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Abstract— In this paper we design a cognitive radio that can
coexist with multiple parallel WLAN channels while abiding
by an interference constraint. The interaction between both
systems is characterized by measurement and coexistence is
enhanced by predicting the WLAN’s behavior based on a
continuous-time Markov chain model. Cognitive Medium Access
(CMA) is derived from this model by recasting the problem
as one of constrained Markov decision processes. Solutions are
obtained by linear programming. Furthermore, we show that
optimal CMA admits structured solutions, simplifying practical
implementations. Preliminary results for the partially observable
case are presented. The performance of the proposed schemes
is evaluated for a typical WLAN coexistence setup and shows a
significant performance improvement.
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Standards Coexistence, IEEE 802.11b, Resource Management.

I. INTRODUCTION

THE GROWING demand in wireless technology has re-

sulted in a dense allocation of relevant frequency bands.

So far, regulators avoid mutual interference by assigning

bands that do not overlap in frequency. This traditional static

approach, however, leads to inefficient usage in both spatial

and temporal domains. In fact, recent measurements [1] report

that generally less than 5% of the spectrum are used at any

given time and location. A static frequency allocation not

only leads to inefficient spectrum usage, it moreover confines

many services to unlicensed bands. A sizeable portion of the

wireless consumer equipment falls into this category. Consider,

for instance, WLAN, Bluetooth, cordless phones, and similar

applications.

As a consequence, we face today overly crowded unlicensed

bands whose performance is typically limited by mutual

interference, and inefficient spectrum usage in those bands

statically assigned by regulators. Is inefficient usage the price

we have to pay for avoiding interference?

The emerging area of dynamic spectrum access (DSA)

sparked by recent advances in software-defined and cognitive

Manuscript received March 2007; revised August 2007. This work is
supported in part by the U.S. Army Research Laboratory under the Collabo-
rative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-
0011. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation thereon.
This work has been presented in part at the IEEE Global Communications
Conference, Washington D.C., November 2007.

Stefan Geirhofer and Lang Tong are with the Department of Electrical
and Computer Engineering, Cornell University, Ithaca NY 14853 (e-mail:
{sg355,lt35}@cornell.edu).

Brian Sadler is with the U.S. Army Research Laboratory, Adelphi, MD
20783 (e-mail: bsadler@arl.army.mil).

Digital Object Identifier 10.1109/JSAC.2008.080109.

radios presents a possible solution to this problem. This paper

focuses on hierarchical schemes [2], in which the secondary

system, i.e. the cognitive radio, is designed such that no or only

insignificant interference is generated towards the primary

user. Orthogonality between both systems can be achieved

by exploiting different degrees-of-freedom in designing the

system. While most of the research has focused on limiting

mutual interference by spatial separation [3], we achieve

orthogonality in the time domain by reusing idle periods

that remain between the bursty packet transmissions of the

primary system, represented by multiple, independently evolv-

ing WLAN channels. The cognitive radio considered in this

paper is based on a frequency hopping setup with a physical

layer similar to Bluetooth. This allows us to draw some

conceptual parallels to Bluetooth/WLAN coexistence setups.

We emphasize that implementing Cognitive Medium Access

(CMA) as an extension of Bluetooth requires additional

sensing and processing that current hardware designs may

not easily accommodate. Our results indicate the significant

potential for incorporating CMA techniques in future systems.

A. Main contribution

The main contribution of this paper is the derivation of

CMA, a protocol that enhances WLAN coexistence based on

sensing and prediction. Our analysis is based on measurement-

based models, both for predicting the WLAN’s behavior and

for characterizing the cognitive radio’s impact.

CMA is fundamentally based on a stochastic model for

the WLAN’s packet transmissions. We have previously shown

through theory and experiment that a semi-Markov model

captures this stochastic behavior accurately [4]. We consider

this model and derive practical access schemes based on a

continuous-time Markov chain (CTMC) approximation. This

model, together with a sense-before-transmit strategy, allows

us to constrain the interference generated towards the primary

user.

The cognitive radio’s throughput is optimized by recast-

ing the problem as a constrained Markov decision process

(CMDP). The formulation of the CMDP depends on the sens-

ing capabilities of the radio frontend. If all parallel channels

can be observed simultaneously we say the system is fully

observable. On the other hand, if only a limited number

of channels can be sensed at a time, we have to address

this partial observability, which significantly complicates the

derivation of CMA.

It is well known that CMDPs can be solved via linear

programs, and we briefly state standard solution techniques.

Additionally, we show that our problem setup admits struc-
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tured solutions that allow us to gain further insight into the

problem and can be used to solve the optimization problem

with reduced complexity.

The numerical assessment of our algorithms is based on

typical WLAN deployments. We examine the performance for

the CTMC model, and investigate its robustness by running the

algorithms on data generated using the accurate semi-Markov

model. A comparison with a blind reference scheme, which

does not perform any sensing, shows a significant performance

improvement.

B. Related work

Dynamically accessing spectrum in the time domain has

received increasing interest [3], [5]. A taxonomy of existing

architectures is introduced in [2]. Among the first to consider

time domain spectrum sharing are [6], [7], where it is assumed

that primary and secondary system share the same slot struc-

ture. Based on a Partially-Observed Markov Decision Process

(POMDP) framework, access strategies for the secondary

system are derived. The assumption of both systems having

the same slot structure is, however, too restrictive in many

cases.

