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Abstract

Deep neural networks (DNNs) have advanced

performance on a wide range of complex tasks,

rapidly outpacing our understanding of the na-

ture of their solutions. While past work sought

to advance our understanding of these models,

none has made use of the rich history of problem

descriptions, theories, and experimental methods

developed by cognitive psychologists to study

the human mind. To explore the potential value

of these tools, we chose a well-established analy-

sis from developmental psychology that explains

how children learn word labels for objects, and

applied that analysis to DNNs. Using datasets

of stimuli inspired by the original cognitive psy-

chology experiments, we find that state-of-the-art

one shot learning models trained on ImageNet

exhibit a similar bias to that observed in hu-

mans: they prefer to categorize objects accord-

ing to shape rather than color. The magnitude

of this shape bias varies greatly among archi-

tecturally identical, but differently seeded mod-

els, and even fluctuates within seeds through-

out training, despite nearly equivalent classifi-

cation performance. These results demonstrate

the capability of tools from cognitive psychology

for exposing hidden computational properties of

DNNs, while concurrently providing us with a

computational model for human word learning.

1. Introduction

During the last half-decade deep learning has significantly

improved performance on a variety of tasks (for a review,

see LeCun et al. (2015)). However, deep neural network

(DNN) solutions remain poorly understood, leaving many
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to think of these models as black boxes, and to question

whether they can be understood at all (Bornstein, 2016;

Lipton, 2016). This opacity obstructs both basic research

seeking to improve these models, and applications of these

models to real world problems (Caruana et al., 2015).

Recent pushes have aimed to better understand DNNs:

tailor-made loss functions and architectures produce more

interpretable features (Higgins et al., 2016; Raposo et al.,

2017) while output-behavior analyses unveil previously

opaque operations of these networks (Karpathy et al.,

2015). Parallel to this work, neuroscience-inspired meth-

ods such as activation visualization (Li et al., 2015), abla-

tion analysis (Zeiler & Fergus, 2014) and activation maxi-

mization (Yosinski et al., 2015) have also been applied.

Altogether, this line of research developed a set of promis-

ing tools for understanding DNNs, each paper producing

a glimmer of insight. Here, we propose another tool for

the kit, leveraging methods inspired not by neuroscience,

but instead by psychology. Cognitive psychologists have

long wrestled with the problem of understanding another

opaque intelligent system: the human mind. We contend

that the search for a better understanding of DNNs may

profit from the rich heritage of problem descriptions, the-

ories, and experimental tools developed in cognitive psy-

chology. To test this belief, we performed a proof-of-

concept study on state-of-the-art DNNs that solve a par-

ticularly challenging task: one-shot word learning. Specif-

ically, we investigate Matching Networks (MNs) (Vinyals

et al., 2016), which have state-of-the-art one-shot learning

performance on ImageNet and we investigate an Inception

Baseline model (Szegedy et al., 2015a).

Following the approach used in cognitive psychology, we

began by hypothesizing an inductive bias our model may

use to solve a word learning task. Research in develop-

mental psychology shows that when learning new words,

humans tend to assign the same name to similarly shaped

items rather than to items with similar color, texture, or

size. To test the hypothesis that our DNNs discover this

same “shape bias”, we probed our models using datasets

and an experimental setup based on the original shape bias

studies (Landau et al., 1988).
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Our results are as follows: 1) Inception networks trained on

ImageNet do indeed display a strong shape bias. 2) There

is high variance in the bias between Inception networks

initialized with different random seeds, demonstrating that

otherwise identical networks converge to qualitatively dif-

ferent solutions. 3) MNs also have a strong shape bias, and

this bias closely mimics the bias of the Inception model

that provides input to the MN. 4) By emulating the shape

bias observed in children, these models provide a candidate

computational account for human one-shot word learning.

Altogether, these results show that the technique of testing

hypothesized biases using probe datasets can yield both ex-

pected and surprising insights about solutions discovered

by trained DNNs1.

2. Inductive Biases, Statistical Learners and

Probe Datasets

Before we delve into the specifics of the shape bias and

one-shot word learning, we will describe our approach in

the general context of inductive biases, probe datasets, and

statistical learning. Suppose we have some data {yi, xi}
N
i=1

where yi = f(xi). Our goal is to build a model of the

data g(.) to optimize some loss function L measuring the

disparity between y and g(x), e.g., L =
∑

i ||yi− g(xi)||
2.

