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Introduction 
1 

Over the years, the teaching of fractions continues to 

attract the attention of mathematics teachers and education 

researchers worldwide (Cramer, 2002; Freiman & Volkov, 

2004). Long standing debates as to whether it has to be 

introduced as counting or as a form of measurement, or 

whether it represents procedural, factual or conceptual 

knowledge is relative to the success in learning fractions 

(Meagher, 2002; Johnson & Koedinger, 2001). To solve 

fraction multiplication, students are traditionally taught the 

cancellation algorithm (cancel-and-multiply), while for 

fraction division, students are asked to follow the 

computational procedure of inverting the divisor and 
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changing the operation to multiplication (invert-and-

multiply). However, many students are unable to correct 

their errors and clear up their confusion due to a lack of 

understanding of the underlying rationale in fraction 

multiplication and division (NCTM 2000; de Castro, 2004; 

Tirosh, 2000). This was manifested by the alarming results 

of the Third International Mathematics and Science Study – 

Repeat (TIMSS-R), where the Philippine sample’s performance 

on fractions had a mean score of 378 against the 487 

international average, indicating the performance of our 

students on fractions far below international standards (Ibe, 

2001; TIMSS-R, 2000). The purpose of this study is to 

streamline cognitive models on fraction multiplication and 

division so as to narrow down the most worthwhile features 

of other existing models and to establish its effectiveness in 

building students’ understanding of fractions. 

 

Students’ Initial Concept of Fractions 

 

Students, in their early years, have varied initial 

concepts of fractions. Stafylidou and Vosniadou (2004) 

assert that children develop their numerical value of 
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fractions through assimilation of this new information into 

their existing conceptual structures of natural numbers, thus 

assuming that the same algorithms hold true in performing 

the fundamental operations on rational numbers as in natural 

numbers. 

Moss and Case (1999) suggested that in the realm of 

rational numbers, children have two natural schema: one 

global structure for proportional evaluation and one 

numerical structure of splitting/doubling. Hunting’s (1999) 

study of five-year old children focused on early conceptions 

of fractional quantities and suggested that there is 

considerable evidence to support the idea of “one half” as 

being well established in children’s mathematical schema at 

an early age. He argues that this and other knowledge about 

subdivision of quantities forming what he calls “prefraction 

knowledge” can be drawn upon to help students develop 

more formal notion of fractions from a very early age. Mack 

(1998) stressed the importance of drawing on students’ 

informal knowledge. She used equal sharing situations in 

which parts of a part can be used to develop a basis for 

understanding multiplication of fractions such as sharing 

half a pizza equally among three children results in a child 

getting one third of one half. This showed that students did 

not think of taking a part in terms of multiplication but that 

their strong experience with the concept could be developed 

later (Meagher, 2002). 

Tzur (1999), for his part, interpreted children’s initial 

reorganization of fraction conception as falling into three 

strands: equidivision of wholes into parts, recursive 

partitioning of parts (splitting) and reconstruction of the unit 

(i.e. the whole). He further suggested that teachers consider 

one of these strands at a time in teaching rational numbers. 

  

Problems Encountered in Teaching Fraction Multiplication 

and Division 

 

Previous research exercises have identified major 

problems with current teaching methods in the area of 

fractions. The first deals with a syntactic (rules) rather than 

semantic (meaning) emphasis of teaching rational numbers, 

wherein teachers often emphasize technical procedures in 

doing fraction operations at the expense of developing a 

strong sense in children of the meaning of rational numbers 

(Moss & Case, 1999; Lubinski & Fox, 1998). This problem 

led to algorithmically-based mistakes, which result when an 

algorithm is viewed as a meaningless series of steps so that 

students often forget some of these steps or change them in 

ways that lead to errors (Tirosh, 2000; Freiman & Volkov, 

2004). 

