
Cognitive Network Inference through
Bayesian Network Analysis

Giorgio Quer§�, Hemanth Meenakshisundaram�, Bheemarjuna Tamma�, B. S. Manoj�,
Ramesh Rao�, Michele Zorzi§�

§DEI, University of Padova, via Gradenigo 6/B – 35131, Padova, Italy.
�University of California at San Diego, La Jolla, CA 92093.

Abstract—Cognitive networking deals with applying cognition to
the entire network protocol stack for achieving stack-wide as well
as network-wide performance goals, unlike cognitive radios that
apply cognition only at the physical layer. Designing a cognitive
network is challenging since learning the relationship between
network protocol parameters in an automated fashion is very
complex. We propose to use Bayesian Network (BN) models for
creating a representation of the dependence relationships among
network protocol parameters. BN is a unique tool for modeling
the network protocol stack as it not only learns the probabilistic
dependence of network protocol parameters but also provides an
opportunity to tune some of the cognitive network parameters
to achieve desired performance. To the best of our knowledge,
this is the first work to explore the use of BNs for cognitive
networks. Creating a BN model for network parameters involves
the following steps: sampling the network protocol parameters
(Observe), learning the structure of the BN and its parameters
from the data (Learn), using a BN-based inference engine (Plan
and Decide) to make decisions, and finally effecting the decisions
(Act). We have proved the feasibility of achieving a BN-based
cognitive network system using the ns-3 simulation platform.
From the early results obtained from our approach, we provide
interesting insights on predicting the network behavior, including
the performance of the TCP throughput inference engine based
on other observed parameters.

I. INTRODUCTION

Cognitive networking [1], [2] deals with wireless systems
that will have deeper awareness of their own operations and of
the network environment, learn relationships among network
parameters, plan and make decisions in order to achieve local,
end-to-end, and network-wide performance as well as resource
management goals. In our concept of cognitive network, all
networking elements track the spatial, temporal, and spectral
dynamics of their own behavior and the behavior associated
with the environment. The information so gathered is used to
learn, plan and act in a way that meets network or application
requirements. Cognitive networking differs from cognitive ra-
dios or cognitive radio networking in that the latter two typically
apply cognition only at the physical layer to dynamically detect
and use spectrum holes, focusing strictly on dynamic spectrum
access, whereas the objective of cognitive networks is to apply
cognition to the entire network protocol stack for achieving
network-wide performance goals.

Cognition in the traditional protocol stack is challenging.
First, the probabilistic relationships among the various pa-
rameters that span across the entire protocol stack are not
clearly understood. Second, the tools that can be used to
determine such complex relationships are not well known. The

traditional layered protocol stack has helped establish an order
and structure in the role of various protocols and hence has
contributed greatly to the faster progress of networking. In
this work, we propose an architecture for cognitive networking
that can be integrated with the existing layered protocol stack
and that exploits new and hitherto unused tools from artificial
intelligence. Specifically, we suggest the use of a probabilistic
graphical model for modeling the layered protocol stack. The
use of graphical models was mentioned in [3], however the
main focus of that paper is on the exploitation of a Monte Carlo
method, Simulated Annealing, for increasing the performance
of the protocol stack. In this paper instead we use Bayesian Net-
work (BN), a graphical representation of statistical relationships
between random variables, widely used for statistical inference
and machine learning [4]. A graphical model is represented by a
graph structure consisting of vertices and edges, and conditional
probability distributions. The structure of the model consists of
the specification of a set of conditional independence relations
for the probability model, represented by a set of missing edges
in the graph. If a variable xi does not depend directly on
variable xj , then there is no edge between them. Conditional
probabilities are used to capture the statistical dependence
between variables. The joint probability distribution of a set of
random variables can be easily obtained using the chain rule.

The use of BN for modeling the protocol stack provides us
with a unique tool to learn not only the influence of certain
parameters on others, but also to apply the inferred knowledge
to achieve the desired level of performance at the higher layers.
For example, our modeling enables a node to determine which
combinations of lower layer parameters are useful for achieving
a certain higher layer throughput performance.

The main contributions of this paper are:

1. the integration of BN into our Cognitive Network frame-
work;

2. the application of BN to study network parameters in a
realistic wireless LAN scenario;

3. a performance analysis of the BN inference engine’s
accuracy in such a scenario.

