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Abstract—In this paper, a novel cognitive multiple-access
strategy in the presence of a cooperating relay is proposed. Ex-
ploiting an important phenomenon in wireless networks, source
burstiness, the cognitive relay utilizes the periods of silence of
the terminals to enable cooperation. Therefore, no extra channel
resources are allocated for cooperation and the system encounters
no bandwidth losses. Two protocols are developed to implement
the proposed multiple-access strategy. The maximum stable
throughput region and the delay performance of the proposed
protocols are characterized. The results reveal that the proposed
protocols provide significant performance gains over conventional
relaying strategies such as selection and incremental relaying,
specially at high spectral efficiency regimes. The rationale is that
the lossless bandwidth property of the proposed protocols results
in a graceful degradation in the maximum stable throughput
with increasing the required rate of communication. On the other
hand, conventional relaying strategies suffer from catastrophic
performance degradation because of their inherent bandwidth in-
efficiency that results from allocating specific channel resources for
cooperation at the relay. The analysis reveals that the throughput
region of the proposed strategy is a subset of its maximum stable
throughput region, which is different from random access, where
both regions are conjectured to be identical.

Index Terms—Cooperative communications, delay analysis, di-
versity techniques, multiple access, queueing theory, relay channel,
stability analysis, stability region.

I. INTRODUCTION

COOPERATIVE diversity is a recently emerged technique
for wireless communications that has gained wide atten-

tion [1]. As a new communication paradigm for wireless net-
works, the impact of cooperation at different network layers
needs to be studied and understood. Most of the work on co-
operative communications has focused on the physical layer as-
pects of the problem. Cooperation protocols for the single-relay
case were developed and analyzed in [1], and later in [2] and [4]
distributed space–time codes were developed and analyzed for
multiple-relay scenarios. In the previous works it was demon-
strated that full diversity gain can be achieved by forming such
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virtual multiple-input multiple-output (MIMO) systems. The di-
versity–multiplexing tradeoff of cooperative diversity has been
also explored in [5] using an information-theoretic framework.
Achievable capacity and coding strategies for wireless relay
channels have been considered recently in [3].

Beside characterizing cooperation gains based upon an infor-
mation-theoretic framework, as in the previously cited works,
the symbol-error-rate performance for cooperative communica-
tions was analyzed in [6], [7], for a single-relay scenario, and
later in [9] for the multiple-relay scenario. The impact of cooper-
ation on extending coverage area in wireless networks has been
investigated in [10] and [11] in which distributed and centralized
relay assignment protocols have been developed, respectively.

Few works started to study the impact of cooperation at
higher network layers. Cooperation in random-access networks
has been considered in [12]–[14]. In [12], the authors proposed
a distributed version of network diversity multiple-access
(NDMA) [31] protocol and they provided pairwise error prob-
ability analysis to demonstrate the diversity gain. In [13] and
[14], the authors presented the notion of utilizing the spatial
separation between users in the network to assign cooperating
pairs (also groups) to each other. In [14], spread-spectrum
random-access protocols were considered in which nearby
inactive users are utilized to gain diversity advantage via
cooperation. Also [14] provided throughput analysis for a
symmetrical setup where all terminals are statistically identical.
The main focus of these works was still the achievable diversity
gains of cooperative communications.

Despite the demonstrated promised gains of cooperative com-
munications, the impact of cooperation on higher network levels
is not completely understood yet. Most of the previous work on
cooperation assumes the user has always a packet to transmit
which is not generally true in a wireless network. For example,
most of the sources in a network are bursty in nature, which
results in periods of silence in which the users have no data
to transmit. Such a phenomenon may affect important system
parameters that are relevant to higher network layers, for ex-
ample, buffer stability and packet delivery delay. In this work,
we focus on the multiple-access layer trying to address some im-
portant questions, such as, can we design cooperation protocols
taking higher layer network features into account? Can the gains
promised by cooperation at the physical layer be leveraged to the
multiple-access layer? More specifically, what is the impact of
cooperation on important multiple-access performance metrics
such as stable throughput region and packet delivery delay?

In this work, we try to address these important questions to
demonstrate the possible gains of cooperation at the multiple-
access layer. We consider a slotted time-division multiple-ac-
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cess (TDMA) framework in which each time slot is assigned
only to one terminal, i.e., orthogonal multiple access. If a ter-
minal does not have a packet to transmit in its time slot, then this
time slot is not utilized. These unutilized time slots are wasted
channel resources that could be used to enhance the system per-
formance. Recently, the concept of cognitive radio has been in-
troduced to allow the utilization of unused channel resources
by enabling the operation of a secondary system overlapping
with the original system (see [33] and references therein). In
our work, we propose a novel cognitive multiple-access strategy
with the concept of cooperation. In the proposed protocol, the
cognitive relay tries to “smartly” utilize the periods of source si-
lence to cooperate with other terminals in the network in order
to increase the reliability of communications against random
channel fades. In particular, when the relay senses the channel
for empty time slots, the slots are then used to help other ter-
minals in the network by forwarding their packets lost in some
previous transmissions. Thus, this new protocol has cooperative
cognitive aspects in the sense that unused channel resources are
being utilized by the relay to cooperate with other terminals in
the network. It should be pointed out that the proposed coopera-
tive protocol does not result in any bandwidth loss because there
are no channel resources reserved for the relay to cooperate. We
demonstrate later that this important feature of the proposed pro-
tocol results in significant gains especially in the high spectral
efficiency regimes.

We develop two protocols to implement this new cooperative
cognitive multiple-access (CCMA) strategy. The first protocol is
CCMA within a single frame (CCMA-S), where the relay keeps
a lost packet no more than one time frame and then drops the
packet if it was not able to deliver it successfully to the desti-
nation. The dropped packet then has to be retransmitted by the
originating terminal. It turns out that in this protocol the relay’s
queue is always bounded, and that the terminals queues are in-
teracting. To analyze the stability of the system’s queues we
resort to a stochastic dominance approach. Analyzing the sta-
bility of interacting queues is a difficult problem that has been
addressed for ALOHA systems initially in [20], and later in
[21], where the dominant system approach was explicitly in-
troduced. Many other works followed that to study the stability
of ALOHA [15], [22], [27], and [28]. Characterizing the stable
throughput region for interacting queues with terminals
is still an open problem. In CCMA-S, the interaction among the
queues arises due to the role of the relay in enabling cooperation,
which is different from the intrinsic cause of interaction in the
ALOHA system. To analyze the stability of CCMA-S, we intro-
duce a new dominant system to resolve this interaction, and we
characterize the stability region for the two-user case, and the
maximum stable throughput for the -user symmetric case.

The second protocol that we propose, named CCMA-Mul-
tiple-enhanced (CCMA-Me), differs in the way the relay han-
dles the lost packets. In CCMA-Me, if a packet is captured by
the relay and not by the destination, then this packet is removed
from the corresponding terminal’s queue and it becomes the
relay’s responsibility to deliver it to the destination. The term
enhanced refers to the design of the protocol, as the relay only
helps the terminals with inferior channel gains reflected in the

Fig. 1. Network and channel model.

distances from the terminals to the destination. Different from
CCMA-S, the size of the relay’s queue can possibly be un-
bounded and so its stability must be studied.

In addition to characterizing the stable throughput region of
our proposed protocols, we also analyze the queueing delay
performance. Delay is an important performance measure and
network parameter that may affect the tradeoff between rate
and reliability of communication. Delay analysis for interacting
queues is a notoriously hard problem that has been investigated
in [25] and [26] for ALOHA. We consider a symmetric two-user
scenario when analyzing the delay performance of the proposed
protocols.

