effects across the PWOC and PWC (n = 51) tasks in the tutor. The results show a

significant difference for students’ level of enactment at the PWC level for questions at

different design levels (i.e., designed at the PWC or PWOC levels) (t = 3.004, df = 44.97,

Table 2 Possible factors associated with maintenance or decline of cognitive demand

Factor Definition % of high

demand

questions

Task feedback Type of tutor feedback causes a drop in the demand of the original

task by taking over and doing the thinking for the student

64

Task relevance Task is explicitly related to the overall purpose of the tutor

challenge

55

Task set up: steps to

solve

The steps to solve the task are explicitly given as part of the page

(not hints)

38

Task simplified

interface

The task has a unique interface; it is not a replication of previous

tasks formats

37

Task sequence

computation

Task drops to demanding only computation over a sequence of

questions

28

Task accountability A skillometer was present for the question (because skill level as

shown on the skillometer determined whether students could

move on to new sections of the tutor)

24

Task thinking not

valued

Task only expects students to provide quick and correct solution to

the problem

24
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p = .004, d = .85). This large and statistically significant difference suggests that the

designed level of the task was a general predictor of the level at which students enacted a

question.

Figure 4 also reveals a general trend towards decline of cognitive demand: students very

often enacted questions designed to be PWC as PWOC. By contrast, students almost never

enacted questions at higher levels of demand than how they were designed (i.e., a PWOC

task was rarely enacted at a PWC level). This preponderance towards decline rather than

increase of cognitive demand from design to enactment mirrors what is found in typical

mathematics classrooms (Henningsen and Stein 1997).

4.4 Learning and Strategy Shift

In order to answer the second research question, we began by focusing on the changes in

performance on the pre/post Junker/Weaver measure of proportional reasoning. There was

Table 3 Distribution of

designed cognitive demand
Cognitive demand level # of questions

No code 5 (9 %)

Memorization 2 (3 %)

Procedures without connections 22 (38 %)

Procedures with connections 29 (50 %)

Doing mathematics 0 (0 %)

Table 4 Percentage of observed

enacted cognitive demand for

tasks designed at the PWC or

PWOC levels

Cognitive demand level % of question responses

No code 5

Memorization 2

Procedures without connections 80

Procedures with connections 13

Doing mathematics 0

Fig. 4 The percentage of tasks enacted at procedures with connections for tasks designed at the procedures

with and without connections levels
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no overall gain from pre (n = 7, M = 14.0, SD = 3.0) to post (n = 7, M = 13.9,

SD = 2.7, d = .05). The lack of gain may be ceiling effect of this particular population:

83 % correct on the Junker/Weaver pre-test. However, some of the participants began at

lower levels and they showed no gains. Further, pre-post changes assessed in two other

settings with less mathematically sophisticated learners using the same tutoring system

also found no gains.

Although no significant difference was seen in their accuracy scores, there were some

differences in strategy use from pre to post assessments. In the first case study, presented

below, we further unpack the nature of these strategy shifts as seen in both the think-aloud

and the assessments.

4.5 Factors Associated with Maintenance and Decline of Cognitive Demand

Addressing the third research question, we conducted a stepwise multivariate regression at

the question level (n = 29 tasks designed at the PWC level) to test which of the 7 possible

factors coded from the think-alouds and screen captures independently predict decline of

demand (i.e., proportion of students enacting each task at the PWOC level). We found two

statistically significant predictors (which are also statistically significant as separate cor-

relations): task accountability (i.e., the presence of a skillometer or not) and quality of task

feedback in the hints (see Table 5). Note that task accountability prevented decline

whereas task feedback increased decline, as one would expect. As shown by the b values,

both effects were quite large.

4.6 Case Studies

To examine in further depth the nature of student thinking and learning with the tutor, we

present two case-study students using both qualitative and quantitative data. The students

were selected because they were average for the sample (i.e., they are reading at or above

grade level, and they have an interest in robotics) and they were particularly articulate

about how they made choices. Further, one was selected to be relatively strong and one to

be relatively weak in prior mathematical ability.

The first case reveals the ways in which a student’s low-level engagement with the tutor

materials caused a shift in her strategy use while resulting in no gains in terms of her

problem accuracy. The second case illustrates the ways in which accountability and

feedback can impact the maintenance of the cognitive demand of tasks in the tutor.

