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Behavioral and cognitive flexibility allow adaptation to a changing environment. Most tasks used to investigate flexibility require
switching reactively in response to deterministic task-response rules. In daily life, flexibility often involves a volitional decision to
change behavior. This can be instigated by environmental signals, but these are frequently unreliable. We report results from a novel
“change your mind” task, which assesses volitional switching under uncertainty without the need for rule-based learning. Participants
completed a two-alternative choice task, and following spurious feedback, were presented with the same stimulus again. Subjects
had the opportunity to repeat or change their response. Forty healthy participants completed the task while undergoing a functional
magnetic resonance imaging scan. Participants predominantly repeated their choice but changed more when their first response was
incorrect or when the feedback was negative. Greater activations for changing were found in the inferior frontal junction, anterior
insula (AI), anterior cingulate, and dorsolateral prefrontal cortex. Changing responses were also accompanied by reduced connectivity
from the AI and orbitofrontal cortices to the occipital cortex. Using multivariate pattern analysis of brain activity, we predicted with
77% reliability whether participants would change their mind. These findings extend our understanding of cognitive flexibility in daily
life by assessing volitional decision-making.
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Introduction
Cognitive flexibility is defined as the ability to adapt to changes
in the environment by switching task sets, responses, or strategies
(Cools 2015). From a psychological perspective, it is often consid-
ered alongside related emergent control processes such as inhibi-
tion and updating (Miyake et al. 2000). Flexibility allows chang-
ing behavior in response to environmental and internal cues.
Individuals with greater cognitive flexibility have improved life
outcomes, better social functioning, and reduced cognitive decline
with age (Koesten et al. 2009; Diamond and Lee 2011; Burke et al.
2019). Difficulties in flexibility have also been observed in several
mental health conditions, further highlighting the importance
of research on the neural and psychological bases of flexible
behavior (Remijnse et al. 2006; Chamberlain 2007; Yerys et al.
2009).

A full understanding of cognitive flexibility has proven
challenging, in part because this is not a unitary construct (Dias
et al. 1996). Various behavioral paradigms have been developed
to measure flexibility in humans, each capturing intersecting
but somewhat different aspects of this behavior (Milner 1963;
Roberts et al. 1988; Dajani and Uddin 2015). Common paradigms
encompass task-switching, attentional set-shifting, and reversal
learning (Brown et al. 2015). In task-switching procedures, the
participant switches between two or more tasks based on
predefined stimulus–response sets (Monsell 2003; Manoach
2009). Set-shifting tasks, such as the Wisconsin Card Sorting

Test (WCST), the CANTAB intradimensional/extradimensional
test, or the Dimensional Change Card Sort task, measure
the ability to transition between cognitive-attentional sets in
the case of the WCST by using external cues to learn about
rules determining ongoing performance (Grant and Berg 1948;
Chamberlain 2007). Reversal learning, on the other hand, requires
participants to adapt responding following the reversal of
previously learnt reward-related contingencies (Izquierdo et al.
2017). The diversity within cognitive flexibility is exemplified by
distinct developmental trajectories for different tasks (Somsen
2007; Kalkut et al. 2009; Van Der Schaaf et al. 2011; Buttelmann
and Karbach 2017).

In studies involving both task-switching and set-shifting
paradigms, the salience and executive control networks (ECN)
are consistently activated (Dajani and Uddin 2015; Uddin 2021).
Key nodes in the former include the anterior insula (AI) and
dorsal anterior cingulate cortex (dACC), whereas the ECN includes
the inferior frontal junction (IFJ), dorsolateral prefrontal cortex
(dlPFC), ventrolateral prefrontal cortex (vlPFC), and inferior
frontal gyrus (IFG) (Hampshire and Owen 2006; Braun et al. 2015;
Shine et al. 2016; Vaghi et al. 2017). Connectivity between the AI,
dACC, and thalamus, forming the cingulo-opercular network, in
addition to the posterior parietal cortex is widely reported in task-
switching (Dosenbach et al. 2006; Liston et al. 2006; Worringer
et al. 2019). While the neural substrates of task-switching and
attentional set-shifting overlap, the former is associated with
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greater parietal and thalamic involvement and the latter is
associated with the default mode network (DMN) (Vatansever
et al. 2016). Reversal learning, on the other hand, activates some-
what different circuits, including the striatum, amygdala, the
medial PFC, and the lateral and medial orbitofrontal cortex (OFC)
(Remijnse et al. 2005; Izquierdo et al. 2017). Feedback learning and
establishing outcome probabilities are important components
of task performance on numerous flexibility paradigms. In
human functional magnetic resonance imaging (fMRI) studies,
the dlPFC and subcortical structures, such as the dorsomedial
striatum, signal uncertainty and expectancy deviations that are
necessary for learning and updating probabilities in a given
context (Lopez-Paniagua and Seger 2013; Mestres-Missé et al.
2017). This is further supported by data from nonhuman primates
showing active dlPFC neural populations during the initial stages
of a reversal learning task, differing distinctly from signals after
a reversal (Bartolo and Averbeck 2020).

