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Abstract: E-learning is increasingly used to support student learning in higher education, facilitating
administration of online formative assessments. Although providing diagnostic, actionable feedback
is generally more effective, in current practice, feedback is often given in the form of a simple
proportion of correctly solved items. This study shows the validation process of constructing detailed
diagnostic information on a set of skills, abilities, and cognitive processes (so-called attributes) from
students’ item response data with diagnostic classification models. Attribute measurement in the
domain of statistics education is validated based on both expert judgment and empirical student data
from a think-aloud study and large-scale assessment administration. The constructed assessments
provide a valid and reliable measurement of the attributes. Inferences that can be drawn from the
results of these formative assessments are discussed and it is demonstrated how this information
can be communicated to students via learning dashboards to allow them to make more effective
learning choices.

Keywords: online formative assessment; cognitive modeling; skill measurement; validation; reliabil-
ity; learning dashboards; university statistics education

1. Introduction

In higher education, increased autonomy is required from students because external
regulation is generally limited [1]. Students need to rely on their own evaluation of
performance to regulate their learning processes. Unfortunately, not all students can
accurately evaluate their performance, which can result in poor learning choices [2]. The
use of e-learning environments in higher education has emerged over the last decades [3],
facilitating administration of online formative assessments that can help students interpret
the meaning of their past performance and determine what they should be studying and
practicing to increase their performance [4,5].

In online formative assessments, students answer assessment items and receive feed-
back based on their responses via learning dashboards. In current practice, this feedback
often consists of information regarding correctness of responses and percentage correct
scores. However, if students know the correct answer to an item and can compare it with
their given answer, this does not imply that they can accurately infer which knowledge or
skills are lacking. For example, Ref. [6] found that students find it difficult to determine
which features of statistics items are relevant for learning. Furthermore, the interpreta-
tion of percentage correct scores can be problematic, since these scores cannot be directly
compared across different item sets and differences in percentage scores cannot be used
to express change [7]. It would be beneficial to provide students more detailed, diagnostic
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feedback regarding their knowledge and skills [8]. Diagnostic feedback is information
about how students’ current levels of performance relate to desired levels of performance,
indicating whether or not they have mastered the skills that are required to solve certain
tasks [9]. This allows students to determine where they should focus their attention and
effort; hence, this information is actionable [10].

In order to provide diagnostic feedback, valid and reliable measurement of students’
skills is required, which is the focus of the current study. Diagnostic information can be
extracted from students’ item responses with cognitive diagnostic assessment, which brings
together cognitive science and psychometrics to measure knowledge structures and pro-
cessing skills in order to provide information about cognitive strengths and weaknesses [8].

1.1. Cognitive Diagnostic Assessment

In cognitive diagnostic assessment, a so-called cognitive model is specified that links
understanding to performance [11]. A set of skills, abilities, and cognitive processes
required to solve certain items is defined, which are referred to as attributes. The objective
of cognitive diagnostic assessment is to classify students as master or nonmaster of each
attribute. This classification depends on both expert judgment and empirical evidence.
Domain experts encode which attributes are required to solve each item in the Q-matrix,
which is a binary matrix that describes the relations between the items and the attributes
by indicating for each item whether it measures each attribute or not. The Q-matrix in
combination with item response data from diagnostic assessments enables the application
of statistical models to classify students. Well-suited models to this end are diagnostic
classification models (DCMs; [12]). Previous simulations have shown opportunities to
apply these models to item response data from online formative assessments in higher
education to obtain diagnostic information if sufficient numbers of students participate
(i.e., 100–300 students to assess 3–6 attributes; [13]). Thus, in courses with large groups
of students, cognitive diagnostic assessment with DCMs can be a valuable tool to obtain
diagnostic feedback at low cost. It enables educational practitioners to design formative
assessments that align with the learning objectives of a course, resulting in actionable
feedback that aligns with these objectives.

1.2. Cognitive Model Specification

To design educational assessments, one first needs to define the desired results (known
as ‘backward design’; [14]). One identifies what will be measured, resulting in a cognitive
model that consists of a set of attributes. As pointed out by Pellegrino et al. ([15], p. 45),
the attributes should “reflect the most scientifically credible understanding of typical ways
in which learners represent knowledge and develop expertise in a domain”. Attribute
specification is ideally based on both expert judgment and research in cognitive and
educational science.

1.2.1. Attribute Granularity

Diagnostic assessment can support the analysis of student behavior at various levels
of detail by defining attributes at different granularity levels. This granularity level should
be valuable from an educational perspective, in the sense that feedback is meaningful and
actionable (see e.g., [16]). In addition, the attributes must be psychometrically measurable.
If the number of attributes increases, the complexity of the measurement model increases as
well, putting higher demands on the data structure. Further, one must be able to construct
items that produce observable student behaviors at an appropriate level of specificity.

1.2.2. Item Construction and Q-Matrix Specification

Once the attributes are defined, items are constructed to measure them. It is crucial
that the items truly measure the attributes that they are designed to measure, i.e., that
students indeed apply (only) those attributes to solve the items. Further, it is essential that
the Q-matrix is specified correctly in order to obtain accurate student classifications and,
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thus, high-quality diagnostic feedback [17,18]. However, establishing the Q-matrix based
solely on expert judgment may be subjective and susceptible to specification errors. To
address this issue, several qualitative and quantitative methods are available to validate
the Q-matrix. Think-aloud studies can provide insight in the processing steps students
use to solve the item [19]. Students are asked to verbalize their thoughts while solving
items, allowing to verify the relations between items and attributes (see e.g., [20]) and to
modify items for better alignment between items and attributes. In addition, assessments
can be administered at large scale to gather empirical evidence regarding the extent to
which the items elicit the attributes using empirical Q-matrix validation methods to identify
misspecified entries (e.g., [21]).

1.3. Diagnostic Assessment in Statistics Education

The current study is focused on the domain statistics education to show how valid
and reliable measurements of students’ skills can be obtained with cognitive diagnostic
assessment. Introductory statistics courses are part of many educational programs at
universities, yet students often struggle to understand the abstract concepts in this do-
main [22]. Diagnostic assessment can support students in developing such conceptual
understanding [23].

