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i

Abstract

This dissertation addresses the intersection of personal wireless technology and

computational intelligence.  The primary research issue addressed is the organization of radio

domain knowledge into data structures processable in real-time that integrate machine learning

and natural language processing technology into software radio.  The thesis defines and develops

the cognitive radio architecture.  The features needed in the architecture are derived from

cognitive radio use cases.  These include inferring user communications context, shaping access-

network demand, and realizing a protocol for real-time radio spectrum rental.  Mathematical

foundations for the knowledge-representation architecture are derived by applying point-set

topology to the requirements of the use cases.  This results in the set-theoretic ontology of radio

knowledge defined in the Radio Knowledge Representation Language (RKRL).  The

mathematical analysis also demonstrates that isochronous radio software is not Turing-

computable.  Instead, it is constrained to a bounded-recursive subset of the total functions.  A

rapid-prototype cognitive radio, CR1, was developed to apply these mathematical foundations in

a simulated environment.  CR1 demonstrated the principles of cognitive radio and focused the

research issues.  This led to an important contribution of this dissertation, the cognitive radio

architecture.  This is an open architecture framework for integrating agent-based control, natural

language processing, and machine learning technology into software-defined radio platforms.
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Brief Glossary

Antecedent The pre-condition of an If-Then logic structure

3G Third Generation mobile cellular systems, e.g. based on CDMA

CIR Carrier to Interference Ratio, a measure of radio signal strength

CORBA Common Object Request Broker

ETSI European Telecommunications Standards Institute

HTML Hypertext Markup Language

IDL CORBA Interface Definition Language

ITU International Telecommunications Union

Method A procedure attached to a software object

Ontology The branch of metaphysics that studies the nature of existence or being

OOT Object-Oriented (OO) Technology

ORB Object Request Broker, software that dispatches remote procedure calls, etc.

PDA Personal Digital Assistant

PDANode An object that contains an srModel and related slots and methods.

Reinforcement Assigning an increased degree of belief or relevance to a stimulus, plan, etc.

RKRL Radio Knowledge Representation Language

SDL The Specification and Description Language (ITU Recommendation Z.100)

Slot A data structure that is part of a software object

srModel Stimulus-Response Model

Taxonomy Science dealing with description, identification, naming, and classification

UML Unified Modeling Language, an object-oriented design language

W-CDMA Wideband CDMA, the emerging international 3G standard

XML The eXtensible Markup Language
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1 Introduction

This dissertation defines and develops cognitive radio, the integration of model-based

reasoning with software radio [1] technologies.  It analyzes the architecture and performance of a

rapid-prototype cognitive radio, CR1 in a simulated environment.  This architecture is based on

the set-theoretic ontology of radio knowledge defined in the Radio Knowledge Representation

Language (RKRL) [2].  CR1 incorporates machine-learning techniques to embrace the open-

domain framework of RKRL.  These machine learning techniques make the software-radio

trainable in a broad sense, instead of just programmable.  Although somewhat primitive, CR1’s

level of computational intelligence provides useful insights into the research issues surrounding

cognitive radio.  CR1 integrates aspects of digital signal processing, speech processing, theory of

computing, rule-based expert systems, natural language processing, and machine learning into

the software radio domain.  The inter-disciplinary nature of cognitive radio raises interesting

questions for future research and development.

1.1 Overview

This dissertation addresses the intersection of personal wireless technology and

computational intelligence.  The term cognitive radio identifies the point at which wireless

personal digital assistants (PDAs) and the related networks are sufficiently computationally

intelligent about radio resources and related computer-to-computer communications to:

(a) detect user communications needs as a function of use context, and

(b) to provide radio resources and wireless services most appropriate to those needs.

The results are derived in part from the development of a rapid-prototype cognitive

wireless PDA, CR1, that uses structured computational models of services and radio etiquettes to

control the delivery of next-generation wireless services in a simulated environment.  The

computational models underlying cognitive radio include RKRL, reinforced hierarchical

sequences, and the cognition cycle [3].  RKRL 0.3 consists of forty micro-worlds described in

the Extensible Markup Language (XML) and summarized in this thesis.  Reinforced hierarchical

sequences organize CR1’s internal representation of itself, its user, and its environment,

including the radio networks accessed through its software-radio host platform.  The architecture
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is somewhat biologically inspired, based on neural-network-like nodes that respond to external

stimuli and that process the resulting internal data structures.  These structures support a

cognition cycle consisting of Observe, Orient, Plan, Decide, and Act phases.  Machine learning

is integrated throughout the architecture.  Its waking behavior includes incremental learning.  Its

sleeping behavior provides for batch learning, and its prayer behavior supports supervised

learning.  The CR1 Java environment includes a design language by which the CR1 prototype

was constructed from a palette of node classes.  CR1’s wake cycle is optimized for the rapid

delivery of wireless services, but it supports the observation of stimuli needed for subsequent

machine learning.  In the sleep cycle, stimuli that were previously not experienced are integrated

into the internal node network.  In the prayer cycle, unresolved conflicts may be presented to the

designer for resolution.  After initial training, CR1 has a capability to be further trained either by

the user or by the network.  In addition, it may be initialized to a previously learned starting

point, a personality.  The personality consists of sets of internal models structured according to

RKRL.  The same machine learning algorithms that enable learning from text and speech

streams allow the system to recognize external context and to process radio protocols.  The

resulting equivalence of human-human, human-machine, and machine-machine protocols

evident in CR1’s machine learning over reinforced hierarchical sequences seems under-explored

in data communications science and engineering.

RKRL was initially defined via use-case scenarios [2].  The use cases were analyzed via

simulations.  One use-case, described in detail in Appendix D [4], shows how the properties of

RKRL support a new etiquette for the real-time pooling of radio spectrum.  Over-the-air

downloading of such radio etiquettes raises questions about the stability and other computational

properties of agents like CR1 and languages like RKRL.

The computational properties are analyzed using the recursive function theory of

computing.  The theorems provide the foundation for cognitive radio to reason about its own

computational capabilities.  This includes reasoning about processing capacity and memory

required for the execution of new functions downloadable from a network.  RKRL defines a

formal meso-world that includes the micro-worlds of time, space, location, radio resources,

protocols, communications context, and services to users.  Its meta-world defines the core

concepts in terms of which the other micro-worlds described.  For example, its meta-world
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defines set-theoretic concepts like “contains,” the set-membership ontology.  The other micro-

worlds grow to encompass additional knowledge (e.g. of an new protocol) using the formal

“contains” model.  Micro-worlds embedded in a PDA may also atrophy if knowledge is not used.

For example, detailed knowledge of a GSM-derived PCS mode may be forgotten by a cognitive

PDA that is using IS-95 instead.  Such a PDA can always access that knowledge from a

cognitive host network, however, because the core ontology retains the fact that the GSM-based

PCS mode is known by the network.  RKRL is fairly comprehensive, consisting of about 4000

model-based knowledge-representation frames.

CR1, on the other hand, is highly focused, employing just that subset of RKRL necessary

to establish the findings of this dissertation.  The purpose of creating the CR1 rapid prototype

was to test RKRL and the concepts of cognitive radio that were initially developed in my

Licentiate thesis.  This required integrating elements of machine learning, natural language

processing, and software radio into a mutually supportive computational framework.  The

development and related analysis led to the formulation of the cognitive radio architecture.

Software radio provides an ideal platform for cognitive radio.  Although cognitive radio

algorithms can control a programmable digital radio, software radio and the emerging

complexity of third-generation wireless (3G) systems motivate the development of cognitive

radio.  This includes assisting users in dealing with the exponentially increasing array of wireless

access methods.

1.2 Organization of this Thesis

The next chapter reviews background necessary for cognitive radio and defines

prerequisite technology, particularly the software radio.  A more complete discussion of the

architecture of software radio may be found in the author’s text Software Radio: Wireless

Architectures for the 21st Century (alpha edition, to be published in an expanded form in

September, 2000 by Wiley Interscience [1]).  Chapter 3 summarizes relevant prior research.

Chapter 4 defines cognitive radio and introduces four key areas in wireless communications on

which cognitive radio will have an impact.  These are radio resource management, network

management protocols, services delivery, and type-certifiable downloads.  The use cases of

Chapter 5 statistically characterize performance aspects of cognitive radio.  RKRL 0.3 as used in
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the creation of CR1 is then defined in Chapter 6.  Chapter 7 provides an overview of the rapid

prototype, CR1.  Chapter 8 consolidates the conclusions of this work in an initial cognitive radio

architecture.  Implications of the research are discussed in Chapter 9.

The thesis concludes with relevant appendices.  Appendix A:  “Software Radio

Architecture Evolution:  Foundations, Technology Tradeoffs, and Architecture Implications”

(Invited Paper) describes the technology evolution of software radio from the author’s

contribution to the IEICE, Japan, Transactions on Communications, Special Issue on Software

Radio Technology.  Appendix B:  Software Radio Architecture:  A Mathematical Perspective

provides the mathematical foundation for cognitive radio’s ability to reason about its internal

computational resources.  This core contribution shows that isochronous systems like software

radios cannot benefit from Turing-computability, but instead must operate within a subset of the

Turing functions, the bounded recursive functions.  The guarantees of stability of this subset of

Turing-computability make it possible for cognitive radio to reason effectively about its own

internal structure without violating Goedel’s incompleteness theorem.  This appendix is a reprint

of the author’s paper from the IEEE Journal on Selected Areas in Communications.  Appendix C

is a reprint of: “Cognitive Radio: Making Software Radios More Personal.”  This version of the

author’s paper for the IEEE PCS Magazine (August 99) provides a stand-alone overview of

cognitive radio and RKRL.  Appendix D: Cognitive Radio for Flexible Mobile Multimedia

Communications, defines the pooled spectrum air interface enabled by cognitive radio.  This

paper won the “best student paper” at the IEEE 1999 Mobile Multimedia Conference (MoMuC,

November, 1999).  Appendix D is the paper “Cognitive Radio:  Agent-based Control of Software

Radios.”  This paper was presented at the 1st Karlsruhe workshop on software radio technology,

Karlsruhe, Germany on 29 March, 2000.  Finally, the softcopy version of RKRL 0.3, written in

XML is the on-line companion to this thesis.
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2 Background

This chapter provides technical background that is essential to the thesis.  It includes a

review of the technology for defining air interfaces and protocols.  This review characterizes the

use of formal methods in the standards development process.  It yields both a list of computer

languages for representing radio knowledge and some motivation for RKRL.  This chapter also

includes a definition of software radio, including the modeling of the software radio architecture.

It is shown that a language that consistently keeps track of computational resources enables the

autonomous creation of software that is provably stable.  Such software will not use computing

or communications resources that exceed tight upper bounds, except in the case of a hardware

failure.  This chapter summarizes the state of the art in location- and environment-aware

computing, which cognitive radio seeks to extend.  Since machine learning and natural language

processing are essential to cognitive radio, this chapter also provides background on these

technologies with examples that provide a glimpse ahead into the core technical contributions of

this thesis.  The companion chapter on prior work addresses related research that bears on

cognitive radio, while this chapter defines its foundations.

2.1 Air Interface- and Protocol-Definition Processes

The process of extending mobile units and radio infrastructure to new physical layer

capabilities and protocols is labor-intensive and prone to error.  Natural language specifications

are sometimes easy to misinterpret.  Latent ambiguities may be identified during the product

development process, and sometimes not until after systems have been deployed.  This section

provides an overview of the migration towards the use of formal languages and modeling

methods to improve this specification process.  This topic is essential background for cognitive

radio and RKRL since many of the approaches now in use are relevant, but fall short of either the

expressive power or mathematical structure necessary for cognitive radio.

An early thrust to reduce the ambiguity of specifications of communications systems

resulted in the Specification and Description Language, SDL [5].  This language clearly

represents state machines and message sequences that are the cornerstone of radio protocols
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(Figure 2-1).  The International Telecommunication Union (ITU) adopted SDL in its Z.100

recommendations.  In addition, the European Telecommunications Standards Institute (ETSI)

recently adopted SDL as the normative expression of radio protocols.

“SDL [shall be] the normative specification of behaviour within a standard with text

supporting and clarifying the requirements expressed in the SDL.” [6].

Definition of Processes

Declarations and a Data Dictionary

Flow Chart Views of Procedures

Annotated State Machines

Figure 2-1 Highlights of SDL

This suggests continued movement towards computer-based formal models in the

specification processes.  One thus expects SDL modeling of radio to continue to expand.  SDL,

however, lacks tools that support general-purpose object-oriented modeling.  Such techniques

have shown significant benefit in the creation of real-time telecommunications systems [7, 8, 9].

There has been a proliferation of object-oriented modeling techniques [10].  Recently,

however, the Unified Modeling Language (UML [11]) resulted from the unification of diverse

object-oriented analysis, modeling, design, and delivery methods.  UML readily expresses

software objects, including attached procedures (“methods”), use cases, and the packaging of

software for delivery.  In principal, UML can model anything.  In practice, it is useful in

software design and development, but it is weak in the modeling of hardware devices and
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databases.  UML extends the reach of formal modeling pioneered by SDL into areas such as user

interfaces.  UML also facilitates the formal modeling of abstract radio concepts such as a GSM

(Global System for Mobile communications) Slow Access Control Channel (SACCH).  A

SACCH is a virtual channel that is a subset of a low rate time-division multiplexed channel

which itself is a time-division multiple access burst channel within a 200 kHz RF channel [12].

