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Network science provides a set of quantitative methods to investigate complex systems, including human cognition. Although
cognitive theories in di
erent domains are strongly based on a network perspective, the application of network science
methodologies to quantitatively study cognition has so far been limited in scope. 	is review demonstrates how network science
approaches have been applied to the study of human cognition and how network science can uniquely address and provide
novel insight on important questions related to the complexity of cognitive systems and the processes that occur within those
systems. Drawing on the literature in cognitive network science, with a focus on semantic and lexical networks, we argue three
key points. (i) Network science provides a powerful quantitative approach to represent cognitive systems. (ii) 	e network science
approach enables cognitive scientists to achieve a deeper understanding of human cognition by capturing how the structure, i.e.,
the underlying network, and processes operating on a network structure interact to produce behavioral phenomena. (iii) Network
science provides a quantitative framework to model the dynamics of cognitive systems, operationalized as structural changes in
cognitive systems on di
erent timescales and resolutions. Finally, we highlight key milestones that the �eld of cognitive network
science needs to achieve as it matures in order to provide continued insights into the nature of cognitive structures and processes.

1. Introduction

Networks are everywhere. 	e friends you interact with in
real life and on social media form your social network.
Webpages form a network that you navigate through when
you browse the World Wide Web. 	e same holds for
roads, train tracks, or waterways for navigation in the real
world. Over the past two decades, an increasing number of
studies have applied network science methodologies across
diverse scienti�c �elds to study complex systems (e.g., [1–3]).
Complex systems involve multiple components that interact
with each other to give rise to complex behavior.	is includes
the human brain and the cognitive processes it gives rise to,

such as memory and language (e.g., [4–8]). Network science
is based on mathematical graph theory and provides a set of
powerful quantitative methods to investigate these systems as
networks (e.g., [9]).

In recent years, network science has become a popular
tool in the study of structures and dynamics at the neural level
of the brain [3, 10]. Despite the rich potential of the methods,
research in cognitive phenomena has applied these tools to
a lesser extent. 	is review aims to discuss how network
science approaches have been applied to the study of human
cognition and hownetwork science can uniquely address and
shed novel light on important questions related to cognitive
systems and the processes that occur within those systems.
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In particular, we aim to establish the following three points
by an in-depth discussion of the extant literature on cognitive
network science.	is review is organized into three sections,
each of these addressing one of the three issues.

(1) Network Science Provides a Quantitative Approach to
Represent Cognitive Systems. One important goal of cogni-
tive science is to model cognitive structures, for instance,
semantic memory—our memory for facts or events (e.g.,
[5, 11, 12]), and the mental lexicon—the part of long-term
memory where lexical representations are stored (e.g., [8,
13, 14]). 	is goal of formalizing cognitive representations
is re�ected in the diversity of approaches that have been
employed including symbolic approaches (e.g., [15]), con-
nectionist or neural network approaches (e.g., [16–18]), and
combinations of the two (e.g., [19, 20]). We argue that a
network science approach can provide a powerful alternative
framework for modeling and quantifying cognitive repre-
sentations in diverse domains. Network science provides a
suite of computational tools that allows the cognitive scientist
to explicitly examine the structural properties of cognitive
systems—something that can be di�cult to achieve with,
for instance, connectionist approaches where the structure
of a cognitive system is obfuscated within a black box of
“hidden” layers [21]. Section 2 focuses on cognitive repre-
sentations and architectures, demonstrating how network
science approaches can be used to represent and describe the
structural properties of cognitive systems. 	is section also
introduces the reader to some basic terminology of networks.

(2) Network Science Facilitates a Deeper Understanding of
HumanCognition by Allowing the Researcher to Consider How
Network Structure and the Processes Operating on the Network
Structure Interact to Produce Behavioral Phenomena. Another
strength of the network science approach is the ability to
not only quantify aspects related to the structure of cognitive
systems, but also to model the processes that operate within
these systems. For instance, a model of memory retrieval
typically requires two core components—a representation of
memories and a process to retrieve them. Within a network
approach, these components might be modeled, for instance,
as a network representation that depicts semantic memory
as a network of similar concepts and a random walk process
that walks randomly across the semantic network, emitting
a sequence of nodes that approximates the outputs of the
retrieval process as implemented by the random walk that
traverses the underlying network structure. Generally, the
joint consideration of structure and process emerges natu-
rally from a network approach and provides a parsimonious
account of human behavior and cognition in domains such
as semantic memory and lexical retrieval. Section 3 focuses
on the processes that occur in cognitive and lexical networks.
We highlight how a thorough understanding of cognitive
processes requires close consideration of how the structure
of the cognitive system interacts with processes to account
for complex human behavior.

(3) Network Science Provides a Framework toModel Structural
Changes in Cognitive Systems onMultiple Scales. Another area

of research that cognitive scientists are deeply involved in
concerns the development and decline of cognitive systems
[8]. Research in areas such as language acquisition and cog-
nitive aging has revealed that cognitive systems are dynamic
and are sensitive to changes in the linguistic environment
[22], accumulation of experience over time [23, 24], and
de�cits or other age-related decline in sensory processing
[25]. Dynamic changes may occur over longer timescales,
re�ecting the long-term accumulation of experiences, and
smaller timescales, re�ecting the dynamic nature of semantic
memory in response to di
erent contexts and experimental
tasks [26]. We show how network science methods can
provide new ways of quantifying and modeling the dynamics
in these areas. Section 4 focuses on the dynamics of cognitive
networks and speci�cally discusses research focusing on the
factors that lead to structural changes in the network, and
thus in cognition and behavior, on multiple timescales.

Cognitive science has largely employed network science
methodologies to study the relationships between words and
concepts (e.g., [5, 11, 27, 28]), aside from applications to social
relationships (e.g., [29]). While a wide range of cognitive
constructs can be represented as a network, the review will
primarily focus on research studying memory and language-
related phenomena using networks. Nevertheless, we note
that network science can be a valuable tool far beyond the
study of words and concepts (see Table 1) and encourage
researchers to consider how network science methods can be
used to address a broad spectrum of research questions in the
cognitive sciences.

2. Cognitive Constructs as Networks

Networks are composed of two elements: nodes that represent
the conceptual entities of interest (e.g., persons, websites, or
words) and edges that represent the relationships among those
units (e.g., friendship, hyperlinks, or semantic similarity).
While additional aspects can be considered as is done in
bipartite andmultiplex networks (de�ned below), identifying
these two basic elements in the system of study is su�cient
to formalize the system as a network and to employ the
powerful tools provided by network science. Network science
approaches o�en capitalize on the fact that relationships
between nodes (i.e., edges) can be as important as the
nodes themselves, if not more important. A �rst challenge in
studying cognitive systems as networks is to represent these
systems in a meaningful way in terms of nodes and edges.

2.1. Network Representations of Cognitive Systems. Cognitive
science traditionally has a strong interest in words and con-
cepts as the basis for thought, reasoning, and communication
(e.g., [37]). Much research has been dedicated to studying
the properties of words, such as their frequency in natural
language, their valence, or their concreteness (e.g., [38]).
While these e
orts have been instrumental for predicting the
behavior of human memory and lexical retrieval, researchers
have also found that much can be gained by considering the
relationships between words within a network representation.
Consider, for instance, the free association task that requires
participants to freely generate associative responses to a given
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Table 1: Examples of cognitive networks and their cognitive application.

Cognitive Network Nodes Edges Relevant research areas

Semantic network Words

Semantic relationships, including
free associations, shared features,

taxonomic, cooccurrence,
semantic roles

Language acquisition; cognitive
aging; semantic priming;
creativity/insight; cognitive

search and navigation; semantic
memory

Form similarity network Words
Phonological or orthographic

similarity

Lexical retrieval; production;
speech errors; memory recall;

word learning

Syntactic network Words; phrases; sentences
Cooccurrence; parse trees;
syntactic dependencies

Language acquisition; language
evolution; syntactic learning

Concept network Concepts; ideas
Cooccurrence; causal; feature

similarity
Learning; memory; concept

formation

Informational network
Shapes; pictures; any unit of

information
Temporal cooccurrence;

communication; transmission

Statistical learning of external
structure; information

transmission

Clinical, personality networks
Symptoms; personality traits;
items on a questionnaire

Statistical relationship such as
partial correlations; comorbidity

Clinical psychopathology;
personality disorders

Social network People
Friendship; followers on social
media; face to face interactions

Collective problem solving;
decision making; echo chambers;

polarization

cue, i.e., responding with the words dog, purr, and kitten to
the cue word cat [31, 39, 40]. 	ese associative responses
can be represented as a semantic network, for example, by
de�ning nodes as words and edges as the associative strength
between words, i.e., the likelihood that one word is named as
an association to another word. Representing the data in this
way has allowed research to observe that a word’s degree, a
popular nodemetric derived from a network (de�ned below),
predicts how well words can be learned [28, 41].

