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‘Cognitive dimensions’ are features of computer languages considered purely as
information structures or notations. They therefore apply to many types of
language—interactive or programming, high or low level, procedural or declarative,
special purpose or general purpose. They are ‘cognitive’ dimensions because they control
how (or whether) the preferred cognitive strategy for design-like tasks can be adopted: it
has repeatedly been shown that users prefer opportunistic planning rather than any fixed
strategy such as top-down development. The dimension analysis makes it easier to
compare dissimilar interfaces or languages, and also helps to identify the relationship
between support tools and programming languages: the support tools make it possible to
use opportunistic planning with notations that would otherwise inhibit it.
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Introduction
“Not another study on usability”: there are too many reports, not enough powerful generalisations.
This paper offers a generalisation which is not yet fully worked out but promises, if successful, to
be powerful.

Physicists reduce all physical quantities to combinations of three fundamental dimensions, mass,
length, and time, all of which are abstractions from the phenomenal world (for example, we
perceive weight but not mass). Such varied phenomena as electric charge, gravitational attraction,
elasticity, and temperature are all reduced to different combinations of the same three dimensions:
a remarkable and enviable achievement. Rather cheekily, I suggest that in HCI we attempt to tread
the same path. Many different ways of working at the computer can potentially be accounted for
by the interrelationships between a single preferred cognitive strategy and a small number of facts
about the language of communication, or ‘notation’, and the circumstances of its use, or
‘environment’. These few unifying facts are the equivalent of physicists’ dimensions: only a very
approximate equivalent, because where cognition is involved, we are unlikely to find simple
orthogonal concepts such as those that physicists have, over the course of many years, refined so
elegantly. Cognitive science, it must be remembered, is really rather more like plant biology than
like physics, in that a whole host of factors (some of them interdependent) affects the growth of
plants. Nevertheless our urgent need is for a small number of clear, powerful ideas, which we can
pretend are orthogonal.

To arrive at the suggested dimensions, I shall consider a ‘space’ in which to locate many different
kinds of notations, including command languages, direct manipulation languages, programming
languages, and other types of notation, and I shall describe some ‘cognitive dimensions’ of this
space, illustrated by concrete examples. The dimensions provide a language in which to compare
the form and structure (rather than the content) of notations.

We are more used to speaking of programming ‘languages’ than notations. I shall use the term
notation to keep the form distinct from the content. Pascal, as a programming language, might be
properly criticised for its content (poor provision for string manipulation, bit processing, and file
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handling); but as a notation these omissions are not relevant—what matters is the form; e.g., the
identifier hierarchy is very rigidly controlled, from which both advantages and disadvantages
flow.

The following sections introduce the ideas of information structures and their ‘dimensions’ and
say a little about their interaction with cognitive processes. Some sample dimensions are then
discussed; this is the core of the paper, although space prevents going into detail, or even
discussing more than about half the relevant dimensions. Finally, to prove that the concept of
notational dimensions has design relevance and is not just a vacuous abstraction, these ideas are
briefly related to the fashionable problem of designing usable OOPS systems.

2. System = Notation + Environment
The importance of the relationship between the notation and the support environment must be
emphasized. Here is an example. A few years ago, a team developed a system for receiving
spoken Pascal code, using an isolated-utterance speech recognizer. Intended for use by
handicapped people who had difficulty in writing or typing, the system worked reasonably
well—i.e., if one dictated Pascal code to it, the recognition rate was quite acceptable. However,
because the speech recognizer relied upon the constraints of Pascal to make the recognition
problem tractable, the program had to be syntactically correct at all tunes. The design of the
system made it preferable to dictate the program in text order, from start to finish. Unfortunately,
because of certain characteristics of the Pascal notation, it is pretty well impossible to dictate
impromptu Pascal correctly without any omissions. (See below.) In short, although the system
worked reasonably well at the technical level, it failed to meet its objectives, simply because
Pascal is not a suitable notation for this environments A suitable environment for Pascal needs, as
we shall see, to decouple the order of generating source code text from the final text order. If the
relevant characteristics of Pascal and the speech-driven environment had been appreciated
beforehand, the project might have taken a different course.