Cognitive control more generally has been increasingly rec-
ognized to employ proactive and reactive modes (Braver 2012).
Applying this distinction to cognitive flexibility may be useful
with task-switching paradigms often focusing on reactive flexi-
bility and switching being triggered by explicit external signals.
Proactive control, on the other hand, anticipates the need for
control and is thought to be mediated in part by the lateral
PFC (lPFC) (Braver et al. 2009; Mäki-Marttunen et al. 2019). Both
reactive and proactive control involve vlPFC and AI node activa-
tions, though only proactive control engages the DMN (Ryman
et al. 2019). A psychophysiological interaction (PPI) analysis, which
allows the investigation of connectivity from a preselected region
of interest (ROI) during an event, has linked proactive control
to greater intra-ECN connectivity compared to greater within
salience network (SN) connectivity in reactive control (Wang et al.
2015). By contrast, reversal learning and attentional set-shifting
paradigms characteristically capture both reactive and proactive
flexibility, with shifting being both prepared and elicited by feed-
back in participants (Rogers et al. 2000). There are additional
key procedural differences between the common instantiations of
these paradigms. For example, many task-switching procedures
include similar proportions of switch and repeat trials, whereas
most reversal learning and behavioral set-shifting procedures
employ fewer shifts (see also Dodds et al. 2011). Less frequent
task relevant events elicit the SN (Wager et al. 2004). Additional
procedural distinctions include the extent of rule learning during
the task and presentation of feedback or rewards to signal a need
to change, both of which are less prominent in task-switching
paradigms (Kiesel et al. 2010).

In daily life, flexibility often involves a change in behavior
being generated endogenously but in situations where rule
learning or set-shifting is not required. Here, we report results
from a “change your mind” task, where participants performed
two-alternative forced choices and following spurious feedback,
viewed, and responded to the same stimulus again. Critically,
they could repeat their previous response or change it, acting of
their own volition. To our knowledge, no existing task provides
participants with the opportunity to repeat their choice and to
assess whether they subsequently choose the “road not taken.”
We propose that the ability to change one’s responses constitutes
a form of mental flexibility not fully explored within current
conceptual frameworks (Uddin 2021). We assessed “changing
one’s mind” performance, its neural correlates, including neural
connectivity and possible predictors during the task. Forty healthy
participants completed the task while undergoing fMRI scanning.
We expected subjects to change their second response when their

first response was incorrect or when feedback was negative and
that any effects of spurious feedback would decrease with time.
Based on previous studies, it was hypothesized that PFC salience
and ECN nodes (i.e. AI, dACC, IFJ, IFG, and dlPFC) would be active
when participants volitionally “changed their minds.” PPI analyses
investigated connectivity differences from 4 different ROIs during
change versus repeat trials. We expected stronger connectivity
between the striatum and vlPFC on change trials, reflecting
response inhibition. Multivariate pattern analyses (MVPAs) use
pattern classification algorithms to categorize neuroimaging data
based on spatial and/or temporal patterns and have been used
to predict behavior on a trial-by-trial basis (Li et al. 2014; Huang
et al. 2021). We hypothesized that the MVPA classifier would be
able to predict a change with high accuracy based on feedback
and the first response.

Methods
Participants
Participants were 40 healthy volunteers (21 females, handedness
[right–left]: 37–3), aged between 18 and 60 years (mean = 31.88,
standard deviation [SD] = 10.03), recruited from adverts in the
Cambridge community and from the University of Cambridge
Behavioural and Clinical Neuroscience Institute volunteer panel.
None of the participants had any history of psychiatric or neuro-
logical disorders. Verbal IQ was assessed using the National Adult
Reading Test score (mean = 115.29, SD = 8.68) (Nelson 1982). All
participants provided informed written consent and were reim-
bursed for their time and travel expenses, with ethical approval
granted from the Cambridge Local Research Ethics Committee
(08/H0308/65).

Task procedure
Participants performed a two-alternative forced choice task,
determining whether a target letter was “T” or “L” (see Fig. 1).
The task consisted of paired trials, each of which included an
identical stimulus display following a fixation (“1” or “2”) denoting
whether this was the first or second of the pair. The target letter
was embedded in a row of Xs and masked after a brief delay.
Participants were informed that, after the first of each pair, the
computer will provide feedback but that the feedback may not
always be 100% accurate. Instructions stated that, immediately
after the feedback, the same trial will be presented again and that
they would have a chance to change their mind on the second
display should they wish. Unbeknown to participants, feedback
was orthogonal to performance and was monitored so that it was
negative on half of accurate trials and positive on half of the
incorrect trials.

Participants completed 56 pairs of trials in each of three runs,
48 of which were difficult and 8 were easy. On each trial, following
a 500-ms fixation period, the target was briefly presented within a
row of 8 Xs in gray in the center of the screen. Following a predeter-
mined brief duration, the target was replaced with an “X.” Target
location was counterbalanced, appearing in 1 of the 6 or 4 central
locations on difficult or easy trials, respectively. On difficult trials,
a staircase determined target duration, initially set to 60 ms and
decreasing by 10 ms following a correct response and similarly
increasing following an incorrect response. On easy trials, target
duration was fixed at 150 ms. The stimuli displayed for a total
of 2 s, and participants responded by pressing 1 of 2 buttons on
a custom button-box with response mappings counterbalanced
across participants. Following 1–3 s (duration randomly selected
at 100-ms intervals), feedback appeared for 1 s (“+ correct +” in
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Fig. 1. Diagrammatic representation of the task structure. In pairs of
trials, a target letter (“T” or “L”) was presented and masked with an “X”
after a predetermined duration. The total stimulus duration of 2,000 ms
was comprised of a brief target presentation and a subsequent mask.
After responding, participants received feedback that was orthogonal to
their performance. This was followed by an identical second stimulus
presentation. The first and second of each pair were denoted by fixation
appearing as the numeral “1” or “2.” event durations are shown to the left
of the task representation.