Associative strength is one of many options to con-
struct networks of words. Edges between words can also be
constructed based on the number of shared features (e.g.,
the concepts banana and cheese are connected as they are
both yellow in color; [42], see also [43]), their semantic
relations, such as synonymy (e.g., happy and joy share similar
meanings), hypernymy (e.g.,maple is a tree), and meronymy
(e.g., a bird has a beak; see [44]), their phonological similarity
(i.e., words that sound similar are connected to each other;
[32, 45, 46]), their orthographic similarity (i.e., words that
have similar spellings are connected to each other; [47, 48]),
their cooccurrences in naturalistic speech [49], language
corpora statistics [50], and manually annotated syntactic
dependency relationships ([51, 52]; see [53], for a review).
Likewise, research has studied di
erent linguistic units other
than words by mapping letters [54, 55], syllables or segments
[56], or entire documents [57] onto nodes. Furthermore,
research has applied network science methods to examine
the semantic [58], stylistic [59, 60], typological [61–63],
and phonological [45, 64] structure of languages other than
English. Figure 1 shows examples of cognitive networks.

	e minimum requirement for representing a cognitive
system as a network is to identify nodes and edges. However,
there is much more information that can be represented.
For instance, networks can be speci�ed with multiple types

of nodes to distinguish between cues and responses in an
associative network, creating a bipartite network [36]. Simi-
larly, networks can be speci�ed with multiple types of edges,
for instance, to represent both phonological and semantic
similarity between words, creating a multiplex network [65,
66]. Finally, edges can be weighted and directed in order
to re�ect the strength and directionality of a relationship,
respectively. Directionality and strengths have been used to
account, for instance, for the fact that a cue word triggers a
response at a higher rate than the other way around, such as
the case with dog frequently cuing the response bone but bone
only infrequently cuing dog, with higher associates to words
like skeleton or body instead [31, 36].

	e construction of networks leaves much freedom to
the researcher and renders it possible to represent a wide
variety of cognitive systems as networks. For instance, the
emerging area of network psychometrics represents statistical
relationships between personality traits or items in a symp-
tom questionnaire as a network, seeking to better understand
the causal structure of human personality and psychological
disorders (see [67, 68] for reviews). 	is approach is rapidly
being established in personality and clinical research as a
fruitful alternative to traditional approaches that use latent
variable modeling, which assumes the presence of a latent
variable that accounts for psychological and personality
disorders, whereas the network approach emphasizes the
relationships (i.e., edges) between symptoms and the impor-
tance of considering the causal pathways that can lead to the
emergence of a disorder (e.g., [69–72]). Moreover, networks
have been used to represent the external environment that
people are embedded in, such as their social network or the
informational space that learners are exposed to. Emerging
work is showing that quantifying such external structures
could lead to new insights into a number of topics of deep
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Figure 1: Examples of cognitive networks. Semantic network of free associations to the word speech (Le�) and phonological network of words
that sound similar to the word speech (Right).

interest to cognitive scientists, including the in�uence of a
speaker’s social network size on language processing [73],
language evolution [74, 75], how students represent their
conceptual understanding of a body of knowledge [76–78],
problem solving and decision making in groups [79, 80],
and how learners are able to extract the external structure
of the world via statistical learning [81, 82]. See Table 1
for a summary of di
erent types of cognitive networks and
relevant cognitive science topics.

In summary, representing cognitive structures in terms
of a network o
ers high degrees of �exibility to researchers
investigating various cognitive phenomena (see Table 1). 	e
nodes and edges in any cognitive network should represent
theoretically motivated constructs, with nodes depicting
an appropriate and relevant scale of representation and
edges de�ning a meaningful relationship between nodes
[83]. Choosing a network representation can be likened
to choosing a measurement instrument. Di
erent network
representations will reveal di
erent aspects of the underlying
cognitive system. Ultimately, it is up to the researcher to
decide which aspects to place the focus on.

2.2. How Can Network Structures Be Characterized? A key
strength of studying cognitive systems as networks is the
accessibility of reliable, well-established quantitative mea-
sures and tools, re�ecting the long history of graph theory
and its mathematical foundations [84], as well as its continual
re�nement and development (for instance, in the area ofmul-
tiplex networks, [85]). In this section, we present common
measures used to quantify aspects of networks at three scales
of structure in network representations: (i) the microscopic
structure, i.e., a “node’s eye view” of structural properties of
individual nodes and edges, (ii) the mesoscale, involving a

subset of nodes and the substructures that they form, and
(iii) the macroscale, i.e., a “network’s eye view” summarizing
the entire network structure. To highlight how these three
di
erent scales provide novel opportunities for the study of
cognition, we review measures on each of these scales and
how they have been employed to improve our understanding
of cognition.

2.2.1. Microscopic Network Measures. At the microscopic
level, network analysis examines di
erent properties of nodes
and edges, most commonly focusing on quantifying the
“importance” of a node in the graph representation via
measures of centrality [86–88].

One popular measure of node centrality is the node’s
degree, ��, i.e., the number of edges connected to a node.
Nodes of higher degrees are directly connected to a higher
number of nodes in the network and can have an important
role in, for instance, exchanging information across the net-
work [4]. A node’s degree also de�nes a node’s “neighborhood
size”, a property that has o�en been used in the context
of phonological and orthographic networks of word forms
to predict lexical retrieval times, where edges commonly
represent an edit distance of one phoneme [89] or one letter
[90]. Here, the degree of a node de�nes the level of similarity
of a word form to other word forms.

Another property of nodes derived from its immediate
neighborhood is local clustering coe�cient, ��, which char-
acterizes the extent to which the neighbors of a node are
interconnected. Speci�cally, clustering coe�cient measures
the extent to which a node’s neighbors are also neighbors
of each other (similar to the notion of transitivity in social
networks, i.e., are your friends also friends of each other;
[91]). As shown in Figure 2, it is possible for a word with
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Figure 2: A word with high clustering coe�cient (Le�) and a word with low clustering coe�cient (Right) are shown below. Notice that both
words have the same number of phonological neighbors, i.e., degree. Adapted from Chan & Vitevitch [30].

the same degree to have di
erent values of ��, re�ecting
di
erences in the internal structure of their neighborhoods.
Similar to a node’s degree, a node’s clustering coe�cient
will in�uence the �ow of information through and around a
node. Along these lines, recent psycholinguistic research has
shown that people are sensitive to nuances in the similarity
structure of words as operationalized by ��. 	e clustering
coe�cient of words has small but measurable in�uences on
how people recognize spoken [30] andwrittenwords [48, 92],
produce speech [93], learn new words [94], and recall words
in memory tasks [95].

Both node degree and local clustering coe�cient con-
sider only the immediate neighborhood of the node of
interest. To characterize the importance of a node beyond
its immediate neighborhood, measures such as closeness
centrality or PageRank centrality can be used. Closeness
centrality is computed as the inverse of the average shortest
path length (de�ned in more detail below) to all other
nodes in the network [96]. Closeness centrality of words
computed from phonological and orthographic similarity
networks has been shown to in�uence spoken [97] and
visual word recognition [48], picture naming performance
among peoplewith aphasia [98], and performance in amental
navigation task [99]. PageRank centrality is widely known as
an algorithm used to rank websites in Google search results
[100]. PageRank centrality can be thought of in terms of
a “�uid” that �ows throughout the network and pools at
the most important nodes. 	e general idea is that more
important nodes (websites) receive more “�uid” (endorse-
ment) from nodes (websites) that are themselves important
in a recursive fashion. Although PageRank centrality was
developed for the purpose of optimizingweb search,Gri�ths,
Steyvers, and Firl [41] showed that an implementation of
the PageRank algorithm on language networks was better
able to account for people’s responses in a �uency task as
compared to traditional predictors such as word frequency
or associate frequency—suggesting strong parallels between
the mechanisms underlying successful information retrieval
in search engines and in human memory.

Finally, the shortest path, or shortest distance between
two nodes, �(��, ��), can be used to reveal something about
the relationship of (nonneighboring) nodes rather than the

nodes themselves. For instance, path length between two
nodes in cognitive and language networks in�uence the
misperception of spoken words [101], judgments of semantic
relatedness [27, 102], and picture naming performance in
people with aphasia [98].

Many other networkmeasures that we do not discuss here
in detail for the sake of brevity have been shown to have mea-
surable e
ects on human behavior. 	ese measures include
assortative mixing by degree [103], key players [104, 105],
whether a node resides in the largest connected component
of the network or in smaller connected components [106,
107], network connectivity of a node’s broader neighborhood
that included its immediate neighbors and nonneighboring
words [108], and many others that have yet to be thoroughly
explored in the cognitive sciences, such as betweenness
centrality (see [109], for a review detailing the in�uence of
various network metrics on language processing, and [110],
for a review of various centrality measures).

