

Cognitive function, numeracy and retirement saving trajectories

James Banks (University of Manchester and IFS), Cormac O'Dea (University College London and IFS) Zoe Oldfield (IFS)

Background

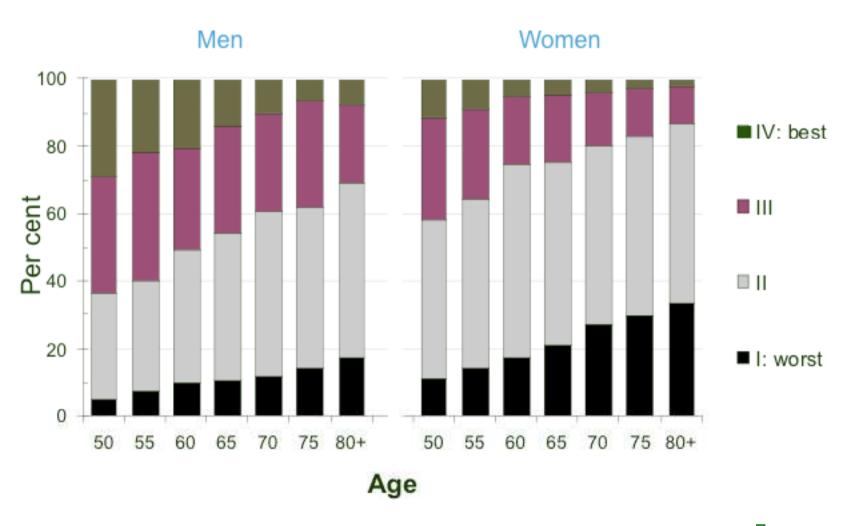
- Retirement saving decisions have become increasingly complex
- Substantial differences in the various dimensions of cognitive function across the population.
 - How does this translate into retirement outcomes?
- Evidence to suggest that cognitive function is an important factor in financial planning:
 - Higher ability individuals are more patient (Dohmen et al. 2007, Kirby et al. 2005)
 - Higher ability individuals less risk averse (Frederick 2005)
 - More numerate individuals less susceptible to framing effects (Peters et al. 2006, Parker and Fischhoff 2005)
 - Lower inability individuals less likely to participate in financial markets (Benjamin et al. 2006)

Our Aims

- Previous work (Banks & Oldfield 2007) investigated the relationship between cognitive function and:
 - Levels of financial wealth; Portfolio composition; Pension knowledge
- In this paper we investigate:
 - 1. The relationship between cognitive function and saving (*changes* in financial wealth)
 - 2. The implications of cognitive ability for welfare on retirement.
- Punchline:
 - 1. Cognitive ability is highly correlated with behaviour (even after conditioning on much else)
 - No evidence of marginal correlation between cognitive ability and (proxies for) welfare on retirement

Data: English Longitudinal Study of Ageing

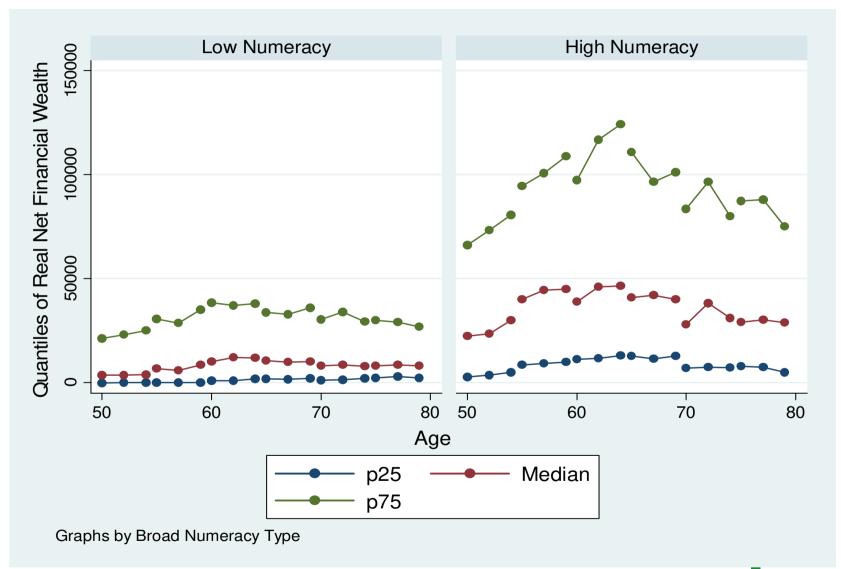
- Very similar survey to HRS (USA), SHARE (Europe)
- 12,000+ respondents aged 50+ in 2002
- Interviewed every 2 years with nurse visit every 4 years
- Full measurement of
 - Economic circumstances: employment, income, wealth
 - Expectations and subjective attitudes to ageing
 - Health, physical functioning and disability
 - Cognitive function and mental health
 - Social participation, social support
 - Biomarkers, admin data linkages


