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One of the most commonly cited theories in computing education research is cognitive load theory (CLT),

which explains how learning is affected by the bottleneck of human working memory and how teaching may

work around that limitation. The theory has evolved over a number of decades, addressing shortcomings in

earlier versions; other issues remain and are being debated by the CLT community. We conduct a systematic

mapping review of how CLT has been used across a number of leading computing education research (CER)

forums since 2010. We find that the most common reason to cite CLT is to mention it briefly as a design

influence; authors predominantly cite old versions of the theory; hypotheses phrased in terms of cognitive

load components are rare; and only a small selection of cognitive load measures have been applied, sparsely.

Overall, the theory’s evolution and recent themes in CLT appear to have had limited impact on CER so far.

We recommend that studies in CER explain which version of the theory they use and why; clearly distinguish

between load components (e.g., intrinsic and extraneous load); phrase hypotheses in terms of load compo-

nents a priori; look further into validating different measures of cognitive load; accompany cognitive load

measures with complementary constructs, such as motivation; and explore themes such as collaborative CLT

and individual differences in working-memory capacity.
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1 INTRODUCTION

Cognitive load theory (CLT) [100, 102, 103] is a theoretical framework that informs instruc-
tional design by explaining how learning is affected by the limitations of the human cognitive
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architecture. Fundamental to CLT is the relationship between working memory, long-term mem-
ory, and their distinct characteristics; cognitive load refers to the demands that an activity places
on working memory.

Cognitive load research has generated many pedagogical recommendations [103], which are
often discussed in terms of “effects.” CLT originated in the 1980s from studies of problem-solving
that demonstrated the superiority of initially studying examples rather than attempting to solve
problems [99]—this is the worked-example effect. Worked examples, which present a solution
for the learner to study, remain the quintessential CLT-based learning activity. Other cogni-
tive load effects include, for example, the split-attention effect, which recommends that pieces
of related information are presented in integrated format so that the learner’s working mem-
ory is not burdened by having to connect the information; the redundancy effect, which recom-
mends that the same information is not presented in multiple self-contained formats; the isolated-

elements effect, which recommends that the pieces of very complex information are first learned
in isolation before integrating them; and the self-explanation effect, which recommends prompt-
ing students to generate explanations (to themselves) of how they reason about concepts and
procedures.

So-called “compound effects” influence the other effects [103]. These compound effects include
the element interactivity effect, according to which the effects only apply where sufficiently complex
information is involved. The related expertise reversal effect explains why the effects vanish or even
reverse for learners with prior knowledge of the topic; for instance, high-prior-knowledge learners
may benefit more from problem-solving practice than from worked examples.

CLT is widely cited as an influence on instructional design as well as being the focus of many
research studies. This influence extends to computing education research (CER): in a 2014 re-
view of theory use in CER, Malmi et al. [55] noted that CLT is among the theories most frequently
cited. In CER, CLT has influenced example-based learning [58, 93], course design [8, 97, 107], the
design of learning materials and visualizations [6, 65, 68, 116], practice tasks such as Parsons prob-
lems [20, 28], and complexity analysis of program code [18], among other things.

However, like many other influential theories with a history, CLT is neither unitary nor un-
changing. There are two main variants currently in use. One is championed by CLT’s creators as
the simplest and most current version of the theory; another builds on the concept of germane
cognitive load that was introduced to CLT in 1998 but has since fallen out of favor with CLT’s
creators [100, 103]. Different authors in CER and elsewhere continue to cite and use different ver-
sions, sometimes deliberately and sometimes apparently by accident or default. At the same time,
the limitations of CLT and criticisms of CLR continue to be debated. Some of these criticisms were
highlighted in CER by Nelson and Ko [71], who argued that computing education researchers have
typically failed to acknowledge the theory’s limitations.

Inspired by Nelson and Ko’s [71] commentary, our own informal observations of CER articles,
and ongoing disagreements in the CLT community (see, e.g., [49]), we set out to review how dif-
ferent CLT variants have been used in CER during the past decade and how recent themes in CLT
are reflected in CER.

We conduct a systematic mapping review of CLT in four journals and six conferences that pub-
lish CER. This produces a picture of how CLT is cited in CER, which aspects of articles CLT is
influencing, which versions of the theory have been used, and which instruments have been used
to measure cognitive load. As we conducted our review, we noted some issues in how CER has ap-
plied CLT and reported on it; we comment on these concerns and make recommendations about
how authors might avoid them in the future. A secondary contribution of this article is to bring
CLT’s evolution and recent developments to the attention of the CER community.
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Section 2 below introduces CLT’s main concepts, identifies the theory’s two main variants, and
points at a number of recent themes and open debates in CLT.1 Section 3 details the research
questions and methods for our mapping review. Section 4 presents the main results of the review;
we then comment on those results in Section 5 and accompany them with further observations
and recommendations. Section 6 briefly wraps up the article.

2 BACKGROUND: CLT

2.1 Basic Concepts

CLT views learning as the construction of knowledge in long-term memory, which is virtually un-
limited in capacity. For that construction, information must first be processed in working memory,
which is very limited in both capacity and duration. Although people’s working-memory capacity
varies somewhat and can be improved through training [46, 87], it remains the case that any per-
son’s working memory can only hold a small number of elements at a time, for a short time. Over-
coming this bottleneck through instructional design for effective and efficient learning is CLT’s
central concern [100].2

2.1.1 Elements and Schemas. The key CLT concept of element interactivity refers to how many
elements a situation requires the learner to process simultaneously in working memory. This does
not simply mean the total number of elements to be considered during a lesson: element interactiv-
ity reflects the degree that the elements are interconnected in the sense that they must be compared,
contrasted, integrated, or otherwise consciously processed together. Cognitive load is the intensity
of cognitive activity required for a specific learning goal during a narrow time frame [38]; it arises
directly from element interactivity. Too much element interactivity means cognitive overload and
unsuccessful learning.

Long-term memory stores domain-specific knowledge organized in schemas. Once learned, even
a complex schema can be retrieved and treated as a single element in working memory, which is
why people can deal with complex situations in familiar domains. Schemas also explain the ex-
pertise reversal effect [35]: learners with prior knowledge may treat complex information as a
single chunk, which reduces element interactivity and may drastically influence which instruc-
tional methods are efficient. Cognitive load is thus not purely a feature of the learning activity but
also depends crucially on the learner.