There has been some research related to attribute specification for statistics in higher ed-
ucation. These studies demonstrate that attribute specification in statistics education should
not solely be based on expert judgment, since this may result in invalid attributes [24,25].
To our knowledge, the constructs of interest in assessment in university statistics education
have not been extensively studied from a cognitive diagnostic perspective.

1.4. Current Study

In the current study, we construct and validate cognitive diagnostic assessments that
can serve as a foundation for designing effective tools for diagnostic assessment of students’
conceptual understanding of statistics that can be used to obtain actionable feedback at low
cost. Further, it is demonstrated how this information can be communicated to students via
learning dashboards to allow them to make more effective learning choices. The following
research question is addressed:

How can valid and reliable diagnostic information be obtained from online formative
assessment to provide actionable feedback via learning dashboards in university statis-
tics education?

We first identify what attributes are necessary to master for students enrolled in
introductory statistics courses in higher education (Section 2). Next, we examine how
these attributes can be measured with formative assessment to draw valid and reliable
inferences about students’ attribute mastery status. Items are constructed and a provisional
Q-matrix is specified based on expert judgment (Section 3). Assessments are empirically
validated using both qualitative and quantitative methods (Section 4). We discuss what
inferences can be drawn from the results and how this can be communicated to students
(Section 5). We end with an overall discussion (Section 6). An overview of the current study
is presented in Figure 1.

Communicating
feedback 

Attribute 
identification 

Assessment 
construction Quantitative 

Qualitative Q-matrix
specification 

Assessment
validation 

Section 2 Section 3 Section 4 Section 5 

Figure 1. Outline of the current study.
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2. Attribute Identification
2.1. Methods

In the attribute identification process, we first defined our domain of interest. We
then specified learning objectives for this domain and subsequently defined attributes. The
results were refined based on domain expert evaluation.

2.1.1. Domain Description

We specified a cognitive model of conceptual understanding of inferential statistics
(in a frequentist framework) relevant in introductory nonmathematical statistics courses
in higher education. The attributes are focused on principles behind null hypothesis sig-
nificance testing (NHST), which is a widely used tool in statistical inference that requires
students to understand and connect several complex concepts (e.g., variability, sampling
distributions, p-values). We chose this domain because it is a central topic in many intro-
ductory statistics courses, and students often experience difficulty with it due to the large
number of involved abstract concepts and the (counter-intuitive) logic of experimental
design [26].

2.1.2. Defining Learning Objectives

Learning objectives were defined based on literature and course materials. The litera-
ture study was based on four sources: a review of students’ misconceptions in statistical
inference [22]; a book about the development of students’ statistical reasoning [27]; a
paper about the development of instruments measuring conceptual understanding of statis-
tics [28]; and the Guidelines for Assessment and Instruction in Statistics Education College
Report [29], which lists goals that summarize what students should know and understand
after a first course in statistics based on collective beliefs reflected in statistics education lit-
erature. After the literature review, we inspected the course materials of (nonmathematical)
introductory statistics courses to complement the specified learning objectives.

2.1.3. Defining Attributes

Based on the learning objectives, we aimed to define attributes that are both psychome-
trically measurable and pedagogically meaningful and actionable. In order to be measurable
(i.e., to enable estimation of student attribute profiles), it is recommended to include at least
five measurements of each attribute [30]. Evaluating mastery of each learning objective
would require administration of huge amounts of items and, moreover, feedback at such
fine-grained level may be less meaningful in a domain where students need to develop
understanding of interrelations among concepts [31]; therefore, we grouped learning ob-
jectives into attributes. We aimed to group learning objectives that address closely related
concepts, presuming that students’ skills regarding these learning objectives are strongly
related. Consequently, concepts that are generally addressed within the same lectures,
e-learning modules, or book chapters are encompassed by the same attribute, allowing for
actionable feedback (e.g., by recommending relevant learning materials for nonmastered
attributes).

2.1.4. Expert Evaluation

Four domain experts were consulted to evaluate the exhaustiveness, redundancy, and
grouping of the learning objectives. The experts had 13 to 29 years of experience in statistics
education. Based on their feedback, the results were refined.

2.2. Results

The attribute identification process resulted in 9 attributes comprising 33 learning
objectives. The attributes are summarized in Table 1 and more extensive results including
the learning objectives are presented in Table A1 in Appendix A. In the Supplementary
Material, a more detailed description of each attribute is provided including references
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to empirical studies showing the relevance of addressed concepts and the occurrence of
misconceptions.

Table 1. The nine identified attributes.

A. Understanding center & spread
B. Interpreting univariate graphical representations
C. Graphically comparing groups
D. Understanding sampling variability
E. Understanding sampling distributions
F. Understanding the standard error
G. Understanding principles of hypothesis testing
H. Evaluating NHST results
I. Understanding and using confidence intervals

3. Assessment Construction and Q-Matrix Specification
3.1. Item Collection

Assessing conceptual understanding of statistics requires assessment techniques that
reflect the nature of students’ thinking. Although this is best achieved through one-to-one
communication or by examining in-depth student work [32], items with a selected-response
format can also be useful to gather limited indicators of statistical reasoning if properly
designed [33]. This is demonstrated by instruments designed to measure conceptual under-
standing of statistics, such as the Statistical Reasoning Assessment (SRA; [34]), the Statistics
Concept Inventory (SCI; [35]), the Comprehensive Assessment of Outcomes in Statistics
test (CAOS; [28]), and the Assessment Resource Tools for Improving Statistical Thinking
(ARTIST; [28]). These instruments consist of multiple-choice items that require thinking and
reasoning rather than recalling definitions, computing, or using formulas. In order to mea-
sure our attributes, we exploited these sources of existing items. Relying on these sources
ensures that the items have been evaluated by experts in earlier research and/or education.
Items were selected (and if needed modified) based on validated guidelines for multiple
choice item writing [36] and design principles for statistical assessments ([37], p. 139). The
set of prototype items consisted of 59 items.