UML readily expresses the data structures associated with an SACCH.  The Software-Defined

Radio (SDR) Forum, furthermore, has adopted UML as its method for representing open-

architecture radio [13].

On the other hand, although UML can provide a framework for radio system design,

specialized radio domains such as propagation modeling need application-specific propagation

modeling tools [14].  These are historically written in C or FORTRAN.  The need to integrate

such diverse tools into a seamless user environment led to the development of the Common

Object Request Broker Architecture (CORBA).  CORBA defines a framework for integrating

software packages using an Object Request Broker (ORB).  The ORB “middleware” transforms

what amount to remote procedure calls from a client application into a format acceptable to the

server application.  The transformations of the procedure calls are defined using the CORBA

Interface Definition Language IDL [15].  Using CORBA, one can readily combine an air

interface written in C on a Digital Signal Processor (DSP) with a propagation-modeling tool

written in FORTRAN.  Before the development of multiband multimode mobile radios, there

was little need for the integration of such diverse software packages.  The use cases of this thesis

show how that situation is changing.

Although SDL, UML, and CORBA/IDL provide important new capabilities, all of these

languages are lacking in important ways.  None of these languages offers a standard reference-

ontology.  That is, if one is designing a new third generation (3G) air interface using SDL, one

must rely on the informally defined notions of “channel”, “frequency”, “multiple access,” etc.

The more generic the term (e.g. channel), the more likely that its use in one context (e.g. Digital

European Cordless Telephone - DECT) is different from its use in another context (e.g. 3G).

Yet, these concepts are central to defining a commercial-grade air interface.  SDL and UML

allow one to register these concepts in a data dictionary, but the semantics are left up to the user.

One could argue that this is as it should be.  Given a general purpose tool like UML, one can
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informally coordinate the ontological perspectives using the coordination processes of the ITU,

ETSI, etc.

On the other hand, other industries are beginning to employ reference ontologies.

Chemical engineers, for example, are using the Chemical Markup Language, CML, to exchange

chemical formulas using an application-specific reference ontology [16].  CML is based on

XML, which can be thought of as Hyper-Text Markup Language (HTML) with user-defined

tags.  In addition, HTML tags define display format, while XML tags define data exchange

format.  The potential benefits of a standard reference ontology include a more efficient

standards-setting process, more structure in the exchange of radio-science data among

researchers, and more flexibility in the structured interchange of radio knowledge among

mobiles and networks.  The benefits of a standard reference ontology for radio have been argued

[2], and the SDR Forum began work in February, 2000, on the use of XML for radio domain

management [17].

In addition, none of these languages support independent axiomatic treatment.  Expressions

must be mutually consistent, but they need not have formal logical structure.  In this case, there

are no pre-defined logical sorts.  There are also no axioms to which expressions of the language

conform.  In addition, they need not be consistent with prior knowledge like a reference

ontology.  One can attempt to make them consistent with prior knowledge by incorporating the

prior UML models into the current model, but this generally leads to context-dependent

differences that require substantial rework.  RKRL, on the other hand, defines an axiomatic

framework.  It provides the cognitive radio reference ontology of world knowledge, radio

protocols, air interfaces, networks, and user communications states.  It also provided the

knowledge-organization framework for the rapid prototype, CR1.  Since it is written in XML, it

could also help in communicating a wide range of radio-technical knowledge among people and

among future RKRL-capable software agents.

2.2 The Software Radio, PDR and SDR

A software-defined radio (SDR) is a radio that can accommodate a significant range of RF

bands and air interface modes through software [18].  For the ideal software radio, that range

includes of all the bands and modes required by the user/ host platform.  Appendix B precisely
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defines the software radio, differentiating SDR from software radio.  This section provides a

synopsis focused on cognitive radio.  The first sub-section defines the software radio and its

variants, while the second sub-section summarizes the architecture-level model of the software

radio for cognitive radio.  Finally, computability issues are addressed.

2.2.1 Defining the PDR, SDR, and Software Radio

Military radios for mobile ground, air and naval applications employ the bands HF through

UHF.  Thus, 2 MHz to 2 GHz defines the nominal RF coverage of the tactical military radio.

Commercial mobile radios typically do not require the HF band, but emphasize the mobile

satellite, cellular and PCS bands between 400 and 2400 MHz instead.  In the limit, an ideal

mobile military software radio digitizes 2.5 GHz of RF, sampling at 6 giga-samples per second

(gsps) with at least 60 dB of dynamic range, including the contributions of automatic gain

control (AGC).  The state of the art is 6 gsps and 30 dB [19].  In addition, the 6 gsps DACs and

filters cannot yet reach the spectral purity needed for the ideal software radio.  With today’s

technology, then, one must compromise the ideal, implementing programmable digital radios

(PDRs), also called software-defined radios (SDR).  An SDR, for example, might use a fast-

tuning synthesizer to hop a 3 MHz instantaneous baseband bandwidth over a 200 MHz agility

bandwidth.  Although the pattern of hops generated by the synthesizer could be programmable,

the instantaneous waveform bandwidth is limited to 3 MHz.  A software radio, on the other hand,

would digitize the 200 MHz bandwidth at 400 msps or more.  The instantaneous bandwidth of

the waveform, then, could be programmed to any bandwidth up to 200 MHz, not limited by the 3

MHz baseband.  The PDR would have a programmable choice of hopping frequencies across

200 MHz, while the software radio would have an arbitrarily programmable waveform across

the 200 MHz1.

The degree of flexibility of a radio platform is of considerable relevance to cognitive radio.

A commercially viable SDR may be implemented as a mix of Application-Specific Integrated

Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Digital Signal Processors (DSPs),

                                                
1 Of course, the rest of the architecture such as antenna, RF conversion, DACs, intermediate buses, signal
generation speed, and the processing capacity of the receiver architecture also have to support the
bandwidth of the ADC in a viable implementation.  That is, the rest of the system should be compatible
with the bandwidth of the ADC.
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and general-purpose microprocessors.  ASIC parameters also may be defined in software.  But,

an ideal software radio has no ASICs.  Instead, it implements all the radio’s RF conversion,

filtering, modem and related functions in software.  The range of SDR implementations as a

function of digital access bandwidth and processor programmability is shown in Figure 2-2.
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Figure 2-2  Dimensions of Software Radio Implementations

Implementation points A through D in the figure are contemporary SDRs (see Appendix

A). The Virtual Radio [20], however, is an ideal single-channel narrowband software radio based

on a general-purpose processor, specifically a DEC Alpha, running UNIX.  Point X is the ideal

software radio with digital access at RF and all functions programmed in general purpose

processors.  Although providing maximum flexibility and thus of research interest, such designs

are economically impractical in the short term.  Cognitive radio’s focus, however, is on the

fourth generation of wireless in which commercial radios will begin to approximate the software

radio.

In the commercial sector, for example, a dual antenna-RF stage could cover the radio

spectrum from 350 MHz to 2400 MHz.  With a 100 MHz x 16 bit ADC and a few GFLOPS of
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processing capacity, this would be a powerful software radio precursor.

2.2.2 Modeling the Software Radio

The architecture-level model of Figure 2-3 identifies the functional components and

interfaces of the software radio (see Appendix B).  In order to reason about its own internal

structure, a radio requires some such model.  Cognitive radio’s internal model of itself is based

on this specific model.
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Source
Bits
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Bits
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IF
Waveform

RF
Waveform

Evolution
Support

Software
Object

Figure 2-3  Architecture Model of the Software Radio [139]

There are, however, many other comprehensive, precise models of the internal architecture

of a radio.  The architecture model of the SDR Forum, for example, augments the modem

function with a data processing function on the channel coding and decoding side of the

INFOSEC module.  In addition, their model has no IF Processing module.  One can create a

mapping among the two models that establishes their equivalence.  The appendix develops a

topological model within which such mappings may be analyzed.  That analysis includes the

question of constraints on computational resources in software radio.

2.2.3 Computational Resources

Software radio includes the downloading of software objects that modify or extend the host

radio’s capabilities.  The SDR Forum, for example, has defined a secure download protocol that

assures the object is suited to the host radio, appropriately authorized, and free of error [21].  The

thinking is that a new well-behaved object that interacts with existing well-behaved objects in the

radio will yield a well-behaved system.  Appendix B addresses the question “under what
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conditions can well-behaved radio software be composed with other well-behaved radio software

to yield a well-behaved system?”  This general question of software composition is known to be

undecideable [22].  That is, there is no algorithm that can examine two arbitrary pieces of

software in finite time and yield “Yes” if they will yield an answer and “No” if they will

consume infinite resources (and thus yield no answer).  Fortunately, software radios are

engineering systems with timing constraints that allow one to prescribe constraints on the

topological structure of the software that establishes conditions under which composition of

software modules is well behaved [139].  Since modems, equalizers, vocoders, and other radio

functions are part of an isochronous stream, they must run-to-complete in a short time window

that a radio engineer can bound tightly in advance.  There are therefore a-priori bounds on time

and space (i.e. memory) for SDR modules that each new module must meet as well.

Theoretically, these bounds comprise a step-counting function, a function that counts resources

used by another program.

There are programming constructs that will meet these bounds sometimes, but not for all

possible circumstances.  In particular, any construct that is equivalent to a while or until loop

(including recursions) can cause two well-behaved software modules (or objects) to consume

infinite resources in unpredictable ways.  Appendix B on mathematical perspectives shows that

one may constrain while and until loops into bounded-resource equivalents (bounded-while and

bounded-until).  These functions will consume up to a specified amount of memory and time

independently and up to another specified amount in concert.  The theorems of the appendix

show that the bounded recursive functions are the largest set of functions for which predictably

finite resource consumption may be guaranteed.  In addition, the composition of bounded

recursive functions is also bounded recursive, and this sets measurable conditions under which

plug-and-play modules will not use excessive resources.  Furthermore, there is no practical limit

on the useful radio functions that can be computed with the bounded recursive functions 2.

                                                
2 One might initially think that this violates Goedel’s incompleteness theorem, which says that any self-
referential system cannot be defined everywhere and thus can consume infinite resources on some
combinations of inputs.  “Step-counting functions” (e.g. clock to measure time) can be defined
everywhere, so if an application consumes unacceptably large resources, it can be stopped by the
violation of a bound on the step-count, restoring Goedel’s theorem.  This construct converts a potential
crash into a mere error condition for reliable counting step clocks (which they are, alone and backed up).
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2.3 Environment-Aware Computing

Cognitive radio increases the awareness that computational entities in radios have of their

locations, users, networks, and the larger environment.  Recent progress in location- and

environment-aware computing is therefore relevant to cognitive radio.  The European

Community sponsored the Advanced Communications Technology and Services (ACTS)

program during 1996-99, which included a thrust in location-aware computing.  The

OnTheMove thrust resulted in mobile middleware (“MASE”) for small multimedia terminals

[23].  The middleware running on the network down-scales the information content to the format

acceptable to the handheld terminal.  Subsequently the Wireless Applications Protocol (WAP)

commercialized the approach taken by MASE.  A City Guide was implemented in MASE [24].

The researchers reported high consumer interest in mobile email, a personal news service,

personal stock portfolio, and the city guide map application.  Other OnTheMove researchers

reported interest in mobile streams (e.g. video), clips on demand (video or audio), and fast file

downloads [25].

Beadle, Maguire, and Smith [26] take these notions a step further.  They have investigated

the use of highly mobile systems to create environment-aware computing and communication

systems.  Their systems include badges that use wireless communication and sensor technology

to become aware of the immediate environment including doors, heating, ventilation, air

conditioning, lighting, appliances, telephones, and pagers.  Thermal, audio, and video sensors

integrated with a PDA yield a new array of opportunities for human-centric information services.

This high degree of environment sensing takes mobile computing beyond location-awareness to

environment-awareness.

Cognitive radio is based on the premise that OnTheMove, environment-aware computing,

and related research will create innovative applications that can use location and other aspects of

the environment to tailor services to users.  These applications will need a standard world

ontology if diverse applications are to smoothly and efficiently share knowledge about the

environment.  In addition, applications developers will not be expert in each of the myriad of

bands and modes available to emerging software radios.  Thus, there will be a need for agent-

based applications that delegate the control of the software radio to an agent that has been

specifically designed for that purpose.  The cognitive radio is that agent.  The use of knowledge-
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based expert systems technology to create such agents leads to knowledge-engineering

bottlenecks and software of limited flexibility.  Cognitive radio therefore embeds machine

learning techniques that enhance robustness to rapidly-changing external environments.

2.4 Machine Learning

In general, machine learning includes supervised and unsupervised approaches to

extracting knowledge from raw data [27, 28].  Supervised techniques entail the a-priori

association of a class, category, or concept with exemplar data sets.  These may be presented as

positive or negative examples.  Unsupervised techniques, on the other hand, require the

algorithm to extract knowledge using general principles such as distance among points in a

metric space [29].  Document clustering, for example, maps word vectors into RN, N-

dimensional real space, using information-theoretic metrics [30].  Unsupervised learning is also

feasible in symbolic spaces including databases and predicates, e.g. using conceptual clustering

[31].