Indeed, the relationship between the notation and the environment is such that the notation cannot
be used except in some kind of some kind of environment of use. Trying to just use a notation,
outside of any environment, would be like trying to just talk to someone without being in some
kind of social situation. We may catch ourselves thinking that paper-and-pencil, by its familiarity
and blandness, is not really an environment at all, but if so we are making a mistake: paper and
pencil is an environment with its own particular contributions — for instance, it offers unrivalled
support for recording hesitations and commitments, makes it easy to see large amounts of text
with little effort, and supports instant action with very little delay in finding the right place,
choosing the right mode, etc. In all these respects it is superior to typical computer-based
environments.

Which part of the system, then, is the notation, and which the environment? If we change the
system, which have we changed? This question is too large to analyse here in depth. As a rule,
certain parts of the system are obviously notational, while others are obviously environmental.

Ambiguities will occasionally occur, especially when the symbols displayed as code or text do not
correspond fairly directly with some subset of the user’s actions. If we have function keys to
generate syntactic constructions, for example, which is the ‘notation’—the keys we press, or the
words we see? Various factors will determine the user’s view, such as prior experience; the units
operated upon by the editor and other manipulation systems; and whether a simple mapping can
be perceived between the two sides, so that a function key can be seen as generating a simple
indivisible unit of a few words. But I hardly think these need deter us.

The fundamental principle is that the way the user behaves is determined by both the notation and
the environment. A satisfactory system demands an environment that supports the notation and
vice versa. Hence the slogan heading this section.

3. Designing Notations for Design
The ideas presented here apply to written-down, symbol-based systems such as conventional
programming languages, school algebra, powerful document formatting systems such as TEX and
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Scribe, and also to the many types of fringe programming language: languages for numerically-
controlled machine tools; programmable video editing systems; languages for knowledge
engineering; executable specification languages, etc. Visual programming languages are
particularly interesting notations.

They also apply to interactive languages. Sometimes these have the same structure, and differ
only in the environment of use: “(4 + 6)/2 =1” is school arithmetic when written down, but it is
also the interaction language for a calculator. The notational structures of interaction languages
can he described in the same terms as those of programming languages, but because their
instructions or commands are performed immediately the cognitive requirements are different. In
the present paper, however, I shall give primacy to written-down notations.

Notations have manifold uses. Important ones are communication (at a distance or over time) and
design. I shall focus on their use in design, for recording partial decisions, working out
consequences, undoing or confirming decisions, leaving reminders, etc. In this context their role is
partly retrospective, recording what has been thought out. and partly a means of discovery: “How
can I know what I think until I hear myself say it”?

So the problem before us is how to design notations for design.

4. Notations as Information Structures
Notations have a structural aspect and a typographic aspect. Though both are essential in
conveying meaning to the reader, I shall only consider the structural aspect, with its mainly
discrete attributes, rather than such typographic issues as relative size and spacing of symbols,
subtle and difficult questions dealing mainly with continuous quantities. (Some idea of the
enormity of my omissions is given by Southall (1988)).

Very different notations can achieve identical ends: the same algorithm in different programming
languages, the same graphic design from different drawing programs. Where the information
structure is different, different cognitive processes will be facilitated. Take the case of reading
programs. We cannot simple-mindedly claim that procedural languages are either easier or harder
to read than declarative ones; it would be more valid to say that the structure of procedural
languages makes it easier to extract sequence information than circumstance information (Green,
1977), while the reverse is true for declarative languages (Gilmore & Green, 1984).

Different diagrammatic notations also favour different tasks (Green, 1982). For example, Nassi-
Shneiderman diagrams and Jackson diagrams present the same information, but their different
structures mean that it is much easier to make small changes to Jackson diagrams. Or take the
interactive case: a familiar example is the contrast between reverse polish calculators and infix
calculators, each good for some tasks.

Each notation highlights some types of information at the expense of obscuring other types; each
notation facilitates some operations at the expense of making others harder. A notation is never
absolutely good, therefore, but good only in relation to certain tasks.

5. Opportunism: Design is Redesign
The naive theory of action is that the actor translates a set of goals into specifications for the
corresponding action sequence, and then runs off the actions. As applied to writing a program, a
technical paper, or a graphic design, the implication is that actions proceed smoothly from start to
finish without errors or omissions. (Any reader who seriously believes that should try dictating
Pascal.) In actual fact, the creation of any such complex object proceeds in fits and false starts,
with repeated iterations, and any goal or subgoal may be attacked at any moment, whenever
suitable circumstances happen to arise. This has been shown in technical writing (Flower and
Hayes, 1980), in CAD (Whitefield 1985), in system design (Carroll & Rosson, 1985; Carroll,
Thomas & Malhotra, 1979; Guindon, Krasner & Curtis, 1988), in program design (Siddiqi 1985;
Visser 1988), in the coding activity of novices (Gray & Anderson 1987), and even at a level
where you might not expect it, viz. professional programmers coding very simple programs
(Green, Bellamy & Parker, 1987). Hartson and Hix (1989) refer to ‘alternating waves’ of bottom-
up and top-down activities in interface design work. Streitz (1988) has observed that ‘writing is
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rewriting’; more generally, one could claim that design is redesign, programming is
reprogramming, etc.