Our theoretical results demonstrate significant performance
gains of the proposed protocols over TDMA without relaying.
We also consider ALOHA, selection decode-and-forward [1],
and incremental decode-and-froward [1] in the comparison. The
analytical and numerical results show that CCMA-Me provides
significantly better performance over these protocols. The ra-
tionale behind these gains is that in CCMA-Me the system does
not incur any bandwidth loss as cooperation takes place only in
the idle time slots, whereas in conventional cooperation proto-
cols, designed mainly from a physical layer perspective, some
channel resources are dedicated for the relay to enable coopera-
tion. The resulting loss in the bandwidth efficiency causes large
degradation in the system performance compared to our pro-
posed protocols especially for high spectral efficiency regimes.
The rest of the paper is organized as follows. In the next sec-
tion, we describe the system model considered in this paper. In
Section III, we present our new CCMA protocols. The stable
throughput region of the proposed protocols is characterized in
Section IV, and the saturated throughput is considered in Sec-
tion V. Delay performance is analyzed in Section VI, and finally,
conclusions are drawn in Section VII.

II. SYSTEM MODEL

We consider the uplink of a TDMA system. Our network
consists of a finite number of source terminals num-
bered , a relay node ,1 and a destination node , see
Fig. 1. Let denote the set of transmitting nodes,
where is the set of source terminals, and

denotes the set of receiving nodes or possible desti-
nations. For simplicity of presentation, in the following we use
terminal to refer to a source terminal.

1We use l to denote the relay not to confuse with r that denotes distance
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First, we describe the queueing model for the multiple-ac-
cess channel. Each of the terminals and the relay has an
infinite buffer for storing fixed-length packets. The channel is
slotted, and a slot duration is equal to a packet duration. The
arrival process at any terminal’s queue is independent and iden-
tically distributed (i.i.d.) from one slot to another, and the arrival
processes are independent from one terminal to another. Let
denote the arrival process at the th queue .
Terminals access the channel by dividing the channel resources,
time in this case, among them, hence, each terminal is allocated
a fraction of the time. Let denote a re-
source-sharing vector, where is the fraction of the time
allocated to terminal , or it can represent the probability
that terminal is allocated the whole time slot [30]. In this work,
we use the later notation that allows us to consider fixed duration
time slots with continuous values of the resource-sharing vector.
A time frame is defined as consecutive time slots. The set of
all feasible resource-sharing vectors is specified as follows:

(1)

A fundamental performance measure of a communication
network is the stability of its queues. Stability can be loosely
defined as having a certain quantity of interest kept finite. In
our case, we are interested in the queue size and the packet
delivery delay to be finite. More rigourously, stability can be
defined as follows. Denote the queue sizes of the transmitting
nodes at any time by the vector . We adopt
the following definition of stability used in [15].

Definition 1: Queue of the system is stable, if

and (2)

If , the queue is called substable.

If the arrival and service processes of a queueing system
are strictly stationary, then one can apply Loynes’s theorem to
check for stability conditions [16]. This theorem states that if
the arrival process and the service process of a queueing system
are strictly stationary, and the average arrival rate is less than
the average service rate, then the queue is stable; if the average
arrival rate is greater than the average service rate then the
queue is unstable.

Next, we describe the physical channel model. The wireless
channel between any two nodes in the network is modeled
as a Rayleigh narrowband flat-fading channel with additive
Gaussian noise. The transmitted signal also suffers from prop-
agation path loss that causes the signal power to attenuate with
distance. The signal received at a receiving node from a
transmitting node at time can be modeled as

(3)

where is the transmitting power, assumed to be the same for
all transmitting terminals, denotes the distance between the
two nodes , is the path loss exponent, and captures the
channel fading coefficient at time and is modeled as i.i.d. zero-
mean, circularly symmetric complex Gaussian random process

with unit variance. The term denotes the transmitted packet
with average unit power at time , and denotes i.i.d. additive
white Gaussian noise with zero mean and variance . Since
the arrival, the channel gains, and the additive noise processes
are assumed stationary, we can drop the index without loss of
generality. We consider the scenario in which the fading coeffi-
cients are known to the appropriate receivers, but are not known
at the transmitters.

In this paper, we characterize the success and failure of packet
reception by outage events and outage probability, which is de-
fined as follows. For a target signal-to-noise (SNR) ratio , if
the received SNR as a function of the fading realization is
given by SNR , then the outage event is the event that
SNR , and SNR denotes the outage proba-
bility. This definition is equivalent to the capture model in [19],
[18]. The SNR threshold is a function of different parameters
in the communication system; it is a function of the application,
the data rate, the signal processing applied at encoder/decoder
sides, error-correction codes, and other factors.

For the channel model in (3), the received SNR of a signal
transmitted between two terminals and can be specified as
follows:

SNR (4)

where is the magnitude channel gain square and has an
exponential distribution with unit mean. The outage event for an
SNR threshold is equivalent to

SNR
(5)

Accordingly, the probability of outage is given by

(6)
where the above follows from the exponential distribution of
the received SNR. Since we will use the above expression fre-
quently in our subsequent analysis, and for compactness of rep-
resentation, we shall use the following convention to denote the
success probability (no outage) at SNR threshold :

(7)

III. COOPERATIVE COGNITIVE MULTIPLE-ACCESS (CCMA)
PROTOCOLS

In a TDMA system without relays, if a terminal does not
have a packet to transmit, its time slot remains idle, i.e., wasted
channel resources. In this work, we investigate the possibility of
utilizing these wasted channel resources by employing a relay.
In this section, we introduce our proposed cognitive multiple-
access strategy based on employing relays in the wireless net-
work. Furthermore, we develop two protocols to implement this
new approach. We assume that the relay can sense the commu-
nication channel to detect empty time slots. This assumption
is reasonable for the orthogonal multiple-access scheme used,
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as there is no interference, and the relay can employ coherent
or feature detectors that have high detection probability. In the
presence of interference, knowledge of the interference struc-
ture can help in the detection, however, this is out of the scope of
the paper. The second assumption we make is that the errors and
delay in packet acknowledgement feedback is negligible, which
is reasonable for short length ACK/NACK packets as low rate
codes can be employed in the feedback channel.

First, we describe the new multiple-access strategy. Due to
the broadcast nature of the wireless medium, the relay can listen
to the packets transmitted by the terminals to the destination.
If the packet is not received correctly by the destination, the
relay stores this packet in its queue, given that it was able to
decode this packet correctly. Thus, the relay’s queue contains
packets that have not been transmitted successfully by the ter-
minals. At the beginning of each time slot, the relay listens to
the channel to check whether the time slot is empty (not utilized
for packet transmission) or not. If the time slot is empty, the
relay will retransmit the packet at the head of its queue, hence
utilizing this channel resource that was previously wasted in a
TDMA system without a relay. Moreover, this introduces spa-
tial diversity in the network as the channel fades between dif-
ferent nodes in the network are independent. In the following,
we develop two different protocols to implement the proposed
cognitive multiple-access approach . The proposed protocol is
cognitive in the sense that it introduces a relay in the network
that tries detecting unutilized channel resources and use them
to help other terminals by forwarding packets lost in previous
transmissions.

A. CCMA-Single Frame (CCMA-S)

The first protocol that we propose is CCMA within a single
frame duration or (CCMA-S). The characteristic feature of
CCMA-S is that any terminal keeps its lost packet in its queue
until it is captured successfully at the destination. CCMA-S
operates according to the following rules.