Perhaps this data x is images of ImageNet objects to be

classified, images and histology of tumors to be classified

as benign or malignant (Kourou et al., 2015), or medical

history and vital measurements to be classified according

to likely pneumonia outcomes (Caruana et al., 2015).

A statistical learner such as a DNN will minimize L by

discovering properties of the input x that are predictive of

the labels y. These discovered predictive properties are, in

effect, the properties of x for which the trained model has

an inductive bias. Examples of such properties include the

shape of ImageNet objects, the number of nodes of a tumor,

or a particular constellation of blood test values that often

precedes an exacerbation of pneumonia symptoms.

Critically, in real-world datasets such as these, the discov-

ered properties are unlikely to correspond to a single fea-

ture of the input x; instead they correspond to complex

conjunctions of those features. We could describe one of

these properties using a function h(x), which, for example,

returns the shape of the focal object given an ImageNet im-

1The use of behavioral probes to understand neural network
function has been extensively applied within psychology itself,
where neural networks have been employed as models of human
brain function (Rumelhart et al., 1988; Plaut et al., 1996; Rogers
& McClelland, 2004; Mareschal et al.). To our knowledge, work
applying behavioral probes to DNNs in machine learning has been
quite limited; we only are aware of Zoran et al. (2015) and Good-
fellow et al. (2009), who used psychophysics-like experiments to
better understand image processing models.

age, or the number of nodes given a scan of tumor. Indeed,

one way to articulate the difficulty in understanding DNNs

is to say that we often can’t intuitively describe these con-

junctions of features h(x); although we often have numeri-

cal representations in intermediate DNN layers, they’re of-

ten too arcane for us to interpret.

We advocate for addressing this problem using the follow-

ing hypothesis-driven approach: First, propose a property

hp(x) that the model may be using. Critically, it’s not nec-

essary that hp(x) be a function that can be evaluated using

an automated method. Instead, the intention is that hp(x)
is a function that humans (e.g. ML researchers and practi-

tioners) can intuitively evaluate. hp(x) should be a prop-

erty that is believed to be relevant to the problem, such as

object shape or number of tumor nodes.

After proposing a property, the next step is to generate pre-

dictions about how the model should behave when given

various inputs, if in fact it uses a bias with respect to the

property hp(x). Then, construct and carry out an experi-

ment wherein those predictions are tested. In order to ex-

ecute such an experiment, it typically will be necessary to

craft a set of probe examples x that cover a relevant por-

tion of the range of hp(x), for example a variety of object

shapes. The results of this experiment will either support

or fail to support the hypothesis that the model uses hp(x)
to solve the task. This process can be especially valuable in

situations where there is little or no training data available

in important regions of the input space, and a practitioner

needs to know how the trained model will behave in that

region.

Psychologists have developed a repertoire of such hypothe-

ses and experiments in their effort to understand the hu-

man mind. Here we explore the application of one of these

theory-experiment pairs to state of the art one-shot learning

models. We will begin by describing the historical back-

drop for the human one-shot word learning experiments

that we will then apply to our DNNs.

3. The problem of word learning; the solution

of inductive biases

Discussions of one-shot word learning in the psychologi-

cal literature inevitably begin with the philosopher W.V.O.

Quine, who broke this problem down and described one

of its most computationally challenging components: there

are an enormous number of tenable hypotheses that a

learner can use to explain a single observed example. To

make this point, Quine penned his now-famous parable of

the field linguist who has gone to visit a culture whose lan-

guage is entirely different from our own (Quine, 1960).

The linguist is trying to learn some words from a helpful

native, when a rabbit runs past. The native declares “gava-
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gai”, and the linguist is left to infer the meaning of this new

word. Quine points out that the linguist is faced with an

abundance of possible inferences, including that “gavagai”

refers to rabbits, animals, white things, that specific rabbit,

or “undetached parts of rabbits”. Quine argues that indeed

there is an infinity of possible inferences to be made, and

uses this conclusion to bolster the assertion that meaning

itself cannot be defined in terms of internal mental events2.