3.2. Q-Matrix Specification

The list of attributes and learning objectives was presented to three independent
experts who had 4 to 6 years of experience in statistics education. The experts were not
involved in the attribute identification phase of the study. For each item, they were asked to
select which learning objective(s) are required to solve it. The expert ratings were combined
by means of a majority vote and aggregated to the attribute level, since this is the level
at which we want to make inferences about students. Pairwise inter-rater agreement, as
indicated by fuzzy kappa [38], ranged from 0.41 to 0.73 at the learning objective level and
from 0.79 to 0.91 at the attribute level. Expectedly, agreement is substantially lower at the
learning objective level, which stems from the more fine-grained nature of the learning
objectives. The lower agreement illustrates that Q-matrix specification based on expert
judgment can be susceptible to errors and provides a rationale for the validation.

According to the combined ratings, all learning objectives are measured by the item
set, indicating that all aspects of the attributes are measured (i.e., no construct under-
representation). The aggregated ratings resulted in a provisional Q-matrix. In total, the
item set consisted of 41 unidimensional items, 16 two-dimensional items, and 2 three-
dimensional items.

4. Assessment Validation

Attribute measurement was validated based on a qualitative evaluation with a student
think-aloud study and a quantitative evaluation of students’ item response data.
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4.1. Qualitative Evaluation
4.1.1. Methods

We let students verbalize their thoughts when solving the items during interviews
to verify whether the attributes are a good representation of the skills students rely on
when solving the items. The procedures are briefly described below and more extensive
descriptions are included in the Supplementary Material.

Participants and Procedures

Participants were 8 university students who recently participated in an introductory
statistics course. Students were asked to rate their own performance in these courses on a
continuum from basic to excellent. Two students rated their performance as basic, three
students as good, and three students as very good.

During the interviews, items were presented one by one and students were asked to
read them aloud and, subsequently, explain clearly how they would solve the item. We
avoided follow-up questions, because these may evoke thinking patterns that differ from
how students think about problems on their own [39]. If necessary, clarifying questions
were asked at the end of the interview to successfully ascertain the cognitive processes that
the students demonstrated. Only a subset of the 59 items was presented to each student.
On average, students solved 27.5 items (SD = 7.9, min = 16, max = 41). We ensured each
item was answered by at least 3 students by presenting different subsets in different orders.

Analysis

The interviews were recorded and coded by two independent experts who subse-
quently participated in conversations to reach consensus about students’ attribute use
(intercoder agreement as indicated by fuzzy kappa was 0.67; [38]). For items with (partly)
justified answers, it was coded for each learning objective whether or not students showed
(complete or incomplete) evidence of using it. Results were aggregated to the attribute
level to evaluate students’ attribute use for each item. We verified to what extent this
corresponded to the provisional Q-matrix.

In addition, we evaluated clarity of the items from a student perspective (unrelated
to their knowledge of statistics), allowing alteration of unclear items. Minor adjustments
were made to 17 items, such as reformulation or deletion/addition of context information.
The improved items were used in the quantitative evaluation.

4.1.2. Results

The percentages of students who used each attribute when solving each item are
presented in Table 2. Colored cells indicate which attributes are measured by the item
according to the provisional Q-matrix. It can be seen that the attribute usage to a great
extent coincides with the provisional Q-matrix (96.2% agreement based on a majority rule
for attribute use). These results were used in the quantitative evaluation of data-driven
suggestions for alternative Q-matrix entries.

For one item, students showed indication of engaging in cognitive processes that
pointed to the use of domain-relevant attributes that are not included in the set of nine at-
tributes. This was resolved by deleting one distractor from the response alternatives. Apart
from this item, students did not show notable indication of using unspecified attributes.
Therefore, we believe the nine attributes encompass the knowledge and understanding of
statistics required to solve the items.
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Table 2. Percentages of students using each attribute (Att.) in their reasoning per item (“-” indicates
0%). Colored cells indicate the attributes that are measured by each item according to the provisional
Q-matrix. The last column indicates the number of students who answered each item (n).

Item Att. A Att. B Att. C Att. D Att. E Att. F Att. G Att. H Att. I n

ARTIST_sc_MS_05 67% - - - - - - - - 3
ARTIST_sc_MS_01 100% - - - - - - - - 4
ARTIST_sc_MC_05 100% - - - - - - - - 4
ARTIST_sc_MC_06 100% - - - - - - - - 4
ARTIST_db_MS_Q0490 100% - - - - - - - - 4
CAOS_14 100% 100% - - - - - - - 4
CAOS_15 100% 100% - - - - - - - 4
CAOS_08 67% 100% - - - - - - - 3
CAOS_09 67% 100% - - - - - - - 3
CAOS_10 100% 100% - - - - - - - 3
CAOS_11 - 67% 100% - - - - - - 3
CAOS_12 - 100% 100% - - - - - - 3
CAOS_13 - - - - - - - - - 3
SRA_015 - 75% 100% - - - - 25% - 4
ARTIST_db_CG_Q0840 50% 100% 100% - - - - - - 4
ARTIST_sc_SV_01 - 67% - 33% 33% - - - - 3
CAOS_17 - - - 100% - - - - - 4
ARTIST_sc_SV_03 - - - 100% - 100% - - - 4
ARTIST_sc_SV_14 67% - - 100% - 33% - - - 3
ARTIST_sc_SV_04 - - - 60% 100% - - - - 5
ARTIST_sc_SV_10 - - - - 100% - - - - 4
ARTIST_sc_SV_11 - - - 25% 100% 50% - - - 4
ARTIST_sc_SV_09 - 50% - 50% 100% 50% - - - 4
ARTIST_db_SS_Q0061A - - - 50% 100% - - - - 4
ARTIST_db_SS_Q0061B - - - - 100% 25% - - - 4
ARTIST_db_SS_Q0061C - - - - 100% 25% - - - 4
ARTIST_db_SS_Q0061D - - - - 100% 25% - - - 4
ARTIST_db_SS_Q0061E 50% - - - 75% 100% - - - 4
ARTIST_sc_SV_05 - - - 50% 100% - - - - 4
CAOS_16 - - - 100% - 100% - - - 4
CAOS_32 20% - - 40% - 100% - - - 5
SCI_2004_20 100% - - 75% - 100% - - - 4
GRASPLE_DP_SE_40985 - - - - - 100% - - - 3
ARTIST_db_SS_Q1437 - - - - - 67% - - - 3
ARTIST_db_SS_Q0614 - - - - - 100% - - - 3
CAOS_40 - - - - - - 100% 60% - 5
ARTIST_sc_TS_01 - - - - - - 100% - - 4
ARTIST_db_TSG_Q1182 - - - - - - 100% 25% - 4
CAOS_23 - - - - - 25% 100% 75% - 4
CAOS_24 - - - - - - 100% 25% - 4
ARTIST_db_TSG_Q1392 - - - - - - - 60% - 5
CAOS_25 - - - - - - - 75% - 4
CAOS_26 - - - - - - - 100% - 4
CAOS_27 - - - - - - - 100% - 4
ARTIST_sc_TS_04 - - - - - - 100% 50% - 4
ARTIST_sc_TS_10 - - - - - - 100% 100% - 4
ARTIST_sc_TS_07 33% - - 33% - - 33% 100% - 3
ARTIST_sc_TS_09 - - - - - - 75% 100% - 4
SCI_2004_22 - - - - - - - 100% - 3
ARTIST_db_TSG_Q1007 - - - - - 25% 25% 50% - 4
ARTIST_sc_CI_05 - - - 25% - - - - 75% 4
ARTIST_sc_CI_03 - - - - - - - - 67% 3
ARTIST_sc_CI_02 - - - - - - - - 75% 4
ARTIST_sc_CI_01 - - - - - - - - 100% 3
ARTIST_sc_CI_07 - - - - - - - - 100% 3
ARTIST_sc_CI_06 - - - - - - - - 67% 3
ARTIST_sc_CI_10 - - - - - - - - 100% 3
ARTIST_db_CIOSM_Q1394 - - - - - - 25% - 50% 4
ARTIST_db_CIOSM_Q1387 - - - - - - - - 100% 3