A semi-Markov model for predicting the WLAN transmis-

sions has been introduced in [4], [8]. In order to simplify

the derivation of access schemes, a CTMC approximation has

been considered in [9] and [10].

Coexistence in unlicensed bands has previously received

significant attention outside the cognitive radio community

[11] with Bluetooth/WLAN coexistence being a prominent

example of practical concern. A possible approach to in-

terference mitigation in this context is adaptive frequency

hopping [12]. The CMA protocol is conceptually similar to

such schemes but differs in its physical layer sensing. In

current Bluetooth devices such sensing is not required, and

consequently interference information needs to be inferred

from higher layers.

The remainder of the paper is organized as follows. In

Sec. II, the system setup is introduced. Sec. III presents the

measurement-based interference models. In Sec. IV, optimal

CMA is derived for fully and partially observed systems,

constituting this paper’s main contribution. Numerical perfor-

mance results are presented in Sec. V.

II. SYSTEM SETUP

The physical layer setup considered in this paper consists

of M parallel, independently evolving WLAN channels, as

shown in Fig. 1. The cognitive radio shares the same fre-

quency band and dynamically hops through the WLAN bands

based on sensing and statistical prediction. A value of M = 3
bands is typical since practical WLAN setups in the ISM band

at 2.4 GHz support three non-overlapping channels [13].

A. Physical layer setup

Although there are no restrictions in designing the cognitive

radio, other than our ultimate goal of minimizing mutual

interference, we shall focus on the frequency hopping (FH)

setup depicted in Fig. 1. Let each of the M WLAN bands

overlap with N narrowband hopping channels.
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Fig. 1. System setup. The cognitive radio is a time-slotted frequency hopping
system.

The choice of a FH setup is considered for two reasons.

First, WLAN is an unslotted system that performs medium

access based on Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA). A logical approach toward enforcing

an interference constraint is thus to sense the medium pe-

riodically, and transmit in a slotted fashion. Second, mutual

interference is reduced by exploiting the fact that WLAN uses

spread spectrum communications and thus has some inherent

robustness to narrowband interference.

The above considerations are motivated by practical expe-

rience. The FH setup considered in this work has conceptual

similarities to Bluetooth. We use this similarity to find realistic

deployment parameters (slot size, modulation characteristics,

etc.) based on the standard [14]. CMA is therefore a potential

cognitive extension to FH systems such as Bluetooth, based

on sensing and statistical prediction of the WLAN.

Apart from the FH setup, we also considered a direct-

sequence spread-spectrum physical layer for the cognitive

radio, spanning the same M frequency bands as the WLAN.

The spread-spectrum setup is also slotted and designed to

dynamically hop across the WLAN bands. For the spread-

spectrum setup, we found by experiment [15] that as long as

the spreading code is different from the WLAN’s, interference

properties are similar to the FH setup. As a consequence,

CMA extends to this setup as well, as it is only concerned

with finding a hopping sequence across bands (but not within

bands for the FH setup).

B. Operational block diagram

The operation of the cognitive radio is illustrated in Fig. 2.

An RF frontend is used for up- and down-conversion of the

signals, and sampling is performed using an acquisition board.

At the beginning of every slot a spectrum sensor determines

whether the medium is busy, either based on energy detection

or by exploiting features of the WLAN standard. The sensing

result is processed within the CMA controller, which deter-

mines whether it is ‘safe’ to transmit, and if yes, in which
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Fig. 2. Block diagram of the cognitive radio’s operation. The cognitive radio is shown on the left and coexists with the WLAN on the right.

band. The secondary transmitter is tuned accordingly and a

transmission may be initiated.
According to the above, on a slot level, the following

operations are performed in sequence. At the beginning of

every slot the medium is sensed, the CMA controller decides

on which band, if any, to transmit on, the transmitter is retuned

accordingly, and a transmission takes place for the remainder

of the slot period.
The sensing time, the run time of the controller, and the time

it takes to retune the transmitter contribute to the overhead of

the system. We have previously analyzed the performance of

energy detection on WLAN signals [8]. With a detection error

probability of 10−5 and a signal-to-noise ratio (SNR) of 5 dB

we require a sensing time of less than 5 µs. Thus the sensing

overhead at the beginning of every slot is fairly small. The

CMA controller implements a randomized control policy (to

be described in detail later), which can be implemented by

biased coin flips. The delay associated with it is small as well.

Finally, current technology yields a frequency retuning time

on the order of 100 µs [16], and thus dominates the processing

overhead time. In our numerical evaluations we choose a slot

size of Ts = 625 µs, which is the same as in Bluetooth. We

believe this is a practical choice given the similarities in the

physical layer setup.
We stress that since every WLAN channel overlaps with

N hopping channels, the hopping within each band decouples

from selecting one of the M WLAN bands. This paper solely

deals with the optimal selection of one of the M bands.

Hopping within each band can, for instance, be performed

pseudo randomly.
In this paper, we assume that the secondary system is

synchronized. In a practical system, maintaining identical hop

sequences within the cognitive system may be challenging, as

sensing results obtained at different nodes could potentially

differ. While it is beyond the scope of this paper to address this

issue in detail, we believe that collaborative sensing techniques

could be used to provide hop sequence coordination. By

exchanging sensing metrics across subsequent slots, master

and slave could perform sensing jointly and thus arrive at

identical results. Another potential scheme for maintaining

synchronization is to employ acknowledgement feedback [10].