Contrary to Quine’s intentions, when this example was in-

troduced to the developmental psychology community by

Macnamara (1972), it spurred them not to give up on the

idea of internal meaning, but instead to posit and test for

cognitive biases that enable children to eliminate broad

swaths of the hypothesis space (Bloom, 2000). A variety of

hypothesis-eliminating biases were then proposed includ-

ing the whole object bias, by which children assume that

a word refers to an entire object and not its components

(Markman, 1990); the taxonomic bias, by which children

assume a word refers to the basic level category an object

belongs to (Markman & Hutchinson, 1984); the mutual ex-

clusivity bias, by which children assume that a word only

refers to one object category (Markman & Wachtel, 1988);

the shape bias, with which we are concerned here (Landau

et al., 1988); and a variety of others (Bloom, 2000). These

biases were tested empirically in experiments wherein chil-

dren or adults were given an object (or picture of an ob-

ject) along with a novel name, then were asked whether the

name should apply to various other objects.

Taken as a whole, this work yielded a computational level

(Marr, 1982) account of word learning whereby people

make use of biases to eliminate unlikely hypotheses when

inferring the meaning of new words. Other contrasting

and complementary approaches to explaining word learn-

ing exist in the psychological literature, including associa-

tion learning (Regier, 1996; Colunga & Smith, 2005) and

Bayesian inference (Xu & Tenenbaum, 2007). We leave

the application of these theories to deep learning models

to future work, and focus on determining what insight can

be gained by applying a hypothesis elimination theory and

methodology.

We begin the present work with the knowledge that part

of the hypothesis elimination theory is correct: the models

surely use some kind of inductive biases since they are sta-

tistical learning machines that successfully model the map-

ping between images and object labels. However, several

questions remain open. What predictive properties did our

DNNs find? Do all of them find the same properties? Are

any of those properties interpretable to humans? Are they

the same properties that children use? How do these biases

change over the course of training?

To address these questions, we carry out experiments anal-

ogous to those of Landau et al. (1988). This enables us to

test whether the shape bias – a human interpretable feature

used by children when learning language – is visible in the

behavior of MNs and Inception networks. Furthermore we

are able to test whether these two models, as well as differ-

ent instances of each of them, display the same bias. In the

next section we will describe in detail the one-shot word

learning problem, and the MNs and Inception networks we

use to solve it.

4. One-shot word learning models and

training

4.1. One-shot word learning task

The one-shot word learning task is to label a novel data ex-

ample x̂ (e.g. a novel probe image) with a novel class label

ŷ (e.g. a new word) after only a single example. More

specifically, given a support set S = {(xi, yi) : i ∈ [1, k]},

of images xi and their associated labels yi, and an unla-

belled probe image x̂, the one-shot learning task is to iden-

tify the true label of the probe image ŷ from the support set

labels {yi : i ∈ [1, k]}:

ŷ = argmax
y

P (y|x̂, S). (1)

We assume that the image labels yi are represented using a

one-hot encoding and that P (y|x̂, S) is parameterised by a

DNN, allowing us to leverage the ability of deep networks

to learn powerful representations.

4.2. Inception: baseline one-shot learning model

In our simplest baseline one-shot architecture, a probe im-

age x̂ is given the label of the nearest neighbour from the

support set:

ŷ = y

(x, y) = arg min
(xi,yi)∈S

d(h(xi), h(x̂))
(2)

where d is a distance function. The function h is parame-

terised by Inception – one of the best performing ImageNet

classification models (Szegedy et al., 2015a). Specifically,

h returns features from the last layer (the softmax input) of

a pre-trained Inception classifier, where the Inception clas-

sifier is trained using rms-prop, as described in Szegedy

et al. (2015b), section 8. With these features as input and

cosine distance as the distance function, the classifier in

equation 2 achieves 87.6% accuracy on one-shot classifica-

tion on the ImageNet dataset (Vinyals et al., 2016). Hence-

forth, we call the Inception classifier together with the

nearest-neighbor component the Inception Baseline (IB)

model.

2Unlike Quine, we use a pragmatic definition of meaning - a
human or model understands the meaning of a word if they assign
that word to new instances of objects in the correct category.
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4.3. Matching Nets model architecture and training

We also investigate a state-of-the-art one-shot learning

architecture called Matching Nets (MN) (Vinyals et al.,

2016). MNs are a fully differentiable neural network archi-

tecture with state-of-the-art one shot learning performance

on ImageNet (93.2% one-shot labelling accuracy).