2.1.2 Intrinsic and Extraneous Load. There are two types of cognitive load whose existence
is unanimously accepted by cognitive load theorists: intrinsic load and extraneous load. This is an
analytical difference. Intrinsic load “needs to be there” according to a CLT-aware observer, whereas
it is “safe” and often helpful to reduce extraneous load.

Sweller [100] defines intrinsic cognitive load as “the natural complexity of information that must
be understood and material that must be learned, unencumbered by instructional issues such as
how the information should be presented.” That is, intrinsic load is the component of cognitive load
that is unavoidable when aiming for a particular learning objective with a certain level of prior
knowledge. Prior knowledge reduces intrinsic load as it enables learners to treat larger amounts
of knowledge as a a single element, or even to deal with very familiar information automatically,
without burdening working memory. This feature of the human cognitive architecture explains
CLT’s isolated-elements effect (see above).

1N.B. Some passages of text in Section 2 have been replicated from an earlier conference publication [115].
2Cognitive load theory is closely related to Mayer’s Cognitive Theory of Multimedia Learning [61] and shares many as-

sumptions, concepts, and recommendations with it. We will not debate the two theories’ relationship further here, but note

briefly that some of the work in CER that discusses “cognitive load” cites Mayer’s theory rather than CLT.
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Extraneous load, in contrast, involves cognitive processing that is not necessary for learning, at
least not necessary per se. It results from instructional materials and activities [100]. “Unnecessary
content in learning materials, content that is not easy to access while solving a problem but needs
to be kept in mind, disturbing background noise, redundant instructions that need to be scanned
for new content, instruction that introduces unnecessarily many new topics at once, and verbose
lists of examples of factors causing extraneous cognitive load which appear at the beginnings of
sentences that fail to start by explaining what it is that they list, are examples of factors causing
extraneous cognitive load” [96].

Various cognitive load effects can be explained in terms of extraneous load. For example, mate-
rials that require the learner to integrate multiple sources of information cause a split-attention
effect, since dealing with the sources in working memory constitutes an extraneous load. Simi-
larly, materials that repeat the same information in multiple formats cause a redundancy effect, as
extraneous processing is needed to compare the information feeds.

Consider, too, the worked-example effect. Learners who solve a problem and learners who study
an example solution both need the intrinsic load of contemplating each problem state and how to
proceed from there. The difference is that the problem-solving learner needs further to consider a
wide range of potential “moves” across the problem space, so problem-solving involves a greater
extraneous load than studying examples does [100]. Nevertheless, worked examples also bring
some extraneous load, as the examples themselves are an instructional artifact distinct from the
solution strategies that are being learned.

Where intrinsic load is high enough due to complex enough content and low enough prior
knowledge, extraneous load should be reduced. On the other hand, where cognitive overload is not
a concern, there is no need to reduce extraneous load. In some cases, it is justifiable to increase load
(e.g., to introduce interesting but potentially distracting details for motivational purposes [94]).

2.2 The Evolution of Cognitive Load Theory

As there is no established nomenclature for the variants of cognitive load theory, we will use our
own. Henceforth, New CLT refers to the variant that is currently promoted by Sweller and others
as being the most up-to-date. Old CLT is the variant that was similarly promoted between roughly
1998 and 2010, which continues to be preferred by some scholars. (Pre-1998 versions of the theory
are not relevant for present purposes.3)

2.2.1 Old CLT. As discussed above, some cognitive load arises from the intrinsic complexity of
the learning goal, and another source is the extraneous complexity of instruction. According to Old
CLT [102], there is a third source of cognitive load alongside those two: germane load arises from
engagement with the learning activity. Germane load goes beyond simply coping with intrinsic
load; it is needed in order to construct schemas and make learning happen. Together with intrinsic
and extraneous load, germane load adds up to overall cognitive load, as shown in Figure 1.

Germane load is “good” cognitive load: the more the better. If there’s too much intrinsic and/or
extraneous load, there’s no “room” for germane load and no learning will occur. On the other
hand, even if intrinsic and extraneous loads are low enough, the learning activity may fail to
engage the learner to process the information sufficiently; in terms of Old CLT, such an activity
has insufficient germane load. When interventions based on Old CLT target improvements to deep
engagement with learning materials, they are often said to increase germane load. The same applies
to cognitive load effects such as the self-explanation effect, which is interpreted in Old CLT as

3In some respects, what we call New CLT is actually a back-to-basics return to a simpler pre-1998 theory; for a history,

see [103].
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Fig. 1. Old CLT, as interpreted by the present authors. In the abstract scenario depicted, most of a learner’s
working-memory capacity is devoted to dealing with the cognitive load imposed by a learning activity. (In
this scenario, there is no cognitive overload and some resources are left unallocated).

increasing germane load. Some scholars have stressed that germane load is not just any useful
load but instead arises from those additional, effortful aspects of learning that go beyond task
performance, such as conscious reflection and self-explanation [36, 86].

The precise definition and role of germane load in CLT has shifted during the past decades.
Germane load has been at the heart of many critiques of Old CLT, and it is the major difference
between Old CLT and New CLT, as described below.

2.2.2 Criticisms of Old CLT. Notable scholars in and around CLT complained that Old CLT
suffered from conceptual flaws, failed to explain various empirical results, used a germane-load
construct that was unnecessary and unjustified by results, and led to unfalsifiable circular inter-
pretations of findings [16, 23, 36, 86, 100]. These issues were compounded by there being no valid
measures of germane load. For example, if a reduction of overall cognitive load was observed in an
intervention, researchers might state post hoc that the change must have been in extraneous load
(if learning was enhanced) or germane load (if learning was hindered), but there was no way of
falsifying such interpretations, rendering them nearly worthless [16, 23, 86]. Moreover, numerous
studies reported that learning results went up as overall cognitive load went down, which con-
flicted with Old CLT’s notion that a reduction in extraneous load should lead to an equal increase
in germane load [100, 103].

Around the same time as the above criticisms surfaced, Moreno [66] pointed at more shortcom-
ings: “CLT is remarkably silent about the relation among load, affect, and motivation. . . . Another
omission from CLT is self-regulation.” Although Old CLT did have the concept of germane load,
which was sometimes linked to pedagogies promoting deeper engagement, Moreno [66] persua-
sively argued that Old CLT “has not attempted to clearly specify the characteristics of mental pro-
cesses that promote ‘good’ versus ‘bad’ load” and the theory has therefore failed “to unequivocally
predict the outcomes of different instructional methods on [load components] and learning.”