The single preferred cognitive strategy in design (judging by present research) is opportunistic
planning. High level and low level decisions are mingled, commitment to possibilities can be
strong or weak, development in one area is postponed because potential interactions are foreseen,
parts are frequently re-evaluated and modified.

There are programming tasks for which this dictum may not hold, such as the transliteration of
precise functional specifications into equivalent code. But in general, any growing structure,
whether a program, a technical paper, or a piece of graphically-represented CAD, will need to be
modified and rebuilt. In the old cybernetic terms, there has to be a feedback loop for error
correction. In contemporary terms, we must not overlook the ‘gulf of evaluation’ (Norman 1986)
and the cyclical nature of user activity in Norman’s model.

If the notation and the environment together are to support opportunistic planning, three strong
corollaries follow. First, since programmers are to be able to attack any goal at any level, they
must be able to pick out what parts of the program support each goal or subgoal. Moreover they
must also be able to make comparisons between any arbitrary parts of the program. To support
opportunistic planning, therefore, it must be possible to perceive the structure of the code, text, or
other notation. Second, if design is redesign, the notation must be modifiable: any attempted
solution to any goal may be subject to later change. There is no room for an environment that
makes it hard to go back and improve on a first attempt, nor one that insists that one part cannot
be started until another part is finished. The twin activities of parsing notations (reading for
structure) and modifying them are inescapable. The third corollary is in a poorly-explored area:
since early stages of the design represent a wide band of possible developments, the notation
should differentiate between degrees of definiteness. (Typographers use light pencil marks to
indicate a wide band of possibilities—a font something like this—and firm lines for more definite
choices. As Hewson (1987) observes, you can’t do that with computer design tools.)

The most obvious failing of traditional notations, considered in this light, is that too little attention
is paid to readability. It is sometimes brusquely asserted that “real programmers” can get used to
anything, given a little “syntactic sugar”, and that worrying about readability is namby-pamby
stuff. It is indeed true that some programmers can cope with very demanding notations, and it is
also true that some chess grandmasters can play twenty games blindfold simultaneously. A
conscious design decision to cater only for such prodigies could not be faulted, but it would be
stupid for a notation designer to ignore readability in a notation designed for widespread
acceptance.

6. The Organization of How-to-do-it Knowledge
To understand the usability of notations we must understand how they are mentally perceived and
organized. For interactive languages, the conventional wisdom refers to task/action mappings
(Young, 1983) or to goals and methods (Card, Moran and Newell, 1983); for programming
languages, the equivalent is the goal/plan analysis (Soloway and Ehrlich 1984). On this view, the
writer or programmer decomposes a task into subtasks, etc, and translates subtasks into sequences
of actions. Thus the notation is perceived and mentally represented not as individual units or
symbols but as organized groups or chunks.

Ideally, we would know much more about mental representations than we do at present. Expert
users know much more about their notations than task/action mappings: which bits are risky,
time-consuming, etc. These pragmatic aspects strongly influence expert programmers’ choices of
languages (Petre, 1988). Also, in view of the importance of mental representations, it would be
nice to know much more about the mental representation of a wider variety of interactive
languages and programming languages. The work of Soloway and his colleagues, Détienne (1989)
and others has told us much about the mental representation of Pascal, but how are very different
languages, such as Prolog or Miranda, represented?

(A further limitation is that analyses such as GOMS give too little attention to ‘situated action’
and the possibilities of ‘partial planning’ (Young and Simon, 1987), or to the interpretation of the
system image.)
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However imperfect the conventional wisdom may be, it clearly implies that must be possible to
comprehend the partial design in the appropriate mental chunks.