Secondly, teachers often take an adult-centered rather 

than a child-centered approach, emphasizing a fully formed 

adult conception of rational numbers, not taking into 

consideration their schema and informal knowledge of 

fractions, thus denying children a spontaneous means of 

learning fractions (Moss & Case, 1999). One of the reasons 

pointed out as to why the mathematical notion of fractions is 

systematically misinterpreted is because fractions are not 

consistent with the counting principles that apply to natural 

numbers to which children often relate (Stafylidou & 

Vosniadou, 2004) (see Table 1). They further concluded that 

early knowledge about natural numbers may, in fact, serve 

as a barrier to learning about fractions, given children’s 

constructivist tendency to distort new information (about 

fractions) to fit their counting based number theory. Tirosh 

(2000) refers to these as intuitively-based mistakes which 

stem from the predominance of the partitive model used 

with natural numbers wherein children argue that it is 

impossible to solve division expressions with a dividend 

smaller than the divisor. 

A third issue deals with the limited formal knowledge 

on fractions. Students count the number of shaded parts in a 

figure and the total number of parts so that each part is 

regarded as an independent entity or amount (Moss & Case, 

1999). Yoshida and Sawano (2002) referred to these points 

Table 1.  

Differences between Fundamental Operations of Natural Numbers and Fractions 

Operation Natural Number Fraction 

Addition and Subtraction Supported by the natural number’s sequence Not supported by the natural number’s sequence 

Multiplication Product is larger than the factors Product may either be higher or lower than the factors 

Division Quotient is smaller than the dividend Quotient may either be higher or lower than the dividend
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as cognitive obstacles that make the learning of fractions 

difficult for the students, such as the concept of equal 

partitioning and the invariance of the whole. Although 

students acquire the knowledge of equal partitioning 

informally before learning fractions, they had difficulty 

relating it to their formal knowledge of fractions. The 

representation of a fraction as a number less than one, 

magnitudes of one as a whole should be of the same size for 

all fractions. Students find difficulty reconciling this idea 

once they deal with different models of rational numbers 

(Tirosh, 2000). In the case of middle school students, this 

confusion comes from the lack of knowledge when it comes 

to deciding rules in choosing the best fraction representation 

from three possible basic models that would fit the problem 

requirements, namely: the area or regional model, the length 

or measurement model and the set model (Parmar, 2003).  

Finally considerable problems in the use of a notation 

can also act as a hindrance to students’ development which 

centered on teachers’ perception (Moss & Case, 1999). 

 

New Teaching Approaches 

 

NCTM (2000) Standards offer a variety of ways to 

improve initial fraction instruction for early elementary 

years. Instruction must give focus to developing an 

understanding of the meaning of the symbols, examining 

relationships and building initial concepts of order and 

equivalence in fractions. Conceptual understanding should 

be developed before conceptual fluency, since fluency in 

fraction computations will be dealt with in the latter years. 

Since many children experience difficulty in constructing 

the idea of specific fractions, NCTM also suggested the use 

of physical objects, diagrams and real-world situations and 

that instruction should help students make connections from 

these representations to verbal meanings and symbols. 

A Rational Number Project (RNP) Curriculum (Cramer 

et al., 2002), involving elementary students, emphasized the 

use of multiple physical models and translations within and 

between modes of representations, such as pictorial, 

manipulative, verbal, real-world and symbolic representations. 

Students approached the fundamental operations tasks 

conceptually by building on their constructed mental images 

of fractions. 

Some teachers make use of paper folding to represent 

fractions in lieu of pie charts. Streefland (1991) made use of 

real life situations to develop children’s understanding of 

rational numbers. Moss and Case’s (1999) own approach 

started with beakers filled with various levels of water and 

asked students to label beakers from 1 to 100 based on their 

fullness or emptiness. This approach produced deeper, more 

proportionally based understanding of rational numbers and 

the addition and subtraction processes. There was greater 

emphasis on meaning (semantics) over procedures, on the 

proportional nature of fractions highlighting differences 

between the integers and rational numbers, on children’s 

natural methods of solving problems and the use of 

alternative forms of visual representation as a mediator 

between proportional quantities and numerical 

representations, that is an alternative to the use of pie charts.  

Comparing the benefits and drawbacks of the 

traditional method of teaching fraction multiplication and 

division and the above-mentioned strategies, neither of these 

strategies proved to be strong on all of the five dimensions 

taken into consideration in choosing an instructional 

method: difficulty in learning, efficiency, generality, 

retention and transfer (Johnson & Koedinger, 2001). There 

had been trade-offs for learning each strategy which allow 

for an informal decision on whether such strategy will be 

taught and how it should be taught. 