MNs are trained to assign label ŷ to probe image x̂ accord-

ing to equation 1 using an attention mechanism a acting on

image embeddings stored in the support set S:

a(x̂, xi) =
ed(f(x̂,S),g(xi,S))

∑

j e
d(f(x̂,S),g(xj ,S))

, (3)

where d is a cosine distance and where f and g provide

context-dependent embeddings of x̂ and xi (with context

S). The embedding g(xi, S) is a bi-directional LSTM

(Hochreiter & Schmidhuber, 1997) with the support set S

provided as an input sequence. The embedding f(x̂, S) is

an LSTM with a read-attention mechanism operating over

the entire embedded support set. The input to the LSTM

is given by the penultimate layer features of a pre-trained

deep convolutional network, specifically Inception, as in

our baseline IB model described above (Szegedy et al.,

2015a).

The training procedure for the one-shot learning task is crit-

ical if we want MNs to classify a probe image x̂ after view-

ing only a single example of this new image class in its

support set (Hochreiter et al., 2001; Santoro et al., 2016).

To train MNs we proceed as follows: (1) At each step of

training, the model is given a small support set of images

and associated labels. In addition to the support set, the

model is fed an unlabelled probe image x̂; (2) The model

parameters are then updated to improve classification ac-

curacy of the probe image x̂ given the support set. Pa-

rameters are updated using stochastic gradient descent with

a learning rate of 0.1; (3) After each update, the labels

{yi : i ∈ [1, k]} in the training set are randomly re-assigned

to new image classes (the label indices are randomly per-

muted, but the image labels are not changed). This is a

critical step. It prevents MNs from learning a consistent

mapping between a category and a label. Usually, in clas-

sification, this is what we want, but in one-shot learning we

want to train our model for classification after viewing a

single in-class example from the support set. Formally, our

objective function is:

L = EC∼T



ES∼C,B∼C





∑

(x,y)∈B

logP (y|x, S)







 (4)

where T is the set of all possible labelings of our classes, S

is a support set sampled with a class labelling C ∼ T and

B is a batch of probe images and labels, also with the same

randomly chosen class labelling as the support set.

Next we will describe the probe datasets we used to test for

the shape bias in the IB and MNs after ImageNet training.

5. Data for bias discovery

5.1. Cognitive Psychology Probe Data

The Cognitive Psychology Probe Data (CogPsyc data) that

we use consists of 150 images of objects (Figure 1). The

images are arranged in triples consisting of a probe im-

age, a shape-match image (that matches the probe in colour

but not shape), and a color-match image (that matches the

probe in shape but not colour). In the dataset there are 10

triples, each shown on 5 different backgrounds, giving a

total of 50 triples.3

The images were generously provided by cognitive psy-

chologist Linda Smith. The images are photographs of

stimuli used previously in shape bias experiments con-

ducted in the Cognitive Development Lab at Indiana Uni-

versity. The potentially confounding variables of back-

ground content and object size are controlled in this dataset.

5.2. Probe Data from the wild

We have also assembled a real-world dataset consisting of

90 images of objects (30 triples) collected using Google

Image Search. Again, the images are arranged in triples

consisting of a probe, a shape-match and a colour-match.

For the probe image, we chose images of real objects that

are unlikely to appear in standard image datasets such as

ImageNet. In this way, our data contains the irregularity

of the real world while also probing our models’ properties

outside of the image space covered in our training data. For

the shape-match image, we chose an object with a similar

shape (but with a very different colour), and for the colour-

match image, we chose an object with a similar colour (but

with a very different shape). For example, one triple con-

sists of a silver tuning fork as the probe, a silver guitar capo

as the colour match, and a black tuning fork as the shape

match. Each photo in the dataset contains a single object

on a white background.

We collected this data to strengthen our confidence in the

results obtained for the CogPsych dataset and to demon-

strate the ease with which such probe datasets can be con-

structed. One of the authors crafted this dataset solely us-

ing Google Image Search in the span of roughly two days’

work. Our results with this dataset, especially the fact that

the bias pattern over time matches the results from the well

established CogPsych dataset, support the contention that

DNN practitioners can collect effective probe datasets with

minimal time expenditure using readily available tools.