• Each terminal transmits the packet at the head of its queue
in its assigned slot, if the terminal’s queue is empty the slot
is free.

• If the destination receives a packet successfully, it sends
an ACK which can be heard by both the terminal and the
relay. If the destination does not succeed in receiving the
packet correctly but the relay does, then the relay stores this
packet at the end of its queue. The corresponding terminal
still keeps the lost packet at the head of its queue

• The relay senses the channel, and at each empty time slot
the relay transmits the packet at the head of its queue, if
its queue is nonempty. If the transmitted packet is received
correctly by the destination it sends an ACK and the corre-
sponding terminal removes this packet from its queue.

• If the relay does not succeed in delivering the packet in
the following time slots, then the relay drops this
packet from its queue. In this case, the corresponding ter-
minal becomes responsible for delivering the packet to the
destination.

Following are some important remarks on the above protocol.
According to the above description of CCMA-S, the relay’s
queue has always a finite number of packets (at most has

backlogged packets). This follows because according to the pro-
tocol, the relay can have at most one packet from each terminal.
Thus, the stability of the system is only determined by the sta-
bility of the terminals’ queues. Second, successful service of a
packet in a frame depends on whether the other terminals have
idle time slots or not. Therefore, individual terminals’ queues
are interacting.

B. CCMA-Multiple Frames (CCMA-M)

The main difference between protocols CCMA-S and
CCMA-M is in the role of the relay and the behavior of the ter-
minals’ regarding their backlogged packets. More specifically,
a terminal removes a packet from its queue if it is received
successfully by either the destination or the relay. CCMA-M
operates according to the following rules.

• Each terminal transmits the packet at the head of its queue
in its assigned time slot. If the queue is empty the time slot
is free.

• If a packet is received successfully by either the destina-
tion or the relay, the packet is removed from the terminal’s
queue (the relay needs to send an ACK if one is not heard
by the destination in this case).

• If a packet is not received successfully by both the relay and
the destination, the corresponding terminal retransmits this
packet in its next assigned time slot.

• At each sensed empty time slot, the relay retransmits the
packet at the head of its queue.

One can now point out the differences between the queues
in systems CCMA-S and CCMA-M: i) The size of the relay’s
queue can possibly grow in CCMA-M as it can have more than
one packet from each terminal, however, it can not exceed size

in CCMA-S. ii) The terminal’s queues in CCMA-M are
not interacting as in CCMA-S. This is because the terminal re-
moves the packets which were received correctly by the relay
or the destination from its queue. In other words, servicing the
queue of any terminal depends only on the channel conditions
from that terminal to the destination and relay, and does not de-
pend on the status of the other terminals’ queues. iii) The stable
throughput region of CCMA-M requires studying the stability
of both the terminals’ queues and the relay’s queue.

IV. STABILITY ANALYSIS

The aim of this section is to characterize the stable throughput
region of the proposed cooperation protocols.

A. Stability Analysis of CCMA-S

1) The Two-Terminal Case: In CCMA-S, we observed in
the previous section that the relay’s queue size is always finite,
hence it is always stable. For the two-terminal case, the queues
evolve as a two-dimensional Markov chain in the first quadrant.
From the protocol description in the previous section, one can
observe that the system of queues in CCMA-S is interacting.
In other words, the transition probabilities differ according to
whether the queues are empty or not. For example, if one of
the two terminals’ queues was empty for a long time, then the
relay serves the lost packets from the other terminal more often.
On the other hand, if one of the two terminals queues never
empties, then the other terminal will never get served by the
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relay. Studying stability conditions for interacting queues is a
difficult problem that has been addressed for ALOHA systems
[20], [21], and [22].

To analyze the stability of CCMA-S, we develop a dominant
system to decouple the interaction of the terminals originating
from the role of the relay in cooperation.. Using our developed
dominant system we are able to characterize the stability region
of two-user CCMA-S for a fixed resource sharing vector, and
hence the whole stability region. The following lemma states the
stability region of CCMA-S for a fixed resource sharing vector

.

Lemma 1: The stability region of two-user CCMA-S
for a fixed resource sharing vector is given by

where

(8)

and

(9)

where

Proof of Lemma 1: The proof depends on constructing
a dominant system that decouples the interaction between the
queues and thus renders the analysis tractable. By dominance,
we mean that the queues in the dominant system stochastically
dominate the queues in the original CCMA-S system, i.e., with
the same initial conditions for queue sizes in both the original
and dominant systems, the queue sizes in the dominant system
are not smaller than those in the original system [21].

We define the dominant system for CCMA-S as follows. For
, define as

• and CCMA-S are identical, except that, the packets suc-
cessfully transmitted by the relay for user are not re-
moved from user’s queue in .

The above definition of the dominant system implies that queue
evolves exactly as in a TDMA system without a relay. If both

the dominant system and the original CCMA-S started with the
same initial queue sizes, then the queues in are always not
shorter than those in CCMA-S. This follows because a packet
successfully transmitted for queue in is always successfully
transmitted from the corresponding queue in CCMA-S. How-
ever, the relay can succeed in forwarding some packets from
queue in CCMA-S in the empty time slots of the other ter-
minal. This implies that queue empties more frequently in
CCMA-S and therefore the other terminal is better served in
CCMA-S compared to . Consequently, stability conditions
for the dominant system ( ) are sufficient for the
stability of the original CCMA-S system. In the following, we
first derive the sufficient conditions for stability of CCMA-S.

Consider system in which the relay only helps terminal
2 and terminal 1 acts exactly as in a TDMA system. In order
to apply Loynes’ theorem, we require the arrival and service
processes for each queue to be stationary. The queue size for

terminal in system at time , denoted by ,
evolves as follows

(10)

where represents the number of arrivals in slot
and is a stationary process by assumption with finite

mean . The function is defined as
. denotes the possible (virtual)

departures from queue at time ; by virtual we mean that
can be equal to 1 even if . We assume that

departures occur before arrivals, and the queue size is measured
at the beginning of the slot [21]. For terminal , the service
process can be modeled as

(11)

where is the indicator function, denotes the event that
slot is assigned to terminal 1, and denotes the complement
of the outage event between terminal 1 and the destination
at time .2 Due to the stationarity assumption of the channel
gain process , and using the outage expression in (6), the

probability of this event is given by . From the

above, it is clear that the service process is stationary
and has a finite mean given by , where
denotes statistical expectation. According to Loynes, stability of
queue 1 in the dominant system is achieved if the following
condition holds

(12)

Consider now queue 2 in system . The difference between
the evolution of this queue and queue 1 is in the definition of the
service process . A packet from queue 2 can be served
in a time slot in either one of the two following events: 1) If
the time slot belongs to queue 2 and the associated channel
is not in outage; or 2) the time slot belongs to queue 1, queue
1 is empty, in the previous time slot the channel to relay from
terminal 2 was not in outage, and the relay-destination channel
is not in outage. This can be modeled as

(13)

where denotes the event that terminal’s 1 queue
is empty in time slot . The two indicator functions in the right
hand side of (13) are mutually exclusive, hence, the average rate
of the service process is given by (14) at the bottom of the next
page, where is the probability of outage between nodes

and . Under (12), the probability of queue 1 empty is given
by

(15)

Using the expression of the outage probability in (6) and Loynes
conditions for stability [16], and given (12), the stability condi-
tion for queue 2 in the dominant system is given by

(16)

2(�) denotes the complement of the event.
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Fig. 2. Stable throughput region for system CCMA-S for a fixed resource-sharing vector (! ; ! ) given byR(S ) R(S ).