In this paper we focus on a single-hop network, while the
multi-hop case is studied in [5]. The rest of this paper is or-
ganized as follows: Section II summarizes the fundamentals of
BN models, Section III discusses our architecture for cognitive
networking in detail, Section IV presents the application of
BN learning to a WLAN scenario and Section V shows the

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

performance of the inference engine to predict TCP throughput.
We conclude the paper in Section VI.

II. BAYESIAN NETWORK PRELIMINARIES

In this section we summarize some techniques from machine
learning and Bayesian analysis [4] that will be used to design
the dependence structure of the underlying relationships that
probabilistically connect a set of random variables. In particular,
our aim is to design a Bayesian Network (BN), a graphical
model for representing conditional independences between the
variables through a Directed Acyclic Graph (DAG). This graph
will be used to efficiently compute marginal and conditional
probabilities that are required for inference. A node in the
DAG represents a random variable, while an arrow that connects
two nodes represents a direct probabilistic relation between the
two corresponding variables. Node i, representing the random
variable xi, is a parent of node h if there exists a direct arc from
i to h and we write i ∈ pah, where pah is the set of parents
of node h. From the graph it is always possible to determine
the conditional independence between two variables, applying
a set of rules known as d-separation rules, e.g., see [4], [6] for
a detailed description about BNs properties.

In this section we assume to have M discrete variables,
x1, . . . , xM , with unknown dependence relations, and we write
the realization of the variable xi at time k as x

(k)
i . We assume

to deal with a complete dataset, i.e., the collection of M column
vectors of length N , where N is the number of the independent
realizations of the variables at time samples that for simplicity
we indicate as k = 1, . . . , N . In other words we know the
values of all the elements x

(k)
i ∈ DN,M , with i ∈ {1, . . . , M}

and k ∈ {1, . . . , N}. The first step for designing the BN
is to learn from the dataset the qualitative relations between
the variables and their conditional independences, in order to
represent them in a DAG. The second step, given the DAG, is
to infer the quantitative relations in order to obtain a complete
probabilistic structure that describes the variables of interest.
With this structure we can calculate all the joint and conditional
probabilities between the variables of the network, as explained
in Section II-C.

A. Structure Learning

A BN represents graphically in a DAG the mutual con-
ditional independence relations of a set of variables. In the
literature there are two methods to design such DAG through
a learning process known as structure learning. The former is
the constraint based method [6], in which a set of conditional
independence statements is established based on some a priori
knowledge or on some calculation from the data. Then this set
of statements is used to design the DAG following the rules
of d-separation. An alternative method, commonly used in the
absence of a set of given conditional independence statements,
is the score based method [7], that is able to infer a suboptimal
DAG from a sufficiently large data set DN,M . This method
consists of two parts:

1) a function that scores each DAG based on how accurately
it represents the probabilistic relations between the vari-
ables based on the realizations in the dataset DN,M ;

2) a search procedure, that selects which DAGs to score
within the set of all possible DAGs.

The score function should be computationally tractable and
should balance the accuracy and the complexity of the structure,
i.e., the number of arrows in the graph. It is worth to highlight
that a complete DAG, with all nodes connected, can describe
all possible probabilistic relations among the nodes and that it
is the absence of an arrow that brings information in the form
of conditional independence. In this paper we have chosen the
Bayesian Information Criterion (BIC) as a score function, that
is easy to compute, is based on the Maximum Likelihood (ML)
criterion, i.e., how well the data suits a given structure, and
penalizes DAGs with a higher number of edges. In general it
is defined as [8]:

BIC(S|DN,M) = log2 P (DN,M |S, θ̂S) − size(S)
2

log2(N) ,

(1)
where S is the DAG to be scored, size(S) is the number of
edges in S, DN,M is the dataset, θ̂S is the ML estimation of the
parameters of S and N is the number of realizations for each
variable in the dataset. In the case in which all the variables
are multinomial, with a finite set of outcomes ri for each
variable xi, we define qi as the number of configurations over
the parents of xi in S, i.e., the number of different combinations
of outcomes for the parents of xi. We define also Nijk as the
number of outcomes of type k in the dataset DN,M for the
variable xi, with parent configuration of type j and Nij as the
total number of realizations of variable xi in DN,M with parent
configuration j. Given these definitions, it is possible to rewrite
the BIC for multinomial variables as [7]:

BIC(S|DN,M)

=
M∑
i=1

qi∑
j=1

ri∑
k=1

log2

(
Nijk

Nij

)
− log2 N

2

M∑
i=1

qi(ri − 1) , (2)

which is a computationally tractable function that reduces the
scoring function to a counting problem. A detailed comparison
of scoring functions for structure learning can be found in [9].