III. MEASUREMENT-BASED INTERFERENCE MODEL

CMA is a protocol that dynamically hops across multiple

parallel WLAN bands in an optimal fashion. It is fundamen-

tally based on a measurement-based prediction model, which

will be described in detail in Sec. IV. In addition we present

physical-layer coexistence models, that describe the interac-

tion between both systems, should a collision occur. This

experimental coexistence model is described in the following.

In particular, we first evaluate whether the cognitive ra-

dio affects the WLAN’s carrier sensing. Second, we obtain

empirical results for the probability that a collision between

both systems leads to a WLAN packet error. Due to space

limitations, we focus on a qualitative assessment; detailed

quantitative results can be found in a separate technical report,

available online [15].

A. Impact on WLAN carrier sensing

The design of the cognitive radio needs to ensure that its

transmissions remain transparent to the WLAN. This implies

that the WLAN’s carrier sensing must not be altered. Other-

wise not only our paradigm of hierarchical DSA would be

undermined, but also the cognitive radio’s dynamic effect on

the WLAN would render our prediction model useless, unless

it incorporated the WLAN’s retransmission behavior.

We evaluated the cognitive radio’s impact by measuring

the probability that the WLAN detects the cognitive radio’s

transmission. The experimental setup is shown in Fig. 3(a).

It consists of an 802.11b router and an RF signal source,

generating the WLAN and the FH signal, respectively. More

precisely, we consider a static (non-hopping) FH signal with

Bluetooth’s modulation parameters [14]. As the signal remains

static in one of the channels it is possible to examine the

mutual interference resulting from a specific channel.

The WLAN adapter and the signal source are connected via

circulators, which couple generator and router while providing

isolation in the reverse direction. A WLAN adapter is used to

capture the received signal, and a vector signal analyzer is

used to verify the correct operation of the setup.

The impact of the FH signal is assessed by measuring

its effect on the WLAN packet rate. The WLAN router

continuously transmits packets, and a WLAN adapter card is

used to measure its average rate (by capturing packets over

long periods of time). In the presence of the cognitive system,

if the WLAN detected the interference, its rate would decrease

as back-off periods would need to be accommodated.

The impact on the WLAN largely depends on the inter-

ferer’s channel index. Our results suggest that the WLAN

adapter performs energy detection in narrow bands spaced

about 10 MHz apart. No impact was observed outside these
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Fig. 3. Experimental setup for evaluating the cognitive radio’s impact on
the WLAN’s carrier sensing and packet error rate.

channels, even for fairly high interference powers. Due to

space limitations quantitative results are not included in this

paper, but given in a technical report, available online [15].

Based on our quantitative results [15] and given typical

setups [17] and path loss models [18], we conclude that the

cognitive radio does not alter the WLAN’s medium access.

This solidifies our hierarchical approach and renders the

stochastic prediction model applicable.

Furthermore, we have analyzed whether measuring rate

changes is an appropriate method to determine the cognitive

radio’s impact. We validated our measurement approach by

performing the same analysis for a different type of interferer,

namely a WLAN-type signal using the same spreading code

as standardized for 802.11b [19]. We observed that the adapter

card is significantly more sensitive to this type of signal. The

power level above which an impact occurs was determined to

be −77 dBm (see [15] for details). This is in accordance with

the 802.11b standard [19, p.58] which mandates the sensitivity

to be −76 dBm or better.

B. Effect on packet error rate

The second component of our interference model focuses

on the cognitive radio’s impact on WLAN’s packet error

rate. Specifically, we measure the probability that a collision

between both systems leads to a WLAN packet error. The mea-

surement setup is shown in Fig. 3(b). It consists of a WLAN

adapter card and a signal source generating the WLAN signal

and the FH interferer, respectively. The signals are combined

and captured via another WLAN card and commercial packet

capturing software. A vector signal analyzer is used to verify

the operation of the setup.
The packet error probability is measured in the following

way. A continuous stream of packets is generated and captured

at the receiver to determine the rate of packets with the inter-

ferer turned off. Subsequently, in the presence of interference
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Fig. 4. Semi-Markov model (SMM) and its continuous-time Markov chain
(CTMC) approximation. The SMM is shown on the left. By lumping states
and approximating the holding times by exponential distributions we arrive
at the CTMC approximation on the right.

the rate will decrease since some packets will be too distorted

to be captured by the adapter. Other packets will be captured

but will show an invalid redundancy check. By comparing the

number of successfully received packets with the interference-

free case, we can determine the probability of a packet error.

The impact of the FH interferer depends on the channel

index. Close to the center frequency, a significant impact

is observed for signal to interference ratios (SIR) of less

than 0 dB. For instance, for an offset of 3 MHz from center

frequency and an SIR of -3 dB, we observe a packet error rate

of 85%. If the SIR drops below −5 dB virtually every packet

is lost. The impact of the FH interferer decreases as we move

away from the center frequency. This is not surprising and has

previously been reported [20]. It is due to the downconversion

and filtering performed within the WLAN receiver. More

quantitative results for this measurement scenario are given

in [15].

IV. COGNITIVE MEDIUM ACCESS

The derivation of CMA is based on the empirical interfer-

ence model. In short, we have seen that while the WLAN’s

carrier sensing remains unaltered, a packet collision is likely

to cause a packet error. For ease of analysis, and because such

an assumption has frequently been made in other papers [11],

we assume that every collision inevitably results in a packet

error. This is a worst case assumption given our measurement

results.