green or “x wrong x” in red). After another interval (1–3 s), the
second fixation appeared, followed by the same stimulus display
and an intertrial interval (1–2.5 s). This procedure allowed for 6.2 s
on average between the 2 responses of each pair. Participants com-
pleted 12 practice pairs before entering the scanner. Trial order
per block was randomized and the experiment was programmed
in Visual Basic.

Neuroimaging acquisition
Participants were scanned on a 3 Tesla Siemens MAGNETOM
Trio scanner at the Wolfson Brain Imaging Centre (Cambridge,
UK). After the acquisition of a T1-weighted (T1w) scan, Siemens
standard echoplanar imaging sequence was used depicting blood
oxygenation level-dependent (BOLD) contrast, with time repe-
tition = 2,000 ms, flip angle = 78◦, time echo = 30 ms, in an
interleaved ascending sequence. The field of view was 192 × 192
mm, with matrix 64 × 64, echo spacing = 0.47 ms, and bandwidth
= 2,442 Hz/Px. Volume number per run varied from 285 to 336.
Each image volume comprised 32 slices of 3-mm thickness, with
in-plane resolution of 3 × 3 mm, orientated parallel to the anterior
commissure–posterior commissure line.

Task performance
The main measure of interest was mean change on response 2
(R2), with accuracy and reaction time (RT) as secondary mea-
sures. Linear mixed-effects (LME) models were fit with feedback
(positive or negative), response 1 accuracy (R1: correct or incor-
rect), run (1–3), and all interactive terms as factors in R (R Core
Team, 2017, version 4.0.4) using the lme4 package (Bates et al.
2015). Subsequent post hoc pairwise comparisons of estimated
marginal means with Tukey adjustment were conducted using
the emmeans package (Lenth 2018; Pinheiro et al. 2021). Vari-
ous LMEs were tested that included different random intercepts
and were subsequently compared using the Akaike information

criterion, Bayesian information criterion, and log likelihood. The
LME, including a random intercept for each subject and run, had
the lowest scores across all 3 measures and is thus reported
here. The winning model was: mean change R2 ∼ feedback × R1
accuracy × run + (1 + run|subject).

Imaging data
Preprocessing
Preprocessing of fMRI data was performed using FMRIB Software
Library (FSL) (Smith et al. 2004) and FMRIPREP, a Nipype-based
tool (Esteban et al. 2018). Each T1w volume was corrected for
intensity nonuniformity using N4BiasFieldCorrection and skull-
stripped using antsBrainExtraction with the OASIS template in
the Advanced Normalisation Tools software (Tustison et al. 2010).
Spatial normalization to the ICBM 152 Nonlinear Asymmetrical
template version 2009c was performed through nonlinear
registration with the antsRegistration tool using brain-extracted
versions of both T1w volume and template (Avants et al. 2008).
Brain tissue segmentation of cerebrospinal fluid, white matter,
and gray matter was performed on the brain-extracted T1w using
fast (FSL) (Zhang et al. 2001). fMRI data were slice-time-corrected
using slicetimer (FSL) and motion-corrected using mcflirt (FSL)
(Jenkinson et al. 2002). Distortion correction was performed using
field maps processed with fugue (FSL) (Jenkinson 2003). This was
followed by coregistration to the corresponding T1w image using
boundary-based registration with 6◦ of freedom using flirt (FSL)
(Greve and Fischl 2009). The field distortion correcting warp,
BOLD-to-T1w transformation and T1w-to-template (Montreal
Neurological Institute [MNI]) warp were concatenated and applied
in a single step using antsApplyTransforms using Lanczos
interpolation.

Frame-wise displacement was calculated for each functional
run using the implementation of Nipype (Power et al. 2014). The
first 5 volumes were discarded to avoid T1 saturation effects.
The images were subsequently high-pass filtered (128 s) and
spatially smoothed with a 6-mm full-width, half-maximum 3D
Gaussian kernel. A canonical hemodynamic response function
was modeled to the onsets of the explanatory event types. Qual-
ity checks were conducted by checking successful registration,
ensuring that none of the participants showed excessive motion
using DVARS and framewise-displacement measures (excessive
motion threshold being 10% of the total number of volumes) and
by inspecting their respective carpet plots. All subjects passed
these quality checks.

First-level model
A first-level fMRI linear model was fit using FEAT (FSL) (Woolrich
et al. 2001) for each run and included the following event types:
(i) R1 correct, (ii) R1 incorrect, (iii) positive feedback, (iv) negative
feedback, (v) R2 change, and (vi) R2 repeat. Equivalent event types
for easy trials and 6 movement parameters (x, y, z, pitch, roll, and
yaw) resulting from the image realignment to control for move-
ment artifacts were also included. Contrasts included only diffi-
cult trials and consisted of: (i) R1 incorrect versus correct, (ii) neg-
ative versus positive feedback, and (iii) R2 change versus repeat.