Unfortunately, it is not possible to score all the possible
DAGs given a set of M random variables, since an exhaustive
enumeration of all structures is not possible for large values
of M , as the total number of possible DAGs, f(M), increases
super exponentially with M :

f(M) =
M∑
i=1

(−1)i+1 M !
(M − i)!i!

2i(M−i)f(M − i) . (3)

For this reason, it is necessary to define a search procedure
that selects a small representative subset of the space of
all DAGs. There exist plenty of search strategies based on
heuristics consisting of different methods to explore the search
space and look for a local maximum of the score function,
but in general these heuristics do not provide any guarantee of
finding a global maximum for the score function on the space
of possible DAGs, as highlighted in [10]. In this paper we use
a simple heuristic as detailed in Section IV.

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

B. Parameter Learning

Parameter learning is a phase of the learning procedure
that consists in estimating the best set of parameters for each
variable, given the independence relations defined by the DAG.
According to the definition of BN, each variable is directly
conditioned only by its parents, so the estimation of the param-
eters for each variable xi should be performed only conditioned
on the set of its parents pai in the chosen DAG. There are
two main methods, both asymptotically equivalent, consistent
and suitable to be implemented in an on-line manner, given a
sufficient size of the dataset DN,M , namely ML and Bayesian
estimation given Dirichlet priors [10]. In this paper we choose
ML for parameter learning, coherently with the choice of BIC
as a scoring function for the structure learning algorithm. In
the case of multinomial variables we can write with an abuse
of notation1 the ML estimation as:

θ̂xi=k|pai=j =
Nijk

Nij
� P [xi = k|pai = j] . (4)

C. Inference with Bayesian Networks (BNs)

After performing the structure learning and parameter learn-
ing phases on the dataset DN,M , we obtain a complete BN
that represents the probabilistic relation between the variables
xi with i ∈ {1, . . . , M}. At this point we can use the
BN to compute marginal and conditional probabilities on the
variables xi in order to make inference. For example, given a
singly connected2 linear BN with M = 4, with connections
1 → 2 → 3 → 4, we can apply belief propagation [11] for
inference, according to the d-separation rules. We observe at
time k the evidence x1 = x

(k)
1 and x2 = x

(k)
2 and we want

to infer the realization of x4. The belief propagation algorithm
updates the marginal probabilities of all the variables in the
network based on the given evidence, yielding as output the
probabilities:

P
[
x4 = x

(k)
4 |x1, x2

]
= P

[
x4 = x

(k)
4 |x2

]
. (5)

These probabilities will be used by the inference engine de-
tailed in Section IV-C to make predictions for some network
parameters in the Cognitive Network framework.

III. COGNITIVE NETWORK ARCHITECTURE

Here we present the network architecture in which we want to
integrate the BN tools. The network parameters within a stack
or within a particular protocol can be classified into two basic
categories: observable parameters and controllable parameters.
The observable parameters provide important information about
the characteristics or behavior of the protocol and the status of
the network system. For example, in the MAC layer, the average
packet retransmission count provides information about the
packet losses and retransmissions; however, it cannot be directly
controlled, although we can set the maximum retransmission
limit. Examples of controllable parameters include the TCP

1With the notation pai = j we mean that the parents of node i are in the
configuration of type j.

2A singly connected network is a network in which the undirected graph has
no loops.

Fig. 1. The Cognitive Network Architecture.

Congestion Window (T.CW), with its minimum and maximum
levels allowed. Note that the controllable parameters in a given
layer may affect the observable parameters in some other layer.