3 The CogPsyc dataset is available at http://www.

indiana.edu/˜cogdev/SB_testsets.html

http://www.indiana.edu/~cogdev/SB_testsets.html
http://www.indiana.edu/~cogdev/SB_testsets.html
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colour match shape match probe

Figure 1. Example images from the Cognitive Psychology

Dataset (see section 5). The data consists of image triples (rows),

each containing a colour match image (left column), a shape

match image (middle column) and a probe image (right column).

We use these triples to calculate the shape bias by reporting the

proportion of times that a model assigns the shape match image

class to the probe image. This dataset was supplied by cognitive

psychologist Linda Smith, and was designed to control for object

size and background.

6. Results

6.1. Shape bias in the Inception Baseline Model

First, we measured the shape bias in IB: we used a pre-

trained Inception classifier (with 94% top-5 accuracy) to

provide features for our nearest-neighbour one-shot clas-

sifier, and probed the model using the CogPsyc dataset.

Specifically, for a given probe image x̂, we loaded the

shape-match image xs and corresponding label ys, along

with the colour-match image xc and corresponding label

yc into memory, as the support set S = {(xs, ys), (xc, yc)}.

We then calculated ŷ using Equation 2. Our model assigned

either yc or ys to the probe image. To estimate the shape

bias Bs, we calculated the proportion of shape labels as-

signed to the probe:

Bs = E(δ(ŷ − ys)), (5)

where E is an expectation across probe images and δ is the

Dirac delta function.

We ran all IB experiments using both Euclidean and cosine

distance as the distance function. We found that the results

for the two distance functions were qualitatively similar, so

we only report results for Euclidean distance.

We found the shape bias of IB to be Bs = 0.68. Simi-

larly, the shape bias of IB using our real-world dataset was

Bs = 0.97. Together, these results strongly suggest that IB

trained on ImageNet has a stronger bias towards shape than

colour.

Note that, as expected, the shape bias of this model is qual-

itatively similar across datasets while being quantitatively

different - largely because the datasets themselves are quite

different. Indeed, the datasets were chosen to be quite

different so that we could explore a broad space of pos-

sibilities. In particular, our CogPsyc dataset backgrounds

have much larger variability than our real-world dataset

backgrounds, and our real-world dataset objects have much

greater variability than the CogPsyc dataset objects.

6.2. Shape bias in the Matching Nets Model

Next, we probed the MNs using a similar procedure. We

used the IB trained in the previous section to provide the

input features for the MN as described in section 4.3.

Then, following the training procedure outlined in section

4.3 we trained MNs for one-shot word learning on Ima-

geNet, achieving state-of-the-art performance, as reported

in (Vinyals et al., 2016). Then, repeating the analysis

above, we found that MNs have a shape of bias Bs = 0.7
using our CogPsyc dataset and a bias of Bs = 1 using the

real-world dataset. It is interesting to note that these bias

values are very similar to the IB bias values.

6.3. Shape bias statistics: within models and across

models

The observation of a shape bias immediately raises some

important questions. In particular: (1) Does this bias de-

pend on the initial values of the parameters in our model?

(2) Does the size of the shape bias depend on model perfor-

mance? (3) When does shape bias emerge during training

- before model convergence or afterwards? (4) How does

shape bias compare between models, and within models?

To answer these questions, we extended the shape bias

analysis described above to calculate the shape bias in a

population of IB models and in a population of MN models

with different random initialization (Figs. 2 and 5).

(1) We first calculated the dependence of shape bias on the

initialization of IB (Fig. 2). Surprisingly, we observed a

strong variability, depending on the initialization. For the

CogPsyc dataset, the average shape bias was Bs = 0.628
with standard deviation σBs

= 0.049 at the end of training

and for the real-world dataset the average shape bias was

Bs = 0.958 with σBs
= 0.037.

(2) Next, we calculated the dependence of shape bias on

model performance. For the CogPsych dataset, the corre-

lation between bias and classification accuracy was ρ =
0.15, with tn=15 = 0.55, pone tail = 0.29, and for the

real-world dataset, the correlation was ρ = −0.06 with

tn=15 = −0.22, pone tail = 0.42. Therefore, fluctuations
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Figure 2. Shape bias across models with different initialization seeds, and within models during training calculated using the CogPsyc

dataset. (a) The shape bias Bs of 15 Inception models is calculated throughout training (yellow lines). A strong shape bias emerges

across all models. A bias value Bs > 0.5 indicates a shape bias and Bs < 0.5 indicates a colour bias. Two examples are highlighted here

(blue and red lines) for clarity. (b) The shape bias fluctuates strongly within models during training by up to three standard deviations.