Higher level models
A primary second-level model averaged the first-level models for
each subject across the 3 runs. An additional model included
the effect of run to assess changes over time on the 6 event
types included in the first-level model. The contrasts above were
subsequently examined in third-level mixed-effects whole-brain
analyses involving one-sample t-tests with cluster thresholding
with a Z-threshold of 3.1 and P < 0.05 to correct for multiple
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comparisons (Woolrich et al. 2004). Figures of fMRI results were
created using FSLeyes (Smith et al. 2004).

Connectivity analysis
To further investigate the circuits involved in changing or repeat-
ing a behavior, a whole-brain PPI analysis was conducted in FSL.
Four ROIs were created based on the findings from the first
analyses as well as from areas reported to mediate proactive
cognitive flexibility in previous studies. The regions that were
selected for PPI analysis included the caudate nucleus, AI, OFC,
and superior frontal gyrus (SFG). A 5-mm sphere was placed in
the center of the respective region based on the Harvard-Oxford
Atlas. Mean timeseries for each participant and each ROI were
extracted. AI and SFG were selected due to their involvement
in error monitoring and because they are part of the SN and
ECN, respectively, which are both active in task-switching and
set-shifting paradigms (Magno et al. 2006; Uddin 2021). The OFC,
on the other hand, is involved in learning of response-outcome
contingencies and reversal learning tasks (Schoenbaum et al.
2007). Finally, the caudate nucleus was included due to its role in
response inhibition and feedback learning (Tricomi and Fiez 2008;
Schmidt et al. 2020).

A PPI analysis tests whether there is an interaction between
the ROI timeseries and a cognitive process which accounts for
the neural responses observed in other brain regions (Neufang
et al. 2008). This was tested by including the extracted time
series, the response to the cognitive process of interest (change
vs. repeat), and an interaction term between them. Contrasts
tested the differences in connectivity in the change versus the
repeat condition. One-sample t-tests for each seed-region were
conducted and clusters above a Z-threshold of 2.5 and P < 0.05
were considered to be significant.

Multivariate pattern analysis
An MVPA employing a support vector machine (SVM) algorithm
was used to predict whether participants would change their
minds or repeat their response during R2. The MVPA was run on
nonnormalized and unsmoothed data to reduce distortions and
was conducted using nilearn and sklearn in Python 3.6 (Pedregosa
et al. 2011; Abraham et al. 2014). The MVPA was based on the
whole-brain individual beta maps obtained from the univariate
analysis, more specifically, the beta maps for feedback, R1, and
beta maps for the 2 categories were combined by concatenation.
The individual beta maps were represented as separate points in
a high-dimensional space in which a linear decision boundary
was determined through a hyperplane. The decision boundary
separated the scans based on the labels assigned to them, in
our case, changing or repeating a response on the next trial. The
classifier identified a hyperplane that could best separate the
provided input space (Li et al. 2014). The SVM applied a linear
kernel, rather than a nonlinear kernel to minimize overfitting,
using a fixed regularization parameter (C = 1). This parameter
C controls the trade-off between having no training errors and
allowing misclassifications and was set to 1 based on previous
publications (Yang et al. 2019; Vilgis et al. 2022). Cross-validation
was performed using the leave-one-out method. This method
excludes 1 subject from each group, trains the classifier on the
remaining data, and then tests performance on the excluded
participants. This procedure is repeated for each subject. Subse-
quently, the classification process was repeated 1,000 times with a
different random permutation of the training labels. The purpose
of permutation testing was to determine whether the overall
classification accuracy was statistically significant and was used

Fig. 2. Effect of feedback and run on R2 change. The LME model for R2
change had significant feedback and feedback × run effects across both
accurate and inaccurate R1 responses. Participants changed more fol-
lowing spurious negative feedback compared with after spurious positive
feedback, though this effect was reduced across the 3 runs. Error bars
represent standard error of the mean.

to derive a P-value. Performance was evaluated using (i) the F1
score, (ii) the area under the receiver operating characteristic
curve (AUROC), and (iii) classification accuracy. Maps visualizing
decoder weights showed which areas contributed to classifying
whether the subject would change or repeat their choice on the
subsequent stimulus presentation.

Results
R2 change performance
Analysis of mean R2 change revealed that it was significantly
affected by feedback (F(1, 394) = 31.15, P < 0.001, η2P = 0.07) and R1
accuracy (F(1, 394) = 16.93, P < 0.001, η2P = 0.04). Mean R2 change
was higher following negative feedback (M = 0.39, SD = 0.24) com-
pared with after positive feedback (M = 0.23, SD = 0.22). Mean R2
change was also higher when R1 was incorrect (M = 0.41, SD = 0.24)
compared with when R1 was correct (M = 0.21, SD = 0.19). The
interaction between R1 accuracy and feedback was not significant
(F(1, 394) = 2.18, P = 0.14, η2P = 0.0055). Additionally, a feedback ×
run interaction was evident (F(1, 394) = 3.96, P = 0.047, η2p = 0.01),
as seen in Fig. 2. Participants increasingly disregarded negative
feedback with time (t(394) = −2.00, P = 0.047 for negative feedback
but not for positive feedback (t(394) = −0.40, P = 0.69). The 3-
way interaction between R1 accuracy, feedback, and run was not
significant (F(1,394) = 1.33, P = 0.25, η2p = 0.0034).