2.2.2.Mesoscopic NetworkMeasures. At themesoscopic level,
research has focused on network community structure.
Communities refer to the grouping of nodes into subnet-
works based on their connectivity, i.e., how strongly they
are interconnected. To identify communities in networks,
existing algorithms aim to maximize connectivity within
clusters whileminimizing connectivity between clusters [111].
	e identi�cation of communities and the nodes they include
can provide interesting insights regarding a cognitive system.
In the domain of language, for instance, community detection
can be used to identify semantic �elds or categories [11].
	e ability of community detection algorithms to describe a
network in terms of a set of communities is typically captured
using ameasure known asmodularity [111, 112]. Investigations
at the neural level in the brain [113–115], for instance, have
consistently shown how the community structure of neural
networks changes with the progression of several di
erent
psychopathologies [116, 117].

Recent studies have also highlighted the signi�cance of
modularity in cognitive networks in both healthy and clinical
populations [46, 118–120]. For example, the semantic network
of individuals with high functioning autism (Asperger’s
syndrome) has been found to exhibit higher modularity
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than matched controls, which o
ers one possible account
of their rigidity in processing language [118]. Moreover,
high modularity observed in the phonological network was
suggested to constrain the spreading of activation in lexical
retrieval [46] and higher modularity observed in semantic
networks was negatively related to individual di
erences in
creative ability [34, 121].

2.2.3. Macroscopic Network Measures. Measures of the mac-
roscopic structure of networks speak to the overall organiza-
tion of networks as opposed to node level or community level
structures. 	ese measures can reveal emergent properties
of a system visible only when considering the network as
a whole, which can play an important role in the system’s
behavior. Below we describe macroscopic network measures
that have been used to study cognitive systems.

Average NodeMeasures. Networks are regularly characterized
with the averages of local, node-based measures described
above, such as average degree, average shortest path length,
and average (local) clustering coe�cient (e.g., [11, 28]). One
pattern that frequently emerges in a variety of systems is
known as a small world structure, characterized by high
local clustering and moderate average shortest path lengths,
relative to similarly sized, density matched, randomly drawn
networks [91]. 	is small world property may be important
in the domain of cognition for two reasons. First, small world
structures have been found to be an almost universal property
of real-world networks across diverse domains including
biological networks (e.g., [122, 123]), social networks (e.g.,
[124]), and information networks (e.g., [125]). Second, small
world structures may emerge from systematic growth pro-
cesses that may adapt to environmental constraints to give
rise to a bene�cial structure. For instance, the small world
structure of brain networks has been said to re�ect the trade-
o
 between short neuronal distances between brain regions
and the costs associated with creating these connections,
with the conclusion that small world structure may provide
a means to optimize the organizational structure of neurons
[113]. 	e idea of optimized organization in brain networks
is related to the idea of network e�ciency, ��, referring to
a network’s ability to quickly exchange information (Table 2;
[126]).

“Small world-ness” is also a ubiquitous feature of many
types of language networks, including semantic networks
[28], phonological networks of various languages [32, 45],
the orthographic network of English [48], and syntactic
networks [52]; although we note that some people debate
the usefulness of measuring small world structure as Watts
and Strogatz [91] showed that even an extremely structured
lattice will exhibit small world structure when a small amount
of random rewiring of edges is introduced. Similar to the
argument concerning brain networks, small world properties
in language networks might arise due to two competing
aspects of language learning and use—distinctiveness (e.g.,
each object having a unique word mapping) and memory
constraints (e.g., the easiest language to learn is one where
a single word refers to everything). 	ese two competing
features of language may result in the emergence of local

clusters of similar meaning and form but a low average path
length due to the in�uence of memory constraints resulting
in the reuse of words and sublexical segments [50, 127].
Finally, the small world structure in semantic and lexical
networks could provide important clues into how the struc-
ture of such cognitive systems might be exploited in order to
maximize the e�ciency of search processes within semantic
memory or prevent catastrophic failures in lexical structures
[11, 128].

Degree Distribution. 	e degree distribution, P(k), of a net-
work indicates how many nodes have a given number of
connections in the network (i.e., its degree). In many natu-
rally occurring networks many nodes have low degree (few
connections) and a few nodes have very high degree (many
connections). 	e degree distribution of some networks is
o�en best approximated by a power law (see Clauset et al.
[129] for a counter argument to the idea that power laws
accurately capture degree distributions in networks.) such
that �(�) ≈ �−� and is typically referred to as scale-free
networks when the exponent, 	, is between 2 and 3 [129,
130]. 	e term scale-free refers to the fact that the second
and higher order moments tend to go to in�nity, implying
that the degree distribution has in�nite variance. Scale-free
degree distributions include nodes with degrees much larger
than the average degree of the network, which are o�en
referred to as hubs. 	e scale-free property of networks has
been linked to a network’s resilience to random node failure.
	at is, studies of percolation processes have found that the
connectivity in scale-free networks withstand a continued,
random deletion of edges longer than networks with other
degree distributions [131].

	e degree distributions of semantic networks consis-
tently follow an approximate power law distribution, with
the exponents of the best �tting power laws converging at
∼3 (see Figure 3, le�; [28]). 	is has been demonstrated
across semantic networks constructed from free associations
[31] and from more complex semantic relationships (e.g.,
WordNet; [44]), suggesting commonalities in the seman-
tic organization of word meanings ([132]; but see [133]).
On the other hand, the degree distributions of phono-
logical networks of various languages appear to be best
�t by a truncated power law ([45]; see Figure 3, right),
which have implications for candidate models of network
growth.

To account for the ubiquity of scale-free degree distri-
butions observed in naturally occurring networks, Barabási
and Albert [134] proposed an in�uential model of network
growth known as preferential attachment where, as new
nodes are added to the network, these nodes are more
likely to be connected to nodes with higher degree (i.e.,
more connections). 	erefore, highly connected words are
more likely to acquire new connections, resulting in a
“rich-get-richer” e
ect. Steyvers and Tenenbaum [28] sug-
gested that the growth of semantic networks could have
occurred in a similar manner, by conceptualizing prefer-
ential attachment as a process of semantic di
erentiation
in which words are likely to be learned if they connect
to other words with many varied meanings, increasing the
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Table 2: De�nitions of network science terms and variables.

Term/variable De�nition

� number of nodes,�, in graph

� number of edges, �, in graph

network density
ratio of the number of edges to the maximum number of possible edges

2�
� (� − 1)

distance, �(��, ��)
shortest path between node � and node 
�(��, ��) where ��, �� ∈ �

average shortest path length, �
average length of shortest path between pairs of nodes

� = 1
�(� − 1) ∙ ∑�≠�

� (��, ��)

diameter,� largest shortest path between nodes

� = max
��∈	,��∈	

� (��, ��)

closeness centrality

inverse of the sum of the length of the shortest paths between node i and all other
nodes in the graph

�� =
1

∑� � (��, ��)

degree, �� number of edges attached to node �

average degree, ⟨�⟩ average number of edges per node in network

⟨�⟩ = 1�
	
∑
�=�
��

local clustering coe�cient, ��

number of edges between the neighbors of node � divided by the maximum
number of edges between those neighbors

�� =
2|��
|
��(�� − 1)

where ��, �
 ∈ ��, ��
 ∈ �

average clustering coe�cient, ⟨�⟩
average clustering coe�cient of nodes in the network

⟨�⟩ = 1�
	
∑
�=�
��

modularity, � proportion of edges that fall within subgroups of nodes minus the expected
proportion if edges were randomly distributed, range [−1, 1]

average e�ciency, ��
measure of how e�ciently information is exchanged in the network

�� =
1
� (� − 1) ∑�≠�∈	

1
� (��, ��)

largest connected component
largest group of nodes in the network that are connected to each other in a single

component

degree distribution, �(�) probability distribution of node degrees in the network

	 power-law exponent for the degree distribution

Small world structure
network with short average path lengths and relatively high clustering coe�cient

(relative to a random graph with similar density)

scale-free network network with a degree distribution that is power-law distributed

child’s vocabulary and helping the child learn the various
meanings of words. 	e truncated power law of phonolog-
ical networks may instead suggest that a di
erent under-
lying process operates on the growth of the phonological
network.

2.3.Methodological Tools and Resources for Cognitive Network
Analysis. In this section, we showcase a selection of resources
that are available for cognitive scientists who are interested in
estimating and analyzing cognitive networks. 	e number of

available open source toolboxes to conduct cognitive network
analysis is growing rapidly; below we cover a nonexhaustive
list of the most relevant resources that enable the analysis,
modeling, and visualization of cognitive and language net-
works.

NetworkToolbox: Methods and Measures for Brain, Cog-
nitive, and Psychometric Network Analysis [135]: this R
toolbox comprehensively implements network analysis and
graph theory measures used in neuroscience, cognitive
science, and psychology. NetworkToolbox includes various
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Figure 3: Degree distributions of semantic network constructed fromNelson et al.’s [31] free association norms and the phonological network
from Vitevitch [32].

�ltering methods for psychometric networks and e�ciency-
cost optimization for brain networks (https://cran.r-project
.org/web/packages/NetworkToolbox/index.html).