A. Empirical WLAN Model and CTMC Approximation

Since collisions cause packet errors we need to constrain

the rate of collisions between both systems. The derivation of

CMA is based on a previously established WLAN prediction

model [4], [8]. The key components of this model are briefly

reviewed, specifically the semi-Markov model and its CTMC

approximation. We stress that both models have been based

on and validated through experimental data gathered via a

sensing testbed [8]. The model is based on empirical data

for the idle and busy durations of the medium. In short, the

stochastic model enables us to predict whitespace and direct

our cognitive radio such that it preferably hops to bands not

currently used by the WLAN.
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1) Semi-Markov model: Analyzing the idle and busy dura-

tions obtained by measurement we found that almost always

the transmission of a data packet is followed by a short

interframe space (SIFS) and an acknowledgement from the

receiver. This does not come as a surprise, given that such

acknowledgements are mandated by the standard and merely

correspond to a successful packet exchange [13].

We thus arrive at the transition diagram depicted in Fig. 4,

which consists of alternating packet transmissions (including

their mandatory acknowledgements) and idle periods, respec-

tively. The transitions between DATA, SIFS, and ACK state are

deterministic. For CMA it is crucial to predict how long the

system remains in either state. In statistical terminology this

corresponds to finding distributions Ft(t) and Fi(t) for the

holding (or sojourn) times in the TRANSMIT and IDLE state,

respectively.

Clearly, the holding time in the TRANSMIT state corre-

sponds to the length of the packets, which is largely influenced

by the type of traffic and the specific properties of the

scheduler. Our measurements suggest that over short time

periods, Ft(t) consists of several (less than five) discrete

values. In the traffic scenario to be analyzed in this paper

the packet lengths are, in fact, almost deterministic [21].

Predicting the idle durations is more involved. As a matter

of fact, an idle channel can either be due to inactivity of

the medium or be a residue of the WLAN’s medium access

which has to guarantee each station an equal transmission

opportunity. The latter is implemented via a backoff procedure

requiring stations to defer medium access for uniformly-

distributed random time periods. In essence, the station with

the smallest backoff gets to access the medium first. As a

consequence of the above we observe uniformly distributed

idle durations resulting from the above operation.

If the medium is inactive, i.e. if none of the stations has

any data to transmit, we have shown by experiment that the

idle durations are well approximated by a generalized Pareto

distribution [8].

The existence of both effects leads to a mixture distribution

to model the holding time in the IDLE state. We arrive at

Fi(t) = pcwFu(t) + (1 − pcw)Fgp(t), (1)

where pcw denotes the probability that an idle duration is

due to the contention window, Fu(t) is a uniform distribution

within [0, 0.7 ms] [8], and

Fgp(t; k, σ) = 1 −

(

1 + k
t

σ

)−1/k

(2)

is the CDF of a generalized Pareto distribution with shape

parameter k and scale parameter σ. By fitting the mixture

distribution (1) to the empirical data we can estimate the above

parameters. The accuracy has been validated by statistical

measures of fit in [8].

2) CTMC approximation: The semi-Markov model pre-

sented above provides for an excellent fit with empirical

data. However, in deriving CMA the semi-Markov model is

difficult to analyze since it does not possess the continuous-

time Markov property. In order to simplify analysis we con-

sider a CTMC approximation, which corresponds to fitting

exponential distributions to the idle and busy periods. The

band 1
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(a) Fully observable CMA

band 1

band 2
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Fig. 5. Illustration of fully and partially observable CMA. Circles and squares
denote idle and busy sensing results, respectively. In the fully observable
scenario, all bands are sensed simultaneously and depending on this result, a
transmission may be initiated in one of the channels. In the partially observed
case, only one band can be observed at a time. Consequently, actions are
limited to either staying in the current band, or hopping to another.

exponential fit provides a good approximation although it is

not strongly validated by statistical measures of fit. More

details can be found in [15]. The parameters of the CTMC

model are thus λ and µ, leading to Ft(t) = 1−exp(−µt) and

Fi(t) = 1 − exp(−λt), respectively.

B. Fully observable CMA (FO-CMA)

The sensing based access schemes presented in this paper

can be categorized according to the sensing capabilities of the

cognitive radio. If the spectrum sensor supports a high enough

bandwidth, the state of all M channels can be observed simul-

taneously at the beginning of every slot. This is illustrated in

Fig. 5(a). Based on the sensing result the cognitive controller

decides in which, if any, channel to transmit.

If the spectrum sensor has limited bandwidth, we assume

that only one of the M bands can be sensed at a time;

the state of the other bands remains hidden. Furthermore,

we assume that for practical reasons, a transmission can

only be initiated in the channel that has just been sensed.

This assumption makes the system partially observable and

significantly complicates the analysis. This is illustrated in

Fig. 5(b), where only one channel is observed at the beginning

of any slot.

We start with the fully observed case and first recast the

problem mathematically as a constrained Markov decision pro-

cess. The standard solution technique [22] is briefly reviewed.

We then show that our problem setup admits a structured

solution. The partially observed case is addressed separately

in Sec. IV-E.

In order to find optimal access strategies we need to formu-

late a constrained optimization problem [9]. Let each of the

WLAN bands i = 1, . . . , M evolve as a CTMC {Xi(t), t ≥ 0}
with states ‘0’ (IDLE) and ‘1’ (TRANSMIT). The holding



100 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 1, JANUARY 2008

times are exponentially distributed with parameters λi and µi,

respectively, as shown in Fig. 4.