4.2. Quantitative Evaluation
4.2.1. Methods

In addition to the qualitative evaluation, the items were administered on a large scale
to evaluate students’ item responses quantitatively.
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Participants and Procedures

The items were translated into Dutch and implemented in introductory statistics
courses taught during the fall of 2021 in five different bachelor programs at Utrecht
University—namely, psychology, educational sciences, pedagogical sciences, sociology, and
cultural anthropology. The item set was split into two assessments to reduce the burden
on students. The first assessment consisted of 35 items and concerned all topics related
to Samples and spread, encompassing attributes A–F. The second assessment consisted of
24 items and concerned all topics related to NHST and confidence intervals (CIs), encompass-
ing attributes G–I. The two item sets exclusively measure the attributes that are assessed
within each assessment according to the provisional Q-matrix and both Q-matrices meet
the conditions for generic identifiability from [40].

The assessments were made available after the relevant topics were addressed in class,
but well before the final exam. They were presented as optional, formative assessments.
Students were given only one attempt for each assessment to motivate them to make
a serious effort. In total, 849 students completed the first assessment and 790 students
completed the second assessment.

Analysis

The data were analyzed using the statistical software R [41]. We focused on diagnostic
classification models (DCMs) under the log-linear cognitive diagnosis modeling (LCDM)
framework because of its modeling flexibility and straightforward interpretation [12]. To
validate attribute measurement with DCMs, we first evaluated the assumption of local
independence using the local dependence statistic χ2

LD for each item pair [42]. To control
for multiple comparisons, p-value adjustments according to the Holm–Bonferroni method
are conducted [43].

Next, we empirically evaluated the Q-matrix with the stepwise Wald method [21].
This method provides suggestions for modifications to Q-matrix entries based on the
amount of explained variance in the success probabilities for different attribute profiles.
This procedure is based on the data at hand, and whether the suggested modifications
should be incorporated should be subject to the judgment of domain experts. Therefore,
we carefully evaluated the suggested modifications in relation to theoretical considerations
and the results from the think-aloud study to make decisions about the final Q-matrix.

We then examined attribute behavior at the item level. This refers to the compensatory
nature of the attributes (i.e., whether nonmastery of an attribute can be compensated by
mastery of another). The Wald test is used to evaluate whether, for items that require at
least two attributes, the LCDM can be replaced by a reduced model without significant loss
of fit, reflecting different attribute behaviors at the item level [44]. This can result in higher
classification accuracy [45].

We end with an evaluation of the final model. Several fit statistics are evaluated,
namely, the M2 statistic [46], the RMSEA2, and SRMSR [47], and the maximum transformed
correlation and log-odds ratio [48]. Finally, the attribute-level classification accuracy index
from [49] and the reliability measurement from [50] are reported.

4.2.2. Results
Assumption of Local Independence

The results showed several item pairs with significant χ2
LD values, indicating local

dependence. For these item pairs, removal of one item was considered based on the amount
of dependence with other items, extreme proportion correct scores, or the presence of items
with similar q-vectors (i.e, rows in the Q-matrix). In total, three items were removed from
each assessment. The final assessments consist of 32 and 21 items, respectively, which are
used in the subsequent analyses and can be found in the Supplementary Material.



Appl. Sci. 2022, 12, 4809 9 of 19

Q-Matrix Validation

The stepwise Wald method suggested modifications for the q-vectors of 14 items of
the first assessment (21 suggested entry changes) and for the q-vectors of two items of the
second assessment (3 suggested entry changes). These suggestions were evaluated based
on three aspects. First, the items and attributes were re-evaluated to assess whether the
suggested modifications were theoretically defensible. Second, we inspected the results
from the think-aloud study to determine the percentage of students who used the attributes
under consideration when answering the items, thereby including empirical evidence for
whether or not the items measure the attributes. Third, we compared the proportion of
variance accounted for (PVAF) of relevant q-vectors to evaluate to what extent the attributes
under consideration contribute to explaining variance in success probabilities. Only if
suggestions were sensible from a theoretical perspective were modifications considered.

In total, five Q-matrix entries were adjusted for five different items. These adjustments
along with extensive argumentation can be found in Table A2 in Appendix A. Table 3
presents the final Q-matrices (along with reduced DCMs, which are discussed next). Both
Q-matrices satisfy the conditions for generic identifiability from [40].

Table 3. Final Q-matrices and selected reduced DCMs per item.