Our approach uses a fully distributed solution where software
modules called Cognitive Agents (CA) are plugged into each
layer as well as protocols of importance, so that we have
access to the protocol parameters in each layer. Communication
among the CAs is coordinated through a backplane called
CogPlane [2]. Each CA is responsible for periodically sampling
a set of protocol parameters and repositorizing the sampled data
to a Cognitive Repository. The CogPlane contains a Cognitive
Execution Function (CEF), that serves as the brain of the
cognitive network protocol stack and executes the optimization
of protocols within the stack. We decompose the cognitive
action into the four phases of the “Cognition Cycle” [12]: 1)
Observe, 2) Learn, 3) Plan and Decide, and 4) Act.

Fig. 1 shows the architecture of the cognitive network
protocol stack that (in the Observe phase) collects parametric
information from each layer and (in the Learn phase) learns
the effect of controllable parameters on observable parameters
and (in the Plan and Decide phase) determines the values to be
assigned to various controllable parameters in order to meet the
performance requirements imposed by the application layer, and
finally (in the Act phase) reconfigures the network elements.

The Observe phase includes in-stack and out-of-stack param-
eter observation. The observe action, within the protocol stack,
is done by periodically sampling the observable and controllable
protocol parameters across all layers. For in-stack parameter
observation, the CAs will be designed to periodically sample
the state of the network parameters. The main out-of-stack
parameter is the wireless traffic information which is collected
by the CA in the physical layer.

The Learn phase consists of the process of building the
BN structural relationship between the observable and con-
trollable network parameters within the network protocols,
network layers, and environment parameters such as spectrum,
location, and time. Our approach is to first identify a set of
important parameters from each layer of the protocol stack or
from representative protocols in each layer. Once the temporal
behavior data of such parameters is collected in a given spatial

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

domain, the challenge is to derive critical causality relationships
between parameters. We use the above discussed BN model for
deriving the critical causality relationship between parameters.
The BN learning model for some in-stack network parameters
is discussed in Section IV.

The Plan and Decide phase of the system focuses on de-
composing the network or user performance objectives into
real actionable information within the controllable parameter set
of the entire protocol stack. The spatio-temporal-spectral char-
acteristics derived from historical information, in the form of
the probabilistic structure in the graphical models, will provide
significant knowledge for this phase. The Plan and Decide phase
would translate abstract objectives, e.g., minimum throughput
required or maximum end-to-end delay that can be tolerated
by the application layer protocol, into the real controllable
network parameters, e.g., combinations of multi-layer protocol
parameter values. A key role in this phase is the prediction
of the values of the network parameters of interest given the
observations, in order to choose the appropriate actions to
perform in the network. The inference engine, responsible for
this prediction, is presented in Section IV and its performance
is tested in SectionV.

Finally, in the Act phase the decision is effected. Compared
to the other phases, this phase is far less complex. For example,
in this phase, the CEF sends instructions to be executed at all or
selected layers or protocols in the form of identified controllable
parameters and their suggested values. As an example, the initial
congestion window and slow start threshold of TCP can be
instructed to a new node based on the network environment’s
spatio-temporal characteristics [2]. The process of Act may be
carried out at different scales on different devices. For example,
a client node in a Wireless LAN uses this framework to observe
local node parameters and to optimize certain flows of that node,
whereas a wireless AP can use LAN wide parameters to help
optimize the network for certain high priority client nodes.

IV. LEARNING A BAYESIAN MODEL FOR COGNITIVE

NETWORKS

In this section, we look at how the BN structure and parame-
ter learning algorithms are used in the learning phase to infer the
probabilistic relations between the MAC and TCP parameters
of the network. While we focus on the relationship between
TCP and MAC as an example in this paper, our strategy can
be generalized for the entire protocol stack.

A. Network Scenario

We analyze a scenario with up to 40 active users that produce
20 independent TCP flows within the WLAN and communicate
through one Cognitive Access Point (CogAP). The CogAP
is responsible for learning a suitable Bayesian Network (BN)
based on the data collected at each active node and for taking
consequent decisions to optimize the traffic in the network.
The 20 TCP flows are simulated using the ns-3 discrete event
network simulator [13], augmented with hooks that collect the
values of selected TCP and MAC parameters at regular sam-
pling intervals for each flow. In particular, the TCP parameters
collected are the following: x1 is the congestion window value