Brain activations when changing versus
repeating a response
Figure 3 shows that the R2 change-repeat contrast revealed sig-
nificantly greater activity in the paracingulate/cingulate gyrus,
anterior insular cortex, superior, middle, and IFGs, superior and
middle temporal gyri, OFC, frontal pole, and caudate as well as
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Fig. 3. Results summary of change versus repeat contrast. a) Axial slices (MNI z = −10 to −1) of the contrast highlighting key regions activated more when
participants changed compared to when they repeated their responses. b) Sagittal view (MNI x = 6–4) of the contrast highlighting key regions activated
more when participants changed compared to when they repeated their responses. Activations detected with a whole-brain analysis involving one-
sample t-tests with cluster thresholding with a Z-threshold of 3.1 and P < 0.05. The bar on the right represents the t-statistic.

in the lateral occipital cortex and cerebellum when a participant
changed their response (Table 1). Both repeating and changing a
response were associated with significant activations in the SFG,
paracingulate gyrus, cingulate gyrus, insular cortex, OFC, caudate,
putamen, thalamus, frontal pole, intracalcarine and supracal-
carine cortices, and cerebellum.

Neural connectivity when repeating versus
changing a response
The PPI analyses highlighted interactions between brain areas
involved in modulating responses in the presented paradigm.
The change versus repeat contrast of the AI PPI analysis showed
there was greater connectivity between the AI and occipital
areas when repeating compared to changing R2 (Table 2). These
areas include the lateral occipital cortex and occipital pole
lateralized to the left hemisphere. Similarly, there was stronger
connectivity in the repeat condition between the OFC and
occipital areas, such as the lingual gyrus, occipital pole, and
occipital fusiform gyrus. Enhanced connectivity between the SFG
and the left posterior cingulate gyrus and precuneus cortex was
found when changing compared to repeating R2 (see Supple-
mentary Materials). There were no differences in the change
versus repeat contrast when the PPI analysis with the caudate
nucleus seed.

MVPA: predicting changing one’s mind
Using an MVPA approach, we tested whether it is possible
to predict whether participants would change or repeat their

response. R2 change could be predicted from brain activity during
R1, presentation of feedback, as well their combination. Analyses
using R1 beta coefficient maps yielded an accuracy of 0.64
predicting R2 change, and those using the feedback resulted in
an accuracy of 0.74 (P = 0.013 and P < 0.001, respectively). When
R1 and feedback were combined, performance was superior with
an accuracy of 0.77 (P < 0.001). For comparability, LME model
accuracy for behavioral performance was 0.70. Table 3 presents
a summary of performance metrics, including the AUROC and F1
scores. The maps visualizing decoder weights gave an indication
of regions contributing to classifying whether participants would
repeat or change their response (Supplementary Fig. S1). Based on
R1 activity, voxels contributing to R2 classification encompassed
the cingulate, caudate, putamen, inferior and middle frontal
gyri, frontal pole, and occipital cortex, with additional voxels
distributed throughout the brain. When the feedback beta maps
were used, areas involved in classification included the AI and
OFC, as well as the SFG, paracingulate gyrus, cingulate gyrus,
caudate, and frontal pole.

Additional performance measures
Mean R1 accuracy was 0.59 (SD = 0.071, 95% CI [0.56, 0.61]),
indicating participants found the task challenging to complete.
Mean R1 accuracy was significantly affected by run as subjects’
performance improved (F(1, 79) = 4.35, P = 0.040). Mean R2 accu-
racy was higher at 0.64 (SD = 0.071, 95% CI [0.61, 0.66]). An analysis
of R2 accuracy indicated significant R1 accuracy and R1 accuracy
× feedback effects (F(1, 394) = 403.2, P < 0.001, η2P = 0.51 and
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Table 1. Summary of fMRI peak activity for the contrast of R2 change versus repeat. Results from a whole-one-sample t-tests with
cluster thresholding with a Z-threshold of 3.1 and P < 0.05.

Name BA Side MNI coordinates
(X, Y, Z)