SemNetCleaner: An Automated Cleaning Tool for Seman-
tic and Linguistic Data [136]: this R package implements
several functions that automatize the cleaning, binarizing,
and spell-checking of text data. It also removes plurals and
continuous strings, converges, and �nalizes text data for
semantic network analysis (https://cran.r-project.org/web/
packages/SemNetCleaner/index.html).

memnet: Network Tools for Memory Research [24]: mem-
net provides a set of network science tools e�ciently imple-
mented for research in human memory. 	e memnet R
package contains methods for inferring networks from verbal
�uency data, implementing network growth models and
diverse (switcher-) random walk processes, and tools to
analyze and visualize networks (https://cran.r-project.org/
web/packages/memnet/index.html).

spreadr: Simulating Spreading Activation in a Network
[137]: spreadr enables cognitive scientists and psychologists
to conduct computer simulations that implement spreading
activation in a network representation (https://cran.r-project
.org/web/packages/spreadr/index.html).

SNAFU: 
e Semantic Network and Fluency Utility [33]:
SNAFU provides psychologists with the tools to generate
semantic networks from category/verbal �uency data (e.g.,
name as many as animals as possible in 1minute) and to com-
pare the semantic networks of di
erent groups or individ-
uals (https://alab.psych.wisc.edu/projects/2017/12/08/snafu.
html).


e Aging Lexicon Project [8]: the Aging Lexicon Project
contains resources related to the study of the mental lex-
icon across the lifespan, including resources to measure
and represent the linguistic environment, tools to quantify
and model the mental lexicon over the lifespan, as well

as a comprehensive list of open-access linguistic norms,
natural language corpora, and behavioral megastudy data
(https://aginglexicon.github.io/).


eBrain Connectivity Toolbox [138]: the brain connectiv-
ity toolbox is a comprehensive toolbox of MATLAB scripts,
dedicated to analyzing networks. While several of the scripts
compiled under this toolbox were primarily developed to
analyze brain networks, they are well-suited to analyze cogni-
tive networks as well (https://sites.google.com/site/bctnet/).

Psychometric network analysis:while outside the scope of
this review, it is important to note that several R toolboxes
have been developed to analyze psychometric networks (i.e.,
the analysis of psychometric questionnaires as networks
to study psychopathology and personality). Such toolboxes
include qgraph (https://cran.r-project.org/web/packages/
qgraph/index.html), bootnet (https://cran.r-project.org/web/
packages/bootnet/index.html), and mlVAR (https://cran.r-
project.org/web/packages/mlVAR/index.html). For further
detail, the reader is referred to Epskamp, Borsboom, and
Fried [139].

2.4. Summary. 	is section provided an overview of various
network measures at the micro-, meso-, and macrolevels
and highlighted cases where these network measures were
predictive of human behavior or provided novel insight into
human cognition, predominantly drawn from the domain
of language processing and semantic memory. Furthermore,
we summarize a noncomprehensive list of main toolboxes
that can allow the cognitive scientistto estimate and analyze
cognitive networks.

3. Processes in Cognitive Networks

Now we turn to models that may account for processes
that occur in the kinds of cognitive networks discussed

https://cran.r-project.org/web/packages/NetworkToolbox/index.html
https://cran.r-project.org/web/packages/NetworkToolbox/index.html
https://cran.r-project.org/web/packages/SemNetCleaner/index.html
https://cran.r-project.org/web/packages/SemNetCleaner/index.html
https://cran.r-project.org/web/packages/memnet/index.html
https://cran.r-project.org/web/packages/memnet/index.html
https://cran.r-project.org/web/packages/spreadr/index.html
https://cran.r-project.org/web/packages/spreadr/index.html
https://alab.psych.wisc.edu/projects/2017/12/08/snafu.html
https://alab.psych.wisc.edu/projects/2017/12/08/snafu.html
https://aginglexicon.github.io/
https://sites.google.com/site/bctnet/
https://cran.r-project.org/web/packages/qgraph/index.html
https://cran.r-project.org/web/packages/qgraph/index.html
https://cran.r-project.org/web/packages/bootnet/index.html
https://cran.r-project.org/web/packages/bootnet/index.html
https://cran.r-project.org/web/packages/mlVAR/index.html
https://cran.r-project.org/web/packages/mlVAR/index.html
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above. In this section we begin with an overview of the
classic spreading activation theory in cognitive psychology
and discuss extensions inspired by random walk models that
are popular in network science research. We then discuss
how these processes can account for behavioral �ndings
implemented in a network representation and provide insight
into latent cognitive processes from various domains in
human cognition, including lexical retrieval, creativity, and
cognitive search and navigation.

3.1. Cognitive Processes in Networks. A key advantage of the
network science approach relevant for cognitive science is
that it is possible to formalize processes that operate on
the structure of a network. One of the earliest attempts to
conceptualize cognitive processes on a network of nodes
and their relationships focused on human semantic memory
to explain an intricate taxonomy of human reasoning [140,
141]. When asked to verify statements such as a robin is
an animal or a robin is a bird, participants typically take
longer to verify the former statement as compared to the
latter [142]. To account for this response time discrepancy,
human semantic memory was assumed to exhibit a tree-like
network organization, in which nodes represented concepts
and edges represented whether words were elements of a
higher order concept. In such a network, the triad, robin,
bird, and animal, forms a line with robin being connected
to bird and bird being connected to animal. Any reasoning
process seeking to identify whether two concepts are, at
least, indirectly connected via “is-contained-in” relationships
would consequently have to traverse two edges to verify the
�rst statement (i.e., the edges depicting a robin is a bird and
birds are animals) but only one edge to verify the second
(i.e., the edge that depicts a robin is a bird). 	is model of
network processing represents one of the classic examples
explaining behavioral phenomena as a combination of an
underlying network representation and a process operating
on the network.

Later, Collins and Lo�us [27] generalized the insight that
network structure in tandem with a retrieval process can
account for human behavior and developed the theory of
spreading activation in semantic memory (see also [143]).
	e key contribution of this theory was to make explicit the
process operating on a semantic network when executing
a cognitive task and to link the outputs of that process to
participant performance and response times. Speci�cally, in
the spreading activation theory it was assumed that reading or
thinking about a concept would activate the concept and that
this activation would spread to neighboring concepts in the
network, priming related concepts and making them easier
to retrieve. 	e process of spreading activation proposed by
Collins and Lo�us [27] implicitly assumes the presence of
some cognitive resource (i.e., activation) that can be assigned
to speci�c nodes, spread among connected nodes in a prede-
�ned network, and decay over time (as formally implemented
in [143, 144]; see also [137]). 	is spread of activation quickly
decays over time and distance in the semantic network
[145]. Overall, the success of the spreading activation account
demonstrates the signi�cance of formalizing a process that
captures search within a cognitive representation.

Network science provides new ways of expanding the
original conceptualization of spreading activation by Collins
and Lo�us [27] by formalizing di
usion models over net-
work representations. Di
usion processes on a network have
been independently used to extensively study and predict
epidemics of disease spread and of contagious ideas in a
population (e.g., [146, 147]). 	e models of di
usion devel-
oped in these domains can be similarly used and adapted to
study how information or activation “spreads” in a cognitive
network. Although di
erent implementations of network
di
usion models exist, one core idea that illustrates the
power of such network process models is the notion of a
random walk on a network. A random walk model is a näıve
search process that moves from node to node as function
of a set of transition probabilities specifying the probability
of moving from one node to any of its directly connected
neighboring nodes. Note that when combined with a decay
parameter, a random walk model becomes similar to a model
of spreading activation [6]. However, despite their similarity,
there are noteworthy di
erences in the implementations and
goals of spreading activation in the tradition of Collin and
Lo�us [27] and random walk models by network scientists.
Speci�cally, random walk models produce individual paths
taken by the walk (e.g., an ordered list of words; see Figure 4),
whereas a process of spreading activation produces a pattern
of activation levels among nodes in the network and how they
change over time. In contrast to random walks, spreading
activation represents the aggregate, long-run behavior arising
from an underlying basic process which could be modeled
as a random walk. Di
usion models provide a means of
exploring existing cognitive theories and insights such as
spreading activation and have the ability to account for
individual decision processes as well as describe the func-
tioning of various cognitive systems. In recent years, various
empirical studies have demonstrated howmemory search can
bemodeled as a randomwalk process over semantic memory
and have shown predictive power in accounting for human
behavior [33, 148–151].

In the rest of this section, we showcase in greater detail
recent empirical work showing how behavioral data from
experiments can be used to provide a deeper understanding
of the interaction of structure and processes that occur in cog-
nitive and lexical networks. Each subsequent section focuses
on a di
erent cognitive domain—speci�cally, lexical retrieval,
creative processes, and search and navigation in cognitive
networks—that draw on either the process of random walks
or the theoretical construct of spreading activation to account
for relevant behavioral �ndings. 	e �nal section focuses
on a key debate in the cognitive science regarding the
complexities of disentangling structure and process in the
domain of cognitive search and attempts to show how
network science methods can contribute to this important
debate.