Machine learning is an extensive technology area embracing automatic pattern recognition

[32], abductive inference [33, 34] automatic rule acquisition [35], neural networks [36],

reinforcement learning [37, 38], and genetic algorithms [39] as highlighted in Figure 2-4.  The

early pattern recognition literature was concerned with representing features in metric spaces to

facilitate clustering using statistical methods.  Non-parametric and non-linear metrics emerged

throughout the 1970’s and 80’s.  In order to cope with domains in which entities exhibit non-

stationary statistics (e.g. speech), sequential analysis methods were developed.  The most

widespread of these is probably the Hidden Markov Model (HMM).  An HMM induces a new

state when the current sequence of data is better explained by a change of state than by a change

of parameters of a known state.  HMM’s thus partition multi-modal distributions into their

sequential modes instead of forcing the random process into a unimodal distribution that fits the

data.
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Figure 2-4  Overview of Relevant Machine Learning Techniques

Machine learning has been used in telecommunications, e.g. in call-admissions control

algorithms.  For example, Q-learning is a form of reinforcement learning.  Q(s, a) is the value of

action a in state s.  A Q-learning iteration has the form:

Qk+1 = (1-γ(s,a))Qk(s,a) + γ(s,a)f(s,a,(max|b(Qk(s,b)) [40].

The weight γ(s,a) determines the degree of exploitation of current knowledge, while f

shapes the search for new knowledge.  As the number of iterations approaches infinity, Q

approaches the optimal dynamic-programming policy with probability 1 [41].  This learning

technique has been applied to call admissions control in simulated networks [42] and robot

control [43].  The literature has many similar algorithms from state-space based automatic

control, fixed-point algorithms, Kuhn-Tucker optimality, and genetic algorithms.  These address

network applications like call admissions control, and do not address user-specific symbolic

knowledge like the user’s itinerary or the change of a daily commuting pattern.  The latter is the

focus of cognitive radio.

This section introduces those aspects of machine learning used in this thesis.  Since the

focus of this thesis concerns radio engineering, the treatment of machine learning is necessarily
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high level.

2.4.1 Learning via Extensible Concept Models

Cognitive radio offers many opportunities for machine learning.  A user’s interaction with

a PDA, for example, includes opportunities for both unsupervised and supervised learning.  The

PDA may develop a model of its time-space pattern of use of wireless resources autonomously,

e.g. to reduce the uncertainty of demand offered to the network.  This could then be used pro-

actively to determine the availability of services historically needed in specific use-contexts.  The

PDA can also passively observe user actions, e.g. composing and sending wireless email while

moving from home to work via a train.  Subsequently it might observe the user sending email on

the company’s RF LAN.  It could then ask the user if it should expect to send wireless email via

the company’s RF LAN when available rather than GPRS or 3G even though both are accessible.

Such knowledge exchanges could occur in a mixed-initiative dialog [44].  Acquisition of

knowledge from a network, on the other hand, could be rote learning supervised by the network.

This thesis explores these possibilities.

Core machine learning technology entails the extraction of a description of a concept from

examples and background knowledge [45].  The machine learning process may also produce an

algorithm that can recognize additional instances of the learned concept.  The notion of a concept

is central to machine learning.  Concepts exist in a knowledge representation space such as a

generalization hierarchy (e.g. eagles are birds which are vertebrate animals [45]).  The

knowledge representation space for cognitive radio defined in RKRL includes the relevant

components of radio hardware (e.g. antennas, ASICs, processing, memory), the user, the

network, and the subset of (space * time) in which the radio is used.  As illustrated in Figure 2-2,

some knowledge concepts fit well into a strict hierarchy, such as the organization of physical

space in the universe.  Cognitive radio concepts include cognitive PDAs and their components

(e.g. modems, protocol stacks), users, networks, locations, etc.  Explicit context is needed to

differentiate between concepts with identical syntax but different semantics.  “Constellation” in a

modem [46], for example, differs from a “constellation” of Iridium satellites [47].
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Figure 2-5 A Partial a-priori Radio Knowledge Representation Space

Other more general concepts such as the existence of time, space and such abstract notions

may all be at the same level of abstraction in meta-space.  Meta-space defines what knowledge is

present in the more concrete, axiomatic parts of the concept hierarchy.  The representation of a-

priori concepts in general knowledge-structures facilitates the context-free recognition of

concepts as they appear in the environment.  It also facilitates the subsequent context-driven

interpretation of such stimuli.  In addition, the representation of radio concepts in a context-

ontology facilitates the incremental acquisition of knowledge via machine learning techniques.

2.4.2 Decision Trees and a Case-Based Approach

In early machine learning research, the focus was on developing new techniques in small-

scale domains with simple a-priori knowledge.  During the past ten years, the focus has shifted to

solving real-world problems such as trouble-shooting industrial machines [48] and defending

against computer virus attacks [49].  One branch of machine learning represents concepts in

formal logic [50].  The simplest formal logic is the propositional calculus (zero-order logic)

where conjunctions of Boolean constants represent concepts.  In radio, for example, the

following propositional formula might hold:

Message_Coded∩  High_SNR ⇒  Transmit

In attribute-value logic, positive and negative examples of concepts may be represented in

vectors of the values of attributes.  Quinlan [51], for example, used attribute-value logic to
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induce decision trees.  His algorithm, called ID3 is relevant.  If all members of a set have the

same value of a given attribute, then that set is a leaf of the tree.  Otherwise, select an attribute

that partitions the set into orthogonal subsets, and ascribe the value of the attribute to each

branch of the tree.  This leads to decision trees that efficiently compute rules of the form:

Attribute-Vector(x0, x1, …, xn) ⇒  Transmit

The associated decision tree shows how examples of a two-element attribute vector of

coding and carrier to interference ratio (CIR) might be converted by ID3 into a decision tree for

transmission of a message (Figure 2-6).

Coding CIR Transmit
Yes 3 dB no
Yes 8 dB yes
No 11 dB no
No 7 dB no
Yes 5 dB yes
No 6 dB no

Training Set (“Cases”)

Coded?

CIR > 5 dB?No

No Yes

Y

Y

ID3 Decision Tree

Figure 2-6 ID3 Transforms a Training Set into a Decision Tree

The data vector (Coding, CIR) can be viewed as a situation, a context, or “problem”

confronting the radio control system.  For a specific status of the convolutional coder and the

network (e.g. telling the mobile of its received CIR), should the radio attempt to send a large

email file?  This kind of decision is not in the traditional purview of the modem.  Setting coding

parameters as a function of the closed-loop channel characteristics is within the scope of the

modem in some HF Automatic Link Establishment (ALE) protocols.  But to decide not to

transmit, in spite of a CIR that is above the minimum, is a decision usually not taken by a

modem.  Neither is it in the purview of the traditional protocol stack, which tries to send data if

the radio is “ready”.  However, it would arise in a cognitive radio where the radio is learning

from interacting with the environment and the user.  The user may provide negative

reinforcement for unacceptable end-to-end QoS, excessive time delay, etc.  Inference about

which RF bands and modes best satisfy needs may take into account long-term average CIR,

node movement, time of day, as a function of subjective factors called user communications

context.  For example, one has different priorities for downloading a map with directions when
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shopping near home than when lost and in a storm with the road ahead blocked by a fallen tree.

Time Service Context Transmit
Morning GPRS Commuting yes
Afternoon GPRS Commuting no
Late Night GPRS Lost yes
Morning 3G Going to Meeting yes
Morning GPRS  Commuting  no

Training Set (“Cases”)

GPRS?

Other ?No

No Yes

Y

Y

ID3 Decision Tree?

Figure 2-7  Satisfying a User Given Wireless Availability, QoS and Price

Consider the challenge of machine-learning of radio concepts further.  Figure 2-7 suggests

how user communications context may influence a decision to transmit on a given RF band and

mode.  Given only the training set shown, ID3 could yield an inappropriate tree.  The cost of 3G

could be justified when on the way to an important meeting, but not otherwise.  In addition, the

training set shows that the user agreed to use GPRS on the morning commute in one case and not

in another.  This situation provides no information to ID3, but should provide a machine-learning

opportunity to a cognitive agent.  The agent can find out from the user what specific aspect of the

situation caused that decision to be different in the two cases.  At least three machine learning

approaches apply:  conceptual clustering, reinforcement learning, and case-based or memory-

based learning.  Conceptual clustering [31] derives predicate-calculus expressions given an

unstructured database of such cases.  Reinforcement learning extracts rewards from the

environment to structure the machine learning.  Case-based reasoning (CBR) retrieves and

applies cases to new situations.

Case-based reasoning retains sets of “problems” with associated “solutions.”  This

approach is data-intensive because the raw data characterizing the cases are stored.  Contrast this

to feature-space techniques in which a cluster center and covariance matrix might be retained

instead of the 4,000 points from which these parameters were derived.  The case-based reasoner

would retain the 4,000 data points.  It would then attempt to retrieve the most relevant case (data

point) to apply the prior solution (e.g. associated class of the data point) to the current problem.

Some reasoners revise the solution to better fit the current situation.  Successful new solutions

are retained with the details of the associated problem for use in the future.  This completes the

case based reasoning cycle:  Retrieve, reuse, revise, and retain.  Commercially successful
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retrieval processes have been based on nearest-neighbor algorithms, e.g. with roots in statistical

pattern recognition.  Others have employed decision trees based on ID3 [52].  CBR research

systems span the array of machine-learning techniques.  If the retrieval process is based on

decision trees, then the retention process includes digesting the new cases into updated decision

trees.  Similar example-integration cycles are needed for alternative schemes (e.g. to generate

predicates from conceptual clustering).

Case based reasoning provides a point of departure for machine learning in cognitive radio.

A cognitive radio’s sensor suite includes time, location, radio network status, and user input.

These inputs, plus communications-related inferences derived from them, comprise the

generalized user-communications-context.  This data structure may be thought of as a vector of

attributes of the scene in which a cognitive PDA finds itself.  Something like a context vector

must be formed and manipulated to generate communications plans and actions that reflect

communications context.  Thus scene and communications context are closely related.

2.4.3 Rule-Based Aspects

Attribute-value logic may be attached to entities and embedded in expert-system rules in

which the knowledge is represented in if-then rules, antecedent-consequent pairs [53].  Rule

chaining forward from facts yields conclusions, e.g. in diagnostic applications.  Backward-

chaining can yield a plan to achieve a goal.  In the classic MYCIN [58] diagnostic system, for

example, the entities include the patient, sites of infection (e.g. the blood), results of cultures, etc.

Attributes of entities were expressed in Entity-Attribute-Value triples, e.g. “The GRAM-STAIN

of the CULTURE is NEGATIVE.”  Here CULTURE is the entity, GRAM-STAIN is the

attribute, and NEGATIVE is the value.  These supported the rule-based diagnosis of infections of

the blood.  This approach became popular in expert systems and object-oriented systems

developed in the 1980’s [54].  An expert system rule has the form:

Rule N:  IF(Antecedent) →  THEN (Consequent),

where Antecedent is a conjunction; multiple rules provide disjunctive inference.

In expert systems, rules are maintained in a knowledge base in which any relevant rule may

be applied.  Some experts systems have clustered rules into Knowledge Sources (KS) so that
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only potentially applicable rules are searched [55].  Rule-based expert systems have

demonstrated problem-solving capability on hundreds of applications.  In the most successful

expert systems applications, the human approach to solving the problem is well understood by

domain experts and is unlikely to change much over time.  Configuration of computer hardware

provides a convenient example.

One acknowledged shortcoming of rule-based expert systems is that as the problem set

evolves, new rules must be added by a human expert / knowledge engineer, creating the

knowledge-engineering bottleneck.  In addition, some rule-based expert systems show

outstanding performance on the problem set for which designed, but poor performance on

problems that are only slightly different.  This has been called “brittleness”.  To overcome

brittleness and mitigate the knowledge-engineering bottleneck, Davis’ Tieresias system [35]

acquired rules from experts by tracing rule schema.  For example, when confronted with

diagnosis of a bacterial infection of the blood on which the medical doctor and the core

diagnostic system, MYCIN, disagreed, Tieresias would elicit knowledge from the doctor.  Its

interactive protocol could yield new rules.  The system treated rules like multi-variable decision

trees.  It thus represents an interactive version of ID3’s batch processing to form decision trees.

What is needed for cognitive radio is a mechanism by which the best aspects of machine-

learning, case based reasoning, and rule-based expert systems may be employed in a radio-

engineering framework.

2.4.4 The RKRL-CR1 Approach

In cognitive radio, knowledge that could be treated as training data, cases, or rules is

structured into embedded models.  These are partitioned into micro-worlds to focus reasoning on

subsets of the domain.  Each chunk of knowledge is part of a stimulus-response model

(srModel), a collection of parallel stimulus-response (SR) pairs.

srModel: {Stimulus (i)→  Response(i)}, where 0< i <N

The srPairs are parallel (disjunctive) in the sense that when a stimulus is presented, all pairs

in the model are evaluated, and the most-applicable model is applied.  Model matching

accomplishes the retrieval function of case-based reasoning and the rule-binding function of a
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forward-chaining expert system.  Each srModel is a collection of stimulus-response pairs.  The

SR pairs are generalizations of rules in that they can represent a case-based example of a

problem and a solution.  They are generalizations of case-based reasoning in that the solution to

one sub-problem can be forward-chained as part of a problem statement of a subsequent

problem, behaving like forward-chaining rules.  In principle, one could generate multiple

hypotheses using the n-best relevant rules, but CR1 as implemented employs only the best match

in the spirit of case-based reasoning.  The success or lack of success of single-versus-multiple-

hypotheses is not a research issue for this thesis.  The primary research issue is how these

machine learning techniques contribute to cognitive radio architecture, developed below.