The generator matrix Gi for channel i is hence given by

Gi =

[

−λi λi

µi −µi

]

, (3)

which leads to the stationary distribution

η
(i)
0 =

µi

λi + µi
, η

(i)
1 =

λi

λi + µi
(4)

and transition matrix [23, p.391]

P(i) =
1

λi + µi

[

µi + λie
−(λi+µi)t λi − λie

−(λi+µi)t

µi − µie
−(λi+µi)t λi + µie

−(λi+µi)t

]

.

(5)

The secondary system senses the state of the entire system

at the beginning of every slot, inducing a discrete-time chain

{Yi[k], k ≥ 0} of sensing results for each channel i. For

notational convenience let us define the vector valued random

process {Y[k], k ≥ 0} that contains the latest sensing result

for all channels,

Y[k] =
[

Y1[k], . . . , YM [k]
]T

. (6)

It is straightforward to verify that Y[k] is a discrete-time

Markov chain with state space X = {0, 1}M . The transition

matrix becomes, due to the independence of the WLAN bands,

Pxy =

M
∏

i=1

P(i)
xiyi

, x,y ∈ X (7)

and we arrive at the following expression for the stationary

distribution

ηx =

M
∏

i=1

η(i)
xi

. (8)

Given the sensing results in each slot, the CMA controller

decides whether to transmit and if yes, in which channel. The

action set is thus A = {0, 1, . . . , M}, where a = 0 denotes

that no transmission takes place, and a ≥ 1 means that a

transmission is scheduled in channel a.

Transmitting across channel a accrues a unit reward pro-

vided no collision occurs. The expected immediate reward of

choosing action a in state y thus becomes

r(y, a) =

{

1[ya=0]e
−λaTs , a ≥ 1

0, a = 0
, (9)

where 1[·] represents the indicator function and Ts denotes the

slot duration.

The interference constraint can be formulated in several

ways. We shall call slot k in band i busy, and denote this

as Ci[k] = 1, if

∃t ∈ [kTs, (k + 1)Ts) s.t. Xi(t) �= 0. (10)

The interference constraint can then be formulated as

DCIC = lim
N→∞

∑N
k=1 1[Ak=i,Ci[k]=1]

N
, (11)

where Ak refers to the action taken in slot k. It is capital-

ized to stress that Ak is random; it depends on the current

sensing result and the action (randomly) chosen by the CMA

controller. The above equation corresponds to the long run

fraction of slot collisions per unit time. We will refer to (11)

as the cumulative interference constraint (CIC).

While the CIC seems an intuitive measure, it quantifies the

interference from the secondary user’s perspective. The density

of the WLAN traffic is not taken into account. The formulation

can be better tailored to the primary user by imposing a packet

error rate constraint (PERC) for all bands

D
(i)
PERC = lim

N→∞

∑N
k=1 1[Ak=i,Ci[k]=1]

Ni(NTs)
, 1 ≤ i ≤ M, (12)

where Ni(t) counts the number of transmitted WLAN packets

in band i up to time t,

Ni(t) =

∞
∑

n=0

1
[S

(i)
n ≤t]

. (13)

In the above equation, S
(i)
n denotes the arrival times of WLAN

packets in band i. Therefore (12) is the long-run fraction

of collisions per transmitted WLAN packets. In short, this

represents the fraction of WLAN packets that get dropped

due to the cognitive radio’s interference.

Based on the above definitions, we define the expected

immediate costs for the CIC,

dCIC(y, a) =

⎧

⎨

⎩

1 − e−λaTs if ya = 0, a ≥ 1
1 if ya = 1, a ≥ 1
0 if a = 0

, (14)

and for the PERC,

dPERC(y, a) =

⎧

⎪

⎨

⎪

⎩

(λa+µa)(1−e−λaTs )
µaλaTs

if ya = 0, a ≥ 1

1 if ya = 1, a ≥ 1
0 if a = 0

.

(15)

Having introduced rewards and costs, the CMDP can now

be defined. CMA maximizes

J(β, π) = lim
N→∞

1

N

N
∑

t=1

Eπ
βr(Yt, At) (16)

with respect to policy π, subject to a CIC

DCIC(β, π) = lim
N→∞

1

N

N
∑

t=1

Eπ
βdCIC(Yt, At) ≤ α, (17)

or subject to PERCs, (see Eq. 18).

In the above formulas β denotes the initial distribution of

the system, and π the policy we maximize for. The expec-

tation operator is thus taken with respect to the probability

distribution induced by π given initial distribution β.

C. Linear programming solution

It is well known that a CMDP’s optimal policy is in the

space of Markovian randomized policies [24]. The optimal

policy π∗ is hence a function that maps state-action pairs

(y, a) to the probability of choosing action a in state y,

π∗ : X × A → [0, 1]. Since, in CMDPs both the reward and

the constraints can be expressed using the frequency of state-

action pairs (y, a) the optimal policy can be found by linear

programming [22].
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D
(i)
PERC(β, π) = lim

N→∞

1

N

N
∑

t=1

Eπ
β1[At=i]dPERC(Yt, At) ≤ αi, 1 ≤ i ≤ M. (18)

Theorem 1 [22, p.38]: The linear program

max
ρ(y,a)

∑

y∈X

∑

a∈A(y)

ρ(y, a)r(y, a) (19)

subject to
∑

y∈X

∑

a∈A(y)

ρ(y, a)di(y, a) ≤ αi, 1 ≤ i ≤ M, (20)

where ρ(y, a) ∈ Q(β) and

Q(β) =

⎧

⎨

⎩

ρ(y, a),y ∈ X, a ∈ A(y) :
∑

y∈X

∑

a∈A(y) ρ(y, a)(δy(x) − Pxay) = 0
∑

y∈X

∑

a∈A(y) ρ(y, a) = 1, ρ(y, a) ≥ 0

⎫

⎬

⎭

(21)

is equivalent to the CMDP formulations (16)-(18). �

The CMDP’s optimal policy is completely determined by

the state-action frequencies. After obtaining ρ(y, a) via the

linear program the probability wy(a) of choosing action a in

state y simply becomes,

wy(a) =
ρ(y, a)

∑

a∈A(y) ρ(y, a)
, y ∈ X, a ∈ A(y), (22)

provided the denominator is non-zero (arbitrary otherwise).