3.2. Lexical Retrieval. 	e theory of spreading activation as
proposed by Collins and Lo�us [27] o
ers a blueprint for a
mechanistic explanation to several psycholinguistic studies
examining similarity e
ects on language processing. As
mentioned in Section 2.2.1 (Microscopic NetworkMeasures),
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Censored random walk:

(b) Paths of censored random walks on a semantic network.

Nodes that were visited more than once are

“censored”

(a) Semantic network of animal

category.

List 1: dog, cat, lion, elephant, lion, tiger, lion...

List 2: cat, hamster, dog, cat, lion, leopard, lion...

List 3: elephant, zebra, leopard, lion, leopard...

Figure 4: An example of a random walk process on a semantic network to account for responses in a �uency task. Adapted from Zemla &
Austerweil [33].

network measures such as degree, local clustering coe�cient,
closeness centrality, and many others can be calculated for
individual words. Critically these features may determine
how activation spreads throughout a network and, thus,
in�uences behavioral performance in psycholinguistic and
memory tasks. Studies that have investigated such behavioral
tasks have found that words with more clustered neighbor-
hoods (words with high �� values) are more slowly responded
to in spoken [30] and visual word recognition tasks [48, 92],
and more slowly produced [93] than words in less clustered
neighborhoods. In these psycholinguistic tasks, participants
typically are presented with, and respond to, words that have
either high or low values on a particular network measure
(e.g., higher or lower clustering coe�cients, or higher or
lower closeness centralities) in order to detect its in�uence
on the e�ciency of lexical retrieval that is typically indicated
by faster reaction times and higher accuracy. Examples of
such psycholinguistic tasks include lexical decision, where
participants decide whether the presented stimulus repre-
sented a real word or a nonsense word, and speeded naming,
where participants read out loud the presented word. Fast
reaction times and high accuracy rates on these tasks indicate
greater e�ciency of lexical retrieval (i.e., a processing bene�t
or advantage). To account for clustering coe�cient e
ects
in word recognition of words versus nonwords, Chan and
Vitevitch [30] provide a theoretical account that assumes
a spreading activation process operating on a phonological
network, where a word’s structural characteristics a
ect how
activation spreads through the network.Wordswith low clus-
tering coe�cients are hypothesized to receivemore activation
(and hence a processing advantage) from its neighbors as
compared to those with high clustering coe�cients because
activation in the latter case is more likely to be shared
among neighbors resulting in lower levels of activation for
the target word. 	is account of a possible mechanism for
word confusability within a theoretical spreading activation

frameworkwas further formalized and validated in computer
simulations conducted by Vitevitch, Ercal and Adagarla
([152]; see also [137]).

Although spreading activation process as discussed above
is mainly related to the local structural properties of words,
the spreading activation process can also be used to account
for �ndings showing that global structural aspects of words in
the network in�uence lexical retrieval. Such �ndings suggest
that closeness centrality of words in�uence spoken and visual
word recognition [48, 97], that the size of the component
that words reside in (i.e., whether the target word is in the
largest connected component or an isolate) in�uences spoken
word recognition, serial recall, and picture naming [106, 107],
and that assortative mixing by degree, the tendency for nodes
with similar degrees to be connected to each other, in�uences
failures in lexical retrieval [103]. Among these results, the
�nding of a processing advantage for high closeness centrality
words in spoken word recognition [97] is especially interest-
ing as this �nding goes against the general �nding that greater
similarity does not tend to help recognition (e.g., degree and
local clustering e
ects result in poorer recognition; [30, 89]).
To account for the processing advantage for high closeness
centrality words, however, we can again draw on spread-
ing activation theory. Goldstein and Vitevitch [97] suggest
that, as a result of the activation of lexical representations
spreading over time, high closeness centrality words will
accumulate more activation than less central words due to
their topologically advantageous location in the network.
	is higher accumulation of long-term activation provides
an explanation for the processing bene�t of words with high
closeness centrality that counteract the more immediate, neg-
ative e
ects of neighborhood size and clustering—namely,
that words that reside in structurally important locations in
the network are suggested to have higher resting activation
levels due to residual activation from other words in the
network.
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Low Creative High Creative

Figure 5: 2-D representation of a 96 node (cue words) semantic network of individuals with high and low levels of creative ability. Edges
represent a binary, symmetric relation between nodes. Adapted from Kenett et al. [34].

3.3. Creative Processes. Another cognitive domain where
spreading activation has proven to be a powerful framework
is creativity. 	eories of the creative process attribute a key
role to spreading activation over memory to account for
individual di
erences in creativity [153–155]. Such theories
propose that creativity is related to the ability to combine
together weakly related (i.e., distant) concepts into new
concepts that are both novel and appropriate. On average, the
further away the combined components are in a semantic net-
work, themore novel the new conceptwill be [154]. Anumber
of studies have applied network science methodologies to
examine the idea that creativity involves the combination of
distant concepts. 	ese studies have shown how di
erences
in semantic memory structure relate to individual di
erences
in creativity, both at the group level (Figure 5; [34]) and at
the individual level [121]. In group-level studies, semantic
networks of low and high creative individuals were measured
using a continuous free association task, which required
participants to generate as many associations they can think
of in one minute to a list of cue words. 	ese responses
were then used to determine the overlap of associations for
all pairs of cue words (cf. [27]), which gave rise to separate
semantic networks of low and high creative individuals [34,
40]. Individual-level networks were measured directly using
relatedness judgments for all possible pairs of a list of target
words. 	is approach allowed linking the resulting semantic
networks to individual-level measures of creative ability [121].

Focusing on the macro- and mesolevel structure, these
studies found that higher levels of creativity were associ-
ated with semantic networks that exhibit higher clustering
coe�cients, smaller average shortest path lengths, and lower
modularity in community structure. 	e authors argue that
the structural macroscopic properties of the semantic net-
work of higher creative individuals facilitate the spread of
activation across network communities in their semantic

memory, leading to the generation of more novel ideas as
activation reaches nodes in the network that are further apart
from each other. Indeed, simulated random walks over the
semantic networks of individuals of low and high creative
ability revealed that the simulated search processes over the
semantic network of highly creative individuals reached dis-
tant nodes and nodes with weaker relations ([156]; see [157],
for further empirical support). 	ese �ndings demonstrate
how network science can quantitatively investigate how the
structure of a cognitive system constrains processing on the
representation [153, 158].

3.4. Mental Navigation and Cognitive Search. A large body of
research has shown that people search their internal cognitive
spaces in similar ways as they would in an external, physical
space (e.g., [159–161]), implying that spatial and cognitive
search processes have similar evolutionary roots [162]. Rep-
resenting semantic memory as networks essentially produces
a map of semantic space that allows one to mathematically
trace search processes as paths in a network and make
predictions about how structural properties of such network
maps in�uence cognitive search behavior.

In one study, Iyengar et al. [99] had participants play
a word-morph game that required them to transform one
word into another by only changing one letter at the time
(e.g., ball- -tall- -tale- -take). 	is word game is analogous
to �nding a path in a lexical network of word forms. 	e
results showed that over time participants began to actively
utilize network landmarks, hub words, and words of high
closeness centrality, to drastically improve their performance
both in terms of time and minimal number of word forms
used. In another study, individuals were able to successfully
identify the shortest path between a start word to a target
word within a prede�ned semantic network based on free
association norms [150, 163].	is result indicates that people
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are able to actively exploit both global and local structure of
semantic memory in order to estimate the distance between
two words and to use that information to guide their search
(see also, [164–166]).

Similar conclusions were drawn from more open-ended
search tasks requiring individuals to actively explore their
mental representations, such as category and letter �uency
tasks. In verbal �uency tasks, individuals are required to
retrieve from memory, in a �xed amount of time, as many
elements belonging to a semantic category (e.g., name all the
animals that you can think of) or words beginning with a
speci�c letter (e.g., name all the words beginning with the
letter 'S') as they can [167, 168]. Previous work has used
behavioral data obtained from the �uency task to infer the
structure of semantic networks via various estimation or
inferential techniques (e.g., [33, 128, 169]) and to analyze and
compare macro- and/or mesolevel network structure. 	is
has led to important insights into the structural di
erences
in semantic networks between younger and older adults [24,
170], less creative and highly creative individuals [118, 171], the
�rst and second languages of bilinguals [172], and individuals
with low or high openness to experience, a personality trait
related to intellectual curiosity and an active imagination
[173].

	e sequences that individuals produce in verbal �uency
tasks (in particular when listing items from a semantic
category) can, however, also be used to study the search
processes involved when individuals forage their mental
representations. 	e �nding that items with high semantic
relatedness and many shared features tend to cluster together
(e.g., [174]) was proposed to be related to an active search
process that dynamically switches between retrieval cues
[160, 161, 175, 176]. Other work has shown that micro (node-
level) information such as PageRank centrality was most
predictive of word recall [41] and that process models such
as random walks could account for verbal �uency data
([33, 148]; Goñi et al., 2010). A prevailing question in this
line of research is whether such search processes are better
accounted for by a foraging process or a randomwalk remains
open to debate and research ([177]; see next section).