In part because of such criticisms, CLT was revised in 2010.

2.2.3 New CLT. New CLT [36, 100] is neater and narrower. It defines intrinsic and extraneous
load strictly in terms of element interactivity and posits that these two components constitute

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 40. Publication date: September 2022.
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Fig. 2. New CLT, as interpreted by the present authors; cf. Old CLT in Figure 1. In this scenario, extrane-
ous load requires the learner to devote some working-memory resources, but the learner is also able to de-
vote germane resources to intrinsic load, i.e., learning. (This figure, too, depicts a scenario without cognitive
overload.)

overall cognitive load. That is, New CLT discards the idea of germane load as a third, additional
and additive source of load. Any cognitive load that is not extraneous is intrinsic.

In New CLT, learning results from dealing with intrinsic load. This includes learning from “ad-
ditional” elaborative processes, which other frameworks might interpret as going beyond task
performance. If the learner is intended to, say, compare examples that vary in surface features,
or to self-explain, then the activity’s learning goals are more ambitious than otherwise, and the
intrinsic load is higher [36, 100].

The word “germane” is not gone from New CLT. However, New CLT’s concept of “germane
load,” which is alternatively and perhaps less confusingly also referred to as germane resources or
germane processing, “belongs to a quite different category to intrinsic and extraneous cognitive load.
It simply consists of working memory resources used to handle element interactivity associated
with intrinsic cognitive load” [100]. It is an entirely different quantity than Old CLT’s germane
load (see Figure 2).

It is our impression that—compared to the many Old CLT studies that have sought to increase
germane load—the concept of germane resources tends to play a reduced role in studies based on
New CLT.

One of the criticisms of Old CLT around 2010 was its silence on motivation. New CLT explicitly
sidesteps this critique: it is interested in how instructional design affects “ideal” learners that are
highly engaged; it assumes motivation [36, 100]. Motivation is thus something that is relevant to
learning but external to the theory; motivated engagement is not an additional load on a learner’s
mind, but something that is expected before the theory applies.

2.2.4 Both CLTs are Alive. New CLT is frequently cited as being more up to date, and it bears
the cachet of CLT’s primary creator, John Sweller. Nevertheless, Old CLT has notable support
from some groups of researchers who deliberately opt to use the original formulation of germane
load [44, 45, 89, 114]. As things stand, it is contentious which constructs compose cognitive load,
how best to interpret cognitive load measurements, and how to phrase hypotheses that involve
relationships between load components, overall load, and learning outcomes.

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 40. Publication date: September 2022.
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The issue of Old CLT vs New CLT is entangled with a number of other challenges in cognitive
load research. We briefly review some of those below.

2.3 Open Issues in Cognitive Load Theory

2.3.1 Measuring Cognitive Load. Researchers have come up with an assortment of methods for
approximating cognitive load empirically; for recent reviews and commentaries, see [48, 60, 103,
118]. However, there are arguably no truly well established and confidence-inspiring ways to mea-
sure load, and the problem is even worse if one wishes to measure individual load components—a
goal that has been referred to as CLT’s “holy grail” [3] and “mission impossible” [44]. This means
that it is difficult to compare versions of CLT empirically and, more generally, that it is challenging
to do research based on CLT.

Subjective measures of cognitive load are common. They are typically based on retrospective
self-assessment, in which learners report on their perceived mental effort or other aspects of a pre-
ceding learning episode. Paas’s [74] unidimensional nine-point scale for mental effort from 1992
is the time-tested instrument that continues to be used, but that simple scale cannot differentiate
between load types and suffers from noisy measurements [49]. Various groups of researchers have
created or adapted questionnaires for assessing separate load components with a battery of ques-
tions (e.g., [44, 45, 50, 51, 89, 112, 113]); this work on instrument development extends to CER as
well [69, 115]. Doubts remain over these instruments’ construct validity, however, and especially
over the questionnaire items that target germane load [34, 49, 51, 60, 115]. On the basis of empiri-
cal findings, some researchers have discarded the name “germane load” in favor of “self-perceived
learning” [5] or modified an instrument to focus on intrinsic and extraneous load only, as per New
CLT [9]; others target germane load in the Old CLT sense [44, 89]. Ultimately, it remains an open
question precisely what the existing instruments succeed in measuring.

Objective measures of cognitive load do not depend on self-assessment. They are usually based
on physiological data sources, such as eye-tracking [32], pupillometry [64, 106], heart rate [76],
or neuronal [1, 109] or electrodermal [73, 90] activity. This avoids the problem that learners’ self-
reports are often unreliable; another benefit is that many objective methods can be applied during
learning as an index to real-time changes in load, which is valuable since working memory operates
on a timescale of seconds. On the downside, many objective methods are intrusive and distracting,
and evidence of their construct validity, too, is limited. Moreover, although some attempts have
been made to differentiate load components using objective methods [3], a breakthrough appears
unlikely in the near future.

2.3.2 Motivation, Productive Failure, and CLT’s Scope. CLT has been at the heart of many
debates between proponents of “explicit (or direct) instruction” and proponents of “construc-
tivism” (see, e.g., [26, 42, 57, 96, 105]). Some (but not all) cognitive load researchers have placed
themselves firmly in the former camp, advancing in particular the argument that studying worked
examples that teach novices what to do is superior to problem-solving practice, especially when
that problem-solving is insufficiently scaffolded.

Lately, such discussions have frequently featured the pedagogical pattern of productive fail-

ure [39, 92], in which a problem-solving activity that fails by design precedes other activi-
ties that teach a solution. On the one hand, productive failure has credible empirical support,
but on the other, it ostensibly contradicts the well established worked-example effect. Various
scholars—and this includes voices from within cognitive load research—have recently argued
that efforts to reconcile CLT with productive failure and other complementary frameworks
have been insufficient [38, 49, 53]. Some work toward such a reconciliation is emerging (see,
e.g., [12–14, 24, 25, 53, 70, 92, 94]).