7. Some Dimensions
Broadly speaking, we need to be able to write notations, read them. and change what’s written. In
the present attempt to pick out determining factors, a ‘cognitive dimension’ of a notation is a
characteristic of the way that information is structured and represented, one that is shared by many
notations of different types and, by its interaction with the human cognitive architecture, has a
strong influence on how people use the notation and affects whether the strategy of opportunistic
planning can be pursued. It would hardly be possible to do justice here to an exhaustive list, but I
shall briefly review some which are particularly pertinent to present interest in OOPS.

7.1. Hidden/Explicit dependencies

To illustrate the idea of a dimension I shall take three very different-seeming notations, and show
that their structures share one very important characteristic which has great influence on how they
are used. Subsequent dimensions will be treated more cursorily.

7.1.1. Spreadsheets

Figure 1, a and b, illustrates the structure of a typical spreadsheet. The notation explicitly shows
the local dependency of cells, but it does not show either the long-range dependency (C depends
on B depends on A ...) nor the inverse relation (A is depended on by B).

(a) (b) (c) (d)

C = B*B C:  B + centered C = array [1 .. 2] of B

B = si n(A/2) B:  A + bold B = array [1 .. 4] of A;

A 22.45 A:  geneva 10 + left f lush A = (red, bl ue, green);

Figure 1 (a) A typical information structure, found in (b) spreadsheets, (c) style sheets, and (d)
type declarations. In each case, the notation shows clearly that B depends on A, and C on
B, but neither the long-range dependency of C on A or the inverse relation that A is
depended on by B are shown.

Is this design decision important? It depends on what tasks need to be performed. If the user is
errorlessly translating an algebraic model into spreadsheet terms, neither the long-range
dependency nor the inverse dependency will need to be accessed. But one can very easily
envisage the user of a large and ill-understood spreadsheet making a small modification which
generated unforeseen, and possibly undetected, side-effects, because the cell that was changed
was depended upon by other cells that the user did not observe. The only way to find out for sure
what cells depend upon a given cell is to exhaustively examine every formula. Although there are
few studies of how people use spreadsheets, it is notable that Brown and Gould (1987) found that
experienced users spent no less than 42% of the their time just moving the cursor around, mainly
to inspect other cells.

Of course, the spreadsheet environment could easily complement this aspect of the notation by
including a cross-referencer. Why is a cross-referencer not supplied as standard? Presumably
because the designers did not believe that design is redesign. (Brown and Gould briefly mention
an experimental interface in which cells referenced by a formula could be highlighted, and they
claim, unfortunately with no details, that it improved performance; but there were other changes
to the standard design, so we cannot be certain that their highlighter was responsible.)
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7.1.2. Style Sheets

Microsoft Word supports ‘style sheets’ which determine the layout and font of sections of a
document. All text that is ‘heading’ style can be formatted in the same way, and if the definition
of heading style is changed, all the headings will be uniformly changed. For certain purposes this
is extremely convenient. The styles form an inheritance hierarchy in which each style starts all
characteristics of its parent, except those that are explicitly changed. The style sheet window of
Microsoft Word 3, Macintosh version, gives exactly the  same information as a spreadsheet,
which is the local dependency (Fig. 1c). We can see that style B depends on (inherits from) style
A, but we cannot see the long-range dependency (what does style A depend on?) nor the inverse
relation (what depends on style B?). Thus if style A is changed, we cannot predict the
consequences without gathering more information — and once again what is needed is an
exhaustive search of the styles to discover which ones depend on A;

7.1.3. Type Declarations

Pascal, like many other programming languages, supports declarations of data types and structures
in terms of other types and structures. Figure 1d shows how Pascal, yet again, exhibits only local
dependencies in the information structure; long range dependencies and inverse dependencies are
hidden. While this is no big deal in a trivial fragment of code, the problem is said to be acute in
large programs; and various hierarchical browsers have been designed specifically to overcome
it—illustrating nicely how the support environment can complement the notation.

7.1.4. Hidden Dependencies as an Abstraction

These three examples share a common feature: recovering the mental representations from the
notation is difficult, because the information structure of the notation is both limited and
asymmetric. This fact will interfere with opportunistic planning in each and every case, since it
violates the requirement that the structure must be easily perceived. A slightly fuller analysis
shows that the inverse ‘is depended on’ relationships of Figure 1 are not quite as bad as the long-
range dependency case. In dissecting cell or line C of Figures 1b to 1d we know that there is one,
and only one, thread to be found, and at each step we know the target. But answering the question
about cell or line A, “I wonder whether this value is used anywhere”, requires a comprehensive
search in which the target is only specified in one respect. Cognitive processes that are data-driven
can use the former case as a reminder, but not the latter.