In order to meet the isochronism needs of radio, srModels contain only that knowledge

relevant to the specific microworld in which the knowledge is embedded.  For example, the

knowledge about modems is contained in the srModels of the modem micro-world.  Knowledge

about physical location is consolidated in the Place srModel, etc.

Within each srModel, SR pairs are structured to capture aspects of communications context

relevant to the micro-world.  For example, a wireless band/mode mode planner could include the

following stimulus-response pair (srPair) in its Plan for Carrier to Interference Ratio (CIR):

CIRPlan:  Self@Now@Here@CIR, <, 5 →  “Delay Big File”  (1)

The left side of this entry into the CIR Plan model is the communications context which

specifies to whom, what, when, and where the inference applies.  In addition, the stimulus-

response pair is treated as a case, an example of a plan that has been used in the past.  That is, all

srPair in the CIR Plan srModel have the same structure of attributes and outcomes. They may be

treated as a database of mutually compatible problem-solution sets.  The a-priori structure of

radio knowledge permits one to constrain the data structures in each srModel without detracting

from the system’s ability to detect use context and control the software radio.  Complex

inferences accomplished by linking multiple srModels and reasoning across multiple micro-

worlds.

When srPairs are bound to local context, costs and values accrue.  For example, the CIR

Plan srModel could include the srPair:

CIRPlan:  User@Monday@Home@CIR, <, 5 →  “Send Big File” (2)
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This srPair is representationally compatible with srPair (1) as a case.  It also competes with

srPair (1) for applicability to the current situation.  Suppose the user attempts to send a big file

on Tuesday at home.  The context User@Tuesday@Home  represents this situation.  It binds to

the second plan with Monday = Tuesday.  Such a binding accrues value in proportion to the

match of User and Home to this context.  It also accrues a binding cost for setting Monday =

Tuesday.  Although counter-intuitive, these days of the week may be functionally equal as work

days when it comes to sending big files.  Such bindings set in motion a process of discovering

that relationship.  The context User@Tuesday@Home  binds to the first plan with Self = User,

Now = Monday and Here = Home .  Since there are fewer bindings, the more specific plan

supercedes the less specific plan if all binding costs are equal.  With differential binding costs,

binding Now could cost zero, but binding Here to Home could cost, say 10 units, when the

concept Home is currently bound to Work.  Differential binding costs may also be a function of

the number of times specific stimulus-response pairs have been used with success in the past.

For example, if Self@ Now@ Here@ CIR, <, 5 has been used with success 100 times, but the

other plan has been used only once, then the more commonly successful plan might be preferred.

The binding of context to the stimulus of an srModel accomplishes nearest-neighbor

retrieval within the CIRPlan model.  It also sets the stage for adaptation of this case to the

present situation.  In CR1, weighted binding is relatively efficient because of the use of hash-

maps that limit search.  Nevertheless, some srModels lend themselves to decision trees of the

type generated by ID3 and its successors.  Cognitive radio embeds all of its knowledge into such

srModels.  By interpreting srModels both as both rules and as examples, cognitive radio

incorporates the strengths of both.  Expert-system inference capability is thus integrated in a

unique way with the automatic knowledge-acquisition capability of case-based reasoning.

In addition, instead of an inference engine that searches a knowledge base to chain rules

together, srModels are clustered into micro-worlds defined by the radio architecture of RKRL.

This clusters knowledge sources to avoid combinatorial search.  The CIR Plan, for example, is

part of the Plan Phase that links the measurement of radio parameters to the specific plans for

actions that the PDA can take to enhance its delivery of communications services.  In the rapid

prototype, the linking of these srModels is pre-programmed (using RKRL as a guide), while the

stimulus-response pairs are learned.  In a more aggressive machine-learning implementation, the
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interconnections among srModels also could be learned interactively, e.g. using the Tieresias

meta-schema approach.  Alternatively, new srModels could be derived from cases, e.g. using ID3

decision trees to add a new model and to restructure the existing internal models.

In CR1, srModels are implemented as Java classes called PDANodes.  These nodes loosely

emulate aspects of the computational behavior of biological neurons [56].  Some of these are like

afferent nodes in the auditory system [57], transforming sensor data into internal data structures

and interconnecting results with higher level processing centers.  Other nodes have multiple

inputs like conventional neural networks, integrating the results from multiple afferent nodes into

internal concepts, plans, and decisions.  Other nodes are efferent, causing effectors to operate in

response to changes in internal state.  Conventional neural network weights and sigmoid

functions could be realized in these PDA nodes.  As cognitive radio evolves, conventional

neural-network weighting and learning techniques may be helpful for some aspects of behavior.

A simple reinforcement approach is used in CR1 to focus the treatment on the radio aspects

versus the machine learning aspects.

2.4.5 Reinforcement

MYCIN introduced a certainty calculus, a mathematical technique for accruing evidence as

logic propositions are satisfied [58].  Evidential reasoning is itself a broad, deep technology area

that includes Bayesian inference [59], Dempster-Schaffer [60], Fuzzy sets [61], Rough Sets [62]

and many related theoretically based and ad-hoc methods [63].  CR1 uses the general form

Reinforce(context, [Stimulus →  Response]).

The stimulus-response pair is positively reinforced when it is used successfully.  CR1

acquires every stimulus to which it is exposed.  After a period of operations that depends on its

memory, CR1 “sleeps” to integrate the new knowledge.  When its memory resources become

50% utilized, it begins to discard non-reinforced knowledge.  Reinforcement in artificial neutral

network framework is based on weights, a sigmoid function, and the error.  In CR1, each raw

stimulus is reinforced with unit strength.  Each stimulus-response pair (or sequence) explicitly

reinforced by the user is given an additional additive weight of k in context.  Each response

receiving negative reinforcement is decremented by k’ in context.  When observing new stimuli,

CR1 correlates those stimuli, extracting the response that has the best binding, which is in part
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based on the quality of the match to the current context and in part on the degree of

reinforcement.

Choice(xi, xj) = xi if f(R(xi), V(xi), C(xi)) > f(R(xj), V(xj), C(xj)) and xj otherwise.

R(xi) is the degree of prior reinforcement of xI, V(xi) is the binding value, and C(xi) is the

binding cost.  The function f weights these metrics and maps the result to a decision space like

the closed interval [0,1].  The choice of f can be informed by reinforcement learning [64] and

complex adaptive systems [65], e.g., the behavior of foraging ants [66].

The management of reinforcement parameters and functions is an important topic for

performance tuning of practical cognitive radios in the future.  The larger issue is Maguire’s

question:  “How do cognitive radios learn best.”  This includes both the internal tuning of

parameters and the external structuring of the environment to enhance machine learning.  Since

many aspects of wireless networks are artificial, they may be adjusted to enhance learning.  This

thesis does not attempt to answer these questions, but it frames them for future research.

2.4.6 Computational Architecture of Machine Learning

Machine learning includes the use of the predicate calculus to extract concepts from data.

In such logic formalisms, a concept is a conjunction of clauses, possibly bound to local variables.

Horn clauses are the subset of first-order predicate calculus in which clauses (disjunctions) have

at most one positive literal [67].  Prolog (for Programming in Logic) is an efficient logic

programming language based on Horn clauses.  Horn clauses like {Human(x) OR

NOT(Greek(x)}; resolve with Greek(Aristotle) to yield the inference Human(Aristotle) [68].

Prolog and expert systems organize knowledge into discrete chunks (Horn clauses or if-then

rules) that must be chained in order to perform inferences.  Augmenting expressions with

computational capabilities introduces Turing-capability into logic programming.  This causes the

system to be “partial” [22].  For some combinations of inputs, the system may attempt to search

for the answer forever.  CR1 employs forward chaining, not resolution theorem-proving. In

addition, there are limits on the computations performed in an inference.  This is intentionally

not a Turing-capable framework, but it is total and therefore guaranteed to consume only

computational resources whose bounds can be tightly specified in advance.  In part, this is to

avoid the temporal indeterminacy of unconstrained resolution theorem-proving.  In part this is to
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avoid the computational indeterminacy of partial functions.  Limited-depth Horn-clause

resolution may be realized in this computational framework.  In radio applications this lack of

Turing-computability is an advantage rather than a disadvantage as demonstrated in Appendix B.

The processing architecture limits the computational power to that which can be computed in a

short, predictable amount of time, and thus also guarantees that a response is delivered in that

predicted time for all stimuli.

2.4.7 Automatic Knowledge Acquisition

The srModel is not just another way of embedding a conventional expert system into a

radio.  CR1 acquires knowledge into existing models without the intervention of a knowledge

engineer.  In fact, all stimuli are analyzed and retained in “novelty nodes” in working memory.

The content of these nodes is integrated into the knowledge base in a sleep cycle that can include

the machine learning techniques identified above.  During its wake cycle, CR1 recognizes and

acquires some types of new information autonomously.  Consider the following illustrative

Knowledge Query Manipulation Language (KQML) [69] exchange with a network.  First, the

PDA asks the network to update its internal srModel of the highest available data rate at its

present location.

PDA1: (ask-one :content (? HighDataRate :Here :Now)

:receiver Network :language RKRL :context WCDMA)

The network responds with an update that is a function of location as follows:

Network: (tell-one :content (:HighDataRate 2000000 :Place (:Latitude 242200 :Longitude 758833))

:receiver PDA1 :language RKRL :context WCDMA)

Since RKRL axiomatizes space, the spatial aspect of this dialog has precise set-theoretic

meaning.  CR1 embeds a Global Positioning Satellite (GPS) sensor, so the (Latitude, Longitude)3

vector of the response defines the location where the 2 Mbps data rate is available.  On the other

hand, the network might need to define the boundaries of this high data rate region in terms not

                                                
3 This two-dimensional world is used for simplicity in the construction of the prototype.  The extension to
2D plus altitude or full 3D is not a research issue of this thesis.
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previously programmed into the PDA.  Suppose the network response had been:

Network: (tell-one :content (:HighDataRate 2000000 :Place (:CellSite 322)

:receiver PDA1 :language RKRL :context WCDMA)

The PDA parses the network’s communication and presents the stimulus “:CellSite 322” to

its Place srModel.  The null response establishes that it has no knowledge of CellSite as a Place

(e.g. in its Place model).  The PDA needs to acquire new knowledge by extending its srModel for

Place.  It therefore requests an extension to its Place model by presenting the structure of its

Place model’s stimuli - (Lat, Lon) - to the network:

PDA1: (ask-one :content (:Place CellSite 322 :Latitude ? :Longitude ?)

:receiver Network :language RKRL :context WCDMA)

This query is formed by an algorithm that deals with null responses from models.  It checks

the input links of its Place model to determine that it is fed by Lat and Lon models.  These are

the modelNames of the afferent PDA Nodes feeding the Place node.  It composes the query to

the network to ask it to express its prior response in terms of stimuli that it recognizes.  It will

adjoin the (Lat-Lon) response to the unfamiliar CellSite 322 expression to acquire an incremental

unit of knowledge in its Place srModel.  It subsequently parses the network’s response, adding

(Lat, Lon) →CellSite 322 to its Place model.  The Place, Lat, Lon, and other internal models are

structured via the RKRL taxonomy.  This provides sufficient context for such focused

knowledge acquisition.  Although not a general solution to even CR1’s machine learning needs,

this capability indicates the potential contributions of machine learning to the future of data

communications and software radio.  The domain of discourse between a mobile agent and

today’s networks is elementary.  That domain can expand using RKRL.  As benefits such as

enhanced service delivery and more efficient use of spectrum accrue, the domain of discourse

will grow.  Using the machine learning techniques identified above, it may grow gracefully to

embrace the new opportunities.  Subsequently it is shown that cognitive radio’s integration of

machine learning in srModels and micro-worlds will provide a useful mechanism for facilitating

the growth of such protocols.
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2.5 Natural Language Processing

In the notional dialog between the PDA and the network, the PDA parsed the network’s

messages.  Formal exchanges such as this require minimal tokenization, pattern-matching and

binding of pattern variables for a successful exchange.  Interactions with users require more

extensive parsing of natural language.  In fact, the state of the art in natural language processing

supports only modest interactions of limited complexity in constrained domains [70].  This

section introduces the elements of natural language processing that are relevant to cognitive

radio.

Natural language processing includes speech and text processing as illustrated in Figure

2-8.  Text processing research includes text retrieval and machine translation.  This includes

software that translates most grammatical sentences successfully between those natural

languages that are in wide use around the world, such as English, German, French, Japanese, and

Chinese.  Language translation software products address over 700 languages [71].  Translation

programs in the past have not done well in interpreting subtleties.
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They often mis-translated complex or idiomatic expressions.  However, they reduced the

burden of human translation, e.g. in conducting multi-national business [72], meeting with

commercial success.  Early progress with the automatic acquisition of rules of syntax [73] helped

lay the foundation for substantial progress in the understanding of natural language by computer
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[74]. The processing of natural language in text and speech have much in common.  The

translation of speech from one language to another includes speech recognition [75], machine

translation, and speech synthesis [76].  Speech recognition generates an errorful transcript or a

hypothesis tree from an acoustic signal, e.g. employing Hidden Markov Models (HMM),

Dynamic Time Warping, and/or Fuzzy Sets [77].  The core machine translation step includes

parsing of the text against rules of grammar, often embedded into a lexicon.  The extraction of

semantics from syntax may be accomplished by rules that operate over the resulting data

structures.  Additional rules resolve anaphora and attempt to deal with other abstractions,

including adjusting the semantic model as a function of discourse context [78].