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 40. Publication date: September 2022.
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Motivational factors are key to various pedagogical strategies that emphasize problem-solving,
inquiry, or discovery and that are often perceived to contradict CLT’s prescription of worked ex-
amples. CLT’s assumption of motivated learners is a strength and a weakness. Cordoning off moti-
vation makes CLT sharper and more robust but also means that the theory must be complemented
by other theories and instruments in order to account for real-world situations where students
lack motivation. Perhaps the answer is that CLT’s role is to “micro-manage” [38] instruction at
a fine grain, while other perspectives complement CLT by addressing macro levels that involve
motivation, self-regulation, and similar concepts. Such possibilities continue to be debated (see,
e.g., [79, 85, 101]). Moreover, it has been suggested that cognitive load should be studied as an in-
fluence on motivation [22] and that CLT could be revised to encompass tradeoffs between risking
high extraneous load and risking low learner engagement [94].

2.3.3 Collaborative Learning. Almost all research on cognitive load has focused on individual
learning, which has brought the longstanding criticism that CLT ignores collaborative learning.
Recent critiques have suggested, for instance, that the effects of collaboration may explain the
tension between CLT and productive failure [49].

Matters have changed somewhat during the last decade, with a number of studies exploring
the influence of collaboration on cognitive load effects. In one study, for example, collaborative
problem-solving was found to be superior to problem-solving on one’s own, but collaboration
was counterproductive when studying worked examples [83]. An extension of CLT, collaborative

cognitive load theory, has been proposed [41, 43] and related research is emerging (see, e.g., [33]).
Nevertheless, the interplay between collaborative learning and cognitive load remains understud-
ied, which is another factor that researchers in CER—and teachers—should bear in mind as they
consider the theory’s recommendations.

2.3.4 Estimating Element Interactivity. While formulating intrinsic and extraneous load in terms
of element interactivity for New CLT, Sweller [100] suggested that “these two forms of cognitive
load can readily be distinguished using a priori analyses of materials prepared for particular learn-
ers.” A priori analysis of load interests practitioners, too, as Mason et al. [59] observed in CER:
“there are circumstances in which a decision on learning materials must be made before those ma-
terials are developed and deployed, . . . the assessment of the likely imposition of cognitive load is
made by the instructors and informs the development of the learning materials.”

In many studies of cognitive load, researchers have estimated the load imposed by learning ma-
terials, classifying the materials as high or low in element interactivity (see, e.g., [12, 13, 27, 54, 72]).
Findings are then interpreted in the light of such estimates. However, the estimates are typically
based on relatively informal and sometimes opaque argumentation rather than an explicit method.
There is no broad agreement on what counts as high or low complexity, and even the definition
of element interactivity as a measurable quantity has been challenged [40, 49]. To our knowledge,
there are no established guidelines on how to determine element interactivity for different mate-
rials (e.g., computing content), how to compare element interactivity across contexts, or how to
deal with prior knowledge in such analyses. The last point is crucial, since prior knowledge greatly
reduces element interactivity and cognitive load.

2.3.5 Other Developments. Recent work has examined CLT’s relationship with themes such as
individual differences in working-memory capacity [11, 84], emotions [30, 79, 94, 114], procedural
vs conceptual knowledge [14], human movement [88], the physical environment [15], and the
testing effect [27, 40, 49], among others.

ACM Transactions on Computing Education, Vol. 22, No. 4, Article 40. Publication date: September 2022.



Cognitive Load Theory in Computing Education Research 40:9

Section Summary: There are multiple versions of cognitive load theory, many unanswered
questions about methodology, longstanding debates about the theory’s fundamental concepts,
and numerous new threads of research.

These issues are of interest to researchers in computing education as well as practitioners. In
the rest of this article, we will examine how CLT and its developments are reflected in the CER
literature.

3 METHOD

We conducted a systematic mapping review of cognitive load theory in the context of comput-
ing education research. It builds on the guidelines for systematic reviews presented by Petersen
et al. [78].

3.1 Research Questions

We sought answers to the following research questions:

RQ1. How much does CLT feature in CER?

(a) How many publications actually use CLT (e.g., design studies or explain findings using
CLT)?

(b) How many publications at least cite CLT?

RQ2. Which versions of CLT are being used or cited in CER?

(a) How many publications use Old CLT compared to New CLT?
(b) How many publications cite Old CLT compared to New CLT?
(c) Have these proportions changed over the last decade?

RQ3. How common is it to measure cognitive load in CER, and with which tools?

3.2 Selection of Publications

3.2.1 Selected Venues. Since our focus was on the CER community, we decided to define the
scope of our publication search by venue. We looked for publications published in these journals:

— ACM Transactions on Computing Education (TOCE),
— Computer Science Education (CSE),
— IEEE Transactions on Education (ToE), and
— Computers & Education (C&E).4

And these conferences, whose proceedings series were readily available via the ACM Digital
Library:

— ACM SIGCSE Technical Symposium (SIGCSE TS),
— ACM International Computing Education Research Conference (ICER),
— Conference on Innovation and Technology in Computer Science Education (ITiCSE),
— Koli Calling International Conference on Computing Education Research (Koli),
— The United Kingdom and Ireland Computing Education Research conference (UKICER), and
— ACM Conference on Human Factors in Computing Systems (CHI).5

4Although C&E does not focus solely or even mainly on CER, we included it since it is a prominent journal that publishes

high-quality CER.
5Although CER is only one of many themes covered at the massive CHI conference, we included CHI as we were aware

that many studies published there mention cognitive load.
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Table 1. Search Terms for Each of the Selected Venues

Venue Search String

TOCE
“query”: {“cognitive load”}
“filter”: {Publication Date: (01/01/2010 TO 03/31/2021),
Published in ACM Transactions on Computing Education, ACM Content: DL}

CSE
[All: “cognitive load”] AND [in Journal: Computer Science Education]
AND [Publication Date: (01/01/2010 TO 03/31/2021)]

C&E “cognitive load” from “Computers & Education” from 2010 to 2021

ToE
(“Publication Title”: IEEE Transactions on Education) AND
(“All Metadata”:“cognitive load”), filter added 2010–2021

ICER

“query”: {AllField:(“cognitive load”)}
“filter”: {Article Type: Research Article, Conference Collections:
ICER: International Computing Education Research Workshop,
Publication Date: (01/01/2010 TO 03/31/2021), ACM Content: DL}

SIGCSE TS

“query”: {AllField:(“cognitive load”)}
“filter”: {Conference Collections: SIGCSE:
Computer Science Education, Article Type: Research Article,
Publication Date: (01/01/2010 TO 03/31/2021), ACM Content: DL}

Koli

“query”: {AllField: (“cognitive load”)}
“filter”: {Article Type: Research Article, Conference Collections:
Koli Calling: Koli Calling International Conference on
Computing Education Research,
Publication Date: (01/01/2010 TO 03/31/2021)}

ITiCSE

“query”: {AllField: (“cognitive load”)}
“filter”: {Article Type: Research Article, Conference Collections:
ITiCSE: Innovation and Technology in Computer Science Education,
Publication Date: (01/01/2010 TO 03/31/2021)}

UKICER

“query”: {AllField: (“cognitive load”)}
“filter”: {Article Type: Research Article, Conference Collections:
UKICER: UK & Ireland Computing Education Research,
Publication Date: (01/01/2010 TO 03/31/2021)}

CHI

“query”: {AllField: (“cognitive load”)}
“filter”: {Article Type: Research Article, Conference Collections:
CHI: Conference on Human Factors in Computing Systems,
Publication Date: (01/01/2010 TO 03/31/2021)}

Our selection of venues could certainly be expanded. However, we believe it to be fairly uncontro-
versial and to cover most major CER forums from the time period of interest.