7.1.5 Implications

The lesson from the examples above is clear: every dependency that matters to the user should be
accessible in both directions. Environmental support, in the form of cross-referencers, browsers,
etc., should be supplied as a matter of course.

7.2. Viscosity/Fluidity

A viscous medium, in the language of hydrodynamics, resists local changes. (You can’t move a
spoon quickly in treacle, because the treacle resists changing its shape.) Correspondingly, a
viscous notation resists local changes. The problem occurs when the information structure
contains many dependencies between its parts, so that a small change requires many consequent
adjustments. One example is a text containing section numbers, figure numbers, and cross-
references; either inserting or deleting a section may mean that many such numbers must be
changed. Solutions are to avoid numbered sections (i.e., change the notation) or to use a
knowledgeable document formatter, such as Scribe or TEX (i.e., provide environmental support).

Whitefield (1985) reports similar observations in CAD situations. The degree of viscosity of a
notation typically differs for different manipulations. Inserting a new formula cell into a
spreadsheet is very simple, but rearranging the layout is quite another matter. Adding a new
procedure to a Pascal program is usually straightforward, but reconstructing the identifier
hierarchy so that a given procedure is brought to a lower block level, to make it more widely
accessible within the program, may have many repercussions.
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7.2.1. Implications

Viscous systems cause more work for the user. They also break the line of thought and create a
working memory load if the user is to keep track. Yet they often have advantages. Their relatively
high redundancy helps to detect certain errors—for instance, in programming languages where
identifiers are declared, mistypings cause fewer problems—and sweeping accidental changes are
virtually impossible. In some cases a notation is deliberately and knowingly made viscous by
features which may cause extra work for the writer, but which are intended to promote readability.
Indeed, the extra work involved may encourage users to think out their requirements in advance
rather than doing ‘evolutionary’ programming or casually hacking.

When the notation is necessarily viscous, one solution is the knowledgeable environment, such as
Scribe, already mentioned. Another solution is an ‘agenda’ system, in which the potential
implications of the user’s actions are noted and kept available by the system. There are also ways
to manipulate the notation, rather than the environment: a frequent treatment for viscosity is to
augment the notation by introducing modules. Viscosity is high within the module but is low
between modules, so the modules act to parcel up the viscosity into locally-sticky patches.

7.3. Premature Commitment

Imagine a word processor which, when first invoked, required the user to state exactly how many
pages of text were to be written. That would be premature commitment. (Some early desktop
publishing programs were not far short of this apparently absurd supposition: you had to lay the
page out first, then pour the text in.) It can easily happen in programming, where the environment
encourages the programmer to develop programs in the final text order rather than in the mental
order of generation—the order in which the instructions come to mind.

What determines that generative ordering? In one of the most detailed models of cognitive
processes in programming, Rist (1986) postulates a goal and subgoal generation process that
depends on the programmer’s experiences and the familiarity of the solution components.
“Novices are characterized by a forward development of the program with little planning ...
Experts can define a particular part of the processing as most important, the focal segment, and
accrete a program around this segment” (p. 31). Experts, according to Rist, “have both plan
templates and sophisticated plan building mechanisms”. Rist’s example is finding an average. The
expert might build the program by starting out with the ‘focal line’, which achieves the task of
outputting the average; then work back like this:

1. output average; this requires ...

2. calculate average; this requires ...

3. count numbers and sum numbers; these require ...

4. read numbers; this requires ...

5. a loop.

This sequence bears little relationship to the sequence in which the instructions eventually have to
be written in a typical procedural programming language. In general, the whole thrust of
opportunistic planning is that actions may be thought of in any order.

No problems can arise in an environment where the statements may be inserted in any convenient
order—paper and pencil, for instance. But where the environment restricts the acceptable
orderings, the problems may be severe. Consider, as an extreme example, the spoken-Pascal
machine described above. The programmer has to convert the mental generative order into an
acceptable instruction order. Doing it by lookahead (i.e., working it all out in the mind before
starting to speak) will impose a very high load on working memory. The only alternative is to risk
premature decisions. Hoc (1988) demonstrated the difficulties faced by programmers in such
situations.