(c) The distribution of bias values, calculated at the start (blue), middle (red) and end (yellow) of training. Bias variability is high at the

start and end of training. Here, these distributions are calculated using kernel density estimates from all shape bias measurements from

all models within the indicated window.

Figure 3. Classification accuracy of all 15 Inception models eval-

uated on a test set during training on ImageNet (same models as in

Figure 2) . All 15 Inception network seeds achieve near identical

test accuracy (overlapping yellow lines).

in the bias cannot be accounted for by fluctuations in clas-

sification accuracy. This is not surprising, because the clas-

sification accuracy of all models was similar at the end of

training, while the shape bias was variable. This demon-

strates that models can have variable behaviour along im-

portant dimensions (e.g., bias) while having the same per-

formance measured by another (e.g., accuracy).

(3) Next we explored the emergence of the shape bias dur-

ing training (Fig. 2a,c; Fig. 5a,c). At the start of train-

ing, the average shape bias of these models was Bs =
0.448 with standard deviation σBs

= 0.0835 on the Cog-

Psyc dataset and Bs = 0.593 with σBs
= 0.073 on the

real-world dataset. We observe that a shape bias began

to emerge very early during training, long before conver-

gence.

(4) Finally, we compare shape bias within models during

training, and between models at the end of training. Dur-

ing training, the shape bias within IB fluctuates signifi-

Figure 4. Scatter plot showing Matching Network (MN) bias as

a function of Inception bias. Each MN receives input through

an Inception model. Each point in this scatter plot is the bias

of a MN and the bias of the Inception model providing input to

that particular MN. In total, the bias values of 45 MN models are

plotted (some dots are overlapping).

cantly (Fig. 2 b; Fig. 5b). In contrast, the shape bias does

not fluctuate during training of the MN. Instead, the MN

model inherits its shape bias characteristics at the start of

training from the IB that provides it with input embeddings

(Fig. 4) and this shape-bias remains constant throughout

training. Moreover, there is no evidence that the MN and

corresponding IB bias values are different from each other

(paired t-test, p = 0.167). Note that we do not fine-tune the

Inception model providing input while training the MN. We

do this so that we can observe the shape-bias properties of

the MN independent of the IB model properties.
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0-25000
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Figure 5. Shape bias across models with different initialization seeds, and within models during training calculated using the real-world

dataset. (a) The shape bias Bs of 15 Inception models is calculated throughout training (yellow lines). A strong shape bias emerges

across all models. Two examples are highlighted here (blue and red lines) for clarity. (b) The shape bias fluctuates strongly within

models during training. (c) The distribution of bias values, calculated at the start (blue), middle (red) and end (yellow) of training. Bias

variability is high at the start and end of training.

7. Discussion

7.1. A shape bias case study

Our psychology-inspired approach to understanding DNNs

produced a number of insights. Firstly, we found that both

IB and MNs trained on ImageNet display a strong shape

bias. This is an important result for practitioners who rou-

tinely use these models - especially for applications where

it is known a priori that colour is more important than

shape. As an illustrative example, if a practitioner planned

to build a one-shot fruit classification system, they should

proceed with caution if they plan to use pre-trained Ima-

geNet models like Inception and MNs because fruit are of-

ten defined according to colour features rather than shape.

In applications where a shape bias is desirable (as is more

often the case than not), this result provides reassurance

that the models are behaving sensibly in the presence of

ambiguity.

The second surprising finding was the large variability in

shape bias, both within models during training and across

models, depending on the randomly chosen initialisation

of our model. This variability can arise because our mod-

els are not being explicitly optimised for shape biased cate-

gorisation. This is an important result because it shows that

not all models are created equally - some models will have

a stronger preference for shape than others, even though

they are architecturally identical and have almost identical

classification accuracy.

Our third finding – that MNs retain the shape bias statis-

tics of the downstream Inception network – demonstrates

the possibility for biases to propagate across model com-

ponents. In this case, the shape bias propagates from the

Inception model through to the MN memory modules. This

result is yet another cautionary observation; when combin-

ing multiple modules together, we must be aware of con-

tamination by unknown properties across modules. Indeed,

a bias that is benign in one module might only have a detri-

mental effect when combined later with other modules.