3.2.2 Search Criteria. In 2010, Sweller [100] published what we consider the seminal New CLT
article. Since our primary interest is recent work, one of our research questions concerns the adop-
tion of New CLT, and 2010 is a nice round number, we chose to focus on the time interval between
2010 and the present time, which we delimited on March 31st, 2021.

The publications were available in the ACM Digital Library database, with the exception of three
journals: ToE (IEEE Xplore), CSE (Taylor & Francis Online), and C&E (Science Direct). In all the
databases, we searched for “cognitive load.” Table 1 details the search criteria.

3.2.3 Filtering the Publications. Our initial search yielded 1,253 publications. We filtered these
results using the following inclusion criteria:

— Must be a research publication. (This includes both short and long papers from Koli Calling.)
— Must be written in English.
— Must count as computing education research (see below).
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Fig. 3. Selection of publications to analyze, with counts by venue.

And these exclusion criteria:

— Short documents: posters, abstract, or extended abstract only.
— Meta and other non-standard publications: editorials, panels, keynotes, submissions to doc-

toral consortia.

We construed CER broadly as research related to the teaching and learning of computing. This
includes, for example, computational literacy [17] but excludes the general use of computers for
learning non-computing topics. The venues’ nature meant that this criterion was broadly met,
with the exception of the C&E journal and CHI conference, from which two we excluded many
publications. This filtering was done by screening the abstracts.

After applying the inclusion and exclusion criteria, we had 299 publications for further analysis.
Figure 3 summarizes the filtering process and shows the publication counts for each venue.

3.3 Procedure

Each publication was analyzed by either the first author, the second author, or both. After an initial
round of classification, we had a refinement round to solve unclear cases and disagreements.

We inspected each publication for CLT usage, CLT citations, any CLT versions that were cited
and/or used, cognitive load measurement, mentions of cognitive load types, and any other CLT-
related argumentation. Figure 4 shows an overview of the main questions that we asked during
this analysis in order to classify the publications. The figure also lists the classification labels.

To answer the questions and classify the publications, we searched each document for keywords
such as “cognitive load theory,” “intrinsic,” “extraneous,” and “germane,” among others. The specific
criteria for classification are explained in more detail below.

Our dataset with each publication’s classification is available online [19].
Note: As illustrated in Figure 4, we distinguished between using CLT and citing it, and examined

each separately. Often, studies that used CLT would also cite it, but some did only one or the other—
or neither, if “cognitive load” was mentioned in passing without a citation.

3.4 Classification Criteria

3.4.1 Which CLT Version Was Cited (If Any)? For each of the publications in our dataset, we
determined whether it cited cognitive load theory. If the theory was cited, we attempted to deter-
mine the version that was being referred to. This information helped us answer RQ1b (How many
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Fig. 4. Questions asked during the analysis of the selected publications, and the corresponding categories.

publications at least cite CLT?), RQ2b (How many publications cite Old CLT compared to New CLT?),
and RQ2c (Have these proportions changed over the last decade?).

More specifically, we looked at whether each publication cited at least one “primary” or “sec-
ondary” CLT source. We considered “primary” sources to be publications by Sweller and colleagues
that discuss CLT or its effects, whereas “secondary” sources are any other publications with clear
and obvious connections to cognitive load, such as Mayer’s theory of multimedia learning [61].

Publications that did not cite any primary or secondary CLT sources were classified as Cites

neither. If at least one CLT source was cited, we determined the cited CLT version mostly on the
basis of references to primary sources and the publication’s description of CLT and cognitive load
components. If New CLT or both versions were cited, we labeled the publication as Cites New CLT ;
we used the label Cites Old CLT if only that version was cited. In some cases, it was not possible
to assert which version of the theory was cited; we labeled these publications as Ambiguous cites.

3.4.2 How Was CLT Used? To answer RQ1a (How many publications actually use CLT?), we
checked each publication for evidence of CLT use. Each publication was given one of three labels:
Early usage, Interpretive, or No usage.

Early usage means that we saw evidence of CLT influencing the research already at an “early”
stage; that is, CLT has helped hypothesize about results, inspired an intervention design, influenced
data collection (e.g., CLT measurement), or informed theoretical framing. Depth of usage varied
greatly within this category, ranging from publications that briefly mention CLT as an inspiration
for a specific tool feature (e.g., [95]) to others whose study design is grounded in CLT (e.g., [91]).

Early usage contrasts with the Interpretive category, which we used for publications where CLT
only appeared “late in the paper,” as a suggested post hoc explanation for empirical findings. One
example is Bennedsen and Schulte’s [4] conjecture that cognitive load may have played a role in
why students did not benefit from additional features in a debugger.

Finally, the publications that did not match either of the other two categories fell under the No

usage label.
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Fig. 5. Total number of publications containing the phrase “cognitive load” and published at the selected
venues between 2010 and 2020. The faint red line is the polynomial trend for conferences and the faint blue
line for journals.

These categories are meant to describe which aspects of research CLT has influenced. They are
not a commentary on the publications’ quality, which we did not assess.

3.4.3 Which CLT Version Was Used? This analysis only involved those documents that had been
classified as Early usage or Interpretive; each of those publications received an additional label of
Uses New CLT, Uses Old CLT, or Ambiguous usage. We decided which CLT version was used by
examining the authors’ descriptions of cognitive load components and their references to specific
instruments for measurement. This step provided answers to RQ2a (How many publications use

Old CLT compared to New CLT?) and RQ2c (Have these proportions changed over the last decade?).
Cited and used CLT versions did not always go hand in hand. In particular, even if a publication

cited a given CLT version, it was not necessarily clear which version was actually used in the study.
In some rare cases, a publication used CLT and described that usage in enough detail that we could
assess the version despite the publication not citing CLT.