7.3.1. Implications

What is needed is to decouple the generative order from the final text order, allowing any part of
the design to be developed at any time. The need for decoupling has never been explicitly
recognised in the development of programming tools: on the contrary, structure-based editors
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frequently impose severe restrictions on the order of developing a program. The allowed orderings
correspond to ‘top-down’ development, as a rule, and the authors sometimes claim that this
reflects the ‘natural’ or best way to attack a problem (e.g. Kohne & Weber 1987) although Rist’s
results for experts are pretty well the reverse of top-down ordering at the level of local, or tactical,
decision-making during coding. (The claims for top-down development may, nevertheless, be
correct at the strategic or global level.)

7.4. Role-expressivenesss

It was shown above that the author/programmer must be able to recreate the appropriate mental
chunks from a scrutiny of the code. Different notations facilitate this ‘parsing’ to different
degrees. Notice that we are not parsing for syntactic structure but for mental structure—the reader
is attempting to discover the role of each component, by finding a ‘plan’ or ‘schema’ to fit it into.
Notations which display their plan structure clearly I shall call ‘role-expressive’.

(In a fuller treatment we would have to observe that different components of a structure can serve
different roles, and may indeed serve several roles at once; also that there are many kinds of
mental structuring imposed on a typical program, all at the same time.)

Brooks (1983) suggested that readers of programs looked for ‘beacons’ which indicate the
presence of particular program components. Pascal’s rich set of keywords may well serve as
beacons to help parse its structure, giving it relatively high role-expressiveness; even so, Gilmore
and Green (1988) showed that if each hypothesized mental chunk was differently coloured, plan-
related types of bugs were more readily spotted, indicating that the role-expressiveness of
conventional Pascal could still be improved.

Since the reader of a document has to recognise the intentions from the code, the presence of
keywords or other beacons reliably associated with particular intentions is almost certain to be
helpfuL An example of a beacon is an instruction sequence which only occurs in one context,
such as a sequence to exchange the values of A and B — a pretty clear signal that some type of
sorting is going on. Beacons are ineffective if the mapping from goal to instructions is many-to-
one — if many different types of goal translate into very similar types of instructions; studying
the instructions does not readily reveal the goals which led to them. Role-expressiveness demands
that each goal translate into an action sequence containing some relatively unique indicator, a
situation known in the psychology of learning as ‘cue validity’.

The common flowchart is a very familiar example of a notation with low role-expressiveness.
Each configuration of actions and decisions must be studied to decide whether it is a conditional
or a loop structure; higher-level judgements take still longer. Pure Lisp has the same problem with
respect to data structures, since they are all—whether lists, trees, arrays, or records—built from
the same list operations, merely assembled differently. Prolog programs set an interesting problem
to the reader, because there is no indication whether data is flowing into or out of the rule.

The worst problems probably come when the material of each mental chunk is dispersed. Figure 2
illustrates data from Green, Bellamy and Parker (1987), showing what we believe to be two
Prolog chunks, a filter chunk and an increment chunk. (Prolog specialists often dispute the nature,
possibly even the existence, of Prolog chunks, but given that one putative chunk was written, and
then after a pause the other putative chunk was added, it seems hard to believe that these are not
the mental units in use by that programmer—who, it should be added, was a professional Prolog
programmer.) It can be seen from the figure that the material of the second chunk is dispersed
through the first chunk in a way that gives little indication of its nature. To recognise it as an
increment, the whole chunk has to be apprehended — the same problem as the flowchart but on a
bigger scale.
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an al yze  (  [  ] ,  0,  0 ,  0 ,  0 )

an al yze  (  [ 1 | T] ,  0,  P,  L ,  N )  i f  a nal yz e ( T,  Pa ,  P,  L0 ,  N0 )

an d L=L 0 and  N=N0  +  1

an al yze  (  [ 2 | T] ,  Pa ,  P,  L,  N )  i f  ana l y ze ( T,  Pb,  P0 ,  L0,  N )  an d

Pa =Pa +  1  an d l on ge st  ( Pa,  Pb ,  P)  and  L =L0  +  1

Figure 2. A fragment of a Prolog program written by a professional programmer (from Green,
Bellamy and Parker, 1987). The parts in boxes (which together form an ‘increment’
chunk) were written last and were inserted into the earlier code, suggesting that the
subject’s mental representation comprised two plans, ‘filter’ and ‘increment’. Because
the fragments of the second plan are dispersed throughout the first plan, and because
there are no lxical keywords to use, it is hard to recover the mental plans purely from the
text.