4.6.1 Emma

As a 7th grader, Emma’s pre assessment score on the Weaver & Junker evaluation of

proportional reasoning was a 53 %, suggesting that she had plenty of room for

Table 5 Multiple regression predicting decline of demand at the question level

Predictor B Std. error b t p value

Task accountability -.277 .078 -.67 -3.57 .002

Task feedback .184 .071 .49 2.60 .016
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improvement through engagement with the tutor. During the pre-assessment she also

showed a lack of correct strategy use, employing a proportional strategy to solve the

problems on only 4 of 17 questions. Despite this lack of proportional reasoning at pre-test,

she breezed through the early measurement portions of the tutor finishing the BUG

Challenge before any other student.

From analysis of her think-aloud, it became clear that her biggest concern was figuring

out how to solve the problems required for her to progress through the tutor and not taking

the time to understand what was going on or any of the contextual framing that surrounds

the tutor tasks. This procedural focus was demonstrated in her skipping the introductory

pages to every section. These pages were designed to frame the tasks and give real world

meaning to the material. She chose, instead, to move quickly past these pages without

reading any of the materials or looking at the diagrams or pictures.

During her think-aloud across 47 questions, she was assigned a cognitive demand level

of PWOC 41 times. Most of her tutor-talk revolved around developing a way of solving the

problems and then duplicating that process moving forward in her work. The exchange

below, between the tutor, researcher, and Emma, suggests she was duplicating what she

had done to correctly solve a previous problem rather than thinking about what the problem

was asking and whether or not that strategy was correct for a new task. Figure 5 highlights

the question she is talking about while showing the other questions on the tutor page.

Fig. 5 Highlighted task talk question
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Task Question: How many rotations are in that many pieces?

Emma: Pauses and says nothing

Researcher: ‘‘And what are you doing right now?’’

Emma: ‘‘Um, I am…I think that I should divided these 2 but. How many rotations are in

that many pieces? On the last page I did 7.’’

Researcher: ‘‘What are you looking at on the last page?’’

Emma: ‘‘I was looking at how I did it before’’

Rather than thinking about how unit rate could be applied to the new problem, Emma

instead references back to the method she used to solve the questions on the previous page

to answer the new task, without much thought as to whether the process is appropriate for

this new problem.

Because she experienced success during the unit rate pages, the desire to carry forward

those same procedures led to her become very frustrated when the tutor asked her to switch

strategies and use scaling. This frustration was best demonstrated in the second scaling

strategy task. In this exchange, the tutor is asking her to unpack the process of finding the

scale factor that exists between two similar units. Figure 6 highlights that question she is

talking about while showing the other questions on the tutor page.

Fig. 6 Highlighted task talk question 2
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Task Question: So what is the scale factor to go from the two-rotation movement to the

six-rotation movement?

Emma: ‘‘Um, so I am doing 20 divided by 10 to find the scale factor or cm which is 2. So

lets go with just 2. Oh wait…’’

Tutor Hint: Supposed you are comparing a two-rotation movement with a six-rotation

movement. What is the scale factor to go from the two-rotation movement to the six-

rotation movement?

Emma: ‘‘I need a hint’’

Tutor Hint: Compare the problem with the report above. In the report the scale factor is 2

because the number of rotations is going from 2 to 4 and so did the distance. So apply…

Emma: ‘‘oh wait I get it. So I just have to find the scale factor. Constant rate, sorry

constant rate, which is 20 divided by 6 which is 3.3.’’

This confusion between unit rate and scale factor continues for almost another 3 min

before the tutor finally describes to her exactly what to plug into the provided box. Her

confusion regarding the difference between thinking about the proportion within the units

(scale factor) versus between units (unit rate) suggests a lack of conceptual grounding for

thinking about proportionality. Instead of thinking and reasoning her way through the scale

factor problems, she misapplied the unit-rate strategy, most likely because of her past

successes using this for solving previous tutor problems

Emma’s affinity to the strategy with which she had success continued on the post

assessment where she utilized the unit rate strategy on 10 of the 17 questions. This

dramatic increase in use of the unit rate strategy, although encouraging in that she was

using a proportional strategy (whereas she did so on a very limited basis on the pre

assessment), had little impact on her ability to actually get the correct answer, as her

average score actually decreased from the pre-assessment to a 47 %. This suggests that she

was unable to build the procedural and conceptual knowledge necessary to fully implement

the unit rate strategy even though it appeared to be strategy with which she was most

comfortable.