(T.CW), i.e., the total amount of data [bytes] that can remain
unacknowledged at any time; x2 is the congestion window
status (T.CWS), which can take one of three values based on the
TCP algorithm: linear increasing, exponentially increasing or
exponentially decreasing; x3 is the Round Trip Time (T.RTT),
i.e., the last value registered in the sampling interval of the time
between when a packet is sent and when the corresponding
acknowledgement is received; x4 is the throughput (T.THP),
i.e., the total amount of unique data [bytes] acknowledged in
a sampling interval. The selected MAC parameters are the
following: x5 is the Contention Window (M.CTW), i.e., the
maximum number of slots the node will wait before transmitting
a packet at the MAC level, according to a random back off
interval between zero and CW; x6 is the number of MAC
transmissions (M.TX), i.e., the total number of original MAC
packets transmitted in the sampling interval; x7 is the number of
MAC retransmissions (M.RTX), i.e., the total number of MAC
retransmissions in the sampling interval. Among the parameters
described above, T.CWS, T.THP, M.CTW, M.TX, and M.RTX
have a finite number of outcomes, less than or equal to nq = 30.
Also the remaining two parameters, T.CW and T.RTT, have
been quantized to nq levels, in order to apply the structure
and parameter learning algorithms for multinomial variables,
since they are computationally more efficient and require less
training data. These parameters have been quantized in nq levels
chosen according to their estimated nq−quantiles3. We perform
the learning methods in two datasets, namely D1

N,M and D2
N,M ,

that differ by the sampling intervals in which we register the
network parameters values, ΔT1 = 100 ms and ΔT2 = 1000
ms, respectively. The number of samples is of the order of
N � 5× 104 samples and the number of parameters is M = 7
in both datasets.

B. Designing the Bayesian Network from the data

Structure learning is performed by a score based method
implemented in Matlab and available in [15]. This phase is
the most computationally demanding, as for M = 7 parameters
it requires to discriminate from a set of about 1.1× 109 DAGs.
We have used three different search procedures, namely 1)
Hill Climbing (HC), 2) a Markov Chain Monte Carlo method
(MCMC) and 3) a simple heuristic. The first two are classical
methods described in [16] and implemented in [15]. The simple
heuristic we propose in this paper consists in dividing the net
into two subnets, one for the MAC parameters (MMAC = 3)
and one for the TCP parameters (MTCP = 4), and finding the
best structure for each one of them, separately scoring all the
possible DAGs, that for each subnet are less than 103. Then
these two separate subnets form the initial structure given as
input to the HC algorithm. Each search procedure gives a DAG
as a result and we choose among these three DAGs the one
with the highest BIC score in Eq. (2). From dataset D1

N,M
we obtained the DAG depicted in Fig. 2-(a) that represents the
static connection between the parameters sampled at intervals

3Since it is unrealistic to introduce a complex non-uniform quantizer in each
node, we have chosen this quantizer that performs better than the uniform one
in the case of non uniform realistic variables, as suggested by intuition looking
at the cdf of the variables, and as formally explained in [14].

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

Fig. 2. BNs learned (a) from the dataset D1
N,M with sampling time ΔT1 =

100 ms and (b) from the dataset D2
N,M with ΔT2 = 1000 ms.

of ΔT1 = 100 ms. From dataset D2
N,M instead we obtain the

DAG depicted in Fig. 2-(b), that is slightly different from the
previous one. The reasons for this difference are that when
a longer sampling period is used, the data shows that there
is a direct probabilistic relation between the TCP throughput
(T.THP) and the number of MAC retransmissions (M.RTX),
while the MAC contention window value (M.CTW) becomes
independent of the other parameters. In the graph the former
translates into the appearance of a direct edge between M.RTX
and T.THP and the latter translates into the disappearance of the
edge connecting M.CTW with M.RTX. All the other differences
in the graph can be explained similarly.

C. Learning the Inference Engine

The Plan and Decide phase of our cognitive network is
implemented using a Bayesian inference engine, that is able
to predict the value of certain network parameters based on the
observation of some other parameters. The inference engine
is designed using the parameter learning algorithm described
in Eq. (4), that defines quantitatively the probability relations
among the parameters based on the given training set. The
estimate of an unobserved parameter xi is the expectation of
such parameter based on the probability mass function (pmf)
learned using Eq. (4), where the probability is conditioned
on the set of observed parameters, i.e., the evidence Xe. The
estimated value for xi at time k becomes:

x̂
(k)
i = E

[
x

(k)
i |Xe

]
. (6)