Both conditions (12) and (16) represent sufficient conditions
for the stability of system for a specific resource-sharing
vector pair. Denote the region (12) and (16) as .
Using parallel arguments for the dominant system , we can
characterize a similar region for this system by the fol-
lowing pair of inequalities:

(17)
Since stability conditions for a dominant system is sufficient for
the stability of CCMA-S, any point inside the regions
and can be achieved by the original system CCMA-S,
hence is a subset from the stability region of
CCMA-S for a fixed resource-sharing pair . This region
is depicted in Fig. 2.

Up to this point we only proved the sufficient conditions for
the stability of CCMA-S in the lemma. To prove the necessary
conditions, we follow a similar argument that was used by [21]
and [27] for ALOHA systems to prove the indistinguishability
of the dominant and original systems at saturation. The argu-
ment is as follows. Consider the dominant system whose
stability region is characterized by the pair of inequalities (12),
(16). Note that if queue 2 does not empty, packets of user 1 are
never relayed in both and CCMA-S, and both systems be-
come identical. In , for , if

then using similar arguments as before is stable and is
unstable by Loynes, i.e., almost surely. If

tends to infinity almost surely, i.e., does not empty, then and
CCMA-S are identical, and if both systems are started from the
same initial conditions, then on a set of sample paths of positive

probability in CCMA-S never returns to zero for .
Hence in CCMA-S tends to infinity with positive proba-
bility, i.e., CCMA-S is also unstable. Using parallel arguments
for system , if queue 1 never empties then queue 2 can be
never served by the relay and both the dominant and the orig-
inal systems are unstable. This means that the boundary for the
stability region of the dominant system is also a boundary for
the stability region of the original CCMA-S system. Thus, con-
ditions for stability of the dominant system are sufficient and
necessary for stability of the original system. This completes
the proof of Lemma 1

The whole stability region for system CCMA-S can be de-
termined by taking the union over all feasible resource-sharing
vectors as follows:

CCMA-S (18)

We give a complete characterization of the stability region of
CCMA-S in the following theorem.

Theorem 1: The stability region for a two-user CCMA-S
system is given by

CCMA-S
(19)

where the functions and are defined in (20) at the top
of the following page, and the function is specified as

.

(21)

(14)
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(20)

where

. (22)

and .
Proof of Theorem 1: See Appendix A.

An interesting observation that we make from the above
theorem is that both functions and are linear
on some part of their domain and strictly convex on the other
part. It is not obvious, however, whether both functions are
strictly convex over their domain of definition, and hence,
whether the boundary of the stability region of CCMA-S given
by is convex or not. In the following lemma, we
prove this property.

Lemma 2: The boundary of the stability region of two-user
CCMA-S given by is a convex function.

Proof of Lemma 2: See Appendix B.

Lemma 2 will prove useful in characterizing the relation
among the stability regions of the different multiple-access pro-
tocols considered in this paper. The first relation that we state
is that between the stability regions of TDMA and CCMA-S.

Lemma 3: The stability region of two-user TDMA is con-
tained inside that of two-user CCMA-S. In other words

TDMA CCMA-S (23)

The two regions are identical if the following two conditions are
satisfied simultaneously:

(24)

Proof of Lemma 3: We use Theorem 1 and Lemma 2 in
the proof of this lemma. The stability region of TDMA is deter-
mined according to the following parametric inequalities:

(25)

or equivalently

(26)

From Lemma 2, both functions and that determines the
boundary of the stability region of CCMA-S are convex. From
the proof of the convexity, we note that the straight line

is a tangent for both functions, hence, it lies below
both functions. Since this straight line is itself the boundary for
the TDMA stability region, then the stability region of TDMA
is a subset of that of CCMA-S. To prove the second part of
the lemma, we use the definitions of the functions in
Theorem 1. From (83), observe that if

then the maximum is determined by . If simultaneously
, then by substituting both conditions in

the domain definitions of the functions , it can be seen that
both functions reduce to

(27)

which is the boundary for the stability region of TDMA. Hence,
if both conditions in (24) are satisfied, CCMA-S and TDMA
have the same stable throughput regions. This completes the
proof of the lemma.

2) The Symmetric -Terminals Case: Stability analysis
for the general -terminal case is very complicated. For the
ALOHA case, only bounds on the stability region have been
derived [22], [27]. In this paper, we only focus on the sym-
metric scenario. We define the dominant system for -terminal
CCMA-S, , as follows. and the original system are
identical, except that, the relay does not help any of the users
in . It is clear that the queues in this system are never
shorter than those in the original system CCMA-S. For ,
the success probability of transmitting a packet is equal for all
terminals and is given by

SNR (28)

The service rate per terminal is thus given by ,
due to the symmetry of the problem. Since system acts
as a TDMA system without a relay, the queues are decoupled
and hence the arrival process and departure process of each of
them is strictly stationary. Applying Loynes theorem, the sta-
bility condition for is given by

(29)

where is the aggregate arrival rate for the terminals.
Next, let us consider the stability of symmetric CCMA-S.

Since as described before dominates CCMA-S, if is
stable then CCMA-S is also stable. Therefore, for ,
system CCMA-S is stable. On the other hand, if all the queues in

are unstable, then none of these queues ever empty, hence,
the relay loses its role and both systems CCMA-S and are
indistinguishable if both started with the same initial conditions.
Therefore, if we have , then all the queues in are
unstable and accordingly system CCMA-S is unstable as well.
Therefore, the maximum stable throughput for system CCMA-S
can be summarized in the following theorem.

Theorem 2: The maximum stable throughput
CCMA-S for system CCMA-S is equal to that

of a TDMA system without a relay and is given by

CCMA-S (30)
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However, we conjecture that for the general asymmetric -ter-
minal scenario, the whole stability region of TDMA will be con-
tained inside that of CCMA-S. Another important issue to point
out is that although CCMA-S and TDMA have the same max-
imum stable throughput for the symmetrical case, the two sys-
tems do not have the same delay performance as will be dis-
cussed later.

B. Stability Analysis of CCMA With Multiple Frames
(CCMA-M)

In CCMA-M, the relay’s queue can possibly grow and hence
should be taken into account when studying the system stability.
This means that for stability we require both the terminals’
queues and the relay’s queue to be stable. The stability region
of the whole system is the intersection of the stability regions
of the terminals and that of the relay. First, we consider the

-terminal case. According to the operation of system
CCMA-M, a terminal succeeds in transmitting a packet if either
the destination or the relay receives this packet correctly. The
success probability of terminal in CCMA-M can thus
be specified as follows:

(31)

We first consider the stability region for the system deter-
mined just by the terminals’ queues. Since for each queue

, the queue behaves exactly as in a TDMA system with
the success probability determined by (31), the stability region

CCMA-M for the set of queues in is given by

CCMA-M

and (32)

Next we study the stability of the relay’s queue . The evolution
of the relay’s queue can be modeled as

(33)

where denotes the number of arrivals at time slot and de-
notes the possibility of serving a packet at this time slot from the
relay’s queue ( takes values in ). If the terminals’
queues are stable, then by definition the departure processes
from both terminals are stationary. A packet departing from a
terminal queue is stored in the relay’s queue (i.e., counted as an
arrival) if simultaneously the following two events happen: the
terminal-destination channel is in outage and the terminal-relay
channel is not in outage. Hence, the arrival process to the queue
can be modeled as follows:

(34)