Collectively, the studies discussed above provide impor-
tant insights into how people navigate and retrieve infor-
mation from their semantic and linguistic networks. Strong
behavioral evidence and model-based approaches show that
people are able to successfully search their mental represen-
tations in �exible ways to accomplish a variety of cognitive
tasks, such as converting a word to another word, searching
the semantic space as quickly and e�ciently as possible, or
generating creative ideas. 	e ability of network processes
to capture behavioral di
erences suggests that the network
science perspective provides ways to formulate testable
hypotheses with regard to how individuals are accessing and
navigating these cognitive structures.

3.5. Disentangling Structure and Process. A critical and open
debate in cognitive network science is whether insights into
the network structure and representations can be obtained
independently from the retrieval processes operating upon
it. 	is debate arises from the fact that both the underlying

structure and the process operating on the representation
are �exible enough to produce a wide array of behavior.
Consider, for example, a verbal �uency task on the country
category (i.e., name as many countries as you can think
of), where participants can use various retrieval cues to
help them complete the task. For a participant who uses
the geographic relationships between countries as a retrieval
cue, France and Spain would be very close, whereas France
and French Polynesia would be very distant. On the other
hand, for a participant who uses the phonological (sound-
based) relationships among country names as a retrieval
cue, France and Spain are now distant, whereas France and
French Polynesia would be close as they share the same
�rst sound. Research has found that individuals can �exibly
switch between such retrieval strategies, essentially creating
“wormholes” in memory, where shortcuts are (momentarily)
created in the memory space to connect previously distant
concepts ([161]; see also, [178]).

	e indeterminacy problem, which is associated with the
notion that both representation and retrieval processes can
be powerful explanations of human behavior, has been the
focus of a recent debate on models of the verbal �uency task.
In modeling verbal �uency using a semantic space extracted
from a text corpus, Hills et al. found evidence for an active
search process that dynamically switches between subcate-
gories of the semantic space [160, 179]. Shortly a�er, Abbott,
Austerweil, and Gri�ths [148] argued that a simple random
walk model operating on a semantic network constructed
from free associations—a model that does not require a
switching process—is equally plausible as a mechanism of
search in verbal �uency tasks, suggesting that a simpler
model could reproduce the original results found by Hills,
Jones, and Todd [160]. However, Abbott et al. evaluated
the verbal �uency search on a network estimated from free
association data, which—as subsequently argued by Jones,
Hills, and Todd [180]—may already contain traces of the
underlying search processes in semantic memory, rendering
it unnecessary to account for such traces using an elaborate
search model.

	ere have been a few attempts to disentangle process
and structure (e.g., [177, 181]). One approach to address
this issue is by developing research designs that directly
compare representation-based hypotheses against process-
based hypotheses on the same type of behavioral data. One
such attempt was recently conducted by Kenett et al. [171],
who examined the relationships between semantic network
structure, creative ability, and intelligence in a large sample
of individuals. 	e sample of participants were divided
according to two dimensions – low/high creativity and
low/high intelligence, and the animal category networks of all
groups were estimated and compared.	e authors found that
creative ability and intelligence were associated with di
erent
structural aspects of the semantic network as estimated from
the verbal �uency task. Speci�cally, intelligence was related to
higher average shortest path length and modularity, whereas
creativity was related to higher “small worldness” properties
of the semantic network. Taking intelligence as a proxy
for the contribution of cognitive control processes such as
attention and working memory, and creativity as an emergent
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property of the underlying network structure, these results
suggest di
erent contributions for process and representa-
tions and demonstrate one possible path for disentangling the
two.

	e bottom line of this open debate of the in�uence of
structure and process on cognitive representations is that
unless one of the two is clearly identi�ed, it is di�cult, if not
impossible, to make strong inferences from data about the
other. Currently, a growing body of work focuses on examin-
ing the reliability and reproducibility of estimating networks
in both cognitive and psychological networks [24, 33, 69, 170,
173] and this task of network estimation remains an important
challenge for network science approaches to understand the
details of a given cognitive system. Another area of avid
development and a promising route to addressing the inde-
terminacy problem is the employment of plausible learning
models to learn a semantic structure from digitized text and
images rather than responses in behavioral tasks. Structure
created in this way will contain little trace of the processes
operating on it, and may allow for cleaner separation of the
contribution of structure and process [180]. Moreover, many
of these learning models, such as the BEAGLE model [182],
process the environmental input incrementally, principally
allowing for the modeling of developmental changes in the
network structure.

3.6. Summary. In this section, we discussed recent empirical
work that provided a deeper understanding of the interaction
of structure and processes that occur in cognitive and lexical
networks. We focused on the cognitive domains of lexical
retrieval, cognitive search, and creativity to illustrate how
the process of random walks or spreading activation can
be implemented in a cognitive network representation to
account for a variety of behavioral phenomena and o
er
novel insights and testable predictions of how individuals
might be accomplishing these tasks. 	ese studies not only
emphasize the importance of considering how the structure
of the underlying network interacts with processes operating
in it, but also the complexities of disentangling structure and
processes, particularly in the domain of cognitive search.
We conclude that the consideration of structure and pro-
cess emerges naturally from a network science approach
by compelling researchers to explicitly de�ne and model
the relationship between structure and process in order to
account for human behavior and cognition. Formalizing
the relationship between process and structure enriches our
theoretical understanding of the interplay between cognitive
processes and cognitive structures in various domains.

4. Network Dynamics across
Multiple Timescales

Conceptualizing cognitive systems in terms of a network
representationnot onlymotivates cognitive scientists to think
more explicitly about the structure of cognitive systems
(Section 2: Network Representations of Cognitive Systems)
and how cognition might be captured by processes operating
on a network (Section 3: Processes in Cognitive Networks),
but also stimulates the question of how a particular structure

arose and how this structure develops and changes across
time.

In this section, we posit that semantic and lexical
networks are inherently dynamic—the structure of such
cognitive systems changes at multiple timescales and in
response to (i) linguistic input and experiences that re�ect
the long-term accumulation of knowledge and (ii) exposure
to experimental tasks and manipulations that trigger more
immediate functional changes in semantic memory [26, 183].
	e �rst part of this section focuses on developing semantic
networks to capture the process of language acquisition. 	e
second part focuses on semantic networks of older adults.
Finally, the third part focuses on individual di
erences in
semantic networks. Although it is possible to examine the
network dynamics of the language system itself, i.e., how the
structure of language has evolved over time (see [184, 185],
for examples), we focus our discussion of network dynamics
on cognitive network structures that are relevant for semantic
memory and lexical access.

4.1. Developmental Networks. Rather than focusing on a sin-
gle snapshot of a network in time, some recent investigations
include a temporal dimension to quantify and elucidate how
network representations of individuals change across the
lifespan. For instance,Hills et al. [35, 186] used normative data
from the MacArthur-Bates Communicative Development
Inventory (CDI; [187]), a vocabulary checklist completed
by parents to indicate the words produced by their child
across development, to empirically study normative language
development using networks.	ese data can be used to create
semantic networks that develop over the course of language
acquisition by placing edges between words that an average
child knows at a given time point. Here edges can represent
semantic associations that are based on adult free association
norms (e.g., [31]) or cooccurrences in child-directed speech
[188]. Semantic networks created in this way conceptualize a
normative child’s semantic knowledge at various time points
during development (see [188–190], for modeling of indi-
vidual children’s semantic network acquisition). To capture
development over time, Hills and colleagues performed a
statistical comparison of three di
erent models of network
growth (see Figure 6): preferential attachment, preferential
acquisition, and lure of the associates. In the spirit of Barabási
& Albert’s original model [134], the preferential attachment
model predicts that words that connect to well-connected
words already known by the (normative) child will be learned
earlier.	epreferential acquisition model predicts that words
are learned earlier if they are highly connected in the learning
environment as approximated by the full (adult) semantic
network. Finally, the lure of associates model predicts that
new words are more likely to be learned if they result in the
addition ofmore connections to the network of words already
known by the child.

Comparing these models, Hills et al. found that the
preferential attachment model was in fact not a good �t to
the normative CDI data and that the preferential acquisition
model was able to best account for vocabulary growth in
early semantic networks [35, 186, 191].	esemodeling results
highlight that the learning environment plays an important
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Figure 6: 	e three growth models of semantic networks. Note that the models make di
erent predictions about which words are more
likely to be acquired �rst despite having the same underlying network structure. Smaller, grey nodes indicate the words already known to the
normative child and larger white nodes are words that are not yet learned. 	e red node is more likely to be acquired before the other nodes
based on the model’s prediction. Adapted from Hills et al. [35].

role in language acquisition—words that occur in many dif-
ferent contexts (and hence arewell-connected) in the learning
environment are more likely to be acquired before less
connected words in the learning environment. Additionally,
these results also demonstrate that growth models other than
preferential attachment (and other related variations) can
lead to scale-free degree distributions of semantic networks.

	e growth mechanisms underlying semantic and lan-
guage networks remain, however, imperfectly understood
(for an overview, see [192]). For instance, Hills et al. [186]
found that the preferential acquisition model accounted for
growth of semantic networks with edges constructed from
free associations, but not for semantic networks with edges
constructed from shared features, suggesting that di
erent
growth processes may govern di
erent aspects of language.
In phonological networks, psycholinguistic evidence seems
to support the lure of associates model [193, 194], although
this model remains to be empirically tested against other
growth models such as preferential attachment and pref-
erential acquisition. 	e di
erence between semantic and
phonological networks could provide unique insight into the
acquisition process of children—for example, phonological
information may be more constrained by phonological form
characteristics of the child’s current vocabulary, whereas
semantic knowledge may be readily observed in the physical
environment, accounting for the di
erence in the contribu-
tion of the child’s current vocabulary in phonological and
semantic domains (e.g., see [66]).