D. Optimal FO-CMA structure

In this section we show that the above linear programs,

under some conditions, admit structured solutions that help to

gain insight into the problem. Moreover, using the structured

results simplifies the implementation of CMA.

1) Cumulative interference constraint: First, consider the

case of the cumulative interference constraint (20). Without

loss of generality assume that λ1 ≤ · · · ≤ λM . We show

that it is optimal to use only channels with small λ. How

many channels should be used can be derived from a threshold

model with respect to the constraint α. The solution structure

is depicted in Fig. 6.

Algorithm 1 (Threshold solution)

i. Define the maximum interference level for channel i as

ξi =
∑

y∈X

1[yi=0]1[yj=1,∀j<i]ηydCIC(y, i) (23)

ii. Based on the {ξi}, find the smallest k such that

ξ1 + · · · + ξk > α (24)

iii. Adopt the following randomized policy. With probability

wi, transmit in the idle channel with the lowest λi, i.e., in

state y transmit in channel i if and only if

yi = 0 and yj = 1 ∀j < i, (25)

and choose not to transmit otherwise. The probabilities wi

are given with k as defined in step (ii),

wj = 1, 1 ≤ j < k, wk =
α − ξk−1

ξk − ξk−1
, wj = 0, j > k

(26)

1 2 3 M ch. #

1

2

3

do not 

transmit
transmit

interference 

level

M

Fig. 6. Solution structure for the cumulative interference case.

Theorem 2: The policy induced by Algorithm 1 is a

solution to the LP (19)-(20) and hence equivalent to CMA.

�

Proof: see appendix.

2) Packet error rate constraints: In the case of PERCs,

separate constraints for each channel need to be considered

simultaneously. Intuitively, the maximum reward would be

achieved if all constraints could be made tight (otherwise

transmission opportunities would be wasted). It may not be

feasible, however, to tighten all constraints, given that a

transmission can be initiated in, at most, one channel per slot.

Whether this is possible, in fact, depends on how loose the

PERCs are chosen.

If the M constraints can be made tight, we show that the

problem decouples, and the optimal policy can be found by

considering each channel individually. This is the case if the

following condition is met for all channels,

ξa =
∑

x∈X

1[xa=0]ηx

∑M
l=1 1[xl=0]

≥
αa

da
, ∀a ∈ A, (27)

where

da =
(λa + µa)(1 − e−λaTs)

µaλaTs
. (28)

is the expected average cost associated with a collision.

The intuition behind (27) is to find a condition under which

the interference constraint can be made tight by considering

channels separately. In fact, a tradeoff on which channel

to transmit in need only be struck if x contains multiple

zeros. The denominator accordingly normalizes by the number

of transmission opportunities in state x and thus ensures

that, although the M bands are considered separately, the

probability of transmission for a given state will never exceed

one.

We can thus adopt the following algorithm.

Algorithm 2:

i. The maximum activity level ξi in channel i is given by (27).

Disregarding other transmission opportunities, we transmit



102 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 1, JANUARY 2008

in band i with probability

wi =
αi

diξi
, ∀i ∈ A (29)

ii. Since (27) is met, the constraints can be made tight, and

we obtain

wy(a) =
wa1[ya=0]

∑M
l=1 1[yl=0]

. (30)

Theorem 3: The policy induced by Algorithm 2 is a

solution to the LP (19)-(21) and hence equivalent to CMA.

�

Proof: see appendix.

E. Partially Observable CMA (PO-CMA)

In the last section we assumed that the state of all M
channels can be observed simultaneously. In this section we

alleviate this constraint and assume that only a single channel

can be observed at a time, as shown in Fig. 5(b). Furthermore,

a transmission can only be initiated in the channel that has

just been sensed. The action set thus reduces to A = {0, 1}
denoting whether or not a transmission is initiated.

The partial observability severely complicates the problem.

It is now necessary to trade off the exploration of the system

(by frequently sensing different bands) with the exploitation

of transmission opportunities. In order to illustrate how such

a tradeoff can be struck, we present some preliminary results

for the special case of M = 2 channels.

A fundamental consideration in designing PO-CMA is

which of the past observations and actions are useful for

making optimal decisions. Given that all bands are modeled

as CTMCs, the continuous-time Markov property leads to the

conclusion that the latest sensor reading of every channel is

sufficient for predicting its behavior.

This is illustrated in Fig. 7 for the special case of M = 2
bands. The states are labeled according to whether the current

sensing result is busy or idle. A busy channel is simply denoted

‘b’, whereas for an idle channel we also keep track of how

many consecutive slots the channel has been sensed idle.

Hence the states labeled ‘0’,. . . ,‘N ’ all correspond to an idle

sensing result.