3.4.4 Was Cognitive Load Measured? In RQ3, we asked: How common is it to measure cognitive

load in CER, and with which tools? Any studies that measured cognitive load ended up in the Early

usage category, so we went through those publications, recording which studies applied which
instrument(s) for measurement.

3.4.5 Additional Analysis. We recorded whether the publications mentioned any specific cogni-
tive load components (extraneous, intrinsic, germane), and if they did, which ones. During analysis,
we also made notes on how CLT was discussed in the documents that we studied; we will comment
on some of these observations in Section 5.

4 RESULTS

4.1 RQ1: How Much Does CLT Feature in CER?

Since 2010, the number of publications that feature the phrase “cognitive load” has grown from
17 articles in 2010 to 48 articles in 2020. Figure 5 shows the publication counts for each full year
in our time interval. Visual inspection suggests a positive trend that is especially strong from
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Fig. 6. How many articles use CLT?

2014 onward for conferences. The recent numbers are boosted especially by the large conferences
SIGCSE TS and ITiCSE.

4.1.1 RQ1a How Many Publications Actually Use CLT? Of the 299 analyzed, 78 publications
(26%) were labeled Early usage, 28 (9%) Interpretive, and 193 (65%) No usage. That is, the majority of
the publications mentioning “cognitive load” did not actually use the theory in the senses described
in Section 3.4 above. Usage varied somewhat by venue, as shown in Figure 6.

4.1.2 RQ1b How Many Publications at Least Cite CLT? Many of the reviewed publications (126;
42%) mention “cognitive load” without any reference to either version of the theory or other ob-
viously related research. This is shown in Figure 7, where Cites neither has a high frequency at
most venues. Among the publications that did cite CLT sources, 105 (35%) clearly referred to one
or both versions of CLT. In the remaining 68 (23%), it appeared that they were citing CLT or related
literature, but we could not tell which version (Ambiguous cites in Figure 4).

If we focus only on those publications that used CLT (either Early usage or Interpretive), we find
that 73 (69%) cited one or both versions of CLT, 14 (13%) were ambiguous about which version
they cited, and 19 (18%) did not cite CLT despite making use of the theory.

4.2 RQ2: Which Versions of CLT are Being Used or Cited in CER?

Our results indicate that the CER community uses and cites both versions of CLT, with Old CLT
prevalent.

4.2.1 RQ2a: How Many Publications Use Old CLT Compared to New CLT? Studies that used
CLT (Early usage or Interpretive) were often ambiguous in which CLT they used: 59% of these
studies described their usage of the theory in insufficient detail to suggest a particular version of
the theory.

Uses Old CLT (36% of all publications using CLT) was far more common than Uses New CLT (5%).
Figure 8 shows these results by venue and suggests that there are differences between venues. In
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Fig. 7. Citations to CLT in publications featuring “cognitive load,” by venue.

Fig. 8. Usage of Old CLT and New CLT, by venue.

general, journal articles fell into the Ambiguous usage category less often (30%) than conference
papers (72%) did.

4.2.2 RQ2b: How Many Publications Cite Old CLT Compared to New CLT? For 105 publications,
we could identify a version of CLT that was cited. Most, 76, cited Old CLT, with 29 papers citing
New CLT. The distribution for each venue is shown in Figure 9.

We did not compute statistics on the most frequently cited papers, but can point to Sweller et al.
[102], Chandler and Sweller [10], and Sweller [99] as examples of commonly cited references for
Old CLT, with New CLT commonly cited via Sweller [100].
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Fig. 9. Citations of Old CLT and New CLT, by venue.

Fig. 10. Usage of CLT versions between 2010 and 2020, aggregated across venues.

4.2.3 RQ2c: Have These Proportions Changed Over the Last Decade? In terms of usage (whether
Early or Interpretive), New CLT has remained quite rare throughout the past decade. Between 2010
and 2020, it was used by at most one publication per year (in 2012, 2014, 2016–2018, and 2020).

Old CLT’s usage has varied over the years, with peaks in 2013 (six publications) and 2017 (seven).
Most recently, in 2019 and 2020, Old CLT was used in four publications each.

Ambiguous usage, on the other hand, has been increasing over the evaluated time frame, from
2 publications in 2015 to 6 in 2016–2017, 9 in 2018, 10 in 2019, and 12 in 2020.

Visual inspection of Figure 10 suggests little has changed between the two CLT versions, but
from 2018 onward, a higher proportion of studies used ambiguous versions of the theory.

In addition to trends in CLT usage, we looked for possible trends in citations. Among articles
that cite either Old CLT or New CLT, citing (only) Old CLT happened 76% of time between 2010
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Fig. 11. Citing of CLT versions between 2010 and 2020, aggregated across venues.

and 2020. Figure 11 shows the proportions for each year. Despite the exception in 2019, there might
be a minor emerging trend toward citing New CLT, with its proportion reaching or exceeding 40%
in multiple recent years.

4.3 RQ3: How Common is it to Measure Cognitive Load in CER, and

with Which Tools?

Out of 78 Early usage studies, 22 measured cognitive load empirically. The most common in-
struments used in these publications are Morrison’s [69] adaptation of Leppink’s questionnaire
(11 publications) and Paas’s [75] rating scale (seven publications). Other instruments were used
less frequently. These include those by Leppink et al. [50], Kalyuga et al. [37], and Ayres [2],
as well as the NASA-TLX [29] and PSA [52]. A few studies (e.g., [28, 31]) used more than one
of these instruments, such as a combination of Paas’s instrument with NASA-TLX or Leppink’s
questionnaire.

4.4 Mentions of Cognitive Load Components

As noted above, we additionally looked at how often the publications mentioned specific cognitive
load components. At least one component was mentioned in 69 publications out of our entire
dataset of 299; this subset largely overlaps with studies that not only cited but actually used CLT.
The most frequently mentioned component was extraneous load (65), followed by intrinsic load
(48) and germane load (40).

5 DISCUSSION

5.1 CLT Features Often in CER

Cognitive load theory is increasingly influencing CER. Since 2010, the number of annual publica-
tions that at least mention “cognitive load” has nearly tripled. In quite a few articles, “cognitive
load” comes up vaguely and casually, and the authors may not have meant the term in the CLT
sense. Nevertheless, many authors did refer to the theory.