In (34), denotes the event that terminal’s queue is
not empty, which under (32) has probability , where

is defined in (31). The random processes involved in the
above expressions are all stationary, hence, the arrival process to

the relay is stationary. The expected value of the arrival process
can be computed as follows:

(35)

Similarly, we establish the stationarity of the service process
from the relay’s queue. The service process of the relay’s queue
depends by definition on the empty slots available from the ter-
minals, and the channel from the relay to the destination being
not in outage. By assuming the terminals’ queues to be stable,
they offer stationary empty slots (stationary service process) to
the relay. Also the channel statistics is stationary, hence, the
relay’s service process is stationary. The service process of the
relay’s queue can be modeled as

(36)

and the average service rate of the relay can be determined from
the following equation:

(37)

Using Loynes theorem and (35) and (37), the stability
region for the relay CCMA-M is determined by the
condition . The total stability region for
system CCMA-M is given by the intersection of two regions

CCMA-M CCMA-M which is easily shown to
be equal to CCMA-M . The stability region for CCMA-M
with two terminals is thus characterized as follows:

CCMA-M

(38)

For , this reveals that the stability region of CCMA-M
is bounded by a straight line. Since the stability region for
TDMA is also determined by a straight line, when comparing
both stability regions it is enough to compare the intersection
of these lines with the axes. These intersections for CCMA-M
are equal to

CCMA-M CCMA-M

(39)

while the corresponding values for TDMA are given by

TDMA TDMA (40)

It is clear that the stability region for TDMA is completely con-
tained inside the stability region of CCMA-M if

CCMA-M TDMA and CCMA-M TDMA

Using (39) and (40), these two conditions are equivalent to

(41)

These conditions have the following intuitive explanation: if
the relay-destination channel is better than the terminal-desti-
nation channel then it is better to have the relay help the ter-
minal transmit its packets. Note that (41) implies that TDMA
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can offer better performance for the terminal whose success
probability does not satisfy (41). This possible degradation in
the performance does not appear in CCMA-S because the de-
sign of CCMA-S does not allow the relay to store the packets it
received for ever. Hence, the performance of protocol CCMA-S
cannot be less than that of TDMA. This calls for the develop-
ment of an enhanced version of protocol CCMA-M that takes
this into account.

1) Enhanced Protocol CCMA-Me: In this enhanced strategy,
the relay only helps the terminals which, on average, have worst
channel condition than the relay itself. In other words, the relay
helps the terminal whose outage probability to the destination
satisfy for , which can be determined only
by the distance between the terminal and the destination. Other
terminals that do not satisfy this inequality operate as in TDMA,
i.e., the relay does not help them.

Next we calculate the stability region for the enhanced system
and consider terminals for illustration. Assume that the
relay only helps terminal 1. Similar to our calculations for the
arrival and service processes for the relay in CCMA-M, we can
show that the average arrival rate to the relay in CCMA-Me is
given by

CCMA-Me (42)

and the average service rate to the relay is given by

CCMA-Me

(43)

Using Loynes theorem [16] and (42) and (43), the stability re-
gion CCMA-Me is given by

CCMA-Me

(44)

The stability region for the enhanced protocol CCMA-Me is
not smaller than the stability region of TDMA TDMA

CCMA-Me , and the proof simply follows from the con-
struction of the enhanced protocol CCMA-Me.

For a general -terminal case, the analysis is the same and
the stability region for CCMA-Me can be fully characterized as
follows.

Theorem 3: The stability region for -terminals CCMA-Me
is specified as

CCMA-Me

(45)

where , or the set of terminals that
the relay helps, and is the comple-
ment set.

It remains to specify the relation between the stability regions
of CCMA-S and CCMA-Me, which is characterized in the fol-
lowing theorem.

Theorem 4: The stability region of two-user CCMA-Me con-
tains that of two-user CCMA-S. In other words,

TDMA CCMA-S CCMA-Me (46)

Proof of Theorem 4: See Appendix C.

C. Existing Cooperation Protocols: Stability Analysis

In this subsection, we discuss stability results for some ex-
isting decode-and-forward cooperation protocols. In particular,
we consider the family of adaptive relaying proposed in [1],
which comprises selection and incremental relaying. In the fol-
lowing, we discuss stability results for these two protocols and
compare them to our proposed CCMA protocol.

1) Stability Region for Selection Decode-and-Forward: In
this subsection, we characterize the stability region of selection
decode-and-forward (SDF) described as follows. The coopera-
tion is done in two phases. In the first phase, the source trans-
mits and both the relay and the destination listen. In the second
phase, if the relay is able to decode the signal correctly, then it
is going to forward the received packet to the destination, oth-
erwise, the source retransmits the packet. Accordingly, there is
always a specified channel resource dedicated for the relay to
help the source, which is different from the opportunistic nature
of cooperation in our proposed algorithms.

In the following, we analyze the outage probability for SDF
under two scenarios. In the first scenario, the structure of the
packets arrivals at the terminal is not allowed to be altered.
Thus, each packet is transmitted in two consecutive time slots
with the original spectral efficiency (for example, using the same
modulation scheme). This, however, results in SDF having half
the bandwidth efficiency of TDMA and CCMA because each
packet requires two time slots for transmission. In the second
scenario, the bandwidth efficiency is preserved among all pro-
tocols. This can be done by allowing the terminal and the relay
to change the structure of the incoming packets so that each of
them transmits at twice the incoming rate (twice the spectral
efficiency). Hence, each packet is now transmitted in one time
slot again, and the average spectral efficiency for SDF under this
scenario is equal to those of TDMA and CCMA [1].

For the first scenario, an outage occurs if both the source–des-
tination link and the source–relay–destination link are in outage.
This can be specified as follows:

SNR SNR SNR

SNR SNR

SNR (47)
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The factor in front of the SNR threshold is to account to the
fact that the transmitted power is divided by in the first sce-
nario to have the same energy per bit. (Note that the bandwidth
efficiency of SDF in the first scenario is half that of CCMA,
hence, we need to reduce the transmit power by half.) The first
term on the right-hand side of (47) corresponds to the event that
both the source–destination and the source–relay links were in
outage in the first time slot, and the source–destination link re-
mained in outage in the second time slot. The second term in
(47) corresponds to the event that the source–destination link
was in outage and the source–relay link was not in outage in the
first time slot, but the relay–destination link was in outage in the
second time slot. The probability in (47) can be expressed as

(48)
where is defined in (7). Since a single packet is transmitted
in two time slots, one can think of this protocol as a modi-
fied TDMA system with the cooperation time slot has twice the
length of the time slot in TDMA. The average arrival rate per
cooperation time slot is for . Loynes condition for
stability is given by

(49)

where is the success probability for terminal .
For the second scenario, we need to calculate the SNR

threshold corresponding to transmitting at twice the rate. It is
in general very difficult to find an explicit relation between the
SNR threshold and the transmission rate, and thus we render
to a special case to capture the insights of this scenario. Let the
outage be defined as the event that the mutual information
between two terminals is less than some specific rate [29].
If the transmitted signals are Gaussian, then according to our
channel model, the mutual information between terminal
and terminal is given by SNR . The
outage event for this case is defined as

(50)

The above equation implies that if the outage is defined in
terms of the mutual information and the transmitted signals are
Gaussian, then the SNR threshold and the spectral efficiency

are related as , i.e., they exhibit an exponen-
tial relation. Hence, for protocol SDF when transmitting at
twice the rate the corresponding SNR threshold is given by