4.6.2 Tim

As a 6th grader in the study, Tim’s success on the pre assessment was much more

representative of the other five students in the study, completing 88 % of the problems

correctly. Although this score left some room for improvement, it is clear that he had an

understanding of solving proportional reasoning problems before the project began. Unlike

the other five students’ pre-assessment, who showed a mix of methods in solving the

problems, Tim showed a preference for the scale factor strategy, answering 7 of the 17

questions in this way. Tim, like Emma, moved quickly through the early measurement

units of the tutor and finished the BUG challenge at the same time as most of the other

students, all within about 10 min of each other.

In the following transcript, Tim figures out that if he asks for hints his skill level does

not increase, requiring him to solve more problems. Following Tim’s realization, he

focuses carefully on his actions and what he needs to do on the next page of the tutor so

that his skill level will increase.

Tim: ‘‘I finished those three all green and got the going the distance achievement. (the

skillometer is still yellow) Awww, looks like I have one more.’’

(The tutor moves to next page)
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Tim: ‘‘Um…ok what did I do last time? I think I did 75 times, so, shift 8, times 90 enter.

(the answer is wrong and Tim asks the tutor for a hint) Oh! 84 times .75. Cause that is

the distance and this is the distance. 63. Done!’’

(The skillometer does not change and the tutor loads another problem)

Tim: ‘‘Oh, I am guessing if I ask for a hint it doesn’t move me any further.’’

(After getting another problem correct and the skillometer not changing)

Tim: ‘‘Ok I need to get it right this time!’’

(Tim; slows down and takes much more time with the next problem then he had with the

previous two)

Tim: ‘‘Ok, 6, 27, 18…So 6–18 would be, come on, come on, YES. Ok I know both of

these so I do 18 divided by 6 equals 3. 27 times 3 would be 81.’’

(Tim gets the problem correct and the skillometer increases)

Tim: ‘‘Oh yes I am getting the hang of this.’’

(Tim goes on to take his time with the next three problems getting each correct)

In this example, Tim spends much more time thinking about what he should enter into

the computer. The accountability associated with the skillometer focuses Tim’s attention to

the importance of thinking about the problem. This accountability proved to be a sig-

nificant factor across all students.

5 General Discussion

5.1 Theoretical Implications

Research and development surrounding ITS has primarily focused on building student

capacity to learn procedural problem-solving (Ma et al. 2014; VanLehn 2011). This has

resulted in a set of systems that focus on students’ ability to solve problems correctly,

building procedural fluency, but with little attention to conceptual understanding of the

topic.

The RAP tutor system, on the other hand, introduced proportional reasoning knowledge

through tasks (questions) at different cognitive demand levels (PWC and PWOC) (Stein

et al. 1996) over multiple pages of a model tracing tutor. The introduction of high-demand

tasks to the RAP system suggested the potential utility of analyzing students’ engagement

with the RAP using a framework outside the traditional tutor literature, specifically the

TAG and MTF (Stein et al. 1996, 2009). The results show that the TAG and MTF in

combination with a talk aloud procedure can be used to evaluate the cognitive demand

level of both designed and enacted tutor tasks. In using these frameworks, which are well

documented in the mathematics literature, we have developed a way to frame and study

tutor tasks’ impact on the way students are engaging with the system, specific factors that

can be associated with the decline or maintenance of cognitive demand, and how this

impacts students’ learning.

5.2 Pedagogical Implications

At first glance, some of the reported results seem to contradict each other (e.g., a significant

relationship between cognitive demand levels at the design and enactment phases, but a

drop in demand during critical pages). However, using the various pieces of data collected

during this study we can begin to unpack these puzzling results.