Studies have recently pursued new approaches by exam-
ining language acquisition in terms of feature networks
[195, 196], or multiplex networks representing both semantic
and phonological information [65, 66]. One particularly
informative approach has been to study atypical acquisition
processes. Using the previously described approach of con-
verting vocabulary checklist data into semantic networks and
then further analyzing its network structure, Beckage, Smith,
and Hills [188] examined the semantic networks of children
whowere classi�ed as late talkers and found that the semantic

networks of late talkers had, on average, higher average path
length and lower clustering as compared to the semantic net-
works of typically developing children, even a�er controlling
for di
erences in network size or the age of the child. 	ese
di
erences between typically developing children and those
with risk of language impairment suggested a maladaptive
tendency in late talkers to acquire “odd” words that were less
connected in the semantic network (see also [49]). Studying
the structure of semantic networks of children with cochlear
implants, Kenett et al. [169] also found di
erences in the
semantic network of children with cochlear implants as
compared to the semantic network of typically developing
children. Speci�cally, they observed shorter average path
lengths for children with cochlear implants relative to typi-
cally developing children, suggesting an underdevelopment
of the semantic network due to impoverished input.

4.2. Aging Networks. 	e development of semantic networks
does not halt with onset of adulthood (see [8], for a review).
Language learning and change continues throughout the
lifespan. Wul
 and colleagues [24, 170] examined the seman-
tic networks of younger and older adults (as estimated from
semantic �uency data and similarity ratings obtained from
both populations) and found that both the aggregate and
individual older adults’ networks exhibited lower entropy in
the degree distribution, larger average shortest path lengths,
and smaller clustering coe�cients relative to the aggregate
and individual networks of younger adults. Using free asso-
ciations obtained from a cross-sectional sample across the
lifespan to estimate semantic networks for groups of young,
middle-aged, and older adults, Dubossarsky, De Deyne, and
Hills [36] similarly found that structure of the semantic
network in early life reverses, in parts, in later life (see
Figure 7; for similar results see [197]). Behavioral research on
cognitive aging usually �nds that older adults take more time
and perform worse on variety of cognitive tasks involving
memory, concentration, and reasoning than younger adults,
which is commonly attributed to cognitive slowing [198, 199].
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Young adult

N = 100
E = 231
L = 3.10

C = 0.034

Middle aged adult

N = 200
E = 1959
L = 2.03

C = 0.101

Older adult

N = 300
E = 1046
L = 2.51

C = 0.052

Figure 7:	e structure of free association networks changes across the lifespan, with the youngest network on the le� and the oldest network
on the right. Over the lifespan, the network grows in size (i.e., the number of nodes, N, increases). 	e network is quite sparse in early life,
becomes most densely connected early in adulthood, and becomes less connected in old age. Adapted from Dubossarsky, De Deyne, and
Hills [36].

However, the �ndings of Dubossarsky et al. [36] and Wul

et al. [170] fuel an interesting hypothesis regarding age-
related decline in cognitive function. Based on the observed
di
erences in the structure of semantic networks, changes
in the underlying representation of knowledge might be
held partly accountable for behavioral changes in older
adulthood [8, 23, 24, 200]. Older adults have access to a larger
vocabulary, implying a larger network representation with
more nodes and edges.	eir larger networkmay exact higher
search costs in accessing and navigating the representation
which may account for the observed cognitive slowing.
Assuming a process akin to spreading activation, it is further
conceivable that other changes in structure a
ecting, for
instance, the average path length or clustering coe�cient, of
older adults’ networks may play an additional role. 	us, in
the case of age-related cognitive decline, the application of a
network approach has led to a promising rival explanation to
established theories, paving the way for a new perspective on
an important issue considering our aging society.

In light of the growing importance of age-related degen-
erative diseases, such as dementia and Alzheimer’s disease,
it is especially worthwhile to study models that may capture
possible mechanisms underlying these changes in behavior
and provide a link tomemory representations. To understand
the cognitive mechanisms underlying pathological decline,
studies have focused on comparing healthy individuals to
clinical patients. In one study, Borge-Holthoefer, Moreno,
and Arenas [201] conducted simulations based on a net-
work model of language degradation in order to account
for hyperpriming among people with Alzheimer’s disease.
Hyperpriming refers to increased priming e
ects observed in
patients with Alzheimer’s as compared to healthy controls in
naming and lexical decision tasks [202], despite the fact that
Alzheimer’s patients have more di�culties in other memory
related tasks. 	eir simulations showed that a process of
edge degradation provided a possible mechanism for why
individuals with Alzheimer’s disease show evidence of hyper-
priming. Speci�cally, the e
ect appeared to be driven by
the fact that weak (distinctive) associations were lost earlier

than stronger (common) associations, leading to a loss of
distinctiveness between primes and targets and an increase
in priming e
ects for related words. 	is result suggests
that changes in aging semantic networks are not simply the
“inverse” of early development.

4.3. Individual Di�erences in Networks. 	e structural di
er-
ences observed in semantic networks of younger and older
adults, as discussed above, indicate that mental representa-
tions are shaped, to some extent, by the speci�c environmen-
tal input that individuals are exposed to [8]. 	is has broad
implications beyond research on development and aging
and speci�cally in the domain of personality and individual
di
erences. If we accept the premise that the experiences of
individuals can in�uence their mental representations, this
naturally provides a plausible mechanistic explanation that
could help us understand individual di
erences observed
in the structure of mental representations—di
erences that
re�ect the accumulation of experiences over an individual’s
life. In line with this idea, research has demonstrated links
between semantic network structure and personality. Recent
work by Christensen, Kenett, Cotter, Beaty, and Silvia [173]
found that the semantic networks of people with higher
openness to experience (where semantic networks were
inferred from verbal �uency responses and levels of open-
ness were measured using an independently administered
personality questionnaire) were more interconnected and
better organized as compared to the semantic networks of
people with lower openness to experience. One possible
explanation for this result is that individuals who are open to
experiences are drawn to, and subsequently exposed to, more
diverse environments, which may encourage the formation
of diverse associations and may thus account for the higher
interconnectivity observed in their semantic networks.

	e link between experience and the underlying network
structure may also have implications for other domains, such
as creativity and problem solving. As discussed earlier, higher
creative people exhibit less modular semantic networks than
lower creative people [34, 153], which is accompanied by a
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reduction in path length and may facilitate insight problem
solving [203]. 	ese results suggest a codependent relation-
ship between personality and mental representations, where
individuals with di
erent personalities seek out di
erent
experiences, which shapes their mental representations and,
in turn, their behavior and personality.

To date, almost all cognitive network studies have esti-
mated cognitive networks of groups. To truly examine
individual di
erences in cognitive networks and how they
may relate to other cognitive and psychological constructs,
methodsmust be developed to estimate cognitive networks at
the level of the individual. Only a few studies have attempted
to estimate an individual’s semantic network. Morais, Ols-
son, and Schooler [133] collected free associations from
participants based on an associative “snow-ball” sampling
approach, where participants provided associations to a set
of “seed” cue words in the �rst iteration, and in the second
iteration, associations to their own associative responses in
the previous iteration, and so on. 	ese data were used to
estimate semantic networks of each individual. Austerweil
and colleagues [33, 204] developed a computational approach
to estimate individual semantic networks from semantic
�uency data, based on a censored random walk model of
memory retrieval (see also [24]).

Other studies estimated individual semantic networks
based on semantic relatedness ratings [24, 121] and related the
structural properties of these individual semantic networks
to individual di
erences with respect to the individual’s age
([24]; see Section 4.2), or the individual’s creative ability and
intelligence measures [121]. 	e latter study replicated the
group-based network analysis of Kenett et al. [34] described
above, by �nding a positive correlation with CC, a negative
correlation with ASPL, and a trending negative correlation
with Q and creative abilities. Furthermore, the authors
showed how the ASPL of each participant’s network and their
measure of �uid intelligence predicted creative thinking [121],
providing further evidence demonstrating how process and
structure of memory might be independently measured.