Number of voxels Volume (mm3) Mean z-statistic

Frontal pole 10 R 30, 64, −4 367 12,386 3.49
Frontal pole 10 L −35, 59, −5 199 6,716 3.60
Anterior insular cortex 13,16 R 38, 20, 2 96 3,240 3.76
Anterior insular cortex 13,16 L −40, 20, 2 86 2,903 3.75
OFC 11,47 R 42, 26, −7 167 5,636 3.67
OFC 11,47 L −50, 25, −8 119 4,016 3.73
SFG 6,8 R 3, 36, 44 251 8,471 3.64
SFG 6,8 L −7, 27, 47 168 5,670 3.85
Middle frontal gyrus 46 R 47, 35, 31 252 8,505 3.53
Middle frontal gyrus 46 L −48, 18, 42 93 3,139 3.39
Paracingulate gyrus 32 R 3, 29, 42 168 5,680 3.71
Paracingulate gyrus 32 L −7, 40, 27 168 5,680 3.80
Anterior cingulate gyrus 24 R 8, 30, 24 104 3,510 3.58
Anterior cingulate gyrus 24 L −6, 28, 27 67 2,261 3.46
IFG 44,45 R 45, 20, 9 182 6,142 3.50
IFG 44,45 L −48, 18, 5 161 5,434 3.55
Middle temporal gyrus 21 R 58, −25, −6 92 3,105 3.50
Middle temporal gyrus 21 L −59, −25, −6 34 1,147 3.58
Angular gyrus 39 R 51, −53, 43 294 9,922 3.72
Angular gyrus 39 L −55, −54, 43 363 12,251 3.95
Supramarginal gyrus 40 R 56, −44, 45 225 7,594 3.58
Supramarginal gyrus 40 L −57, −46, 45 295 13,331 3.89
Lateral occipital cortex 19 R 38, −63, 45 163 5,501 3.88
Lateral occipital cortex 19 L −37, −61, 45 275 9,281 3.96
Precuneus cortex 7 R 6, −68, 45 11 371 3.38
Precuneus cortex 7 L −6, −73, 45 38 1,282 3.50

Note. BA - Brodmann area.

Table 2. Summary of fMRI peak activity for the PPI contrast of change versus repeat with AI as the seed-region. Results from a
whole-brain analysis involving one-sample t-tests with cluster thresholding with a Z-threshold of 2.5 and P < 0.05.

Name BA Side MNI coordinates
(X, Y, Z)

Number of voxels Volume (mm3) Mean z-statistic

Lateral occipital cortex 19 L −30, −82, 24 58 1,958 2.87
Occipital pole 18 L −30, −95, 19 32 1,080 2.85

Note. BA = Brodmann area.

Table 3. Summary of performance metrics for the MVPA analysis. Performance of 4 analyses is compared. The first column represents
classification accuracy purely based on behavior. In the second, classification was based purely on the beta maps from the first
response. The third analysis used the beta maps from the feedback conditions, and the last analysis combined the 2 by concatenating
the beta maps. Performance was measured using the accuracy, AUROC, and F1 scores.

Model

Measure Performance Response 1 Feedback Response 1 + feedback

Accuracy 0.70 0.64 0.74 0.77
AUROC 0.64 0.57 0.83 0.86
F1 0.68 0.66 0.74 0.78

F(1, 394) = 63.28, P < 0.001, η2P = 0.14, respectively). Mean R2
accuracy was significantly higher following correct R1 compared
with incorrect R1 (M = 0.78, SD = 0.19; M = 0.40, SD = 0.25,
respectively). When R1 was correct, R2 accuracy was higher when
feedback was positive (t(394) = −5.06, P < 0.001). However, when R1
was incorrect, R2 accuracy was lower when feedback was positive
(t(394) = 6.19, P < 0.001). There were no effects of run on mean R2
accuracy (F(1, 472) = 0.90, P = 0.34).

Additionally, an analysis of mean RT2 revealed a decrease
across runs (F(1, 39) = 9.88, P = 0.0032), and an interaction between
feedback and R1 accuracy (F(1, 394) = 4.21, P = 0.041), with faster
responding when R1 was correct and feedback was positive
compared to when R1 was incorrect and feedback was negative
(t(394) = 5.23, P < 0.001; M = 632.2 ms, SD = 178.8 ms; M = 686.1 ms,
SD = 197.7, respectively). When comparing RT2s for correct trials
followed by negative feedback with incorrect trials followed
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Fig. 4. Change in signal in response to feedback with run. a) Voxels that positively correlated with run, i.e. show an increased signal in response to
positive feedback with each run. The voxels are in the left striatum (MNI coordinates: X = −13, Y = 9, Z = 13). b) Voxels positively correlated with run
when negative feedback is presented. The voxels were found in the left striatum, occipital pole, and cerebellum (MNI coordinates: X = −19, Y = 17, Z = 3).
Results were obtained via a mixed-effects whole-brain analysis involving one-sample t-tests with cluster thresholding with a Z-threshold of 3.1 and
P < 0.05.

by positive feedback, no differences were found (t(235) = 0.91,
P = 0.36).

Activations associated with R1 response and
with feedback
Greater activity when R1 was incorrect versus correct was found
in the paracingulate, cingulate, and superior frontal gyri and the
right angular gyrus (Supplementary Table S1). Brain activations
associated with R1, when R1 was either correct or incorrect, were
observed in the cingulate and paracingulate gyri, superior, middle,
and inferior frontal gyri, insular cortex, lateral occipital cortex,
and superior parietal lobule.

When assessing activations associated with feedback, the
BOLD response was greater for negative than positive feedback
presentation in the superior frontal and superior temporal
gyri, with no other differences between the two conditions
(Supplementary Table S2). Activations associated with feed-
back, either positive or negative, were observed in the supe-
rior and middle temporal gyri, occipital cortex, and right
frontal pole.

Changes over time
Exploratory analyses assessed whether activations associated
with any of the 6 events of interest changed over the 3 runs. In
both the R2 change and repeat conditions, activity in the occipital
pole increased with run. Over time, activity to both positive and
negative feedback in the left dorsal striatum increased (Fig. 4).
With negative feedback, an increase in the frontal pole, occipital
pole, and cerebellum was also seen (Table 4). With correct R1,
frontal pole and ventromedial PFC activations increased across
runs. When R1 was incorrect, the dorsal striatum signal bilaterally
decreased with time.