This machine processing flow has much in common with text processing, information

extraction (e.g. for data base population from free text) and document retrieval.  Performance

varies substantially along the dimensions of vocabulary size, articulation of words (isolated

words versus continuous speech), and the amount of training (none versus speaker-dependent

trained recognition).  In addition, noise background and scene complexity (e.g. newsroom versus

cocktail party) also determine performance.  Word error rates on the order of 40% are state-of-

the-art.  The best commercial speech processing software has about a 50% word error rate for

general untrained speech and about 20-30% for fully trained speaker in low background noise

[79].  Fortunately, topics of discourse generally can be detected reliably even in the presence of

such high word error rates [80], provided the number of samples is high and the training sets are

balanced.  Competence in specific domains like airline reservations or telephone directory

assistance use a knowledge ontology, an organized set of domain concepts with sufficient

expressive power for the task at hand.  RKRL provides an ontology for the control of software

radios, including interacting with users for radio services and controlling internal states of the

radio software.

It is tempting to expect cognitive radio to integrate a natural language processing research

system such as SNePS [81], AGFL [82], or XTAG [83] with a morphological analyzer like

PCKimmo [84].  These tools both go too far and not far enough in the direction needed for CR1.

Since the focus of this dissertation is on radio engineering, it is wise to not be too distracted by

the extensive technology of natural language processing.  One might like to employ existing

tools using a workable interface between the domain of radio engineering and some of the above
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natural language tool sets.  Unfortunately, the definition of such cross-discipline interfaces is in

its infancy.  One cannot just express a radio ontology in Interlingua and plug it neatly into XTAG

to get a working cognitive radio.  The internal data structures that are used in radio mediate the

performance of radio tasks (e.g. “transmit a waveform”).  The data structures of XTAG, AGFL,

etc mediate the conversion of language from one form to another.  Thus, XTAG wants to know

that transmit is a verb and waveform is a noun.  They also need scoping rules for transformations

on the linguistic data structures.  The way in which domain knowledge is integrated in linguistic

structures of these tools tends to obscure the radio engineering aspects.

On the other hand, text retrieval and data mining software such as the Digital Libraries

Project has shown an ability to extract documents that share concepts from large text corpora

[30].  Thus it seems appropriate to apply the word-vector techniques to detect user context, for

example.  Unfortunately, the amount of text or speech offered in requests to a PDA is small.  For

example, a user might say: “PDA, find out about pre-war porcelain from Japan.”  The user

expects the PDA to run an Internet search with the appropriate search terms, to cluster the

documents returned, and to provide a useful brief answer.  Word-vectors from such brief

utterances lack a sufficient number of samples to be statistically meaningful.  Thus, the CR1

rapid prototype retains the entire question instead of a derived word vector.  If the PDA says

“show me” (its default response when confused), and the user enters a query to Yahoo “Porcelain

Japan pre-war”, the PDA can integrate the question and the action as a stimulus-response pair.

The grouping of a “problem” such as a command that the PDA cannot interpret to a “solution”

like initiating a Yahoo search forms a case, the point of departure for case-based reasoning.  The

user’s Internet search results could be digested using WebL’s document calculus [85], for

example.

In addition, cognitive radio relies on contextual cues to behave appropriately.  Speaker

identification technology is sufficient to reliably identify one speaker from among a small set

(e.g. 10 speakers), therefore CR1 assumes that the voices of members of the PDA’s household

can be differentiated from each other.  This is the reason for the SpeakerID sensor of CR1.4

Natural language processing systems work well on well-structured speech and text, such as

                                                
4 See Figure 4-4  Cognitive Radio Sensor Suite for a complete list of the sensors
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the prepared text of a news anchor.  But they do not work well yet on noisy, non-grammatical

data structures encountered when a user is trying to order a cab in a crowded bar.  Thus, other

less linguistic or meta-linguistic data structures may be needed to integrate core cognitive radio

reasoning with future speech and/or text-processing front ends.  Thus RKRL and CR1 employ a

limited subset of natural language processing data structures necessary to outline an architecture

for the subsequent integration of the technologies.  The emphasis of this thesis, then, is on the

data communications research required to create a viable cognitive radio architecture, and not on

the development engineering required to integrate existing natural language processing tools.

CR1 therefore does not attempt to move the state of the art in speech processing.  Hence,

speech inputs are simulated using text that would be created by a speech processing front-end

with zero word error rate.  The expressions are not necessarily grammatical, but they are not very

noisy.

2.6 Why Is This Research Important?

This thesis shows how the integration of computational intelligence in radio can benefit the

technical operation of wireless networks and the delivery of services to users of emerging 3G

systems.  To do so, it draws selectively from established bodies of technology outside of radio

engineering.  These include machine learning and natural language processing.  Location-aware

computing and communications research has shown that wireless PDAs can benefit human

endeavors from travel to the stock market.  But the proliferation of radio bands and modes and

the increased complexity of the air interfaces, modems, and QoS alternatives creates a need for

autonomous assistance to users in the control of such future software radios.  A cognitive control

system is needed to translate user needs into timely, context sensitive commands to the

underlying radio functions of the wireless PDA.  This thesis analyzes the need for a cognitive

radio both from the perspective of the user and of the wireless network.  It then presents a

knowledge ontology for radio, RKRL.  It explores the contributions of this way of organizing

radio knowledge by describing the CR1 rapid prototype.  Finally, it summarizes the contributions

of the research in a cognitive radio architecture derived from both positive and negative aspects

of CR1.  After briefly considering previous work in this area, the discussion turns to use-cases,

scenarios in which the scope of RKRL and the performance requirements of CR1 are defined.
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3 Previous Work

This chapter summarizes research related to the design of cognitive radio and the

development of RKRL.  Readers who are more interested in the core concepts may safely skip to

the next chapter.  Those interested in the breadth of research and technical approaches

considered in formulating the specific approach to cognitive radio and RKRL described later in

this thesis can find that material in this chapter.  The first section provides an overview of

computational intelligence in telecommunications.  The subsequent sections address specific

implementation aspects including agent technology, general knowledge representation, control

knowledge, radio knowledge, and formal methods.

3.1 Computational Intelligence In Telecommunications

Cognitive radio is an example of agent technology in telecommunications.  The

compendium, Intelligent Agents for Telecommunications Applications [88] and the feature topic

on Mobile Software Agents for Telecommunications of the IEEE Communications Magazine

[86] summarize the state of the art in applying automated reasoning to telecommunications.

Mobility aspects are couched in terms of network applications of “autonomous, interactive,

reactive” software objects.  Goal-orientation, mobility, planning, reflection, and cooperation are

described as additional attributes of agents that distinguish them from other types of software.

Although wireless is mentioned in some of the papers, none of the contributions describes

anything approaching cognitive radio.  Moreover, none of the prior work indicates plans for a

radio-specific language like RKRL or even a PDA like CR1.  On the other hand, this

compendium includes a description of an agent that assists a network operator respond to

network faults [87].  It includes a mechanism for learning scenarios and a temporal calculus;

these same elements have been considered in the definition of cognitive radio.

Albayrak [88] defines an agent as software that exhibits the functional attributes of

autonomy, interactivity, reactivity, goal-orientation, mobility, adaptivity; and that is capable of

planning, reflection and cooperation.  Driving criteria for agent architectures include scalability,

manageability, security, accounting, openness, legacy compatibility, and network residence.
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Openness includes the need for agent coordination languages like the Knowledge Query and

Manipulation Language (KQML) [89].  But progress reported in the literature has been limited to

general principles such as functional integrity [90].  High level architectures address domains

other than wireless, such as knowledge of a petro-chemical plant [91].   The agent models that

have emerged to date include Aglet, Agent Tcl, Agents for Remote Access (ARA), Concordia,

Mole, Odyssey, TACOMA, Voyager,  and SHIP-MAI [92].    The focus in the agent literature is

on Java and network applications, with minimal attention paid to the physical, data link and

radio-related protocols that are critical to wireless.  On the other hand, the general discussions of

security, portability, mobility, agent communications, resource management, resource discovery,

self-identification, control, and data management are generally relevant to the future evolution of

cognitive radio.

Busuioc [93] gives lessons learned in the use of agents to synthesize complex services

including pro-active offering of services, data download and remote diagnosis of one’s

automobile.  His communications and interaction language lacked an ability to capture that state

of procedural knowledge in “a concise form” in order for agents to cooperate.  He goes on to say,

however, that a central issue is the inability to anticipate functional relationships in advance.

While RKRL should include natural language, it must enable model-based reasoning.  Such

models should provide the bridge between natural language expression of radio etiquettes and

computationally explicit implementations.  This observation causes one to assess the technology

of executable specifications and model-integrated-computing [94].  The relevant literature

addresses block-diagram languages for signal processing [95].  These languages focus on the

production of executable code when programmed accordingly.  The task of RKRL, on the other

hand, is to facilitate the machine learning based acquisition of models of the functions and

parameters of such code.  Thus, this prior work is not as helpful as one might have hoped.

Reilly’s comparison of intelligent agent languages also is relevant [96].  He compares

KQML, Java, TeleScript, Limbo, Active X and SafeTCL against his criteria for Intelligent Agent

Managed Objects.  These criteria include target environment, platform independence, execution

style (e.g. interpreted versus compiled), native support for agent communications, agent

mobility, and security features.  Knowledge representation issues were not addressed explicitly.

Most of the contributors to this volume [88], however, implicitly modeled user services and
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network capabilities.  These models were informal, augmented with intuitively accurate

definitions, but lacking mathematical foundations in formal logic or ontological knowledge

representation.  Cognitive radio builds on KQML as a knowledge representation language.

Specific “performatives” from KQML are built into RKRL and CR1.  In addition RKRL defines

explicit model-based semantics for the radio and network applications, facilitating the future

rapid evolution of increasingly complex air interfaces, protocols, and applications.

3.2 General Knowledge Representation

Knowledge representation was identified as a core aspect of computational intelligence in

the 1970’s.  Numerous knowledge representation languages (KRLs) have been defined.  These

include the Common Knowledge Representation Language (CKRL) for the Machine Learning

Toolbox [97] and a very general family KL-ONE.  SB-ONE [98] (renamed KN-PART+),

BACK[99], CLASSIC[100] and KRIS [101] are of the KL-ONE family.  SHOE is an extension

to HTML in which knowledge ontologies can be defined [102].  MOTEL [103] is a modal KL-

ONE implemented in Prolog that contains KRIS as a kernel. COLAB includes a series of

representation systems including the logic programming system RELFUN [104] and

FORWARD [105].  Telos is a system for temporal and sorted logic [106].  PROLOG represents

some kinds of knowledge such as relationships in the predicate calculus.  Its limitations have led

to the creation of more expressive languages such as URANUS [107]. Uranus extends Prolog

using the syntax of Lisp with a multiple world mechanism for knowledge representation and

term descriptions.  This provides limited functional programming within the framework of logic

programming.  BinNet is a commercialized Prolog that includes rule-based inference [108]. KL-

ONE and its derivatives support research in the representation of general knowledge.  These

research languages lack domain-specific telecommunications primitives common to SDL.

COLAB/TAXON [109] represents knowledge of terminology within concrete domains.

Augmented Transition Networks (ATNs) and case grammars [110] represent knowledge of

terminology as well.  Lexical Functional Grammars (LFGs) [111] extend the representation of

domain terminology to include some linguistic functions of the lexical entities.  Although used

primarily in the automatic interpretation of natural language text, ATNs and LFGs motivated the

local storage of linguistic structure in RKRL’s distributed models.  COLAB/CONTAX [112] is a
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constraint system for weighted constraints over hierarchically structured finite domains.

Williams and Cagan describe a qualitative approach to reasoning with such constraints called

activity analysis [113].  Their approach applies the well-known Kuhn-Tucker optimality criterion

to the arithmetic signs of the cost function and constraint sets to reason over constraint

knowledge.  Since constraints are such a key aspect of the internal and external environment of

radio systems, RKRL incorporates constraint representation.

The most successful knowledge representations related to cognitive radio have been very

application-specific.  Representation of knowledge about the beat structure of music, for

example, required a music-signal-structure ontology.  This world view was then “hard-coded”

into signal processing algorithms that extract the relevant features [114].  The system included a

set of autonomous rule-based agents that reason about the structure of beats in music.  The music

ontology reported in this research mixed explicit and implicit knowledge structures.  That is, the

lower layers of the ontology are implicit in performance-oriented code.  The knowledge

embedded in the code is opaque.  RKRL avoids the potential opacity of radio algorithms by

extending the ontology to the lowest radio component, data element and executable chunk of

code.  Because it is defined in XML in a general frame language, RKRL is readily extended to

functions and components not explicitly in Version 0.3.  This has the advantage of facilitating

automatic traversing of the full ontology.  It has the disadvantage of being computationally

intensive (RKRL 0.3 contains 4,000 frames).  Mechanisms for managing computational

resources and combinatorial explosion are therefore embedded in RKRL as frame elements that

specify the related resources.