V. PERFORMANCE EVALUATION OF THE INFERENCE

ENGINE

The Bayesian inference engine exploits the BN structure to
infer the expected values of certain important parameters based
on the evidence. We apply the inference engine to the two
different DAGs that connect the network parameters in the cases
of sampling interval ΔT1 = 100 ms and ΔT2 = 1000 ms,
depicted in Fig. 2. Now we use such structures to infer the
value of the TCP throughput (T.THP) based on some evidence,
i.e., the measured values of a subset, possibly empty, of the
network parameters, Xe. In Fig. 3 we show the measured and
the estimated T.THP for 40 consecutive samples, with sampling

60 65 70 75 80 85 90 95 100
20

30

40

50

60

70

80

90

100

110

120

Samples in D2
N,M

T
hr

ou
gp

ut
 [k

by
te

s]

Measured T.THP

Estimated T.THP

Fig. 3. Measured value and estimated value of T.THP (with evidence Xe =
{all}) for 40 consecutive samples in D2

N,M .

time ΔT2, in the case where we have as evidence all the other
network parameters. In order to measure the accuracy of the
T.THP estimate, we define the normalized Root Mean Square
Error (RMSE), i.e.:

ξ =

√∑N
k=1

(
x̂

(k)
4 − x

(k)
4

)2

√∑N
k=1

(
x

(k)
4

)2
, (7)

where x
(k)
4 is the actual value of T.THP at time k and x̂

(k)
4

is the estimated value based on the evidence in the set Xe.
In the simulations we used the data collected from the ns-3
simulator mentioned in Section IV, while the inference engine is
written in Matlab. In Figs. 4 and 5 we represent the performance
of the inference engine for the TCP throughput estimate for
ΔT1 = 100 ms and ΔT2 = 1000 ms, respectively. In the x-axis
we vary the length of the training set for parameter learning, in
logarithmic scale, and in the y-axis we represent the normalized
RMSE calculated as in Eq. (7). The total number of sample
intervals used in this simulation is N = 4·104. The curves in the
graphs correspond to different evidence subsets for the estimate.
In particular, we analyze the performance of the inference
engine in these cases: 1) Xe = ∅, there is no evidence and the
T.THP is estimated based on its marginal distribution; 2) Xe =
{T.RTT}, the evidence is the TCP RTT; 3) Xe = {T.CW}, the
TCP Congestion Window; 4) Xe = {M.RTX}, the number of
MAC retransmissions; 5) Xe = {M.TX}, the number of MAC
transmissions; 6) Xe = {T.RTT, T.CW, T.CWS, M.TX, M.RTX,
M.CTW}, where all the parameters but the TPC throughput are
observed. In particular in Fig. 4, with ΔT1 = 100 ms, we
have a small improvement compared to the case of no evidence
when we measure the number of MAC retransmissions, while
we have a bigger improvement when measuring the number
of MAC transmissions, which is the parameter most related to
TCP throughput, as expected in our scenario. It is interesting
to notice that for a training set smaller than 2 · 103 samples the
inference engine performs better with the knowledge of only
M.TX than with the knowledge of all the parameters. In order

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Size of the training set for parameter learning

R
M

S
E

 n
or

m
al

iz
ed

Xe = 0

Xe = {T.RTT}

Xe = {T.CW}

Xe = {M.RTX}

Xe = {M.TX}

Xe = {all}

Fig. 4. Performance of the T.THP inference engine for ΔT1 = 100 ms.

to explain this behavior, we should notice from Fig. 2-(a) that
M.TX and T.CW separate T.THP from the rest of the network,
according to the rules of d-separation. Moreover, when the
training set is too short the estimates of the values of the
variables are not precise, so that including additional variables
(T.CW in this case) adds potentially inaccurate information
which negatively affects the overall throughput estimate per-
formance. Instead, with ΔT2 = 1000 ms (see Fig. 5), the (now
more accurate) knowledge of T.CW and T.RTT does provide
some advantages for throughput inference, even though M.TX
still has a dominant role in the considered single-hop scenario.

Observing the performance results we conclude that our
inference engine helps the Plan and Decide phase not only in
predicting the behavior of certain network parameters but also
in guaranteeing quality of T.THP estimate with proper choice of
the evidence. A key application to exploit the T.THP inference
engine is to adapt the controllable parameters such as T.CW,
T.CWS and M.CTW to achieve the desired T.THP.