Discussion
This study investigated behavioral and neural correlates of
proactive cognitive flexibility, where participants adjusted their
behavior voluntarily. Specifically, we assessed flexibility under
conditions that did not involve trial-and-error rule-based learning
or switching between multiple task-rules or attentional sets.
Instead, participants were allowed a “do-over,” illuminating a
perspective on flexibility not fully captured to date. Using paired
trials in an uncertain environment, participants decided whether
to change or repeat their response in the second of each pair.
Accuracy of performance for the first of each pair was only slightly
above chance, indicating that uncertainty was high. As expected,
participants were more likely to change their response following
the presentation of the second stimulus when the first response
was incorrect and when the feedback was negative.

The focus of the findings was on changing one’s mind on
the second response and its neural correlates. We noted ACC
activation associated with R2 change in addition to R1 responses.
Activation during the first response, particularly when incorrect,
is consistent with previous studies which identified this region
along with the SFG as key structures involved in error and action
monitoring (Carter et al. 1998; Botvinick et al. 1999; Van Veen
et al. 2001; Lie et al. 2006; Bonini et al. 2014). Electrophysiological
evidence from primates has shown that ACC neurons not only
respond to errors but also signal prior to adjustments follow-
ing an error, thereby contributing to the selection of the next
movement (Shima and Tanji 1998). Further, ACC neuronal activity
reflects a behavioral shift on the subsequent trial in a reversal
learning task (Kawai et al. 2015). Lesioning or inactivating this
area impairs the ability to adjust choice behavior after negative
outcomes in both experimental animals and humans (Williams
et al. 2004). Studies in humans have focused on neural corre-
lates of error signaling or detection (Van Veen and Carter 2002;

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/9/5436/6823760 by guest on 26 Septem

ber 2023

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac431#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac431#supplementary-data


Katharina Zühlsdorff et al. | 5443

Table 4. Summary of fMRI peak activity following positive and negative feedback across runs. Results from a whole-brain analysis
involving one-sample t-tests with cluster thresholding with a Z-threshold of 3.1 and P < 0.05.

Name BA Side MNI coordinates
(X, Y, Z)

Number of voxels Volume (mm3) Mean z-statistic

Positive feedback
Caudate L −13, 10, 14 39 1,316 3.55
Putamen L −24, 10, −1 15 506 3.43

Negative feedback
Caudate L −15, 12, 14 50 1,687 3.63
Putamen L −23, 12, −2 38 1,282 3.73
Occipital pole 18 R 15, −92, 14 51 1,721 3.63
Occipital pole 18 L −10, −98, 11 90 3,037 3.65
Lingual gyrus 19 R 11, −82, 2 17 573 3.51
Lingual gyrus 19 L −10, −50, 2 39 1,316 3.57
Precuneus cortex 7 R 9, −62, 16 19 641 3.53
Precuneus cortex 7 L −1, −71, 25 28 945 3.50
Cerebellum L −21, −61, −50 26 877 3.37
Frontal pole 10 R 3, 54, −2 12 405 3.27
Frontal pole 10 L −4, 58, −2 20 675 3.50

Note. BA = Brodmann area.

Ullsperger et al. 2014). The present findings complement these by
focusing on the subsequent behavioral adjustment, where strong
ACC and SFG activations were detected, i.e. on the instantiation
of flexibility through a change on the second response. This indi-
cates the importance of the ACC during the “implementation” of
behavioral adjustments, which has hitherto received less atten-
tion in humans (Ridderinkhof et al. 2004). The ACC and SFG
involvements also demonstrate the inherent conceptual overlap
between error monitoring and flexibility in some everyday situa-
tions, with error monitoring preceding flexibility.

In line with other studies of behavioral shifting, we report the
recruitment of PFC regions of the ECN and SN (e.g. IFJ, IFG, AI, ACC,
and dlPFC) during response change (Braun et al. 2015; Shine et al.
2016; Dajani et al. 2020). The IFJ is thought to mediate response
shifting by integrating multiple behavioral control processes and
interactions with the dlPFC, vlPFC, AI, and putamen, additional
evidence for which is provided by our findings (Cole and Schnei-
der 2007; Levy and Wagner 2011; Sundermann and Pfleiderer
2012). The AI and IFG, on the other hand, are both important
for response inhibition and contribute in dissociable ways (Cai
et al. 2014). The former is functionally coupled with the ACC and
is important for salience detection of unexpected or infrequent
events. Involvement of the AI is unlikely to be due to the detection
of an unexpected stimulus as in the case of inhibition in stop
signal or go/no-go tasks. Instead, given that changing was more
infrequent than staying, it may be associated with the salience of
an internally generated infrequent action. The IFG has stronger
connectivity with the dlPFC as part of the ECN and facilitates
appropriate behavioral control (Cai et al. 2014). The recruitment
of both the AI and IFG may be attributable to inhibition of the first
response, highlighting the intrinsic role of inhibition in purposeful
flexible adjustment of behavior. Unlike previous studies inves-
tigating flexibility, we also observed activity in the frontal pole
in both change and repeat conditions, with greater activations
during the former. This may represent a volitional component
of our task, as this area has been associated with processing of
internal states and self-generated responses (Christoff et al. 2003;
Ramnani and Owen 2004; Tsujimoto et al. 2010).