Management of a telecommunications network, similarly, requires an entirely different

ontology of signal structure, yielding unique syntax and semantics of control in each of several

specialty areas [115].  This research in part motivated the inclusion of network-oriented frames

in RKRL 0.3.

3.3 Knowledge Query Manipulation Languages

General ontology has been attempted in common sense knowledge (CYC® by Lenat);

natural language processing (Generalized Upper Model by Dahlgren); biomedical reactions

(GENSIM); ontology definition using first order predicate calculus (Knowledge Interchange
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Format, KIF); mechanical properties of ceramic materials (PLINIUS); enterprise modeling

(Toronto Virtual Enterprise Project, TOVE); medicine (Unified Medical Language System,

UMLS); lexicons (WORDNET); and general ontology (by J. Sowa) [116]. In addition, within a

given ontological domain such as control of a radio’s air interface, each system relies on an

implicit ontology, yet there is apparently no formal (computationally explicit) ontology for radio

engineering.  RKRL could use the public CYC® ontology to begin to forge a bridge among

diverse domains.  Such an approach would address the need to incorporate the diversity of

domains that impinge on cognitive radio.  The CYC® treatment of radio-related concepts mixed

technical radio terms with layman’s views, making it an inappropriate for RKRL.

KQML [89] represents an agent as a knowledge base with an extensible set of

“performatives” expressing a set of beliefs about that knowledge.  The literature on KQML

embraces a range of topics from agent communications to tools for sharing multiple ontologies.

Most of the applications are Internet-driven, however.  None address wireless or radio.  KQML

has been used to represent plans and to exchange plans among agents [117].  It has also been

espoused as a suitable language for communications among telecommunications agents [118].

Thus, KQML accommodates axiomatic treatments where “:Content” arguments are Horn

clauses, disjunctions or conjunctions.  It also supports less formal treatments where “:Content”

consists of database queries or natural language. RKRL could extend the domains accessible

through KQML to radio engineering.

3.4 Control Knowledge

Control defines limits on system behavior.  Classical state-variable control theory

encapsulates the behavior of a system in its states and related transition matrices.  The next state

of a system is a function of its current states and inputs, mediated by a feedback-control law.  In

cognitive radio, states mediate control as well.  Control laws represented in RKRL for cognitive

radio include continuous control, such as managing a carrier tracking loop, and discrete control,

such as deciding to re-initialize after frame synchronization is lost.

One important historical technique for organizing the symbolic aspects control knowledge

is the blackboard system [119].  In a blackboard system, a globally accessible database

represents the system’s current state of knowledge.  Blackboards may express a two-dimensional
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database in which one dimension is an inference hierarchy.  In signal processing applications, the

other dimension typically expresses other independent variables such as space, time, or

frequency.  Automated reasoning may aggregate lower level data into higher level hypotheses.

Knowledge Sources (KSs) map onto and among such levels.  Each KS encapsulates just the

knowledge required for its assigned set of inferences.  Knowledge about the order in which to

apply KSs could be maintained in a KS that manages the incoming data.  It may also be

maintained in ancillary meta-level structures such as a KS that reasons about priority.  In the

SIAP system [120], a signal understanding system of particular relevance, the blackboard

included both the current data and a set of models of objects in the scene.  Inference included

checking the models for features of the scene and then re-processing lower-level signal data in

the scene for finer grain features called out in the model.  The author’s positive experience with

this approach motivated the embedding of a blackboard-like inference architecture of reinforced

hierarchical sequences into CR1.  Because of the need to parse natural language expressions

from users, the blackboard consists of five layers of inference loosely corresponding to character,

word, phrase, dialog, and scene.  On the other hand, a single inference hierarchy lacks expressive

power.  Thus, CR1 has a three dimensional inference structure in which the front plane is the

Observation plane.  Additional planes support the functions of orienting, planning, deciding, and

acting.  CR1 therefore has multiple inference hierarchies embedding set-theoretic associations

among linguistic entities.

Some contemporary systems continue to employ blackboards to represent control

knowledge, e.g., in real-time signal processing [121].  KS’s that are coded in a procedural

language like C are opaque.  The knowledge is difficult to access and maintain other than by a

programmer who has in-depth understanding of the implicit inter-dependencies among the KS’s

and the other ad-hoc chunks of code that make the system work properly.  KS’s written using IF-

THEN rules are easier to develop, understand, and debug, particularly if supported by an object-

oriented environment with an explanation facility.  Even in this case, each KS embeds substantial

implicit domain knowledge.  This implicit knowledge is thus generally not reusable in other

contexts.  RKRL therefore encodes knowledge for reuse via an explicit ontology and a mix of

knowledge representations from natural language to formal models.
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3.5 Uncertainty

Representation of uncertainty has also received much attention in the control literature.

Zadeh’s definition of fuzzy logic replaces canonical set membership, a (0,1) relationship, with a

continuous map from non-membership to membership on the closed real interval [0, 1].  This

breakthrough led to many techniques for representing uncertainty [122].  In addition, the

Dempster-Schaffer theory of evidence generalized Bayes’ notions of a-priori and a-posteriori

probability to the more general problem of evidential reasoning [123].  Although theoretically

powerful, Dempster-Schaffer requires one to estimate the prior probabilities underlying all

possible events.  The intractability of this requirement, among other things, has led to a

proliferation of ad hoc techniques for representing uncertainty.  An observation that underlies the

cognitive-radio approach to uncertainty is that probability is a mathematical abstraction of the

number of times things occur.  This abstraction is intended to allow one to predict those numbers

over large populations, such as the probabilities of letters in languages of messages that have

been encrypted, which was the original motive for Shannon’s famous Theory [124].

Cognitive radio does not impose the probability abstraction on events.  Instead, it counts

the number of occurrences of events in the environment.  It records all stimuli, counting the

number of occurrences of each stimulus in context.  It prunes out only those that have lowest

number of occurrences and only when it lacks sufficient memory for all stimuli.  At any point in

time, it prefers response A over response B given that Count(S, A)>Count(S, B) for two

candidate responses to the same stimulus S in the same context.  If there is an a-priori probability

distribution of A and B, then the response counts are proportional to the probabilities.  There

may be no discernable underlying probability space (e.g. when a user makes an arbitrary decision

to not want X any more after wanting it for a month).  In these cases, the short term count better

predicts subsequent events than a long-term probabilistic model.  Cognitive radio therefore

axiomatizes the counting of events, but does not normalize to probability.  Cognitive radio

therefore provides a general framework for evidential reasoning.  Thus, it supports a mix of

Dempster-Sheaffer, Bayes, Shannon, and emerging approaches to evidential reasoning.

For example, rough sets are an emerging research area.  They generalize sets using a third

truth-value, “uncertain” or “undecideable”.  Rough sets differ from fuzzy sets in that no degree

of membership, probability, or degree of belief in membership is ascribed to an uncertain
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member.  Therefore, a rough set consists of known members and possible members.  A union

may either include or not include the possible members, yielding upper- and lower- sets, with

corresponding constructs on union and intersection operators.  Rough sets are in an early stage of

development.  Machine learning algorithms have been implemented using rough sets [62].  The

approach achieves a degree of generality from the predicate calculus and requires no assignment

of degree of membership as with fuzzy sets.  This comes at the expense of introducing virtual

states and returning uncertain results.  RKRL and cognitive radio support rough sets by allowing

each KS to interpret the raw data of sets of stimuli and number of occurrences.

The current literature in software agents focuses on computational entities capable of

apparently rational behavior.  Agent control includes sensing, acting, and planning in a goal-

driven way [125].  In one approach, the states of such agents may be mapped using the Belief-

Desire-Intention (BDI) paradigm [126].  In this case, there are chance nodes, decision nodes and

terminal nodes with corresponding payoff functions.  Decision trees are partitioned into those

representing alternate worlds.  Partitions consist of belief (the reduction of the chance nodes),

desirability (the payoff nodes) and intention (the subset of nodes remaining after the application

of a strategy such as maximize the minimum expected value).  Again, since RKRL does not

impose a probabilistic interpretation on uncertainty, a cognitive KS can employ BDI.

To perform consistent logic in uncertain domains requires a calculus that manipulates

representations of uncertainty (e.g., numbers) with associated logic (e.g., AND, OR, …).  Some

powerful uncertainty calculi are non-linear [35].  There is also much relevant technology from

probability and statistics literature.  Mixture modeling, for example, is the process of

representing a statistical distribution in terms of a mixture or weighted sum of other distributions

[127].  Cognitive radio will be confronted with uncertainty from sensory systems, and from

interpreting user interactions.  RKRL therefore embeds facilities for representing reasoning

under uncertainty.

3.6 Natural Language Processing

Cognitive radio is to interact with the user via natural language.  In addition, CR1 employs

natural language processing in the acquisition of structured radio knowledge from RKRL and/or

radio engineers.  That is, CR1 begins as a machine-learning shell with places for models and
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employs machine learning to evolve its personality from training data.

Thus, the entire subject area of natural language processing is potentially relevant to this

thesis.  This research, however, does not seek to contribute directly to natural language

processing technology but merely to employ relevant aspects of established techniques in the

architecture of cognitive radio.  A few of the best established and most relevant tools are pointed

out.  The natural language processing tasks required for cognitive radio include the tokenization

of text, the extraction of morphological structures, syntax analysis, and the creation of higher

level structures that impart meaning.  The definition of semantic structures is the focus of this

research.  These are embedded in the CR1’s 3D blackboard of reinforced hierarchical sequences.

Well known tools for lower level text processing include the following.  Perl is a script

oriented language that can be used to integrate applications on PC platforms [128].  It includes a

powerful pattern matcher that can extract tokens from text streams.  Tcl [129] has similar

capabilities, including a graphics subsystem Tk.  PCKimmo [130, 131] performs morphological

analysis on the PC.  The natural language processing web site [132] includes pointers to

additional tools.

Semantic networks, represent knowledge in the interconnections among concepts [133].

The Semantic Network Processing System (SNePS), for example, contains a fully intentional

theory of propositional knowledge representation.  It includes modules for creating propositional

semantic networks, for performing path-based inference, and for node-based inference based on

SWM (a relevance logic with quantification).  This includes natural deduction.  SWM can deal

with recursive rules, forward, backward, and bi-directional inference, nonstandard logical

connectives and quantifiers, and an assumption-based truth maintenance system for belief

revision (SNeBR).  Its morphological analyzer (in SNALPS) and generalized ATN parser

analyzes and generates natural language.  SNACT is a preliminary version of the SNePS Acting

component.  SNIP 2.2 is an implementation of the SNePS Inference Package that uses rule

shadowing and knowledge migration to speed up inference.  SNeRE (the SNePS Rational

Engine) addresses the integration of inference and acting [134].  Cognitive radio draws on the

design and functions of SNePS and SNeRE to define the interface between natural language

processing and the core radio-function reasoning.  With its relatively broad range of knowledge

representation, inference, and analysis capabilities, SnePS motivated the English-like expression
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of knowledge as frames in RKRL.

3.7 Radio Knowledge

What domain-specific knowledge should be represented in RKRL?  Much of the radio

engineer’s control of the radio historically has been obtained through the manipulation of the

physical device (e.g., changing the value of a capacitor).  Electrical engineering languages like

SPICE support the design of radio circuits, but much of the radio knowledge represented in the

resulting circuits is computationally opaque.  That is, a control computer cannot readily

manipulate SPICE code describing its circuits to understand its own circuits.  It cannot determine

how it might change the value of one of its capacitors to enhance reception.  It cannot then

command the capacitor’s value to change and observe the results.  RKRL empowers radios to

reason about even such entities as capacitors.  This is necessary because of the advent of Micro

Electro-Mechanical Systems (MEMS) that include capacitors with programmable values [135].

To reason about the control of such values, e.g. to change modes of a software radio, requires

reasoning about devices at a higher level.  This kind of reasoning is needed for the construction

of services using software downloads.  RKRL is not intended to facilitate the design of the radio

hardware platforms.  It does not preclude the inclusion of such knowledge through the extension

of the current ontology, but the initial version does not include a SPICE-like capability.

Applications Programmers Interfaces (APIs) are emerging for SDRs [136].  These express

the structure of the radio in a computationally accessible format (the API calls, source code and

the comments).  Unfortunately, much of the knowledge of radio design is implicit in the

comments rather than explicit in the language.  None the less, such API’s are a rich source of

information for radio knowledge in RKRL.  In addition, Computer aided design (CAD) and

simulation environments such as the Signal Processing Workbench (SPW) [137] and Object

GEODE [138] describe the internal aspects of radio hardware and/or software in a

computationally accessible format.  Much of the hardware is now becoming more

programmable, such as in Field Programmable Gate Arrays (FPGAs).  Radio CAD, simulation,

and API packages are thus relevant sources of knowledge for RKRL.  RKRL 0.3 includes core

hardware concepts into which such detailed knowledge could be grafted in the future.  Selected

contributions from these sources are included in RKRL 0.3 to represent the radio’s internal
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structure.