Cognitive Function Questions in ELSA

- Tests of retrospective memory, prospective memory, executive function, literacy, and numeracy
- Numeracy Questions:
 - 6 questions
 - Easiest effectively asks what is (100 minus 85)
 - Most difficult requires an understanding of compound interest
- We use these questions to divide respondents into four groups:

Group	Proportion of Sample		
Group I (Worst)	16.2%		
Group II	46.5%		
Group III	26.1%		
Group IV (Best)	11.2%		

Levels of numeracy by age (in cross-section)



Results from First Wave of ELSA (Banks & Oldfield 2007)

- Higher levels of numeracy correlated with levels of financial wealth
 - This remains true after conditioning on education.
- After conditioning on wealth, higher levels of numeracy:
 - Are correlated with probability of holding complicated assets
 - Not correlated with probability of holding simple interest bearing deposit account
- Numeracy correlated with "financial knowledge". Most numerate are more likely to:
 - Know if they have a DB or DC pension scheme; know accrual rate, expected pension income, whether pension income is indexedlinked
 - Feel they have had enough information about their pension
- Most numerate are less likely to report a chance of having "insufficient resources to meet their needs at some point in the future"

Using Waves 1 to 3 of ELSA Net real financial wealth profiles by numeracy and cohort

Numeracy and changes in financial wealth: pre- and post-retirement

Numeracy Group	Age 50-61			Age 65+		
	p25	p50	p75	p25	p50	p75
1						
2 (reference)	-	-	-	-	-	-
3						
4						

Dependent Variable: Change in wealth / Average income as a function of numeracy

Numeracy and changes in financial wealth: pre- and post-retirement

Numeracy Group	Age 50-61			Age 65+		
	p25	p50	p75	p25	p50	p75
1	0.16 (0.17)	0.03 (0.06)	-0.08 (0.30)			
2 (reference)	-	-	-	-	-	-
3	-0.11 (0.07)	0.07 (0.03)	0.41 (0.12)			
4	-0.14 (0.08)	0.16 (0.03)	0.70 (0.14)			

Dependent Variable: Change in wealth / Average income as a function of numeracy

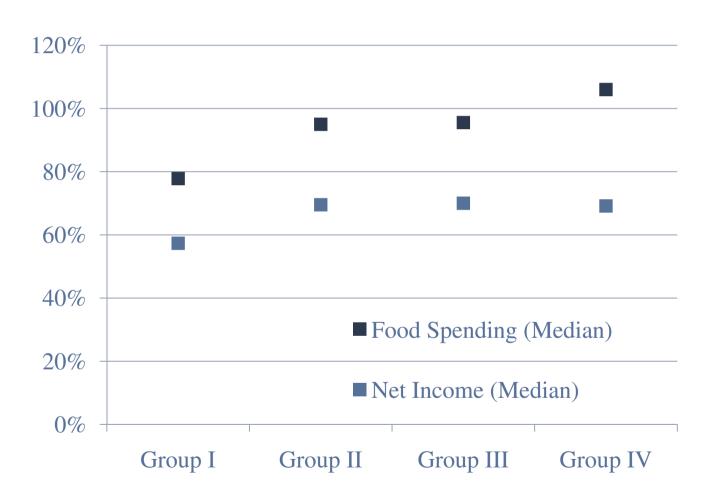
Numeracy and changes in financial wealth: pre- and post-retirement