7.4.1. Implications

Role-expressiveness may be one of the most delicate notational decisions. It is seemingly bought
at the cost of other virtues, especially uniformity, learnability and re-usability. A rich set of
keywords or other beacons should make. the code. easier to parse back into goals. but will
obviously tend to make the language non-uniform and will increase the vocabulary to be leamt.

Modularisation, introduced above as a treatment for viscosity, can also affect role-expressiveness.
Typically, every module is designed to serve one structural role. Supporters of object-oriented
programming claim that the modules imposed by an OOPS form a structure which has more
cognitive meaning than the structures created by top-down techniques.

A possibility to be explored is the use of automatic highlighting of segments that appear to form
‘chunks’ or ‘plans’. Some investigations have already been made using ‘slices’ (Weiser & Lyle
1986), but the automatic slicing tool proved disappointing in practice. However, much depends,
presumably, on correctly determining the segments to be highlighted.

At a higher level, Soloway et al. (1988) suggest a documentation style designed to give explicit
indication of plan structures even when ‘delocalised’ and fragmented.

7.5. Hard Mental Operations

All the above has been written with a hidden assumption that all mental operations are equivalent
in cost. This is an honourable simplification, hallowed by custom, but it is certainly not true.
Certain notations require users to perform operations that are notoriously difficult. Familiar
examples include the EVAL/QUOTE puzzles met in Lisp; the problems of pointers and
indirection met in C; ‘off-by-one’ boundary condition errors, and the problems of multiple
negation; of these, only the last has received much attention from cognitive psychologists. Sime,
Green & Guest (1977) argued that one source of difficulties in comprehending certain types of
conditional structure was the need to accumulate implied negations.

The cognitive processes underlying these familiar problems have not been analysed. Until then, it
will be difficult to make useful generalisations, apart from enjoining notational designers to
beware of the problem.



10

7.5.1. Implications

Perhaps tools can be built for some of these difficulties. Green and Comah (1984) attempted to
build a ‘programmers’ torch’ which would answer circumstancequestions about Basic programs:
“Under what conditions can line 370 be executed?” Other researchers have designed tools for
constructing invariants of programs, no doubt with the same idea in mind. Certain C statements
are also puzzling, especially those using pointers, and one can imagine a C support tool that
would give a diagrammatic elucidation of a statement using pointers. But no systematic attack is
feasible until some basic research into the source of the difficulties has been made available.

7.6. Other Dimensions

Other dimensions not mentioned include diffuseness (APL v. Cobol); consistency (Payne and
Green 1986); susceptibility to low-level errors, either in reading (the discriminability problem) or
in action (the action slips problem); and the presence of perceptual cues to structure.

8. Cashing the Ideas
Abstract classificatory schemes need to be justified in concrete terms. The dimensions concept
can be justified by pointing to areas where progress is slow, as I have done above; or by criticising
existing systems; or by raising design issues in relation to present growth areas. Let’s take the last,
and look at OOPS. Object-oriented systems have been praised as resolving some cognitive
problems (Rosson & Alpert 1988), at least in principle. I take no issue with that, but are they
adequately usable yet?

A fundamental claim in this paper is that system = notation + environment. Research papers on
OOPS, however, offer a myriad new languages, with different ideas about the semantics of
inheritance, etc., but say very little about environments. Here are some questions arising from the
preceding discussion, with remarks relating to one OOPS, Smalltalk-80. I shall take the five
dimensions I have described in order.

1. Are there hidden dependencies and one-way links in the structure? Smalltalk-80 scores
fairly well here; most relationships can be browsed in both directions, although there
are times when it would nice to make dependencies more immediately visible
without having to search for them, so that they could at as reminders. However, there
is little support in searching for ill-specified targets. “I want something that handles a
bitmap, what can I find?” Nor is it easy to find out what kind of object can fill an
instance variable slot in a method.

2. If the inheritance hierarchy viscous, or is it easy to reconstruct in a different fashion? The
inheritance structure lends to be viscous. For instance, given a class Animal  with
many sub-classes Trout , Herring , Minnow , etc.. inserting a new class Fish
between  Animal  and its subclasses requires many operations (add a new subclass,
Fish , to Animal ; move Trout  to Animal , etc.) Moreover, changing the
inheritance hierarchy normally means changing the pattern of class and instance
variables in the hierarchy — our new class, Fish , will contain information relevant
to all its subclasses, and this information will have to he extracted from its previous
position in the hierarchy and brought together under the new heading.