Consider the internal environment of the SDR further.  It is clearly necessary to build any

control system on a theory of observability, controllability, and stability.  Since SDRs are

quintessentially computational entities, the control theory must be rooted in computability.  Over

what domains are radio software functions defined?  Does the software require full Turing

computability?  If so, then the self-extensibility of the radio nodes like CR1 would occur in the

context of Turing computability.  There are constraints that simplify software extensibility

without loss of functional capability for radio applications.  In particular, the bounded recursive

functions have been shown to be the smallest family of functions necessary for radio and the

largest that has the required stability characteristics [139].  In addition, there is geometric

structure to the computational interactions among hardware and software and among layers of

software.  The design of RKRL builds on this work, employing results from point-set topology to

add mathematical rigor to the definition of the control structure and its relationship to the

hardware and software it controls.  If software modules are bounded-recursive then the cognitive

radio may draw valid inferences regarding the execution time bounds of modules constructed

according to RKRL.  RKRL therefore explicitly represents computational resources and related

bounds in each of its frames in order to draw inferences about software stability.

3.8 Formal Methods

Formal methods employ an axiomatic treatment of a domain in order to prove theorems

about that domain.  Formal, model-based semantics is used in natural language processing and

formal logic.  In this well-known approach, a situation in the real-world is considered a model

for statements in the predicate calculus.  A valuation function maps aspects of the applications

domain into truth-values of predicates.  By mapping the results of logic operations back to the

domain, inferences describe or predict features of the domain.

Applications include logic programming [140] in which aspects of the domain are

represented as facts and axioms.  A theorem-prover may prove or disprove hypotheses.  In the

process, the system may accomplish goals, perform data base queries (or prove that the answer

does not lie in the database), and accomplish other useful tasks.  In addition, algebraic systems

have been developed for the analysis of computing and communications processes.  The Algebra
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of Communicating Shared Resources (ACSR) and Graphical Communicating Shared Resources

(GCSR), for example, are formal languages for the specification, refinement, and analysis of

real-time systems [141].  There is also extensive literature on the application of formal methods

to wait-free computation.  The goal of that research is to design synchronization protocols that

are wait free (e.g. any process that is running will finish the protocol in finite time).  The

conditions under which wait-free protocols can exist are limited [142].  The application of such

formal methods to areas directly relevant to cognitive radio includes reasoning about time delays

in multiprocessor implementations of software radios.

Other applications of formal models in telecommunications include the formalization of

specification and verification models in electronic market contract monitoring [143].

Research on micro-worlds provides some general insights into the formalization of naïve

physics knowledge that is readily applied to cognitive radio.  Micro-worlds capture interesting

representational aspects of a small domain, such as a collection of toy blocks [144].  Recently,

Davis described the use of micro-worlds to address competence in the common-sense domain of

cutting wood [145].  His research addresses the kinematics of cutting solid rigid objects.  The

approach is informative.  This entails the formalization of the eight separate components

illustrated in Figure 3-1.  The micro-world itself is the domain about which one is reasoning.  In

this case, objects occupy time and space; and cut each other, creating new objects.  One formal

model defines the micro-world in terms of “chunks.”  In addition, a knowledge base describes

the micro-world through the mediation of a language.  The domain-specific language is used to

define the formal model.  In addition, a formal inference system defines a subset of a distinct set

of informal inferences that may be drawn about the micro-world.  The language relies on an

axiomatization, which defines “truth” in the formal model.  This axiomatization supports proofs

induced by the formal inference system which justify the formal model.
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Figure 3-1 Davis’ Micro-worlds Framework

Davis’ micro-worlds framework is informative.  Radio knowledge is a common sense task

domain.  Cognitive radios should act in a reasonable way in a wide range of circumstances.  On

the other hand, radio is not a single micro-world.  Radio is a large, complex domain in which

competence with etiquettes requires a large set of axioms.  If structured into a single micro-

world, axioms about GSM channels could conflict with axioms about IS-95 channels.  This

thesis shows how radio can be structured into a set of interacting micro-worlds within each of

which one may apply and extend Davis’ useful framework.
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4 Cognitive Radio

This chapter defines cognitive radio 5.  It begins with an illustration of how capabilities that

are missing from current wireless nodes can be embedded in a model-based reasoning

framework to enhance the effectiveness of service delivery.  In order to extend this concept to

include interaction with the environment, a cognition cycle is introduced.  This is the top-level

control loop for cognitive radio.  My licentiate thesis undertook the tedious examination of

potential levels of cognitive ability [2], delimiting the bounds of cognitive radio.  Cognitive

radio’s potential abilities require an organization of radio knowledge.  In order to address this

issue systematically, this chapter identifies four areas of wireless on which cognitive radio could

have an impact.  These are radio resource management, network management, services delivery,

and download certification. Chapter 5 establishes these as design goals for the CR1 rapid

prototype. RKRL is defined in Chapter 6.  It has the language features that support the cognitive

radio performance objectives.  This sets the stage for the rapid-prototype implementation of

RKRL in CR1 presented in Chapter 7, from which is derived the cognitive radio architecture

(Chapter 8).

4.1 Making Radio Self-Aware

Today’s digital radios have considerable flexibility, but they have little computational

intelligence.  For example, the equalizer taps of a GSM SDR reflect the channel impulse

response.  If the network wants to ask today’s handsets “How many distinguishable multipath

components are in your location?” two problems arise.  First, the network has no standard

language with which to pose such a question.  Second, the handset has the answer in the structure

of its time-domain equalizer taps internally, but it cannot access this information.  It has no

computationally accessible description of its own structure.  Thus, it does not “know that it

knows.”  It cannot tell an equalizer from a vocoder.  To be termed “cognitive,” a radio must be

self-aware.  It should know a minimum set of basic facts about radio and it should be able to

communicate with other entities using that knowledge.  For example, it should know that an

equalizer’s time domain taps reflect the channel impulse response.

                                                
5 The term cognitive refers to the mix of declarative and procedural knowledge in a self-aware learning system.
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Notionally, then, a cognitive radio would contain a computational model of itself including

the equalizer’s structure and function.  A radio that uses RKRL to accomplish this could be

organized as illustrated in Figure 4-1.

Protocol Stack, ControlModem, Equalizer, etc.

Model-Based ReasoningRKRL Frames

Antenna RF Modem
INFOSEC

BasebandUser Interface

Equalizer Model

Variable Bindings

...

Antenna RF Modem Baseband User Interface

Hardware

Software

Cognition

INFOSEC

Software Radio
Software Modules   …..

Figure 4-1 Cognitive Radio Framework

The radio hardware consists of a set of modules: antenna, RF section, modem, INFOSEC

module, baseband/ protocol processor, and user interface.  This could be a software radio, SDR,

or PDR.  In the figure, the baseband processor hosts the protocol and control software.  The

modem software includes the modem with equalizer, among other things.  In addition, however,

a cognitive radio contains an internal model of its own hardware and software structure.  The

model of the equalizer shown would contain the codified knowledge about equalizers, including

how the taps represent the channel impulse response.  Variable bindings between the equalizer

model and the software equalizer establish the interface between the reasoning capability and the

operational software.  The model-based reasoning capability that applies these RKRL frames to

solve radio control problems gives the radio its “cognitive” ability.6

The approach, then, is to represent radio knowledge in RKRL and to structure reasoning

algorithms to use that knowledge for the control of software-radios.  The radio’s model of itself

should contain a representation of its functions (e.g. transmission, reception, coding, etc) and

                                                
6 The appendix Cognitive Radio:  Making Software Radios More Personal considers this example in greater detail.



47

components (e.g. antenna, RF conversion, DSPs, etc.).  In addition, the interfaces among these

components should be defined.  The SDR Forum has defined these interfaces using the CORBA

IDL [13].  This provides a starting point.  The Forum has not defined formal semantics that could

support machine reasoning about these interfaces, however.  RKRL and the cognitive radio

architecture derived from CR1 begin to fill this gap.  Cognitive radio extends the subjectively

grounded definitions of the SDR Forum with formal semantics (e.g. logical sorts and axioms).

The CR1 rapid-prototype tightly integrates RKRL frames into the model-based reasoning

architecture.  The radio's model of its internal structure should then support systems-level

interactions with the network.  This could include the verbose description of its internal

capabilities (e.g. responses of equalizer taps) and the related downloading of a new capability

such as an enhanced equalizer.

In addition, however, if the radio is to be context aware, it must interact with the outside

world.  This is accomplished via the cognition cycle.

4.2 The Cognition Cycle

A cognition cycle by which a cognitive radio may interact with the environment is

illustrated in Figure 4-2.  Stimuli enter the cognitive radio as interrupts, dispatched to the

cognition cycle for a response.  Such a cognitive radio continually observes the environment,

orients itself, creates plans, decides, and then acts.  In addition, machine learning is structured

into these phases.  Since the assimilation of knowledge by machine learning can be

computationally intensive, cognitive radio has sleep and prayer epochs that support machine

learning.  A sleep epoch is a relatively long period of time (e.g. minutes to hours) during which

the radio will not be in use, but has sufficient electrical power for processing.  During the sleep

epoch, the radio can run machine learning algorithms without detracting from its ability to

support its user’s needs.  Learning opportunities not resolved in the sleep epoch can be brought

to the attention of the user, the host network, or a designer during a prayer epoch.
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Figure 4-2 Simplified Cognition Cycle

During the wake epoch, the receipt of a new stimulus on any of its sensors initiates a new

primary cognition cycle.  The cognitive radio observes its environment by parsing incoming

information streams.  These can include the monitoring of radio broadcasts, e.g. the weather

channel, stock ticker tapes, etc.  Any RF-LAN or other short-range wireless broadcasts that

provide environment awareness information are also parsed.  In the observation phase, it also

reads location, temperature, and light level sensors, etc. to infer the user's communications

context.  The cognitive radio orients itself by determining the priority associated with the stimuli.

A power failure might directly invoke an act (“Immediate” path in the figure).  A non-

recoverable loss of signal on a network might invoke reallocation of resources, e.g. from parsing

input to searching for alternative RF channels.  This is accomplished via the path labeled

“Urgent” in the figure.  However, an incoming network message would normally be dealt with

by generating a plan (“Normal” path).  Planning includes plan generation.  As formal models of

causality [146] are embedded into planning tools, this phase should also include reasoning about

causality.  The "Decide" phase selects among the candidate plans.  The radio might have the

choice to alert the user to an incoming message (e.g. behaving like a pager) or to defer the

interruption until later (e.g. behaving like a secretary who is screening calls during an important

meeting).  “Acting” initiates the selected processes using effector modules.  Learning is a
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function of observations and decisions.  For example, prior and current internal states may be

compared with expectations to learn about the effectiveness of a communications mode.

The cognition cycle implies a large scope of hard research problems for cognitive radio.

Parsing incoming messages requires natural language text processing.  Scanning the user’s voice

channels for content that further defines the communications context requires speech processing.

Planning technology offers a wide range of alternatives in temporal calculus [159], constraint-

based scheduling [163], task planning [162], causality modeling [146], and the like.  Resource

allocation includes algebraic methods for wait-free scheduling protocols [142], Open Distributed

Processing (ODP) [147], and Parallel Virtual Machines (PVM) [148].  Finally, machine learning

remains one of the core challenges in artificial intelligence research [45].  The focus of this

cognitive radio research, then, is not on the development of any one of these technologies per se.

Rather, it is on the organization of cognition tasks and on the development of cognition data

structures needed to integrate contributions from these diverse disciplines for the context-

sensitive delivery of wireless services by software radio.  Consider first the potential cognition

tasks.

4.3 Organization of Cognition Tasks

Cognition tasks that might be performed range in difficulty from the goal-driven choice of

RF band, air interface, or protocol to higher-level tasks of planning, learning, and evolving new

protocols.  Table 4-1 characterizes these tasks in terms of nine levels of capability.

Table 4-1 Characteristics of Radio Cognition Task

Level Capability Task Characteristics

0 Pre-programmed The radio has no model-based reasoning capability

1 Goal-driven Goal-driven choice of RF band, air interface, and protocol

2 Context Awareness Infers external communications context (minimum user involvement)

3 Radio Aware Flexible reasoning about internal and network architectures

4 Capable of Planning Reasons over goals as a function of time, space, and context

5 Conducts Negotiations Expresses arguments for plans/ alternatives to user, peers, networks

6 Learns Fluents [149] Autonomously determines the structure of the environment

7 Adapts Plans Autonomously modifies plans as learned fluents change

8 Adapts Protocols Autonomously proposes and negotiates new protocols
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The related model-based reasoning techniques are illustrated in Figure 4-3.
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Figure 4-3 Capability Space:  Cognition Tasks and Models

4.3.1 The Foundation for Cognition (Capability Levels 0-3)

Cognition capability level 0 represents a conventional PDR, SDR, or software radio.  In

some cases, the tradeoff between network intelligence and mobile unit intelligence may favor the

minimization of computational intelligence in the mobile unit.  In the past, the power

consumption of hand-held devices was a major design driver limiting processing capacity.