Assessment 1 Attribute Reduced Assessment 2 Attribute Reduced
Item A B C D E F Model Item G H I Model

ARTIST_sc_MS_05 1 0 0 0 0 0 - CAOS_40 1 0 0 -
ARTIST_sc_MS_01 1 0 0 0 0 0 - ARTIST_sc_TS_01 1 0 0 -
ARTIST_sc_MC_05 1 0 0 0 0 0 - ARTIST_db_TSG_Q1182 1 0 0 -
ARTIST_sc_MC_06 1 0 0 0 0 0 - CAOS_24 1 0 0 -
ARTIST_db_MS_Q0490 1 0 0 0 0 0 - ARTIST_db_TSG_Q1392 0 1 0 -
CAOS_14 1 1 0 0 0 0 DINA CAOS_25 0 1 0 -
CAOS_15 1 1 0 0 0 0 DINA CAOS_26 0 1 0 -
CAOS_08 1 1 0 0 0 0 DINA ARTIST_sc_TS_04 1 1 0 DINA
CAOS_09 0 1 0 0 0 0 - ARTIST_sc_TS_10 0 1 0 -
CAOS_10 1 1 0 0 0 0 LLM ARTIST_sc_TS_07 0 1 0 -
CAOS_12 0 1 1 0 0 0 R-RUM ARTIST_sc_TS_09 0 1 0 -
CAOS_13 0 0 1 0 0 0 - SCI_2004_22 0 1 0 -
SRA_015 0 1 1 0 0 0 R-RUM ARTIST_db_TSG_Q1007 0 1 0 -
ARTIST_db_CG_Q0840 0 1 1 0 0 0 R-RUM ARTIST_sc_CI_05 0 0 1 -
ARTIST_sc_SV_01 0 1 0 0 1 0 DINA ARTIST_sc_CI_02 0 0 1 -
CAOS_17 0 0 0 1 0 0 - ARTIST_sc_CI_01 0 0 1 -
ARTIST_sc_SV_03 0 0 0 1 0 1 LLM ARTIST_sc_CI_07 0 0 1 -
ARTIST_sc_SV_14 0 0 0 1 0 0 - ARTIST_sc_CI_06 0 0 1 -
ARTIST_sc_SV_04 0 0 0 1 0 0 - ARTIST_sc_CI_10 0 0 1 -
ARTIST_sc_SV_10 0 0 0 0 1 0 - ARTIST_db_CIOSM_Q1394 0 1 1 DINA
ARTIST_sc_SV_11 0 0 0 0 1 1 A-CDM ARTIST_db_CIOSM_Q1387 0 0 1 -
ARTIST_sc_SV_09 0 0 0 0 1 1 R-RUM
ARTIST_db_SS_Q0061A 0 0 0 0 1 0 -
ARTIST_db_SS_Q0061B 0 0 0 0 1 0 -
ARTIST_db_SS_Q0061C 0 0 0 0 1 0 -
ARTIST_db_SS_Q0061D 0 0 0 0 1 0 -
ARTIST_sc_SV_05 0 0 0 0 1 0 -
CAOS_16 0 0 0 1 0 1 LLM
CAOS_32 0 0 0 0 0 1 -
SCI_2004_20 1 0 0 0 0 1 LLM
ARTIST_db_SS_Q1437 0 0 0 0 0 1 -
ARTIST_db_SS_Q0614 0 0 0 0 0 1 -

Attribute Behavior at the Item Level

The Wald test was used to conduct item-level comparisons of the LCDM and reduced
DCMs that it subsumes [44], namely, the deterministic inputs, noisy “and” gate (DINA)
model [51]; the deterministic inputs, noisy “or” gate (DINO) model [52]; the additive
cognitive diagnosis model (A-CDM; [53]); the linear logistic model (LLM; [54]); and the
reduced reparameterized unified model (R-RUM; [55]). The Wald test suggested reduced
models for all two-dimensional items: 13 and 2 items in assessments 1 and 2, respectively.
The suggested models are presented in Table 3. Fitting these models did not significantly
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reduce model fit compared with fitting the saturated LCDM to all items, χ2(17) = 9.8,
p = 0.91 (assessment 1) and χ2(4) = 5.1, p = 0.28 (assessment 2). The reduced models are
used in the subsequent analyses.

Final Model

The fit statistics to evaluate the absolute fit of the final model are shown in Table 4. The
statistics indicate that the model fits adequately (for the RMSEA2, the cutoff values 0.030
and 0.045 indicate excellent and good fit for the LCDM [56]; for the SRMSR, values below
0.05 indicate acceptable model fit in DCMs, e.g., [57]). Further, classification accuracy and
reliability are mostly high, as shown in Table 5. Detailed model results are included in the
Supplementary Material.

Table 4. Absolute fit statistics of the final models.

M2 RMSEA2 SRMSR Max Transformed Correlation * Max Log-Odds Ratio *

Assessment 1 591.4 (p < 0.001) 0.025 0.042 0.128 (p = 0.10) 0.982 (p = 0.19)
Assessment 2 212.1 (p = 0.06) 0.014 0.038 0.104 (p = 0.76) 0.850 (p = 0.49)

* To control for multiple comparisons, p-value adjustments according to the Holm–Bonferroni method are
conducted [43].

Table 5. Attribute-level classification accuracy and reliability.

Assessment 1 Assessment 2
Attribute A B C D E F G H I

Accuracy 0.89 0.83 0.90 0.89 0.82 0.82 0.82 0.84 0.88
Reliability 0.87 0.69 0.89 0.87 0.68 0.67 0.67 0.76 0.85

5. Communicating Feedback

With the final model results, students’ mastery status can be determined based on
their item responses resulting in diagnostic information. Diagnostic assessments should
provide meaningful information to students that can be readily understood and used to
improve learning. In this section, we pay attention to the psychometric interpretation of the
results, i.e., to the inferences that can be made based on results from cognitive diagnostic
assessment with DCMs. In addition, we discuss score reporting based on a mock-up
dashboard to show how this information can be communicated to students.