The sensing history is incorporated in brackets, where the

first number reflects the currently active channel and the sec-

ond index denotes the latest sensing result in the other channel,

respectively. Note that the time since the other channel has last

been sensed is given, in this special case of M = 2, by the

number of slots spent in the current channel.

According to the above, the setup is fully described by

the triple (y, i, x) where y ∈ Y = {b, 0, . . . , N} denotes the

current channel’s sensing history, i the currently active channel

index, and x ∈ {0, 1} the last sensing result in the other band.

The transition behavior can be understood as follows. Under

action 1, i.e. keep transmitting, the following transitions are

possible

(y, i, x) → (y + 1, i, x), 0 ≤ y < N (31)

(y, i, x) → (0, ī, 1) (32)

(y, i, x) → (b, ī, 1), (33)

0
(1,0)

1
(1,0)

b
(2,0)

0
(2,0)

b
(2,1)

0
(2,1)

B
a
n

d
 1

B
a

n
d

 2

N
(1,0)

1
(2,1)

N
(2,1)

N
(2,0)

1
(2,0)

b
(1,1)

0
(1,1)

1
(1,1)

N
(1,1)

b
(1,0)

a=1

a=1a=0

Fig. 7. Markov chain model for the partially observable case. Only some
example transitions are shown. The indices denote the sensing result, the
active channel number, and the last sensing result, respectively.

where the first line denotes the channel staying idle. The other

two possible transitions correspond to the channel becoming

busy and the cognitive radio thus relocating to the other band.

This other band can in turn be either idle or busy and thus

two different transitions can occur. The notation ī represents

the other ‘band,’ that is ī = (i mod 2) + 1.

Under action 0, i.e. relocate to other band, the following

transitions may occur

(y, i, x) → (0, ī, 0) (34)

(y, i, x) → (b, ī, 0), (35)

denoting a relocation to the other band and finding it either

idle or busy, respectively. The transition behavior is shown

in Fig. 7. In order to keep a finite state space, we cannot

stay with any channel longer than for N slots. The optimal

policy for the partially observable case can be found by linear

programming, as shown in Sec. IV-C.

V. NUMERICAL RESULTS

In this section we present numerical results for the CMA

schemes and evaluate their performance gain compared to

a blind reference scheme that does not perform sensing.

The schemes are evaluated in terms of throughput and in-

terference for varying WLAN traffic load. Such analysis is

standard in coexistence literature [25]. The results are based

on simulations using the CTMC approximation. Furthermore,

we examine the robustness of this approximation by running

algorithms derived from the CTMC model on data generated

via the semi-Markov model. We will see that the results match

closely, justifying the approximation.

A. Simulation parameters

The numerical results reflect the throughput and interference

behavior for varying WLAN traffic load. While performance

is assessed by simulation, the model parameters (for both

SMM and CTMC approximation) are extracted from real

trace data. The experimental setup consisted of a wireless

router and three workstations with adapter cards [8] to gather

packet traces. Using the Distributed Internet Traffic Generator

[26] on each workstation we generated constant-payload UDP

traffic. The interdeparture time between packets was chosen
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TABLE I

Measurement parameters for semi-Markov model and its continuous-time

Markov chain approximation. This table was obtained by estimating model

parameters from empirical data obtained from real packet traces.

WLAN traffic load σ̄ = σ/σmax

Parameter 0.05 0.1 0.2 0.3 0.4 0.5 1.0

CTMC approximation

λ−1 [ms] 15.9 9.10 4.48 2.90 1.98 1.39 0.21
µ−1 [ms] 1.11 1.08 1.05 1.03 1.02 1.03 1.03

semi-Markov model
σ [ms] 18.7 11.3 5.46 3.95 3.09 2.35 0.04
k/10−2 -2.11 -2.50 2.47 1.51 2.61 1.69 50.1
pc [%] 13.2 18.3 21.2 30.1 40.0 47.7 98.8
Tµ [ms] 1.11 1.08 1.05 1.03 1.02 1.03 1.03

to be exponentially distributed with varying parameter σ.

By initially choosing σ very large we first determined the

maximum traffic load supported by the setup. Each setting

of the traffic load was then normalized with respect to this

maximum value σ̄ = σ/σmax.

For each setting of the WLAN traffic load σ̄, we captured

the raw complex baseband data of the transmissions using a

vector signal analyzer and processed the data to find the busy

and idle durations of the WLAN. Based on these results we

obtained the parameters of the semi-Markov model and its

CTMC approximation, shown in Tab. I; see [15] for details.

Remaining parameters were chosen such that they reflect a

typical WLAN/Bluetooth coexistence setup. The slot duration

was chosen as Ts = 625 µs.

B. Performance of FO-CMA and PO-CMA

First, we evaluate FO-CMA’s throughput for a CIC of

α = 5%, and PERCs of αi = 10% for each channel. The

throughput for both scenarios is shown in Fig. 8 for M = 1, 2,

and 3 parallel bands. We see that for the CIC, we obtain

the same throughput regardless of how many parallel bands

exist. Indeed, this is to be expected, since we deal with a

cumulative constraint. Having multiple parallel bands available

does not loosen this limitation. In contrast, the throughput for

a PERC in each channel is shown in the right plot of Fig. 8.

In this case, the throughput does increase with the number

of channels, since every constraint is only applicable within

one channel and adding channels provides for additional

transmission opportunities.