Often, CLT was briefly mentioned either as a design influence or as a possible explanation for
findings. Few articles engaged with the theory in a deeper sense. Below, we provide some obser-
vations on these different kinds of CLT usage.
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5.1.1 Justifying Design Decisions by Mentioning CLT. Many articles in CER cite CLT as a design
influence for a pedagogical decision or a learner-facing technology: for instance, block-based pro-
gramming [77, 82], Parsons problems [119], worked examples [62, 108, 110], audio explanations
of code [21], and syntax exercises [98] have been justified on the grounds of cognitive load. Some
of these mentions are not concerned with CLT as a whole but more with a particular CLT-related
recommendation, such as the worked-example effect or the modality effect. In other articles, the
intention is more generally to keep complexity in check (e.g., complexity due to syntax).

There is nothing inherently wrong with mentioning CLT in such a way. We note, however, that
such mentions were often not accompanied by an attempt to measure load, to systematically ana-
lyze the learning situation from a CLT perspective, or to debate the relevant CLT effects critically.

Anecdotally, we observe that it is fairly common in CER to justify a design choice by mention-
ing “cognitive load” and citing a single paper that supports a somewhat similar design in a single
other context, without citing CLT itself. It seems rare in CER to discuss assumptions, boundary
conditions, and mixed findings concerning the various cognitive load effects. This is a potential
pitfall, since practically all of CLT’s recommendations come with notable provisos; even the ven-
erable worked-example effect is being considered in new light (see Section 2.3 above). Moreover,
complications in transferring cognitive load effects to the computing domain have been docu-
mented [67, 116, 117], and cross-contextual transfer is a perennial challenge in general.

Recommendations: Go ahead and cite cognitive load effects as design influences, but do
look into the limitations of the relevant effects. Consider measuring how your design influ-
ences cognitive load. Don’t cite CLT merely to name drop a theory of learning where you
want a simple design. Avoid “cognitive load” as a generic phrase for any effortful mental
work.

5.1.2 Mentioning CLT While Interpreting Findings. Researchers in CER are looking to CLT for
explanations of empirical results. Some articles briefly mentioned CLT in discussion only: after
reporting a study, the authors brought up cognitive load in order to explain learning outcomes
or to speculate about possible causes for observed phenomena (e.g., [4, 63, 80, 81]). Many such
interpretations appeared post hoc (i.e., cognitive load was not an element of the study design).

Even where CLT is not a major component of a study, speculation about a result in terms of
CLT can be a perfectly reasonable thing to do and may lead to valuable further research. We note,
however, that we did not spot concrete cases where such speculations were tested in a later pub-
lication. Furthermore, without measurements of cognitive load itself, researchers must be care-
ful not to overstate what is actually known about participants’ cognitive load. As we noted in
Section 2.2.2, Old CLT especially has been criticized for the unfalsifiability trap, where any out-
come can be conveniently explained post hoc, and similar concerns have been raised in CER as
well [71].

Recommendations: When interpreting empirical findings, go ahead and use CLT to gener-
ate speculations about what happened. Then conduct studies to test those speculations. State
a priori hypotheses in terms of overall cognitive load and/or load components. Don’t use (Old
or indeed any) CLT as a deus ex machina.

5.1.3 Deeper Uses of CLT are Uncommon. Articles that engage more deeply with cognitive load
theory remain fairly rare in CER. They certainly do exist, however, and have explored a variety of
research questions in terms of CLT. We list a few examples here to illustrate:

— Shin [91] and Tasir and Pin [104] sought to reduce extraneous load in learning materials by
addressing cognitive load effects. They measured load using Paas’s instrument.
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— Morrison et al. [69] adapted and validated a cognitive load measuring instrument for
programming.

— Yeh et al. [111] prompted germane processing in working memory through multimedia
learning materials. Their work is fairly unusual in CER in that it explicitly brings up prior
knowledge as a moderating variable for available cognitive resources and thus cognitive
load.

— Ericson et al. [20] compared the effects of two forms of practice—Parsons problems and
program writing—on learning outcomes, efficiency, and cognitive load. They formulated hy-
potheses in terms of CLT and measured cognitive load.

— Margulieux and Catrambone [56] measured cognitive load as part of a study on subgoal labels
in programming education.

5.2 Variants of CLT and Load Components

5.2.1 New CLT Has Not Really Caught On. In CER articles, Old CLT continues to feature more
prominently than New CLT, despite more than a decade having passed since New CLT was formu-
lated. We suspect that there are multiple factors behind this.

In some cases, citing Old CLT is clearly appropriate because the authors mean to point at the
beginnings of the theory and the seminal studies.

In some articles that do not engage deeply with CLT, it matters little which version of the theory
is brought up (or if the version is ambiguous). All versions of CLT share many core assumptions
and concepts, such as limited working memory and the consequent need to avoid cognitive over-
load while learning. Moreover, many of the specific pedagogical recommendations (e.g., worked
examples) can, arguably, be justified in terms of either Old CLT or New CLT.

It seems clear, however, that part of the reason for Old CLT’s prevalence is simply that authors
in CER are not aware of developments in the theory. This also suggests that many authors citing
CLT may be unaware of the conceptual and practical challenges in applying CLT reliably, to which
New CLT is a partial response, many of which continue to be debated. Similarly, the last decade’s
research on the caveats and boundary conditions of specific cognitive load effects may have gone
unnoticed by many researchers in CER.

Anecdotally, we also observed that a few articles cited New CLT but nevertheless proceeded to
treat cognitive load as three additive components as per Old CLT, without addressing this apparent
contradiction. Moreover, the term “germane load” was sometimes used in a way that left unclear
whether it was meant in the Old CLT or New CLT sense, which muddled the authors’ intended
meaning.

As we mentioned in Background, Old CLT continues to have support among the general litera-
ture on CLT. Some authors in CER, too, might have deliberately opted for Old CLT despite being
aware of New CLT. We saw little or nothing to suggest such a preference, however, although a few
studies that used or adapted an existing Old CLT instrument did mention the theory’s evolution
since the original instrument’s introduction.

Recommendations: Decide which version of CLT you use to design your study and why.
Report clearly on that decision. If you use New CLT for CER, consider which of the open issues
affect your work. If you use Old CLT, additionally consider whether your work is affected by
the criticisms that led to New CLT.