5.1. Psychometric Interpretation

Before students can be supported to interpret assessment results, assessment develop-
ers must accurately interpret the results from a psychometric perspective. DCMs assume
that the latent variables predicting the item responses (i.e., the attributes) are discrete
variables. For each attribute, two groups are distinguished: those who master the attribute
and those who do not. With DCMs, one can estimate the mastery probability for each
attribute (expected a posteriori estimates). Classification as master or nonmaster is based
on these marginal mastery probabilities. For example, probabilities above 0.5 result in
classification as master and below 0.5 as nonmaster (although some contexts may call for a
different cut-off value).

The mastery probability is not an estimate of the amount of mastery, nor of a student’s
progress from nonmastery to mastery. Rather, it indicates the (un)certainty of the classifica-
tion, which is determined by students’ consistency in providing either correct or incorrect
answers to different items measuring an attribute [58]. The closer the mastery probability
is to 0 or 1, the more certainty there is about the classification, whereas a probability of 0.5
reflects complete uncertainty. Although these models do not allow to break the probability
scale into more than two groups to indicate more than two mastery levels, it is possible to
break the scale to indicate uncertainty. One could for example not classify students on at-
tributes with mastery probabilities between 0.4 and 0.6, but instead add an “undetermined”
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category for these uncertain situations (as proposed by [58], and as will be demonstrated
below), or one could flag uncertain classifications when reporting results.

5.2. Reporting Results

If the assessments and model results are implemented in online learning environ-
ments, feedback can be reported directly after completion of the assessments. This is a great
advantage, since timeliness is important to encourage stakeholders to use diagnostic infor-
mation [9]. Further, web-based reporting allows to manage and organize large amounts
of information via interactive dashboards [59,60]. Ref. [61] present a framework for de-
veloping score reports for cognitive diagnostic assessments. Following their guidelines,
we created a mock-up student dashboard that is personalized, contains a description of
the presented information, provides a visual summary of student performance that can
be readily interpreted, and outlines how this information can guide study behavior. The
mock-up dashboard is presented in Figure 2.

Results formative assessment: Samples & spread

Skill mastery

This formative test assessed 6 skills that
are represented in the graph on the
right. Some skills involve prerequisite
knowledge and understanding for other
skills. The arrows represent these 
hierarchical relations.

You can see for each skill whether you 
master it (green), you do not master it
yet (red), or that it is uncertain whether
you master it based on your test results 
(orange).

Click on a circle for more information 
and to see which learning materials can 
help you increase your understanding of 
the subject matter.

Raw scores
Below you can see your performance on each item (green for correct, red for incorrect). Click on an item to review your response and to receive additional feedback.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Skill: Interpreting univariate
graphical representations

You can describe and
interpret graphical
representations of univariate
sample data in common 
graphical displays (histogram, 
boxplot, dotplot, barchart). 
You can reason about center 
and spread in sample data 
based on graphical
representations.

Learning materials

- E-module ..
- Lecture ..
- Book …
- Exercises ..

Understanding 
center & 
spread

Interpreting
univariate
graphical

representations

Graphically
comparing

groups

Understanding 
sampling 
variability

Understanding 
sampling 

distributions

Understanding 
the standard 

error

Figure 2. Mock-up student dashboard to report cognitive diagnostic assessment results.

The dashboard consists of two sections to report both attribute-level scores and raw
scores. We focus on the first section, titled “Skill mastery”, which presents attribute-level
performance. On the left, it is explained what information is presented in this section.
On the right, a graph is provided that visualizes the attributes (the presented hierarchy
reflects attribute dependencies, indicating whether mastery of an attribute is a prerequisite
to mastery of another attribute; this hierarchy was determined in consultation with domain
experts). If a student clicks on an attribute, brief descriptions of the measured skills are
shown, as well as recommended learning materials to improve these skills. Indicating skill
mastery is substantively meaningful, because the inferences about student performance
are made with reference to the cognitive skills measured by the assessment, allowing for
criterion-referenced interpretations (cut-scores in DCMs are set to maximize the reliable
separation of respondents, i.e., the criterion is set statistically; [12], Chapter 5). We have used
the familiar terms “mastery” versus “nonmastery” to label the classifications throughout
this paper. Alternatively, one can choose labels that express in-progress learning, such
as “on track” versus “needs attention”. The labels can influence how the information is
interpreted and used by students and it is important to select labels that are appropriate for
a given context [58].
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6. Discussion

The current study showed the validation process of constructing detailed diagnostic
information on a set of skills, abilities, and cognitive processes from students’ item response
data. This integration of learning analytics and educational assessment promotes valid
and reliable formative assessment. We constructed cognitive diagnostic assessments to
measure attributes relevant for nonmathematical introductory statistics courses in higher
education using diagnostic classification models. To construct the assessments, we did not
write new items to measure the identified attributes, but we relied on existing items, which
may limit the scope of what can be measured [62]. However, we did not define attributes
based on the items but searched for items based on the prespecified attributes. We exploited
multiple sources for item collection and evaluated whether all aspects of the attributes
were measured. Moreover, we validated a new measurement scale for actionable feedback
based on the existing items, which can be viewed as a contribution of our work. The final
models showed adequate model fit, classification accuracy, and reliability. The constructed
assessments provide a valid and reliable measurement of the specified attributes and allow
provision of actionable feedback to students via learning dashboards.

6.1. Implications for Educational Practice

If the assessments are implemented in online learning environments of introductory
statistics courses, the mastery status of new students can be determined directly after
they complete an assessment based on their automatically scored item responses. Based
on timely, actionable diagnostic feedback, students can make more effective learning
choices [10].

The value of feedback depends on how it is interpreted by the recipient and, in
turn, influences learning choices. Although both interpretation and use are critical to the
effectiveness of formative assessment [63], only few studies have examined actual uses
of score reports (see [64] for a review). It is an interesting avenue for future research to
explore how diagnostic feedback impacts students’ learning processes and whether there
are individual differences in the effects of diagnostic feedback on learning choices (e.g., due
to differences in expertise level or self-regulated learning skills; [65,66]).