 

 

The Present Study 

  

On the basis that students had already acquired basic 

implicit knowledge of fraction representation, equivalence 

and order, and that students had an informal knowledge of 

partitioning, cognitive models were streamlined to help 

students understand multiplication and division of fractions, 

culminating with an explanation of why when we multiply 

fractions, the product is usually lesser than the factors. Most 

teachers only understand this notion instrumentally, that is 

they know how to apply the procedure without 

understanding why the procedure works (de Castro, 2004). 

People at all levels can work with fractions but only a few 

could provide a conceptual explanation for many of the 

procedures associated with fractions. The topic of fractions 

is an example of the notion that given any topic, everyone 

understands something and no one understands everything 

and therefore a key to effective instruction is to find out 

what knowledge students possess and to build on that 
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knowledge. 

The purpose of this paper was to consider the potential 

of the use of cognitive models in making students 

understand difficult subject matter such as fraction 

multiplication and division. For the purpose of this study, 

students who were low achievers and who had prior 

knowledge of the subject matter taken into consideration 

were taken as respondents of the study. To help students 

replace their misconceptions with scientifically correct 

knowledge, the cognitive models present students with the 

basic line of reasoning underlying the correct interpretation 

of the phenomena that are the base of their misconception. 

Knowing the correct line of reasoning enables the student to 

self-explain the phenomenon, which according to Chi 

(1996) in the study of Albacete and VanLehn (2000) may be 

an effective means for learning. 

The main focus of this study is on the knowledge 

transmission process and on the cognitive strategy used to 

shift teachers’ instructional explanation of the concept of 

fraction multiplication and division from an instrumental to 

a relational understanding of mathematics. The development 

of the cognitive models for fraction multiplication and 

division was guided by the following conceptual process as 

shown below. 

Pedagogical content knowledge (PCK) was characterized 

as the most regularly taught topics in one’s subject area; the 

most useful forms of representation of those ideas; the most 

powerful analogies, illustrations, examples, explanations 

and demonstrations, including an understanding of what 

makes the learning of specific concepts easy or difficult and 

taking into consideration the schema that students of 

different ages and backgrounds bring with them to the 

learning process (Kinach, 2002; Reiman & Sprinthall, 1998; 

Kort & Reilly, 2002). According to Shulman (1987), PCK is 

a transformation process whereby prospective teachers’ 

subject matter knowledge is converted into a form 

appropriate for teaching.  

Mayer (1987) suggested that three major internal 

conditions must be met for instruction to foster meaningful 

learning. Instruction must help the learner to select relevant 

information, organize information and integrate information. 

Selection involves focusing attention on relevant pieces of 

the presented information and adding them to the short-term 

memory. Sternberg (1985) refers to this process as selective 

encoding and defines it as filtering of pertinent information. 

Organizing involves constructing internal connections 

among the incoming pieces of information into a coherent 

whole. Integrating involves constructing external 

connections between the newly organized knowledge to 

existing relevant knowledge to form an externally connected 

whole. Assessment must follow these three major internal 

conditions which involves seeking the consensus of experts 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Development process of a cognitive model in mathematics 
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regarding the developed cognitive model (Wilson & Cole, 

1996). 

 

 

Cognitive Models Used 

 

Fraction Multiplication Cognitive Model 

 

An intensive review of the difficulties encountered by 

students in learning and the different approaches and models 

used to teach fraction multiplication, after which a 

multiplication cognitive model was restructured with the 

following main sub-goals: 1) identify the multiplicand and 

draw a pictorial representation of it using a rectangle with 

vertical divisions, 2) identify the multiplier and draw a 

rectangle representation of the same size with horizontal 

divisions, 3) superimpose the two representations and 4) 

represent the product using the double shaded regions as the 

numerator and the total number of regions made on the 

superimposed model as the denominator.  

  

Fraction Division Cognitive Model 

 

In the case of fraction division, students are traditionally 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Fraction multiplication cognitive model 
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Table 2.  