3. Is the generative order adequately decoupled? Not in Smalltalk-80, where inheritance
hierarchies must be created top-down. We lack at present any published evidence on
how Smalltalk programmers work, but experts have criticised this aspect in precisely
the terms I would expect, namely that when designing the inheritance hierarchy the
mental order in which steps are generated is not top-down, so that the effect of the
environment’s insistence on top-down working is constrictive  (Goldstein & Bobrow
1981; LaLonde 1987). LaLonde’s description is that the expert first designs a specific
data type, by focussing on a useful set of operations, and then that data type is
positioned in a logical hierarchy.

4. Is it role-expressive? Again, not adequately; although the purpose of object-oriented
programming is to clarify relations between parts of programs, one finds that
relationships between methods are obscure. The only browsers provided operate on
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explicit inheritance or message-passing links in the code, but the real relationships lie
much deeper. Frequently, issues of implementation dictate the structure of what
should be logical relationships: thus, for technical reasons, Bag and Set are both
subclasses of Collection, and Array is not a subclass of Dictionary (even though
dictionaries are a way to generalise arrays) but of Set. (Examples from (LaLonde,
1987.) These relationships are not explicit and can hardly help the reader.

A different form of problem with role-expressiveness is this typical Smalltalk cliché:

angle

↑angle

This is a method, ‘angle’, owned by some object. The method refers to an instance
variable, also called ‘angle’. The code means “if the object receives the message
angle  then return the value of the instance variable called ‘angle ’.” Two different
types of entity with the same name — and this potential confusion occurs once for
every instance variable whose value can be accessed. When the identifier angle
occurs in a program, which is it referring to? I have no evidence that this causes
problems, but it certainly defies the requirements of cue validity.

5. Are there any hard mental operations? This is not really a question about the relation
between the notation and the support environment, but it is just as important, or
maybe more so. In the case of Smalltalk, the answer is resoundingly “Yes”, since
work by O’Shea (1986) has demonstrated very definitely that the Smalltalk meta-
class is a very severe learning obstacle.  It can even be argued that the whole
principle of abstraction, on which inheritance systems are based, is hard, and that
object-oriented systems based on copies and prototypes (or exemplars) may be very
considerably easier for average users to master.

9. Conclusions: the Concept of Dimensions
Having developed the ideas and demonstrated that they can be cashed, it is time to reconsider the
basic notion. The physicists’ dimensions form a closed set. Do these cognitive dimensions form a
closed set, or are they just plucked from the air and from experts’ insights, like guidelines? I
suggest that the closest analogy may actually be with concepts taken from biology, such as plant
growth. The mechanism of plant growth is extremely complex, but we know that normal green
plants need phosphates, nitrogen, sunlight, etc., to grow successfully. We also know something
about how plants respond to different combinations. Best of all, we understand a good deal about
the mechanism of plant growth, so that we can make many predictive assertions. What plant
biologists do not have, and cannot have, is a logically complete closure of orthogonal concepts,
analogous to the physicists’ dimensions. There may always be another trace substance, undetected
as yet, required for vigorous growth.

My intention is that these cognitive dimensions should be tied to a clear model of user activity.
Given a particular model of behaviour, such as opportunistic planning, we can state a good deal
about the requirements that must be met by the system (the combination of notation-plus-
environment). To a limited degree we can go on to suggest how the model will behave if the those
requirements are not met. A careful analysis of a model should yield a closed set of dimensions,
but of course as models become more accurate new requirements will be found and the set of
‘dimensions’ will grow.

Although this enterprise is ambitious, a successful scheme of cognitive dimensions would bring
many advantages. First, description of relevant features of designs would be more compact, less
ambiguous. We can, in future, refer to a particular notation as being, say, ‘viscous’, rather than
having to spell out the point in laborious English: “If you want to change something, it’s a lot of
work to undo what you’ve already done and modify it”.

Second, the analysis turns out to clarify an ill-understood issue: how particular environmental
features complement the notation. We should be able to find ourselves saying “If this notation is
so viscous, we’d better provide an agenda system in the environment to help with change
management”, or “This animation tool does not serve the users’ real needs”. We can also make
better comparisons of trade-off issues between different notational features. The benefit to
designers is obvious.
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Third, it becomes clear that auxiliary notations have an important role to play, especially in
programming tasks (informal notations, intermediate representations, program design languages,
programming methodologies, etc.): they function by allowing the user to adopt the preferred
cognitive strategy even in apparently adverse circumstances. A classic case of further-research-is-
needed.
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