VI. CONCLUSIONS

In this work we proposed the integration of the Bayesian
Network (BN) model into an architecture for Cognitive Net-
working. Cognitive networks learn their operating network
environment and the network protocol parameter relationships
in order to achieve network-wide performance objectives. In this
context, we have shown that the use of BN is very promising for
learning the probabilistic structure and designing an inference
engine for the chosen parameters. The inference engine can
be exploited to achieve performance goals like a minimum
guaranteed level for the TCP throughput. The results support
the following observations: (i) BN is a useful tool for cognitive
networking to determine, represent and exploit the probabilistic
dependencies and conditional independencies between protocol
parameters, (ii) exploiting BN, we can design an inference
engine to accurately predict the behavior of protocol parameters,
and (iii) we can obtain useful insights on the influence of the
data size used for training on the accuracy of network parameter
behavior prediction. Our future plans include the following: (a)
implementing the Act phase of the cognitive network operation,
(b) studying more complex BN models to also describe the time

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Size of the training set for parameter learning

R
M

S
E

 n
or

m
al

iz
ed

Xe = 0

Xe = {T.RTT}

Xe = {T.CW}

Xe = {M.RTX}

Xe = {M.TX}

Xe = {all}

Fig. 5. Performance of the T.THP inference engine for ΔT2 = 1000 ms.

dependencies between network parameters, (c) investigating
other methods for efficient inference over BN, (d) improving
the prediction accuracy, and (e) finding creative ways of using
the inference engine to optimize protocol parameters in a
cross-layer Cognitive framework.

ACKNOWLEDGMENTS

This work was partially supported by the U.S. Army Re-
search Office, Grant. No. W911NF-09-1-0456 and UCSD-CWC
(Center for Wireless Communications).

REFERENCES

[1] R. W. Thomas, D. H. Friend, L. A. DaSilva, and A. B. MacKenzie,
“Cognitive networks: Adaptation and learning to achieve end-to-end per-
formance objectives,” IEEE Communications Magazine, vol. 44, no. 12,
pp. 51–57, December 2006.

[2] B. Manoj, R. Rao, and M. Zorzi, “Cognet: a cognitive complete knowl-
edge network system,” IEEE Wireless Communications, vol. 15, no. 6,
pp. 81–88, December 2008.

[3] E. Meshkova, J. Riihijärvi, A. Achtzehn, and P. Mähönen, “Exploring
Simulated Annealing and Graphical Models for Optimization in Cognitive
Wireless Networks,” in IEEE Globecom 2009, Nov.-Dec. 2009.

[4] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[5] G. Quer, H. Meenakshisundaram, B. Tamma, B. S. Manoj, R. Rao, and

M. Zorzi, “Using Bayesian Networks for Cognitive Control of Multi-hop
Wireless Networks,” in MILCOM 2010, San Jose, CA, US, Nov. 2010.

[6] D. Margaritis, “Learning Bayesian Network Model Structure from Data,”
Ph.D. dissertation, School of Computer Science - Carnegie Mellon Uni-
versity, Pittsburgh, PA, May 2003.

[7] F. V. Jensen and T. D. Nielsen, Bayesian Networks and Decision Graphs.
Springer, 2007.

[8] G. Schwarz, “Estimating the Dimension of a Model,” The Annals of
Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[9] S. Yang and K.-C. Chang, “Comparison of score metrics for Bayesian
network learning,” IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans , vol. 32, pp. 419–428, May 2002.

[10] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. The MIT Press, 2009.

[11] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, 2007.

[12] J. Mitola III, “Cognitive Radio: An Integrated Agent Architecture for Soft-
ware Defined Radio,” Ph.D. dissertation, Royal Institute of Technology
(KTH), Sweden, May 2000.

[13] http://www.nsnam.org/.
[14] D. Lampasi, “An Alternative Approach to Measurement based on Quantile

functions,” Measurement, vol. 41, no. 9, pp. 994–1013, 2008.
[15] K. Murphy, “Bayes Net toolbox for Matlab,” Last time accessed: July

2010. [Online]. Available: code.google.com/p/bnt/
[16] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.

Prentice Hall, 2003.

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