Fraction Multiplication Process using the Cognitive Model 

Sub-goals Prompter Representation / Output 

1. Identify the multiplicand 2
1

3
1 x  3

1  is the multiplicand 

2. Draw representation with vertical  

divisions 

Shade the portion representing 3
1 in a 

rectangular figure 

 

3. Identify multiplier 2
1

3
1 x  ½ is the multiplier 

4. Draw representation with horizontal 

divisions 

Shade the portion representing ½ in a 

rectangular figure 

 

5. Superimpose the two rectangles  
 

6. Count double shaded regions  

(numerator) 

 
There is only 1 double shaded region 

7. Count total number of regions  

(denominator) 

 
There is a total of 6 regions in the figure 

8. Represent the product 1 as numerator and 6 as denominator The product of 2
1

3
1 x  is 6

1  
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taught the computational procedure of inverting the divisor 

and changing the operation to multiplication (invert and 

multiply strategy) (Meagher, 2002). Modifications on 

the picture division strategy (Jhonson & Koedinger, 2001; 

Tirosh, 2000; NCTM, 2000) were made to suite the kind of 

dividends and divisors, whether it is a whole number, a 

proper fraction or a mixed number. These confusions in 

regard to fraction representations made learning picture 

division quite difficult for students (Lubinski, C. & Fox, T., 

1998). 

The division cognitive model, adapting the ACT-R 

theory, will have its main sub-goals as follows: 1) identify 

the dividend and draw a pictorial representation of it using a 

number line or a rectangle, 2) identify the divisor and mark 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 
Figure 3. Fraction division cognitive model 
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Table 3.  

Fraction Division Process using the Cognitive Model 

Sub-goals Prompter Representation / Output 

1. Identify the dividend 
 2

1
3

1 ÷
  3

1

 is the dividend 

2. Draw representation 

 

Shade the portion representing 3
1

in a 

rectangular figure  

 

3. Identify the divisor 2
1

3
1 ÷

 
½ is the divisor 

4. Identify the region of the  

divisor on the same figure 

 

Shade the region 

representing ½ in the rectangular figure  

 

5. Superimpose and compare 

the double shaded with the 

single shaded regions 

These regions must be of the same size 

 

6. Count the number of double 

shaded regions (numerator) 

 

There are 2 double shaded regions in the figure 

7. Count the number of all  

shaded regions (denominator) 

 

There is a total of 3 shaded regions in the figure 

8. Represent the quotient 2 as numerator and 3 as denominator The quotient of 2
1

3
1 ÷

 is 3
2
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the picture drawn according to the size of the divisor, 3) 

count the number of marked groups and consider this as 

whole number part of the quotient and 4) convert the 

remainder of the picture (if there is any) to a fraction and 

this will be the fractional part of the quotient. 

 

 

Method 

 

Subjects of the Study 

 

Two sections, under the Bridge Program, in a public 

high school were purposively selected as control and 

experimental groups for the study. Students under the 

Bridge Program are those elementary graduates who did not 

pass the High School Readiness Test (HRST) and opted to 

be under the program. They are asked to take one more year 

of Math, Science and English to prepare them for secondary 

education.  

Respondents had prior knowledge of the cancel-and-

multiply and the invert-and-multiply algorithms as strategies 

for computing fraction multiplication and division in the 

lower grades and this knowledge was measured with the use 

of a pretest. The same lessons were repeated to them during 

the academic year the study was conducted as part of the 

math curriculum for the Bridge Program. Students in the 

control group underwent the traditional algorithmic way of 

teaching multiplication and division of fractions while the 

experimental group made use of the restructured cognitive 

models to understand the process of multiplying and 

dividing fractions and relate it to their schema of whole 

numbers. For the purpose of instruction, the teacher made 

use of the cut-out acetate form of fraction representations of 

the same rectangular size and shape in order to facilitate the 

superimposing of the needed fraction representations. After 

the lesson on fraction multiplication and division, another 

test (posttest) was given to them to find out how much they 

had learned. 

Both pretest and posttest involved paper and pencil 

tests that consisted of 15 questions, of which seven of the 

questions were on multiplication of fractions, six were on 

division of fractions and two problem questions of each of 

these two fractional operations.. The posttest was parallel to 

the pre-test in terms of scope and level of difficulty. 

Students were asked to show their solutions in both tests.  

 

 

Results 

 

Pretest and posttest scores were analyzed in different 

ways. 