Although additional methodological development is
required, these methods provide researchers with the means
to estimate individual cognitive networks. Current theories
of semantic memory view semantic memory as a dynamic
system that is contingent on di
erent contexts (e.g., envi-
ronment, age) and individual di
erences (e.g., creativity,
personality traits), with short- and long-term e
ects on
semantic memory re�ecting the cognitive processes oper-
ating on semantic representations [8, 26, 183]. 	erefore,
quantifying the properties of cognitive systems, such as
semantic memory, at the individual level can greatly advance
our understanding of their complex structure and dynamics.

4.4. Summary. 	e tools of network science have revealed
interesting di
erences in the network structure of various
populations (e.g., younger vs. older adults, healthy vs. clinical
populations, individuals with low openness to experience vs.
individuals with high openness to experience). Such �ndings
support the idea that network representations and processes
are inherently dynamic, compelling cognitive scientists to
formalize theoretical and algorithmic explanations for how

these di
erences emerge in the �rst place. By combining
process or growth models provided by network science with
empirical data from the cognitive sciences, researchers can
formalize relationships between (network) representation
and processes that operate within the representation and
construct models that take into account the contributions of
external factors, such as the linguistic environment of young
language learners, transient changes that are due to creative
abilities, or the accumulative e
ects of semantic knowledge
acquired in a person’s lifetime.	e framework of process and
structure can o
er explanations and predictions of changes in
the structure of cognitive representation, which in turn a
ects
our understanding of language and cognitive processes in a
continual, interacting cycle.

5. Summary and Conclusions

In this review, we demonstrate the usefulness of the network
science approach to the study of cognition in at least three
ways.

(1) Network Science Provides a Quantitative Approach to
Represent Cognitive Systems. To demonstrate the quantitative
power of network science in describing cognitive systems,
Section 2 discussed how networks can represent a variety
of cognitive systems, including language, semantic memory,
personality traits, and the language environment of indi-
viduals (see Table 1). Furthermore, we highlighted a host
of network measures that are available to the researcher
when he or she commits to the theoretical decision of
representing the cognitive system of interest as a network.We
reviewed previous research using these tools to characterize
the structure and behavior of networks on the micro-, meso-,
and macroscopic levels in order to derive novel insights.

(2) Network Science Facilitates a Deeper Understanding of
Human Cognition by Allowing Researchers to Consider How
Network Structure and the Processes Operating on the Network
Structure Interact to Produce Behavioral Phenomena. Sec-
tion 3 focused on processes operating on networks. Network
representations of cognitive systems, particularly in the area
of language and semanticmemory, are o�en used to represent
a latent mental structure that requires the assumption of
some process to link the network to observable behavior.
Adopting a network science approach naturally compels
researchers to consider the interaction between structure
and process, which has been especially useful in the three
research domains discussed in Section 3 (lexical retrieval,
creativity, and cognitive search). Finally, we brie�y discuss the
di�culties in dissociating structure and process, particularly
as it relates to the modeling of behavioral outputs in retrieval
tasks from semantic memory and suggest ways in which
network science methods can enrich the investigation of such
cognitive phenomena.

(3) Network Science Provides a Framework toModel Structural
Changes in Cognitive Systems at Multiple Timescales. In
Section 4, we discussed how network science can be used to
study the development of cognitive systems, enabling a better
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understanding of cognition at both the early and late stages of
human life, as well as structural changes that occur at more
immediate timescales, as related to higher order cognitive
processes such as creative insight and problem solving. Such
cognitive systems can be modeled as a dynamic network
representation that changes in response to the accumulation
of experiences and linguistic input. 	e research discussed in
this section demonstrates how network science approaches
can be used to quantify structural changes and the dynamics
of cognitive systems across di
erent timescales.

5.1. Future Directions. It is clear from this review that
network science approaches have contributed much to the
study of human cognition. Indeed, this is re�ected in the
recent growth in methodological and computational tools
designed speci�cally for the cognitive scientist to model,
analyze, and visualize cognitive and language networks (see
Section 2.3:Methodological Tools and Resources for Cognitive
Network Analysis, for a compilation of methodological tools
commonly used in the �eld of cognitive network science
and by many of the studies described in this review). But
it is important to emphasize that cognitive network science
is a relatively young �eld and many methodological and
theoretical challenges remain to be addressed. For example, as
previously discussed in Section 3.5, towhat extent can speci�c
aspects of the network structure and the processes operating
in the network be disentangled? Below we brie�y highlight
three milestones that cognitive network science needs to
achieve in order to become amature research paradigm in the
cognitive sciences and in the network science community.

One critical milestone needed in cognitive network
science is the development of inferential methodologies
to analyze empirical networks—that is, networks that are
inferred from behavioral data. Currently, statistical models
that allow for hypothesis testing when comparing empirical
networks remain a major challenge. 	is challenge is mainly
due to di�culties in estimating or collecting a large sample
of empirical networks and the lack of accessible statistical
methods to test di
erences in observed networks [205].
In these cases, bootstrapping methods over comparable
networks might be a solution [206]. Similarly, issues in
how to minimize spurious connections in psychological and
cognitive networks are currently debated and require further
methodological development [69].

Another crucial milestone is the development ofmethods
to represent psychological and cognitive networks at the
individual level (see Section 4.3). Psychological and cognitive
constructs vary across individuals and aggregating across
participants in group-based cognitive network analysis may
conceal nuanced di
erences across individuals. While there
has been some attempts at representing individual semantic
networks [24, 33, 121, 133, 204], developing a reliable and easy-
to-apply methodology to represent an individual’s semantic
network will allow researchers to design studies that relate
individual representations to other cognitive and neural
measures.

Finally, a third milestone is the development of new
network science methodologies to quantitatively study spe-
ci�c theoretical issues across di
erent cognitive domains.

Two such examples were brie�y discussed in the review:
the application of multiplex network analysis to examine
how di
erent cognitive domains interact (e.g., [65, 66, 207])
and the application of percolation theory to study cogni-
tive phenomena such as memory decline or �exibility of
thought (e.g., [119, 201]). Cognitive network science could
also bene�t from adopting and contributing to state-of-the-
art network methodologies used to study neural systems and
brain dynamics, such as network dynamic analysis [208] and
network control theory [209–211]. Network dynamic analysis
examines time varying community assignments over brain
functional connectivity networks and has attributed state
�exibility—variation of assignment of a brain region to a
speci�c community across time—to capacities such asmotor-
skill learning and language comprehension [208]. Network
control theory quanti�es the extent that di
erent nodes in
a network drive the dynamics over the network. Recent
studies have applied network control theory to the analysis
of white-matter connectivity networks to examine the roles
of di
erent brain regions in driving neural dynamics [209–
211]. Importing such state-of-the-artmethods to the cognitive
domain could greatly advance the study of dynamics in
cognitive networks.

5.2. Cognitive Network Science: A New Frontier. 	e aim of
this review was to highlight and emphasize the feasibility and
signi�cance of applying network science methodologies to
study cognition. Such applications allow the quanti�cation
of theoretical cognitive constructs and direct examination
of cognitive theories in domains such as language and
memory. 	e cognitive network framework also provides a
means to model and formalize theoretical and mathematical
descriptions of dynamics operating in cognitive systems. 	e
work conducted in this new �eld of cognitive network science
has already provided many novel insights on cognitive issues
such as lexical retrieval, language acquisition, memory search
and retrieval, bilingualism, learning, creativity, personality
traits, and clinical populations.

In this review, we focused on lexical and semantic
networks that capture various types of relationships between
words. However, as alluded to where relevant research was
available, the usefulness of network science in cognitive
science is by no means limited to the domains of language
and memory. Network science is a general-purpose toolbox
that can be used to study many types of cognitive systems
provided that it is indeed theoretically meaningful for these
systems to be represented as a network. 	is further implies
that the usefulness of network science depends on both
the problem at hand and, of course, the researcher, who
will make theoretically motivated decisions. 	ese decisions
include, speci�cally, (i) what aspects of the problem can
and should be represented as a network, (ii) what tools and
measures should be applied to analyze the network represen-
tation, and (iii) how to link network structure and process
to o
er meaningful insights into empirical and behavioral
data. Network science is no panacea for the challenges
faced by cognitive research, but when used appropriately,
network science can produce important and novel insights
for cognitive research, as demonstrated by the vast array
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of research on cognitive network science covered in this
review.

Our understanding of any cognitive or language-related
process is necessarily incomplete if we do not consider the
structural properties of the cognitive system that the process
is occurring in. Network science provides cognitive scientists
with a well-studied and formal language to quantify and
study the structure of these cognitive systems. On the other
hand, the cognitive science community has developed a suite
of experimental tasks that can provide crucial behavioral
evidence that constrains and informs network models of cog-
nition. 	e judicious combination of these two approaches
will lead to continued insights into a variety of behavioral and
cognitive phenomena and strengthen psychological theories
of lexical access, memory retrieval, cognitive search, language
acquisition, cognitive decline, and creativity, as well as many
other related domains of cognitive science that will bene�t
from the application of network science methods.
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