Second, we show the performance of PO-CMA for M = 2
and a CIC as well as a PERC, respectively. We note that

the performance of PO-CMA is close to the corresponding

FO-CMA scheme. While the performance gap may be more

pronounced for larger M , this result suggests that performance

degrades gracefully with the number of bands. This is an

encouraging result, given that for PO-CMA it suffices to have

a simple transceiver instead of a more sophisticated radio

frontend.

From Fig. 8, we can also infer that, for small WLAN traffic

load σ̄, the CIC is less restrictive than the PERC. On the other

hand, for large σ̄, this situation is reversed. This behavior is

inherently linked to the definitions of both constraints. The

PERC implicitly conditions on the WLAN being active and is

thus more restrictive if the number of packets is small.
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Fig. 8. Performance with CIC (left side) and PERC (right side) for increasing
number of bands M . The normalized throughput represents the time-averaged
fraction of successful transmissions out of the total number of slots.

C. Comparison with a blind hopping scheme

In Fig. 9 we compare the throughput and interference of our

CMA schemes with a blind reference scheme that performs

oblivious hopping throughout the entire band. We evaluate

the performance for M = 3 since the ISM band at 2.4 GHz

supports exactly three parallel WLAN bands [13]. The traffic

load was chosen such that the blind reference transmits in

every, every other, or every third slot. The hopping pattern

was pseudo-random across the entire band.

We can see that while the blind hopper’s throughput can be

higher than CMA’s, its interference may become prohibitively

large. Even if the blind reference is transmitting only in every

third slot, the packet error rate can be 20% or higher. For a

fully loaded system the packet error rate can be larger than

60%. We stress that for interference this high, the WLAN’s

throughput will inevitably decrease violating our paradigm

of a hierarchical scheme. With CMA, on the other hand, a

small interference level is guaranteed and as a consequence

we assume that the cognitive radio’s impact on the WLAN

will be small.

D. Robustness to CTMC approximation

Lastly we evaluate the robustness to the CTMC approx-

imation by heuristically running the CMA schemes derived

from the CTMC model on data generated via the semi-Markov

model. The simulation parameters for both models are shown

in Tab. I. The performance and interference for a PERC is

shown in Fig. 10. We can see that the deviation between the

semi-Markov model and its CTMC approximation is small.

While, the throughput curves almost coincide, the interference

constraint is slightly violated for high WLAN traffic load.

However, the aberration is still small enough to justify the

use of the CTMC model.

VI. CONCLUSIONS

In conclusion we proposed Cognitive Medium Access

(CMA) schemes for sharing spectrum with a set of parallel
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Fig. 9. Comparison with a blind reference scheme. The blind hopper operates
with constant rate and is completely oblivious of the WLAN.

WLAN bands. Its derivation was based on a measurement-

based interference study as well as a stochastic model which

captures the WLAN’s medium access. The CMA schemes

proposed in this paper can be classified according to fully

observable and partially observable systems. In both cases

optimal policies can be obtained via linear programming,

but in the case of FO-CMA we furthermore specified struc-

tured solutions. The paper evaluated the performance of

these schemes for various scenarios. We found that PO-CMA

achieves almost the same performance as FO-CMA. Both

schemes significantly outperform blind hopping schemes.

APPENDIX

Proof of Theorem 2

We need to show that Algorithm 1 is a solution to the

LP (19)-(20). First, rewrite the LP in terms of its stationary

distribution. This is possible since the transition behavior does

not depend on the actions a. We obtain

max
wy(a)

∑

(y,a)∈X×A

ηywy(a)r(y, a) (36)

subject to
∑

(y,a)∈X×A

ηywy(a)dCIC(y, a). (37)

Note that for the CIC, dCIC(y, a) = 1− r(y, a). Furthermore,

define X1 = {x ∈ X : xi = 0} and

Xi = {x ∈ X : xi = 0, xj = 1, ∀j < i}, 1 ≤ i ≤ M. (38)

Then, states for which

ηxwx(i) = ηywy(i), x,y ∈ Xi, (39)

clearly offer the same reward at the same cost. Due to this

and our assumption that λ1 ≤ · · · ≤ λM , channel i offers

higher (or equal) reward at lower (or equal) cost than channel

j for i < j. Hence it is optimal to increase the transmission

probability in channel 1 until wy(1) = 1, ∀y ∈ X1. We
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Fig. 10. Evaluating the robustness of the CTMC approximation.

continue with channels i = 2, . . . , k until choosing wy(k) =
1, ∀y ∈ Xk exceeds the constraint. We then choose wy(k)
such that the constraint is satisfied with equality. We thus have

the optimal policy structure outlined in (26). See Fig. 6 for a

graphical illustration. �

Proof of Theorem 3

We need to show that Algorithm 2 is a solution to the LP

(19) and (21). We again rewrite the LP in terms of the chain’s

stationary distribution

max
wy(a)

∑

(y,a)∈X×A

ηywy(a)r(y, a) (40)

subject to
∑

(y,a)∈X×A

ηywy(a)dPERC(y, a) ≤ αa, 1 ≤ a ≤ M. (41)

Clearly, since r(y, a) ≥ 0, an optimal solution is found if

equality is achieved for all the constraints (41). In general, this

need not be possible, however, since we can only transmit in

one of the parallel channels at a time, even if multiple of them

are idle (not possible to use all transmission opportunities).

However, a sufficient condition for a structured solution is

(27). In this case,
∑M

i=1 wy(i) ≤ 1, and the constraint can be

made tight for channel i independently of all other channels.

This leads to the transmission probabilities specified in (30).

�
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