6.2. Limitations

Although the constructed assessments provide a valid and reliable measurement of
the specified attributes, this study presents several limitations. One limitation lies in the
small sample size in the think-aloud study due to limited resources, which may limit
the generalizability of the qualitative evaluation. Furthermore, verbal reports may not
completely reflect students’ cognitive processes [67]. Especially if constructs are not well-
understood, verbal reports can be subject to bias and error. The participants in the think-
aloud mostly rated their performance as (very) good. Although it would be interesting to
include students with low performance, it is difficult to collect high-quality verbal report
data from those students. Even for students with high performance, verbal reports may
provide an incomplete record of their knowledge and cognitive processes as they solved
the items. Therefore, the results from the think-aloud were not used as hard evidence, but
rather as supportive information in the empirical Q-matrix validation.

Further, in the quantitative evaluation, the assessments were offered as optional study
material. This might have influenced students’ motivation, for example, resulting in
rapid-guessing behavior that can lead to differential item functioning [68]. Moreover, it
could cause selection bias, for example, if the assessments were mostly made by students
who did not grasp the materials yet, resulting in a low base rate of attribute mastery.
However, Ref. [69] showed that DCM item parameters are theoretically invariant with
respect to the calibration sample; thus, the estimates are not influenced by the base rate of
attribute mastery. Since we found adequate model-data fit, the calibrated assessments can
be used to appropriately classify new students. Nevertheless, changes in parameters can
be expected [70] and regular monitoring of parameter invariance is recommended.
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6.3. Concluding Remarks

To conclude, cognitive diagnostic assessment can be a valuable tool within e-learning
environments to obtain timely, diagnostic feedback on cognitive attributes to support
student learning. Since poor quality assessment leads to less-effective learning choices, it is
important to validate whether assessments are adequate and appropriate for their intended
interpretation and use [71]. The current study was focused on validating the interpretation
of assessments in university statistics education (i.e., the claims that can be made about
students), but it is important to also verify whether appropriate actions follow if these
interpretations are presented to students (e.g., following [72]).
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Appendix A

This section presents more extensive results from (1) the attribute identification process
and (2) the empirical Q-matrix validation:

• Table A1 presents an overview of the 9 attributes that resulted from the attribute iden-
tification process, which are comprised of 33 learning objectives. The table includes
references to empirical studies that show the relevance of the addressed concepts
and the occurrence of misconceptions for each learning objective. In the Supplemen-
tary Material, a more detailed description of each attribute and the references to the
empirical studies is provided.

• Table A2 presents all items for which modifications to the Q-matrix were suggested
in the empirical Q-matrix validation. Argumentation to retain or modify entries is
provided along with the final q-vectors.

https://www.mdpi.com/article/10.3390/app12104809/s1
https://www.mdpi.com/article/10.3390/app12104809/s1
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Table A1. Identified attributes and learning objectives with references showing their relevance.

A. Understanding center & spread
1. Understanding of the idea of variability in samples and populations. - [73]
2. Ability to describe and interpret measures of center (mean, median, mode). - [27], Chapter 9

3. Ability to describe and interpret measures of spread (range, interquartile range, variance, standard
deviation). - [73]

4. Understanding of how center and spread are affected by data transformations. - [28]
5. Understanding of how center and spread are affected by handling of outliers. - [27], Chapters 9 and 10

B. Interpreting univariate graphical representations

6.
Ability to describe and interpret graphical representations of sample data in common univariate graphical
displays (histogram, boxplot, dotplot, bar chart), including the ability to reason about center and spread in
sample data based on graphical representations.

- [28,74]

C. Graphically comparing groups

7. Ability to compare groups on a continuous outcome variable by focusing on data as an aggregate with
characteristics such as center, spread, and shape. - [27], Chapters 9 and

10; [28,75]

8. Ability to make informal inferences about group differences based on graphical representations by
comparing variability between and within groups, i.e., by considering both center and spread. - [27], Chapter 11; [76]

D. Understanding sampling variability

9. Understanding that a sample provides incomplete information about the population from which it is
drawn and that random sampling forms the basis for statistical inference. - [27], Chapter 12; [77]

10.
Understanding how the set of all possible random samples (with the given size) from the population of
interest is considered in inferential statistics, i.e., that the unit of analysis is the entire sample rather than a
single observation.

- [27], Chapters 12 and
13; [78]

11. Understanding that not all samples are identical, so not all of them will resemble the population in the
same way and to the same extent every time. - [79]

12. Understanding of expected patterns in sampling variability, in which some values are more or less likely
than others to be drawn from a particular population. - [27], Chapter 12; [28]

E. Understanding sampling distributions

13. Ability to describe and distinguish between the sample distribution, sampling distribution, and population
distribution. - [27], Chapter 12; [79,80]

14. Knowing that, given a sufficiently large sample size, the sampling distribution of the mean for a variable
will approximate a normal distribution. - [27], Chapter 12; [81,82]

15.
Knowing how the (unknown) population mean, the sample mean, the possible sample mean values for
different random samples of the given size, and the theoretical mean of these possible values relate to each
other.

- [27], Chapter 12; [83]

F. Understanding the standard error
16. Ability to interpret the standard error as a measure of variability of sample means. - [27], Chapter 12

17. Understanding that statistics from small samples vary more than statistics from large samples and
knowing how the standard error decreases with sample size. - [27], Chapter 12; [28,79]

18. Understanding of how population variance influences sampling variability and, thus, the standard error. - [27], Chapter 12
19. Ability to make informal inferences about sample means based on measures of sampling variability. - [28]

G. Understanding principles of hypothesis testing

20. Understanding of the goals and the logic of significance tests; understanding of the theoretical idea of
finding evidence against a null hypothesis. - [84]

21. Understanding that statistical inferences are not deterministic and NHST results do not prove the null
hypothesis to be true or false. - [84,85]

H. Evaluating NHST results
22. Ability to take a correct decision about the null hypothesis based on the significance level and p-value. - [86]

23. Ability to correctly interpret p-values as the probability of obtaining test results at least as extreme as the
results actually observed, under the assumption that the null hypothesis is true. - [28,87–90]

24. Ability to describe the concepts Type I error, Type II error, significance level, and statistical power. - [86,91]
25. Understanding of how increasing the sample size increases power by reducing the standard error. - [27], Chapter 13; [86]
26. Understanding of how increasing the significance level increases power by enlarging the rejection region. - [86]

27. Understanding of how larger effect sizes result in higher power by enlarging the difference between the
means of the null and alternative distribution. - [86]

28. Understanding that statistical significance does not imply practical relevance and vice versa. - [28,92,93]
I. Understanding and using confidence intervals

29. Understanding that CIs are used to provide an indication of the precision of an estimate. - [28,94,95]

30.
Ability to correctly interpret CIs in terms of repeated sampling (e.g., if repeated samples were taken and the
95% confidence interval was computed for each sample mean, 95% of the intervals would contain the
population mean).