Numeracy Group	Age 50-61			Age 65+		
	p25	p50	p75	p25	p50	p75
1	0.16 (0.17)	0.03 (0.06)	-0.08 (0.30)	0.13 (0.15)	0.01 (0.04)	-0.01 (0.12)
2 (reference)	-	-	-	-	-	-
3	-0.11 (0.07)	0.07 (0.03)	0.41 (0.12)	-0.19 (0.09)	-0.01 (0.03)	0.05 (0.08)
4	-0.14 (0.08)	0.16 (0.03)	0.70 (0.14)	-0.80 (0.13)	-0.17 (0.04)	0.32 (0.18)

Dependent Variable: Change in wealth / Average income as a function of numeracy

So what?

(Or does any of this matter?)


- These results reinforce previous findings that numeracy is correlated with savings behaviour
- This is not to say that any group is necessarily behaving less optimally
 - Retirement outcomes may be driven largely by state provision
- Can we find an association between numeracy and:
 - more fundamental outcomes which might affect welfare?
 - "sub-optimal" behaviour
- Two broad approaches that can be taken:
 - Structural model with enough structure to define "welfare" and "optimality"
 - 2. Investigation of reduced form (conditional) correlation of numeracy with outcomes that could plausibly correlate with welfare
 - In this paper we take this approach

Numeracy and Welfare

- We then turn to other measures which have an effect on welfare
 - Replacement Ratios (Income and Food Spending)
 - Realisations of expectations with regard to time of retirement
 - Stability of expectations with regard to future financial insecurity
 - Subjective measures of life satisfaction
- For each of these we look at the:
 - Unconditional relationship between our measure of numeracy and
 - The outcome conditional on income, education, etc.
- Summary:
 - A few interesting correlations (will show some)
 - No robust, consistent story found linking numeracy to welfare
 - Is this evidence that numeracy doesn't matter for welfare or simply reflecting that power of tests is low?

Replacement Rates (Median)

Expectations over future inadequacy of resources

Dep. Var.: % chance of inadequate resources for future (reported in 2006)	Everyone	Retirees
Wealth quintile 2	-4.69	-4.13
Wealth quintile 3	-5.65	-8.32
Wealth quintile 4	-10.02	-8.54
Wealth quintile 5	-12.58	-17.00
Num group 1	1.80	7.55
Num group 3	-4.67	-2.29
Num group 4	-5.75	-6.03
% chance of inadequate resources (2002)	0.24	0.26
Num group 1 * Expectations 2002	-0.07	-0.22
Num group 3 * Expectations 2002	0.10	0.04
Num group 4 * Expectations 2002	0.11	0.08

Numeracy and life satisfaction

- ELSA contains a number of questions on subjective well-being.
- We looked at two:
 - 1. "How often do you feel satisfied with the way your life has turned out?"
 - 2. "How often have you recently been feeling happy, all things considered?"
- Answers to both tend to be more stable over time for higher numeracy individuals
- Though no consistent story with regard to correlation with levels

Summary

- Strong correlations between numeracy and financial behaviour
 - Remains true after conditioning on education, age, demographic factors
- Link between numeracy and welfare in retirement remains an open question
 - Variation in behaviour could be a rational response to variation in expectations, risks, earnings processes
 - Preference primitives could well differ too across numeracy groups
- Some tentative correlations identified between numeracy and welfare proxies
- No robust, consistent story found linking numeracy to welfare
 - Tests are likely to be of low power so I would characterise this as "no evidence of a link" rather than "evidence of no link".