A natural question immediately arises from these results -

how can we remove an unwanted bias or induce a desir-

able bias? The biases under consideration are properties of

an architecture and dataset synthesized together by an op-

timization procedure. As such, the observation of a shape-

bias is partly a result of the statistics of natural image-

labellings as captured in the ImageNet dataset, and partly a

result of the architecture attempting to extract these statis-

tics. Therefore, on discovering an unwanted bias, a practi-

tioner can either attempt to change the model architecture

to explicitly prevent the bias from emerging, or, they can at-

tempt to manipulate the training data. If neither of these are

possible - for example, if the appropriate data manipulation

is too expensive, or, if the bias cannot be easily suppressed

in the architecture, it may be possible to do zero-th order

optimization of the models. For example, one may perform

post-hoc model selection either using early stopping or by

selecting a suitable model from the set of initial seeds.

An important caveat to note is that behavioral tools often

do not provide insight into the neural mechanisms. In our

case, the DNN mechanism whereby model parameters and

input images interact to give rise to a shape bias have not

been elucidated, nor did we expect this to happen. Indeed,

just as cognitive psychology often does for neuroscience,

our new computational level insights can provide a starting

point for research at the mechanistic level. For example,

in future work it would be interesting to use gradient-based

visualization or neuron ablation techniques to augment the

current results by identifying the mechanisms underlying

the shape bias. The convergence of evidence from such
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introspective methods with the current behavioral method

would create a richer account of these models’ solutions to

the one-shot word learning problem.

7.2. Modelling human word learning

There have been previous attempts to model human word

learning in the cognitive science literature (Colunga &

Smith, 2005; Xu & Tenenbaum, 2007; Schilling et al.,

2012; Mayor & Plunkett, 2010). However, none of these

models are capable of one-shot word learning on the scale

of real-world images. Because MNs both solve the task

at scale and emulate hallmark experimental findings, we

propose MNs as a computational-level account of human

one-shot word learning. Another feature of our results sup-

ports this contention: in our model the shape bias increases

dramatically early in training (Fig. 2a); similarly, humans

show the shape bias much more strongly as adults than as

children, and older children show the bias more strongly

than younger children (Landau et al., 1988).

As a good cognitive model should, our DNNs make testable

predictions about word-learning in humans. Specifically,

the current results predict that the shape bias should vary

across subjects as well as within a subject over the course

of development. They also predict that for humans with

adult-level one-shot word learning abilities, there should

be no correlation between shape bias magnitude and one-

shot-word learning capability.

Another promising direction for future cognitive research

would be to probe MNs for additional biases in order to

predict novel computational properties in humans. Probing

a model in this way is much faster than running human be-

havioural experiments, so a wider range of hypotheses for

human word learning may be rapidly tested.

7.3. Cognitive Psychology for Deep Neural Networks

Through the one-shot learning case study, we demonstrated

the utility of leveraging techniques from cognitive psy-

chology for understanding the computational properties of

DNNs. There is a wide ranging literature in cognitive psy-

chology describing techniques for probing a spectrum of

behaviours in humans. Our work here leads the way to the

study of artificial cognitive psychology - the application of

these techniques to better understand DNNs.

For example, it would be useful to apply work from the

massive literature on episodic memory (Tulving, 1985) to

the recent flurry of episodic memory architectures (Blun-

dell et al., 2016; Graves et al., 2016), and to apply tech-

niques from the semantic cognition literature (Lamberts &

Shanks, 2013) to recent models of concept formation (Hig-

gins et al., 2016; Gregor et al., 2016; Raposo et al., 2017).

More generally, the rich psychological literature will be-

come increasingly useful for understanding deep reinforce-

ment learning agents as they learn to solve increasingly

complex tasks.

8. Conclusion

In this work, we have demonstrated how techniques from

cognitive psychology can be leveraged to help us better un-

derstand DNNs. As a case study, we measured the shape

bias in two powerful yet poorly understood DNNs - Incep-

tion and MNs. Our analysis revealed previously unknown

properties of these models. More generally, our work leads

the way for future exploration of DNNs using the rich body

of techniques developed in cognitive psychology.
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