- [96]

31. Understanding of how increasing the sample size decreases CI width by reducing the standard error. - [97]

32. Understanding of how increasing the confidence level increases CI width by reducing the precision of the
estimate. - [97]

33.
Understanding of connections between CIs and hypothesis tests; ability to draw a conclusion about the null
hypothesis based on a CI (i.e., if the CI does not contain the null hypothesis value, the results are
statistically significant).

- [98]
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Table A2. Items for which the stepwise Wald method suggested q-vector modifications. The table shows the original and suggested q-vectors that represent rows in
the Q-matrix. Further, the table shows (1) the item content re-evaluation indicating whether suggestions to include or exclude attributes could be theoretically
defensible (yes/no), (2) the percentage of students in the think-aloud (TA) who used the attributes for which modifications are suggested, (3) the PVAF for relevant
q-vectors, (4) the argumentation to retain or modify q-vector entries, and (5) the final q-vectors (modifications in boldface).

Item q-Vector Content Re-Evaluation:
Theoretical Defensibility Attribute Use in TA PVAF Argumentation Final q-Vector

CAOS_15 Orig. 110000 Exclude B: no B: 100% 100000: 0.328 Att. B should be included from a theoretical perspective and explains a
substantial proportion of additional variance.

110000
Sugg. 100000 110000: 0.816

CAOS_08 Orig. 110000 Exclude A: no A: 67% 010000: 0.464 Att. A should be included from a theoretical perspective and explains a
substantial proportion of additional variance.

110000
Sugg. 010000 110000: 0.835

CAOS_12 Orig. 111000 Exclude A: yes A: 0% 001000: 0.959 Although att. B explains little additional variance, it cannot be excluded from a
theoretical perspective. Att. A can be excluded and explains little additional
variance; therefore, it is excluded.

011000
Sugg. 001000 Exclude B: no B: 100% 011000: 0.964

111000: 0.985

CAOS_13 Orig. 011000 Exclude B: yes B: 0% 001000: 0.999 Att. B can be excluded from a theoretical perspective and explains no additional
variance; therefore, it is excluded.

001000
Sugg. 001000 011000: 0.999

SRA_15 Orig. 001000 Include B: yes B: 75% 001000: 0.002 Although att. C explains a very small proportion of variance, it cannot be
excluded from a theoretical perspective. Att. B can be included from a theoretical
perspective and explains a substantial proportion of additional variance;
therefore, it is included.

011000
Sugg. 010000 Exclude C: no C: 100% 010000: 0.437

011000: 0.469

ARTIST_db_CG_Q0840 Orig. 011000 Exclude B: no B: 100% 001000: 0.876 Att. B should be included from a theoretical perspective and explains some
additional variance.

011000
Sugg. 001000 011000: 0.969

ARTIST_sc_SV_04 Orig. 000100 Include C: no C: 0% 000100: 0.056 Including att. C and excluding att. D is not theoretically defensible. Despite the
higher PVAF for att. C, the original q-vector is retained.

000100
Sugg. 001000 Exclude D: no D: 60% 001000: 0.183

ARTIST_sc_SV_10 Orig. 000110 Exclude D: yes D: 0% 000010: 0.945 Att. D can be excluded from a theoretical perspective and explains only little
additional variance; therefore, it is excluded.

000010
Sugg. 000010 000110: 0.986

ARTIST_sc_SV_11 Orig. 000011 Exclude F: no F: 50% 000010: 0.949 Although att. F explains only a small proportion of additional variance; it cannot
be excluded from a theoretical perspective.

000011
Sugg. 000010 000011: 0.951

ARTIST_db_SS_Q0061A Orig. 000010 Include A: no A: 0% 000010: 0.016 Including att. A and excluding att. E is not theoretically defensible. Despite the
higher PVAF for att. A, the original q-vector is retained.

000010
Sugg. 100000 Exclude E: no E: 100% 100000: 0.597

ARTIST_db_SS_Q0061C Orig. 000010 Include C: no C: 0% 000010: 0.232 Including att. C and excluding att. E is not theoretically defensible. Despite the
higher PVAF for att. C, the original q-vector is retained.

000010
Sugg. 001000 Exclude E: no E: 100% 001000: 0.288

ARTIST_db_SS_Q0061D Orig. 000010 Include C: no C: 0% 000010: 0.121 Including att. C and excluding att. E is not theoretically defensible. Despite the
higher PVAF for att. C, the original q-vector is retained.

000010
Sugg. 001000 Exclude E: no E: 100% 001000: 0.182

CAOS_32 Orig. 000001 Include E: no E: 0% 000001: 0.113 Including att. E and excluding att. F is not theoretically defensible. Despite the
higher PVAF for att. E, the original q-vector is retained.

000001
Sugg. 000010 Exclude F: no F: 100% 000010: 0.379

SCI_2004_20 Orig. 100001 Exclude F: no F: 100% 100000: 0.908 Although att. F explains only a small proportion of additional variance; it cannot
be excluded from a theoretical perspective.

100001
Sugg. 100000 100001: 0.958

ARTIST_sc_TS_04 Orig. 110 Exclude G: no G: 100% 010: 0.849 Att. G should be included from a theoretical perspective and explains some
additional variance.

110
Sugg. 010 110: 0.999

ARTIST_db_CIOSM_Q1394 Orig. 001 Include H: yes H: 0% 001: 0.180 Att. H can be included from a theoretical perspective and explains a substantial
proportion of variance; therefore, it is included. Although att. I explains only
little additional variance, it cannot be excluded from a theoretical perspective.

011
Sugg. 010 Exclude I: no I: 50% 010: 0.885

011: 0.897
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