, and given one can find through the previous
equation. Note that we do not reduce the power in this second
scenario because both SDF and CCMA will have the same
spectral efficiency.3

2) Stability Region for Incremental Decode-and-Forward:
The second relaying strategy that we are considering in our com-
parison is incremental relaying. In such a strategy, feedback
from the destination in the form of ACK or NACK is utilized

3Intuitively, under a fixed modulation scheme and fixed average power con-
straint, one can think of the SNR threshold as being proportional to the minimum
distance between the constellation points, which in turn depends on the number
of constellation points for fixed average power, and the latter has an exponential
relation to the number of bits per symbol that determines the spectral efficiency
R.

at the relay node to decide whether to transmit or not. In our
comparison, we consider a modified version of the incremental
relaying strategy proposed in [1]. In particular, we consider a
decode-and-forward incremental relaying with selection capa-
bility at the relay (SIDF). In SIDF, the first phase is exactly
as amplify-and-forward incremental relaying [1]. In the second
phase, if the destination does not receive correctly then the relay,
if it was able to decode the source signal correctly, forwards the
re-encoded signal to the destination, otherwise, the source re-
transmits again. One can think of this protocol as combining
the benefits of selection and incremental relaying.

Next we analyze the outage probability of SIDF. As we did
when studying SDF, we are also going to consider two scenarios
for SIDF, namely, when the packet structure is not allowed to be
changed and the scenario of equal spectral efficiency. The spec-
tral efficiency of SIDF in the first scenario is less that TDMA or
CCMA because the relay is occasionally allocated some channel
resources for transmission with positive probability. Since both
SDF and SIDF have the same mechanism for the outage event,
it is readily seen that the outage event for SIDF is also given by
(47) with the difference that we only use in this case without
the term because SIDF will use the same transmit power.4 The
outage event is thus given by

(51)
The above expression represents the success probability of
transmitting a packet in one or two consecutive time slots.
Terminal uses one time slot with probability and two time
slots with probability . The average number of time
slots used by terminal during a frame in SIDF is thus given by

. The set of queues are not interacting in this case and
the stability region is simply given by

(52)

Next, we consider the second scenario of SIDF, where the
spectral efficiency is preserved for SIDF as for TDMA or
CCMA. In this scenario, both the terminals and the relay will
be transmitting at a higher rate such that the average spectral
efficiency is equal to the spectral efficiency of TDMA or
CCMA. The average spectral efficiency SIDF of SIDF
when transmitting at a spectral efficiency is given by

SIDF (53)

where is the success probability for terminal’s -destination
link when operating at spectral efficiency , and we denote the
whole function in the above expression by . For the sake of
comparison SIDF should be equal to . Thus, for
a given one should solve for . This function can
lead to many solutions for , and we are going to choose the
minimum [1]. The stability region is thus given by

(54)

4This is in favor of SIDF because the transmit power should be reduced to
account for the reduction in the average spectral efficiency.
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Fig. 3. Stability regions for the different considered protocols at an SNR threshold equal to � = 35. For this value of � CCMA-S is equivalent to TDMA as
depicted. CCMA-Me has the largest throughput region.

Fig. 4. Stability regions for the different considered protocols at an SNR threshold equal to � = 64. TDMA is contained in CCMA-S, and the gap between SIDF
and CCMA-Me increases in this case.

where has the same form as but evalu-
ated at spectral efficiency .

D. Numerical Results

We compare the stability regions of -user TDMA,
CCMA-S, CCMA-Me, the two forms of adaptive relaying pro-

posed in [1] (selection and incremental relaying), and ALOHA
as an example of random access.

In Figs. 3 and 4 we plot the stability regions for TDMA,
CCMA-S, CCMA-Me, SDF, iSIDF, and ALOHA for an SNR
threshold of , and , respectively. For SDF and
SIDF we use the first scenario in which the packet structure
is not changed. The parameters used to depict these results are
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Fig. 5. Aggregate maximum stable throughput versus SNR threshold � in decibels. The propagation path loss is set to  = 3:5. The first scenario is used for SDF
and SIDF. CCMA-Me has the best tradeoff curve among all the other protocols.

as follows. The distances in meters between different terminals
are given by , , , ,

. The propagation path loss is given by , the
transmit power watt, and . In both Figs. 3
and 4, CCMA-Me has the largest stable throughput region. In
Fig. 3, CCMA-S and TDMA have identical stable throughput
region, and it can be checked that conditions (24) are satisfied
for . In Fig. 4, TDMA is contained inside CCMA-S.
Both CCMA-S and CCMA-Me provide larger stable throughput
region over SDF and ALOHA. This is because of the lost band-
width efficiency in SDF and the interference in ALOHA due to
collisions. SIDF is very close to CCMA-Me for smaller values
of , and the gap between them increases with increasing as
depicted in Fig. 4. This is because the bandwidth efficiency of
SIDF reduces with increasing which increases the probability
of using a second time slot by the relay.

Next we demonstrate the tradeoff between the maximum
stable throughput (MST) versus the SNR threshold and the
transmission rate . For SDF and SIDF, we consider the two
scenarios described in Section IV-C1, where in the first scenario
the incoming packet structure is not changed and hence the two
protocols have less bandwidth efficiency compared to TDMA
and CCMA. While in the second strategy, the packet structure
is changed to preserve the bandwidth efficiency. The maximum
stable throughput results for the two scenarios are depicted in
Figs. 5 and 6, respectively. In both figures, the relative distance
between terminals are , , and

. In Fig. 5, the MST is plotted against the SNR

threshold and the propagation path loss is set to .
For SDF and SIDF, we use the first scenario. CCMA-Me has
the best tradeoff for the whole range. TDMA and CCMA-S
have identical performance as proven before for the symmetric
case. The maximum attained MST for SDF is as one can
expect because of the time slot repetition. ALOHA has better
performance over SDF for low-SNR threshold, but for medium
and high values of , SDF has better performance. SIDF has
close performance to CCMA-Me for low values of , and
CCMA-Me outperforms it for the rest of the SNR threshold
range.

In Fig. 6, the MST is plotted against the transmission rate
, and we use the second scenario for SDF and SIDF. For this

case, the MST of SDF starts from for low rates but decays
exponentially after that. SIDF and SDF have the best perfor-
mance for low spectral efficiency regimes where sacrificing the
bandwidth by transmitting at higher rate is less significant than
the gains achieved by diversity. SIDF performs better than SDF
because it is more bandwidth efficient. For higher spectral effi-
ciency regimes, the proposed CCMA-Me provides significantly
higher stable throughput compared to SDF or SIDF. An impor-
tant point to observe from Fig. 6 is the graceful degradation in
the performance of CCMA-Me, while the sudden catastrophic
performance loss in SDF and SIDF. The rationale here is that
the cognitive feature of the proposed CCMA-Me results in no
bandwidth loss because cooperation is done in the idle time
slots, while both SDF and SIDF suffer from a bandwidth loss
which increases for SIDF with increasing . Our results reveal
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Fig. 6. Aggregate maximum stable throughput versus spectral efficiencyR in bits per second per hertz (b/s/Hz). The propagation path loss is set to  = 3:5. The
second scenario is used for SDF and SIDF. SIDF has the best performance for low spectral efficiency but it suffers from a catastrophic degradation when increasing
the spectral efficiency R. CCMA-Me has a graceful degradation due to its bandwidth efficiency, and it has the best tradeoff for medium-to-high spectral efficiency.

a very interesting observation that utilizing empty time slots to
increase system reliability via cooperation is a very promising
technique in designing cooperative relaying strategies for wire-
less networks.