Table 4 indicates that the mean pre-test score of the 

 

Table 4 

Comparison of Pre-test and Posttest Results 

              Pretest              Posttest 

 Mean SD Mean SD 

      t-value             p-value 

                             (2-tailed)   

Control Group 1.76 1.27 5.60 3.39 5.80 *5.64E-06 

Experimental Group 1.91 1.97 9.09 2.56 11.94 -8.04E-11 

t-value 0.31  3.94    

p-value (2-talied) 0.76    *0.0003    

Note. *indicates significance difference at α ≤ 0.05 

 

Table 5.  

Comparison of Gain Scores from Pretest and Posttest of Control and Experimental Groups 

 Mean Gain SD t-value p-value(2-tailed) 

Control Group 3.84 3.31 3.70 *0.0006 

Experimental Group 7.18 2.82   

Note. *indicated significant difference at α ≤ 0.01 
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control group was 1.76 with a standard deviation of 1.27. 

On the other hand, mean pre-test score of the experimental 

group was 1.91 with a standard deviation of 1.97. No 

reliable difference was found between the two groups using 

t-test for independent samples assuming equal variances (t-

value=0.31, p-value=0/76). This proves that the initial 

competencies of the two groups were equivalent. 

To prove that both the algorithmic way of teaching 

fraction multiplication and division and the use of the 

cognitive models were both effective, their pretest and 

posttest mean results were compared with each other, 

respectively, using paired t-tests. The control group had a 

pre-test mean of 1.76 and a posttest mean of 5.60, showing a 

significant difference (t = 5.80, p ≤ 0.05). The same is true 

with the experimental group. The pre-test mean of the 

experimental group was 1.91 and posttest mean was 9.09. 

There was a significant difference between the two tests (t = 

11.94, p ≤ 0.01). These results suggest that the two teaching 

methods under investigation were both effective in teaching 

fraction multiplication and division. 

Their posttest mean scores were also compared. The 

control group had a posttest mean of 5.60 with a standard 

deviation of 3.39 and the experimental group had a posttest 

mean of 9.09 with a standard deviation of 2.56, indicating a 

significant difference (t = 3.94, p ≤ 0.01). This indicates that 

students using the cognitive models gained higher scores on 

the posttest than those students relying solely on the 

algorithm. 

 

Comparison of Gain Scores 

 

To further prove the effectiveness of the cognitive 

models, the gain scores from pre-test to posttest were 

compared. The mean gain of the control group was 3.84 

with a standard deviation of 3.31. On the other hand, the 

experimental group obtained a much higher mean gain of 

7.18 with a standard deviation of 2.82. Using independent 

samples t-test, a reliable difference was found (t = 3.70, p ≤ 

0.01). This result suggests that the intervention of the 

cognitive models had a remarkable impact on the students’ 

understanding of the concepts as well as on their ability to 

discard misconceptions.  

 

Effect Size 

 

Effect size is a standard way to compare the results of 

one pedagogical experiment to another. One way to 

calculate effect size, used in Albacete and VanLehn (2000), 

is to find the difference between the mean gain scores of the 
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Figure 4. The Mean gain of the low and high pre-test score 

groups in the experimental and control groups 

 

Table 6.  

Comparison of Low and High Pre-test Score Group 

  Control Group Experimental Group 

  Mean SD Mean SD 

Pre-test 0.85 0.90 0.36 0.50 

Posttest 4.77 3.42 8.73 2.28 
Low Pre-test Score 

Group 
Gain 3.92 3.62 8.36 2.46 

Pre-test 2.75 0.75 3.45 1.63 

Posttest 6.50 3.26 9.45 2.87 
High Pre-test Score 

Group 
Gain 3.75 3.11 6.00 2.76 
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experimental and control groups, and then divide it by the 

gain score standard deviation of the control group. The 

calculation yields (7.18 – 3.84)/3.31 = 1.01. This reflects a 

rather impressive effect on the learning of fraction multiplication 

and division when cognitive models are being utilized. 