5.2.2 Vague Discussion of Load Components. CER articles frequently bring up cognitive load as
a generic concept, without discussing specific load components. Often this is fine, of course, such as
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when briefly mentioning the theory. In other cases, we felt that the authors’ argumentation might
have been sharper if they had distinguished between types of load. For example, many articles
stated that there was a need to reduce cognitive load without reference to intrinsic or extraneous
load. While reading them, we often got the impression that a particular learning situation was
assumed to be complex and that too much extraneous load was assumed to be present, but these
matters were not discussed by the authors.

In our dataset, cognitive load was generally framed as a sort of antagonist, with the researchers
looking to reduce or eliminate it. This framing resonates with CLT’s goal of avoiding cognitive
overload. On the other hand, it is not always appropriate to make every effort to reduce intrinsic
or extraneous load. Those efforts can be valid when load is too high, which depends not only on
specific learning objectives but also on learners’ prior knowledge. We observed that CER articles
seldom discuss cognitive load as something to be optimized rather than simply reduced (Shin [91]
is an exception). The expertise reversal effect, which implies that there is great variation in which
teaching approaches are effective for which students, appears to have attracted little comment in
CER, perhaps due to a focus on complete beginners.

In Old CLT, germane load is something that teachers want to increase as much as possible, since
it is the beneficial, additional load associated with schema formation and learning. In New CLT,
on the other hand, learning results from allocating resources to intrinsic load. This issue, which
is a further source of confusion in interpreting authors’ arguments, received little attention in the
CER articles that we reviewed.

Recommendations: Consider whether your arguments are about specific load components
rather than overall cognitive load. When reporting an attempt to reduce cognitive load, spec-
ify the type(s) of load. Try to design teaching that optimizes cognitive load for learners with
different characteristics.

5.3 Estimating Cognitive Load

5.3.1 Empirical Measurement. Measuring cognitive load is rare in CER. We found an average of
about two articles per year that had sought to measure either overall load or one or more load com-
ponents. Even among the subset of studies that actually used CLT (rather than merely mentioning
it), this is clearly a minority. At least in principle, many more CER studies might have benefited
measuring cognitive load than actually did measure it; the lack of measurement is explicitly rec-
ognized as a limitation by some authors (e.g., [7, 47]).

Subjective self-assessment instruments were by far the most common.6 Of those, CER has
largely relied on the Paas single-question instrument [74] and Morrison and colleagues’ [69]
programming-domain adaptation of Leppink and colleagues’ [50] 10-item questionnaire. This is
unsurprising, as the Paas and Leppink instruments are also popular outside of CER.

As we discussed in Section 2.3.1 above, trustworthy measurement of cognitive load and its com-
ponents is an open problem. The Paas scale has been criticized as unreliable and does not measure
load components; there are concerns over the construct validity of the Morrison/Leppink instru-
ment; many other instruments exist, but they are not without issues either.

CER is not alone with these problems. Leppink recently lamented the status quo: “researchers
continue to use their own definitions and measurement tools without mention of alternative views,
as if no one ever questioned for instance the role of germane load or any of the issues with the use
of self-report measurements” [49].

6We might have seen some more use of eye-tracking or pupillometry as a cognitive load measure had our review included

certain other (low-volume) venues. However, we do not believe that would have changed the big picture.
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Recommendations: Design studies that measure cognitive load so that CLT-based explana-
tions for findings may be evaluated. Do not assume that because an instrument for measuring
cognitive load has been published and used, it works. Study the caveats of your chosen in-
struments; consider alternative explanations for the results you get. Contribute to the quest
for trustworthy measurements.

5.3.2 A Priori Analysis. Another open issue in CLT is how to estimate, a priori, the element
interactivity inherent in a learning situation for a particular type of learners (see Section 2.3.4
above). In our review, we found very few papers that clearly attempted something in this vein.

One of those few is the article by Mason et al. [59], which sets out to “flip” the assessment of
cognitive load by having instructors examine the interacting elements present in a programming
environment. Another is the work of Duran et al. [18], who proposed (but did not empirically eval-
uate) an approach for analyzing the complexity of computer programs in terms of the hierarchical
schemas required to understand the programs.

Recommendations: Continue looking for ways to estimate element interactivity in pro-
gramming and other subdomains of computing. Evaluate the approaches proposed so far.

5.4 Other Themes in Cognitive Load Research

Many novel threads of research have influenced cognitive load theory during the past decade, and
more are emerging. Some of these themes were highlighted in Section 2.3 above; they include
the tension between CLT and productive failure, CLT’s relationships with emotion and motiva-
tion, collaborative cognitive load theory, and individual differences in working-memory capacity,
among others. Some of these developments are very new, but others have existed for a decade or
more. Overall, our review uncovered barely any evidence of these threads of research influencing
CER substantially.

Recommendations: Consider CLT only one piece in instructional design. Complement cog-
nitive load measurements by measuring other relevant constructs (e.g., motivation). Explore
topical themes from the CLT literature—such as productive failure, collaborative CLT, and
individual differences—in computing contexts.

6 CONCLUSION

For more than three decades, cognitive load theory has made valuable contributions to research on
instructional design. The theory has been questioned, expanded, and reformulated. That evolution
is still happening: CLT is not the finished article now, nor should we expect it to be “complete” at
any future time. All this is a testament to the theory’s ongoing relevance.

In this article, we have looked at CLT’s presence in computing education research. During the
past decade, citing CLT in CER has become increasingly common. Many authors mention the
theory in passing; others have delved deeper. It is clear that CLT is a source of inspiration for
researchers in our field.

However, many articles appear to rely on old versions of the theory, often without acknowledg-
ing alternatives. Attempts to measure cognitive load or estimate it analytically are rare. Design
recommendations derived from CLT are frequently cited without any discussion of their bound-
ary conditions or other limitations. Overall, we find that CER has not quite kept up to speed with
recent developments in cognitive load research.

Many of the issues facing computing education researchers are shared by the CLT community
at large. For instance, measuring cognitive load empirically is a vexing problem, as trustworthy
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instruments continue to elude us; future work in this area may be decisive to the theory’s enduring
impact.

Recommendations: Treat CLT as a living, evolving theory: it has much to commend it and
holds the promise of more, but it also comes with many open issues and limitations. Examine
CLT—its concepts, tools, and recommendations—in earnest, with a critical eye. Keep up to
date with research on CLT.
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