Cognitive Demand of Model Tracing Tutor Tasks

123



Past research suggests that high-demand tasks that are enacted at high levels result in

greater learning gains on high-demand assessments (Stein and Lane 1996). The quanti-

tative results of level of cognitive demand at the design versus enacted phases are im-

portant in that they suggest that designing higher level demand tasks into a computer-based

curriculum can have an impact on the level at which students enact tasks. These results

suggest that by attending to the cognitive demand of tasks during the tutor design process

we can increase the level of student-enacted demand. In other words, by posing higher

demand tasks, the designers are providing students with more opportunity to use proce-

dures in a way that connects to conceptual understanding (as contrasted with tutors that are

designed with predominantly low-demand, PWOC, tasks). This makes the design work and

associated cost with developing these higher-level tasks a value-added endeavor. However,

the discrepancy between the quantitative and qualitative data suggests that designing high-

demand tasks, while necessary to encourage students’ conceptual reasoning, is not suffi-

cient in moving all students to deep thinking about the tasks.

Much like the work from the print-based curricula research (Boston and Smith 2009;

Stein et al. 1996; Stigler and Hiebert 2004), our findings suggests that the designed demand

of tasks is often lowered when actually enacted by students. From the think-aloud data we

know that the design of the task itself is not always (or even usually) sufficient to guarantee

enactment at a high level. While there were some tasks designed to be high level and

students tended to enact them at a high level, there were also tasks that were designed as

high level but were commonly enacted at a low level. Here, students were falling back on

the procedural knowledge learned and required to quickly solve problems and were not

taking the time or energy necessary to develop the deep and cross-cutting conceptual

understanding of proportional reasoning.

From the analysis of factors associated with the maintenance of demand during the

enactment phase, it appears that the lack of a skillometer on these pages is one possible

reason why students did not think and reason at a high level. Signaling to students that they

are accountable, like in Tim’s case, for the conceptual understanding of proportions, a tutor

could help to maintain the desired level of demand for particular tasks. Additionally, as

students were given feedback and hints for these tasks (limiting the germane cognitive

load), the text often encouraged students to simplify and proceduralize the tasks rather than

maintaining a focus on meaning. Together, the lack of accountability combined with

feedback that does not maintain a focus on meaning too-often resulted in students’ level of

demand declining while enacting tasks designed at a high demand.

Finally, although this study shows no changes in students’ ability to correctly solve

proportional reasoning problems, it does demonstrate such a system’s ability to shift some

students’ strategy use. Students like Emma and Tim, who show this shift, point out a

possible strength of the system. The tutor enabled these students to shift at least part of

their thinking and moved both of them in a direction of at least using a conceptually

appropriate proportional strategy in the post assessments.

6 Conclusion

This study makes three important contributions. First, it demonstrates how using a think-

aloud protocol in conjunction with the TAG and MTF framework allows different kinds

and levels of student thinking to be identified and described in a model tracing tutor

context. This method provides researchers with a more multi-faceted exploration of student
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learning by evaluating enacted levels of cognitive demand in these unique and quickly

evolving environments.

Second, if the incorporation of high demand tasks into the RAP represents a new

development and direction for the widely used model tracing tutors, this study suggests that

researchers need to better understand the impact such tasks will have on students’ en-

gagement and learning. Past research suggests that more complex conceptual knowledge

tasks will be more difficult for students to enact at high levels and that lower-level en-

actments have not been associated with improved learning outcomes (Stein and Lane

1996). More research is needed to completely understand how to design and support

students’ engagement with tasks so they are taken up at a high level of demand. This study

shows the importance of working towards such a goal by identifying two important factors

(accountability and task feedback) that should be considered in model tracing tutor design

principals moving forward. Future work should also consider such factors as gamification;

reading level analysis; how changing the context, setup, and style of questions could

encourage students into higher or lower levels of task demand enactment; and how altering

the feedback text and supports to be less procedural might impact enactment of demand.

Finally, this work calls attention to the decline of cognitive demand level during con-

ceptually challenging tasks. Based on informal observations, development meetings, and

user feedback from this project, one possible solution comes from introducing a human

instructor into the system (Kessler et al. 2014). This instructor mediation of tasks could

provide just enough of a press on students to maintain higher-level demand enactment

ultimately producing the deeper understanding of both procedural and conceptual

knowledge that the tutor sets out to teach.
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