Innovative interventions such as the cognitive models, 

sometimes cause higher gains for students with higher pre-

test scores. The intervention must be able to function for 

those students who need more help, as revealed by low pre-

test scores. The experimental group was divided into 2 

groups according to whether the student’s pre-test score was 

above or below the median. The mean gain of the low pre-

test score group was 8.36 with a standard deviation of 2.46 

while the mean gain of the high pre-test score group was 

6.00 with a standard deviation of 2.76. A statistically 

significant difference between the gain scores was found 

(t = 2.12, p ≤ 0.05).  

A similar analysis was done with the control group. 

The mean gain of the low pre-test score group was 3.92 with 

a standard deviation of 3.62, while the high pre-test score 

group’ mean gain was 3.75, with a standard deviation of 

3.11. No significant difference exist between the mean gain 

scores (t = 0.12, p > 0.05). Figure 4 illustrates these results: 

It was interesting to note that in the experimental group 

the poorer students’ knowledge gains (8.36) were significantly 

higher than those of the good students (6.00). In the 

experimental group, the lower gain score (6.00) in the high 

pre-test score group was not a consequence of a ceiling 

effect. With the highest possible score of 15 and a mean pre-

test score of 3.45 for the high pre-test scoring subgroup of 

the experimental group, there is an opportunity for this 

group to have a gain score very close to that achieved by the 

group of poorer students. The highest posttest score obtained 

by the experimental group was 14 out of 15 items, while 

that of the control group as 13 out of 15 items. This 

indicated that there is one item in the posttest that contained 

knowledge which was difficult to grasp even with the use of 

the cognitive model. 

 

 

Discussion 

 

Implications of the Results of the Use of Cognitive Models 

 

The empirical results revealed a remarkable advantage 

of using the cognitive models as an overture to teaching the 

algorithmic way of doing fraction multiplication and 

division. The use of cognitive models helped the students 

understand the algorithm better and relate it to their schema, 

thus achieving greater retention.  

Students’ errors in the experimental group, when using 

the cognitive models, indicated a need for more intensive 

ways of presenting division when the divisor is a mixed 

number. Otherwise, the models captured students’ behaviors 

quite well.  

 

Predictions from the Models 

 

As in the study by Johnson and Koedinger (2001), the 

use of cognitive models and the use of algorithms in 

teaching fraction multiplication and division led to 

comparative predictions for the difficulty of learning each 

strategy, efficiency of using each strategy once learned, 

generality of each strategy on a range of fraction 

multiplication and division problems, retention of each 

strategy and transfer. 

The ease of learning each strategy depends on students’ 

prior knowledge. Learning difficulty can be predicted by 

two factors - how students represent the fractions and the 

fraction multiplication and division operations and how well 

they know symbol manipulation rules for working with 

fractions. On one hand, the algorithmic way of fraction 

multiplication and division became difficult to learn since 

the students represented fractions as visual arrangements of 

digits and the operation symbols without relation to their 

schema. On the other hand, learning through the cognitive 

models was relatively straightforward since a majority of 

the procedures were based on familiar and well-practiced 

knowledge.  

The use of the cognitive models as a strategy to teach 

fraction multiplication and division proved to be more 

efficient once it is mastered than teaching only with 

algorithms. As proven by the gain scores of the respondents, 

the cognitive models were able to bridge the gap between 

students’ schema of whole numbers and its operations and 

the cancellation and invert-and-multiply algorithm. The 

experimental group displayed more efficiency in their 

computations since they were able to infer from the models 

whenever they were not sure of their solution. 

The ease of applying the two strategies to the full range 
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of fraction multiplication and division is not equivalent. 

Once the cancellation and invert-and-multiply algorithms 

are mastered, it can then be applied to any fraction 

multiplication and division problem. On the other hand, the 

use of cognitive models may become very cumbersome if 

the fractions are large, and this constraint becomes 

unmanageable. 

The fourth prediction concerns retention of the 

concepts learned. Recall is based on spreading activation so 

knowledge that is connected to a richer network of 

knowledge chunks is easier to recall (Johnson & Koedinger, 

2001). On one hand, the cognitive models utilize rich 

knowledge representations of quantities and operations, so 

this network of relations facilitate recall. On the other hand, 

the cancellation and invert-and-multiply strategies utilize 

sparse, visual based representations that are not connected to 

a rich knowledgebase so this strategy is harder to recall after 

some delay. Students had difficulty retrieving correctly all 

the relevant procedures for fraction multiplication and 

division algorithm. Thus, the use of cognitive models for 

these fraction operations will be more robust. 