V. THROUGHPUT REGION

In the characterization of the stable throughput region in the
previous section, the source burstiness is taken into account.
Consider now the scenario under which all terminal queues
are saturated, i.e., each terminal has infinite number of packets
waiting transmission. The maximum throughput supported
by any terminal can be defined under such a scenario by the
average maximum number of packets that can be transmitted
successfully by that terminal [28]. The set of all such saturated
throughputs for different resource–sharing vectors defines the
throughput region.

Since in both CCMA-S and CCMA-Me the relay role de-
pends on having empty time slots to enable cooperation, there is
no surprise that under such saturated queues scenario the relay
loses its role and CCMA-S and CCMA-Me reduce to TDMA
without relaying. We state this in the following corollary.

Corollary 1: The throughput regions of TMDA, CCMA-S,
and CCMA-Me are equivalent

TDMA CCMA-S CCMA-Me (55)

From the preceding corollary, we conclude that the satu-
rated throughput region is a subset of the stability region for
both CCMA-S and CCMA-Me. This is an important obser-
vation because for ALOHA systems it is conjectured in [28]
that the maximum stable throughput region is identical to
the throughput region. It is of interest then to point out that
CCMA-S and CCMA-Me are examples of multiple-access
protocols where the stable throughput region is different from
the throughput region.

VI. DELAY ANALYSIS

In this section, we characterize the delay performance of
the proposed cognitive cooperative multiple-access protocols,
CCMA-S and CCMA-Me.

A. Delay Performance for CCMA-S

In CCMA-S, a packet does not depart a terminal’s queue until
it is successfully transmitted to the destination. Therefore, the
delay encountered by a packet is the one encountered in the ter-
minal’s queue. Delay analysis for interacting queues in ALOHA
has been studied in [25], [26] and more recently for ALOHA
with multipacket reception (MPR) channels in [27], and it turns
out to be a notoriously hard problem. Most of the known results
are only for the two-user ALOHA case. In this section we con-
sider a symmetric two-user CCMA-S scenario and characterize
its delay performance.
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Define the moment generating function of the joint queues’
sizes processes as follows:

(56)

From the queue evolution equations in (10), we have

(57)
where the above equation follows from the independence as-
sumption of the future arrival processes from the past departure
and arrival processes. Since the arrival processes are assumed to
follow Bernoulli random process, the moment generating func-
tion of the joint arrival processes is given by

(58)
where due to the symmetry of the two terminals, each has an
arrival rate . From the definition of the service process of
CCMA-S (13), it follows that

(59)

where

(60)

in which we use to denote symmetric resource-sharing portion
of each terminal.

Substituting (58), (59), into (57) and taking the limits we get

(61)

We can rewrite the above equation as follows:
, where

and

(62)

Define . Due to symmetry, the average
queue size is given by . Hence, to find the average
queuing delay, we need to compute .

First we find a relation between and using
the following two properties which follow from the symmetry
of the problem: and . Applying
these two properties to (61) along with a simple application of
L’Hopital limit theorem we get

(63)

Taking the derivative of (61) with respect to , applying L’Ho-
pital twice, and using the relation in (63), we get

(64)

To find another equation relating and , we
compute at . After some tedious but straightfor-
ward calculations, we get

(65)

Due to the symmetry of the problem, we have the following
property:

(66)

Using the above equation, and solving (64) and (65) we get

(67)
The queueing delay for system CCMA-S can thus be determined
as in the following theorem.

Theorem 5: The average queueing delay for a symmetrical
two-terminal CCMA-S system is given by

CCMA

(68)

From Theorem 5, it can be observed that at the delay
of the system becomes unbounded, i.e., the system becomes sat-
urated. This confirms our previous results in Corollary 1 that for
a symmetrical system, both TDMA and CCMA-S have the same
maximum stable throughput of .

B. Delay Performance of CCMA-Me

Due to the symmetrical scenario considered in analyzing the
delay performance, if the relay helps one terminal then it helps
all terminals, in which case both CCMA-M, CCMA-Me become
equivalent. In CCMA-M, a packet can encounter two queuing
delays; the first in the terminal’s queue and the second in the
relay’s queue. If a packet successfully transmitted by a terminal
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Fig. 7. Average queueing delay per terminal versus the arrival rate for an SNR threshold of � = 15.

directly goes to the destination, then this packet is not stored
in the relay’s buffer. Denote this event by . The total delay
encountered by a packet in CCMA-M can thus be modeled as

CCMA-M (69)

where is the queueing delay in the terminal’s queue, and is
the queuing delay at the relay’s queue. We can elaborate more on
(69) as follows. For a given packet in the terminal’s queue, if the
first successful transmission for this packet is to the destination,
then the delay encountered by this packet is only the queuing
delay in the terminal’s queue. On the other hand, if the first
successful transmission for this packet is not to the destination,
then the packet will encounter the following delays: queuing
delay in the terminal’s queue in addition to the queuing delay
in the relay’s queue.

First, we find the queuing delay either in the terminal’s or
relay’s queue, as both queues have similar evolution equations,
with the difference being in the average arrival and departure
rates. Using the same machinery utilized in the analysis of the
queueing delay in CCMA-S to analyze the delay performance
of CCMA-M, the average queue size can be found as

(70)

where denotes the average arrival rate and denotes the av-
erage departure rate. We now compute the average delay in (69).

The probability that, for any packet, the first successful trans-
mission from the terminal’s queue is to the destination is given
by

(71)

From (69)–(71), the average delay for system CCMA-M is thus
given by

CCMA-M

(72)

where and are the average arrival and departure rates, re-
spectively, for the relay’s queue defined in (34) and (36). After
simplifying the above equation, the average queueing delay for
system CCMA-M can be summarized in the following theorem

Theorem 6: The average queuing delay for a packet in a sym-
metrical 2-terminal CCMA-M system is given by

CCMA-M (73)

C. Numerical Results for Delay Performance

We illustrate the delay performance of the proposed mul-
tiple-access schemes with varying SNR threshold through
some numerical examples. As in the case for the stability region,
we include the delay performance of ALOHA, TDMA without
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Fig. 8. Average queueing delay per terminal versus the arrival rate for an SNR threshold of � = 64.

relaying, SDF, and SIDF in our results. Delay performance re-
sults for the two-terminal symmetric ALOHA with capture has
been derived in [27].

To compare the delay performance of the different multiple-
access protocols considered in this paper, we plotted the analyt-
ical expressions we got for the queueing delay. The system pa-
rameters are the same used to generate the MST plots in Figs. 5
and 6. Figs. 7 and 8 depict the delay results for SNR thresholds

and , respectively. From Fig. 7, at very low ar-
rival rates, ALOHA has the best delay performance. Increasing
the arrival rate , both CCMA-S and SDF outperforms other
strategies. For higher values of , CCMA-Me has the best per-
formance .

The situation changes in Fig. 8 for as both CCMA-S
and SIDF outperform ALOHA even for very small arrival rates.
The intuition behind this is the more stringent system require-
ments reflected by the higher SNR threshold , which
makes the interference in ALOHA more severe. This makes
our cognitive multiple-access protocol CCMA-S and CCMA-M
perform better than ALOHA because of its high bandwidth effi-
ciency and the gains of cooperation. Another important remark
is that although CCMA-S and TDMA has the same MST for the
symmetric case, as proven before and as clear from Figs. 7 and 8
where both protocols saturate at the same arrival rate, CCMA-S
has always better delay performance than TDMA.