Our PPI analysis provided additional insight into the brain
circuits underlying repeating or changing a response. With the AI
as the seed region, there was stronger connectivity to the lateral
occipital cortex and occipital pole in the former condition. This

was also the case for the connectivity from the OFC to the occipital
pole, lingual gyrus, and occipital fusiform gyrus. Further, occipital
pole activation increased over time during the second response.
A recent automated meta-analysis of cognitive shifting, updating,
and inhibition highlighted not only the importance of prefrontal
regions but also the angular gyrus and visual cortex, whose role in
cognitive flexibility is often overlooked (Uddin 2021). Reports from
multiple task-switching studies further confirm the involvement
of occipital regions such as the lateral occipital cortex (Arm-
bruster et al. 2012; Dajani et al. 2020). In mice, ACC projection
neurons to the visual cortex important for error monitoring have
been directly linked to posterror behavioral adaptation through
fiber photometry and optogenetic manipulations (Norman et al.
2021). In humans, a causal dependency between the frontal oper-
culum and occipitotemporal regions in cognitive control has also
been demonstrated using transcranial magnetic stimulation, sug-
gesting top-down regulation of visual areas by the AI and frontal
operculum (Higo et al. 2011). Whether occipital areas in our
task were solely activated due to the stimuli being visual is
unclear. Nevertheless, our findings support an involvement of the
AI/OFC and connections to occipital regions in flexible cognitive
control.

MVPA is increasingly used to increase the information gained
from fMRI data (Weaverdyck et al. 2020). In the present study,
using the combined activity during the first response and
the feedback presentation, the algorithm could predict the
participants’ next action with an accuracy of 77%. As the
prediction of behavior from performance data in this tightly
controlled situation was 70%, the BOLD voxel-wise approach
enhanced the predictive properties of the data. When predictions
were based solely on activations during feedback presentation,
accuracy was 74%, compared to 64% when beta maps from
the first response were used. This suggests that both internal
monitoring and external feedback contribute to the change of
mind, with feedback appearing to have greater weighting here,
likely due to the high level of uncertainty introduced by the
brief presentation time. There was insufficient evidence for the
interaction of the two even though they would be expected to
in daily life. Future research should aim to investigate such
interactions further. Decoder weight maps highlighted voxels
in the AI, OFC, frontal pole, SFG, cingulate gyrus, and caudate
as strongly contributing to predicting a change response on
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the subsequent stimulus presentation. These results indicate
that brain activity prior to an action reflects the antecedents of
changing one’s mind.

Over time, participants changed their responses less following
negative feedback, suggesting they learnt it was unreliable. This
was accompanied by increased activity over time in the dorsal
striatum during feedback presentation, regardless of valence, in
addition to the increased activity in the occipital cortex during the
second response mentioned above. These findings are compatible
with the established role of the dorsal striatum in behavioral
and cognitive control, decision-making under uncertainty, and
signaling ambiguity (Hsu et al. 2005; Lopez-Paniagua and Seger
2013; Mestres-Missé et al. 2017). Thus, the dorsal striatum has
been found to estimate outcomes and adjust behavior when
there are deviations from expectations (Mestres-Missé et al. 2014).
Specifically, the dorsal striatum and its connections with cortical
regions, such as the ECN, are necessary for overriding previous
responses that are no longer useful, and instead, for implement-
ing more appropriate responses given the current environmental
context (Den Ouden et al. 2010; Mestres-Missé et al. 2014, 2017).
Caudate nucleus activation has been shown to correlate with
response selection rather than feedback presentation (Hiebert
et al. 2017). Here, the increased dorsal striatal activity during
feedback presentation over time likely reflects its involvement
in using ambiguous information to update response selection, a
finding that has not been reported in previous studies.

This study created high uncertainty via brief stimulus presen-
tation times and spurious feedback. Though effective in eliciting
participants to change their minds, the task could not dissoci-
ate specific contributions of internal versus external sources of
uncertainty, with the former reflecting an individual’s internal
state and the latter reflecting feedback from the environment.
Future studies may disentangle these or explore their interactions
along with alternative contributors to shifting present in everyday
situations. The task addresses difficulties encountered by the
task impurity problem, which arise from executive functions
necessarily operating on other cognitive processes and make it
difficult to untangle joint and separable aspects of executive
processes (Miyake et al. 2000; Uddin 2021). Thus, one challenge in
studying cognitive flexibility has been its isolation from working
memory and attention demands. These processes were likely kept
constant in the change versus repeat contrast, with the task
having minimal spatial and rule learning requirements. Future
studies could employ the same task with auditory stimuli to verify
modality independent involvement of key PFC nodes. Moreover,
this could reveal whether occipital region activation is due to
the visual nature of most flexibility tasks (Niendam et al. 2012).
Ultimately, the present findings broaden our view of flexibility
in everyday life by enabling a targeted assessment of volitional
decision-making.

Supplementary material
Supplementary material is available at Cerebral Cortex online.
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