The strategies led to different transfer predictions. 

When knowledge chunks are activated, their memory trace 

of the individual is strengthened (Johnson & Koedinger, 

2001). As students use these cognitive models, the quantity-

based representation of fractions and a meaning-based 

representation of multiplication and division are 

strengthened and refined. Thus, it facilitated performance of 

tasks utilizing this representation. Representing fractions as 

part-whole quantities provided a basis for performing tasks 

such as partitioning, comparing magnitudes, estimating, 

adding and subtracting fractions. The cognitive models also 

provided meaning to the multiplication and division 

algorithm (the cancellation and invert-and-multiply 

strategies), giving reasons as to why the product and 

quotient may either be higher or lower than the factors, 

dividend or divisor. On the other hand, the cancellation and 

invert-and-multiply strategies facilitated computations on 

problems involving conversion of improper fractions to 

mixed numbers and vice versa, and the reduction of 

fractions and other algebraic expressions to their simplest 

form. 

Using cognitive models as an aid to instruction led to 

more benefits than drawbacks. Its exploratory nature 

motivated the students to learn a tedious topic, such as 

fraction multiplication and division. Learning is achieved, 

not merely by telling the students the algorithm, but by the 

students themselves encountering the proofs of the 

algorithm as a result of their manipulation of the cognitive 

models. It proved to be easier to learn since the students 

have quantity-based representations of fractions, can be 

recalled after a delay, had been a more efficient strategy of 

multiplication and division once learned and was able to 

transfer to tasks comparing magnitudes, partitioning, 

estimating and doing operations such as addition and 

subtraction. It also provided greater meaning to fraction 

multiplication and division algorithms. On the other hand, 

the use of algorithms should be easy to learn if students are 

already clear in their conception of fractions and know how 

to manipulate them. It was efficient and broadly applicable 

once mastered and transferred the concept of fraction 

multiplication and division to algebraic computations. 

Parallel to the study made by Norris, Leighton, and Phillips 

(2004), cognitive models were found to theorize the content 

and capabilities of the students’ minds, in terms of meta-

cognition, reasoning strategies and principles of sound 

thinking.     

 

 

Conclusion 

 

Instruction should be able to bridge the gap from the 

more meaningful and grounded strategy of the use of 

cognitive models to the more abstract and efficient 

algorithms in order to maintain high retention. The cognitive 

models suggest a careful sequence of lessons for teaching 

the concept of fractions and the meaning of multiplication 

and division of fractions. Students should first learn to 

represent fractions as part-whole quantities. Next, they 

should be taught to use the cognitive models to find the 

product and quotient in fraction multiplication and division. 

Students must be able to see the meaning of multiplying and 

dividing with fractions so as to make sense of having a 

product or quotient which is higher or lower than any of the 

factors, dividend or divisor. They must be able to connect 

that the concept of fraction operations is not entirely 

different from that of doing the same operations with whole 

numbers.  

The evaluation of the cognitive models suggests that 

the teaching strategy with the use of cognitive models for 
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developing target knowledge and handling misconceptions, 

is effective in accomplishing the task it was designed to 

perform. The experimental group surpassed the control 

group in every statistical test performed. The detailed 

examination of the effectiveness of each lesson with the use 

of the cognitive models showed a trend in favor of using 

these cognitive models. 

Students pass through different levels of understanding 

in which mathematizing took place with the use of cognitive 

models, from devising informal context-connected solutions 

to reaching some level of schematization and finally to 

developing insights into the general principles behind a 

problem and being able to see the overall picture essential 

for learning.  The cognitive model was able to assume its 

role of bridging the gap between the informal understanding 

connected to the real and imagined reality on the one hand 

and an understanding of a formal system of mathematical 

concepts on the other. 

The teacher must be able to create cognitive models 

based on research-based models as well as their students’ 

needs and characteristics that would assist them in making 

pedagogical decisions required of them on a day to day 

basis in the classroom. Teachers should be given 

opportunities to observe students engaged in mathematical 

activities, to interpret their responses and ways of thinking 

and experience the strengths and limitations of the various 

research-based models in their instruction.  
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