VII. CONCLUSION

In this paper, we have studied the impact of cooperative
communications at the multiple-access layer. We introduced
a new cognitive multiple-access protocol in the presence of

a relay in the network. The relay senses the channel for idle
channel resources and exploits them to cooperate with the
terminals in forwarding their packets. We developed two pro-
tocols to implement the proposed multiple-access strategy,
namely, CCMA-S and CCMA-Me. We characterized the
maximum stable throughput region of the proposed protocols
and compared them to some existing adaptive relaying strate-
gies, noncooperative TDMA, and random-access ALOHA.
Moreover, we studied the delay performance of the proposed
protocols. Our analysis reveals significant performance gains
of the proposed protocols over their noncognitive counterparts.
This is because the proposed multiple-access strategies do
not result in any bandwidth loss, as cooperation is enabled
only in idle “unused” channel resources, which results in a
graceful degradation of the maximum stable throughput when
increasing the communication rate. On the other hand, the
maximum stable throughput of noncognitive relaying strategies
such as selection and incremental relaying suffers from cata-
strophic degradation with increasing the communication rate,
because of their inherent bandwidth inefficiency.

Furthermore, we show that the throughput region of the
proposed protocols is a subset from their maximum stable
throughput region, which is different from the case in ALOHA
where it is conjectured that both regions are identical.

APPENDIX A
PROOF OF THEOREM 1

The stable throughput region of CCMA-S for a fixed re-
source-sharing vector is specified in Lemma 1. In
order to find the whole stability region of the protocol, we
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need to take the union over all possible values of in .
One method to characterize this union is to solve a constrained
optimization problem to find the maximum feasible cor-
responding to each feasible . For a fixed , the maximum
stable arrival rate for queue 2 is given by solving the following
optimization problem:

s.t. (74)

where , and . To put this problem
in a standard form, we can equivalently write it as the minimiza-
tion of . The Lagrangian of this optimization problem is
given by

(75)

where are the complementary slackness variables that are
nonnegative. Solving for the complementary slackness variables
we get the following relation between and :

(76)

This shows that , i.e., the first constraint ( )
in (74) is met with equality.

Substituting in the cost function in (74), we get

(77)

Taking the first derivative of the above equation with respect to
, we get

(78)

Since is nonnegative, the second derivative is negative,
hence, the cost function in (77) is concave in and the nec-
essary conditions (the Karush–Kuhn–Tucker conditions) for
optimality [32] are also sufficient. Equating the first derivative
in (78) to zero, the solution is given by

(79)

From the first constraint in (74), the minimum value for that
guarantees the stability of queue 1 in system is given by

. Hence, if , and given concavity
of the cost function, the optimal solution is just , otherwise it
is given by . Characterizing this in terms of the channel
parameters, the optimal solution for the optimization problem
in (74) is given by

.
(80)

If , then the first queue can never be stable by con-
struction of .

Now we solve for the other branch in the stability region given
by the dominant system . The equations for this branch are

given by (16). Similar to the first stability region branch, solving
for the Lagrangian of this branch gives the necessary condition

. First, we find the maximum achievable stable rate
for the first queue, which is achieved when . Substituting
in (16), the arrival rate can be written as

(81)

The above equation is obviously concave. Taking the first
derivative and equating to zero we get

(82)

Since , then if , i.e., , and given
the concavity of the cost function, we let . Substi-
tuting in (81), the maximum achievable rate can be
given by

. (83)

Next for a fixed , we solve for the optimal that can be
achieved from the second branch. We can write (16) in terms of

as follows:

(84)

Taking the first derivative with respect to we get

(85)

The second derivative is negative, which renders the whole func-
tion concave. Equating the first derivative to zero we get

(86)

From (16), we have the following constraint for the stability of
the second queue, , which can be written in terms
of as follows:

(87)

Substituting from (87) into (84), we get that the maximum
value for in terms of is given by . Therefore,
the optimal value for can be written as

(88)

The value of the expression in (88) can be shown never to exceed
by substituting the maximum value of given by (83) in the

above equation. After some manipulations, the optimum in
(88) can be further simplified as follows

if

otherwise.
(89)

We summarize equation (77), (80), (84), (35) describing the
envelopes of the first and second branches as follows. For the
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Fig. 9. Envelopes for the stability region of CCMA-S. (a) First branch. (b) Second branch.

first branch given by (77), (80), substituting (80) in (77) we get
(90) at the bottom of the page. Similarly, by substituting (89) in
(84), we get for the second branch

.

(91)

The value for is given by (83). Since and are
achieved by the dominant systems and , respectively, then
they are both achieved by CCMA-S. This proves Theorem 1.

APPENDIX B
PROOF OF LEMMA 2

We prove the convexity of the envelope of region
CCMA . First we consider the envelope for

the first branch. As shown in Fig. 9(a), is defined over
two regions: For

while for , is a
straight line given by . It can be readily seen that
is convex over both regions because its second derivative is non-
negative. Thus, to prove that is convex over the whole
region, we check the continuity and the first derivative at the in-
tersection point . It is simple to show that is
continuous at this point. Now, it remains to check the slope of
the tangent at the intersection point. Taking the first derivative
of and , we can show that

(92)

Therefore, is also differentiable, which proves that
is convex over its domain of definition. Similar ar-

guments apply for depicted in Fig. 9(b) to prove its
convexity.

The envelope of the stability region of CCMA-S is given
by . The maximum of two convex func-
tions can be shown to be convex, and this proves that the en-
velope of the stability region for system CCMA-S is a convex
function.

APPENDIX C
PROOF OF THEOREM 4

In this appendix, we prove that the stability region of
CCMA-S is a subset of that of CCMA-Me. In the proof of this
theorem, we use two facts: the envelope of CCMA-S
is convex as proved in Lemma 2, and the envelope of

CCMA-Me is a straight line. Hence, to prove Theorem 3, it
suffices to show that the intersections of the envelope of region

CCMA-S with the axes are not greater than those for
region CCMA-Me . We consider the scenario when both
CCMA-S and CCMA-Me have larger stability regions that
TDMA, or equivalently , , because
if this condition is not satisfied the stability region of CCMA-S
becomes identical to that of TDMA , and CCMA-Me was
shown to outperform TDMA, and hence our theorem is true.

We will consider only the intersections with the axis,
and similar arguments follow for the axis. The intersection
of CCMA-S with the axis, or the maximum stable
arrival rate for the first queue is given by (83), while that for

CCMA-Me is given by (39). Denote the difference between
these two quantities by given as follows :

(93)
If we prove that is nonnegative, then we are done. For an arbi-
trary fixed value for the pair , we consider the range of

.
(90)
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Fig. 10. Numerical evaluation of � for f = 1.

that satisfies the constraint . The first
derivative of with respect to is given by

(94)

Since , the second derivative of the above function
is easily seen to be negative, hence, is concave in in the
region of interest.

takes values in the range . The function
evaluated at the minimum value of is

(95)

Hence, is positive at the left-most boundary of the feasible
region of . For the maximum feasible value of which is
equal to , the function is given by

(96)

Fig. 10 depicts for over the feasible region of the pair
. As shown in the figure, the value of is always posi-

tive. Hence, for an arbitrary feasible value of the pair ,
is concave in and positive at the extreme endpoints of

the feasible region of , therefore, is positive for the whole
range of for an arbitrary value of the pair . This

proves that is always positive over the feasible region of suc-
cess probabilities, and therefore, CCMA-S is a subset from

CCMA-Me . This proves Theorem 3.5
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