During the past five years, however, semiconductor device density has increased 3.5 times while

power consumption has been reduced by a factor of 40 [150].  By the year 2002, 0.12 micron

production lines may again double device density while the 1.0 Volt power supplies probably

will reduce power by another factor of 4.  At that point, even handheld devices will support the

GFLOP processing capacities and hundreds of Mbytes of random access memory (RAM) needed

for the high levels of processing capacity implicit in cognitive radio.  The pre-programmed level

of cognition may therefore become limited to extremely small wearable devices such as badges

supported by cognitive infrastructure [151].

Goal-driven reasoning, cognition capability level 1 in the table, may be achieved with rule-

based expert systems technology, and thus is not of research interest by itself.  Environment-
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awareness extends goal-driven reasoning to goals defined in a spatial context.  This level of

capability requires a suite of environment sensors and multiband RF like that summarized in

Figure 4-4.  Approximate location may be known from a global positioning receiver like GPS

[152] or Glonass [153].  GPS may not be available inside buildings, and it may not be reliable in

urban areas.  Therefore, additional positioning sensors are needed.  Environments mapped via

sensors with wireless read-out or broadcast can provide very detailed data about objects in one’s

immediate vicinity.  Agent-based control of services using the resulting positioning and status

information is being explored in a companion research project at KTH [151].

RF Bands and Modes
  GSM (IS-136, etc)
  GPRS (UWC-136 ...)
  3G (W-CDMA …)
  RF LAN
  AM Broadcast
  FM  Broadcast
  NOAA Weather
  Police, Fire, etc.
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    Environment Broadcast
    (Doors, Coke Machines, ...)
Timing:
  Precision Clock
  GPS Clock Updates
Other:
  Ambient Light
  Digital Image, Video Clip
  Temperature

Effectors
  Speech Synthesizer
  Text Display
  RF Band/ Mode Control

Local Sensors
  Speech Recognizer
  Speaker ID
  Keyboard, Buttons

Figure 4-4  Cognitive Radio Sensor Suite

Context awareness (level 2) augments environment awareness in a way that is unique to

cognitive radio.  This entails the processing of incoming and out-going media in order to infer

user communications context.  This includes the detection of significant events that may shape

the nature of computing and communications services as discussed in the use cases of the next

chapter.  The processing does not necessarily require in-depth machine understanding of every

stimulus.  On the contrary, in order to be practicable, all stimuli are scanned for surface features

indicating that a context-defining event may be present.  If such features warrant, in-depth

analysis of the stimulus (e.g. using natural language techniques) may be performed to extract the

parameters of the event.  Alternatively, the user may be asked what to do in the presence of the

surface stimuli.  It may then store the situation and user action as a problem-solution case for

case-based reasoning.  This is the approach taken in CR1, but that does not exclude in-depth
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analysis from the resulting cognitive radio architecture.

Level 2 also requires proficiency in air interfaces and protocols (e.g. GSM, DECT, RF-

LAN, 3G).  One specific objective is to relieve the user from the need to manually select and

configure air interface modes as 3G services enter the marketplace.  In cognitive radio, this

proficiency is obtained by modeling the air interfaces shown in the figure.  For every air

interface available to the radio, there is a corresponding set of internal models expressed in

RKRL.  These models describe the mode’s behavior, parameters, and bindings by which the

cognition cycle can control that mode.  The level of detail of control is a function of the richness

of the internal knowledge and the level at which the interfaces to those modules have been

defined.  For example, if the modem is a parameterized software module [154, 155, 156], the

cognitive radio could control the parameters of physical layer air interface.  If the protocol uses a

conventional stack like TCP, then it is likely to be highly encapsulated, limiting the cognitive

radio’s ability to tailor services.  If, however, the protocol is dynamically defined [157] then the

intra-module interfaces may be modeled in RKRL and controlled by cognitive radio.  If the

protocol is defined in a customizable framework, then it may be tailored dynamically to the

application [158].  General awareness of the wireline network and its contrasting properties (e.g.

short latency, large bandwidths) is also required for radio awareness.

Level 3, radio awareness, in some sense turns the notion of sensing the environment

inward.  This includes the definition of interfaces between the operational software modules of

the SDR and the cognitive control component.  In addition, the radio’s internal model must

reflect substantial knowledge of the behavior of networks.  Propagation modeling, QoS models,

queuing models, and such system-level models would be characteristic of a cognitive network.

A cognitive PDA would include a subset of that knowledge useful in support of local decisions.

This could include which of several available RF modes (on different networks) to use given the

user’s constraints and the PDA’s rate of movement and destination, which is a part of

communications context for a mobile user.

4.3.2 Core Cognition Capabilities:  Natural Language, Planning and Learning

Achieving level 4 capability requires computer-based planning.  There is a well-established

technology base for computer-based planning [159, 160].  Applications to intelligent control
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generally employ some form of hierarchy to modularize the knowledge [161].  A typical decision

making architecture from the planning literature analyzes a situation to determine goals.  The

goals imply candidate plans, each of which is supported or refuted by arguments.  Those

arguments imply specific plans, which lead to actions, which influence the situation, closing the

loop.  Domino exemplifies the planning languages that have been published in the literature

[162].  Since Domino has classical, temporal, and modal axioms, it represents axioms of beliefs

as well as models of time.  These approaches tend to ascribe logical structure to situations in

which there may be none.  For example, a network may change air interfaces or upgrade

protocols arbitrarily.  A user may change his mind arbitrarily.  Thus, cognitive radio incorporates

elements of planning technology, but in a way that relaxes the requirement for consistency and

completeness in its (prototype) planning processes.

Closely related to planning is level 5, negotiation capability.  This is the subject of much

current research stimulated by Internet commerce [163].  This includes managing conflicting

plans [164].  Conducting negotiations with other radio entities requires an ability to execute

negotiation protocols.  These may be artificially constrained to finite-state grammars to insure

prompt convergence.  In addition, some user interactions may be organized as negotiation

dialogs.  For example, the user may ask for communications services that violate a-priori

constraints.  The PDA then should express the constraint violations (e.g. “Cannot send this file

with a time delay of less than two minutes and cost below five dollars”).  It should understand

the user’s side of the negotiation (e.g. “Why not?”).  It should generate an explanation (e.g. “The

file size of two megabytes requires a data rate of over 384 kbps which increases your cost to

seven dollars”).  Finally, it should understand when the user has made a decision (e.g. “I do not

care about cost on this email, so send it”).  Thus, effective use of plan-generation capability in

interactions with the user may employ negotiation dialogs.  This requires substantial natural-

language analysis and generation capability along with causality analysis.

Levels 6-8 require machine learning.  Statistical learning of patterns is well in hand, but the

reliable, incremental acquisition of (valid) new models remains on the frontiers of research.

Learning applications in cognitive radio could include autonomously determining the structure of

the radio environment as it changes.  This would require the learning of fluents [149], events that

have duration greater than zero as evidenced, for example, by temporal consistency in a time-
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varying stream.  An example of a fluent that that a cognitive radio might learn is the fact that the

impulse response of a particular set of RF channels is usually not equalized "near the football

stadium.”  A cognitive radio should modify its plans as the fluents change.  For example, when

the stadium is under renovation, its multipath reflection properties change, so the PDA no longer

should us a low data rate when operating "near the stadium.”  If it always uses the low data rate

from prior learning, then it will never discover the availability of the high data rate.  This can be

solved by advice from the network.  But the network would only discover the feasibility of the

higher data rate if some small percentage of subscribers attempt that higher data rate.

Ultimately, cognitive radios with these higher capability-levels could propose and

negotiate new protocols among themselves.  In order to operate in these higher capability levels,

radio domain knowledge must be organized for the performance of these cognition tasks.

4.4 Structuring Knowledge for Cognition Tasks

Radio is a physics-oriented domain.  Radio propagation, the spatial arrangement of

infrastructure, and user mobility are inherently physical phenomena.  Thus, naïve physics

research offers insights into structuring knowledge for cognition tasks.  Davis’ micro-world of

woodcutting [145] provides a point of departure for the top-level structure of cognitive radio.

The micro-worlds framework of RKRL is structured analogously as illustrated in Figure 4-5.

The language, inference engine(s), knowledge base(s), and formal models of cognitive

radio are expressed in an integrated language, RKRL.  RKRL as a language has a set of meta-

level micro-worlds that define admissible expressions: inferences, domain knowledge (the

knowledge base), computational, and axiomatic models (the formal models).  RKRL also has a

micro-world for each of its multiple knowledge bases, one for each major sub-domain of

terrestrial wireless.  Finally, RKRL describes inferences that can be performed for task-domain

automated reasoning.  These meso-world components describe and control conventional SDR

components (hardware and software).



55

Meso-world
Multiple Radio
Task Domains

Formal Models
Computable Semantics

Informal
Inferences

Plausible Event 
Streams

Formal
Inferences

Mathematically  Viable

Axiomatization
Mathematical Statements

Language
Ontology, Syntax

Semantics

Knowledge Base
Expressions That Are 

Defined in Radio 

Inference Engine
Pattern Matching
Plan Generation

Resource Management

Describes

Models

True-InDefines Ju
st

if
y

Proves

Operates-On

Supports

Formalize

Su
pp

or
ts

Describes

Embeds

Stated-InExpresses

Informs

RKRL

Informs

Figure 4-5  The Cognitive Radio Meso-world Framework

The radio task domain is substantially more complex than Davis’ woodcutting micro-

world.  Thus, a single micro-world for all of wireless would suffer from ambiguities,

inconsistencies, and combinatorial explosion.  Mobile wireless, fixed terrestrial microwave,

satellite systems, aeronautical radio and navigation are each complex sub-domains of radio.

Each has a different degree of focus on physical phenomena.  Satellite communications, for

example, includes transionospheric propagation, Keplerian motion, and solar cycles of charging

batteries that are not directly relevant to terrestrial wireless.  This thesis therefore focuses on the

specific radio domain of terrestrial mobile wireless.  This domain includes or impinges on

military, civil, aeronautical, naval, police, fire, rescue, government, and ISM (Instrumentation,

Scientific, and Medical) RF bands among others.  Air interfaces include the primary multiple

access types:  Frequency-, Time-, Code-, and Space-Division Multiple Access (FDMA, TDMA,

CDMA, and SDMA).  Networks are cellular to some degree because of the physics of

propagation, but many are unsupervised (e.g. police and fire).  Others are not only supervised by

digital control channels (e.g. TETRA[165, 166]), but also highly secure (e.g. GSM [12].  The

terrestrial wireless domain also includes users and other entities that must be modeled to infer

user communications context.  This scope cannot be contained in a single micro-world.  Thus,

the multiple microworlds of terrestrial mobile wireless constitute a meso-world.  The meso-

world of RKRL Version 0.3 is partitioned into 47 micro-worlds grouped into the constellations
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of Table 4-2.

Table 4-2  RKRL Micro-worlds

Constellation Micro-worlds

Meta Level Globals, Inference Engines, Meta, Cognition, Goals, KQML, KIF, Skills, Sets,

Database, Parsers

Ontological Universe, Self, Concepts, Models, Time, Space, Spectrum, User

Spatial Global, Satcom, Regional, Metro, Local

Generic Radio Architecture, Functions, Internal, Hardware

Software Software, CORBA, UML, ODP, MPI

Wireless Functions Air, Modem, Demod, Equalizer, Memory

Protocol Stack Protocol, Physical, Data Link

Networks Network, Cellular, Segmentation, Messages, Propagation

Other References

RKRL constitutes a reference ontology of world knowledge, including concepts, models,

radio domain knowledge, etc.  The “meta” micro-world defines RKRL’s syntax and related

meta-level primitives.  The semantics are then bootstrapped into the system through the

expression of concepts and models.  RKRL is built using a set-theoretic operator based on the

axiom of choice.  That operator is “expand,” a structured form of the conventional union

operator.  RKRL initially consists of the empty set, to which elements are added top-down in an

axiomatic way.  Elements grow into sets and subsets with finite but otherwise unconstrained

structure.  The initial set of elements comprises the names (“handles”) of the micro-worlds and

constellations.  These have not changed much in the three iterations of RKRL from version 0.1 to

the current version 0.3.  Each micro-world may expand to express new knowledge.  This raises

the following research issues.

1. What minimum set of knowledge must be available in order to approach the

performance envisioned for cognitive radio?

2. What minimum set of representation (data) structures is needed to express that

knowledge?  To expand it as needed?  To assure that it may be used effectively in the

control of software radios?

3. What is the specific computational relationship between elements of an RKRL and the

processes (e.g. of the cognition cycle) that employ that knowledge in cognition tasks?
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The approach taken in this research to answering these questions consists of three steps.

First, given only the top-level outline of cognitive radio’s intended capabilities, one may work

through use-cases [167] to determine the software requirements at the next level of detail.  The

use cases of the next chapter yield an initial answer to question 1.  Second, the use-cases also

establish representational capabilities from which a minimum set of representational structures

may be derived.  The results of this analysis answer question 2, as presented in the description of

RKRL in Chapter 6.  Finally, the statements of RKRL 0.1 to 0.3 were employed in constructing

the cognitive radio rapid prototype CR1 in order to derive the answer to question 3.  Chapter 7

describes the prototype, while Chapter 8 consolidates the answer to this question into an

architecture for cognitive radio.  To motivate the use-cases of the next chapter, consider the

aspects of terrestrial wireless in which cognitive radio could have an impact.

4.5 Potential Impact Areas

Mobile wireless technology offers voice, email, file transfer, and related services to mobile

users.  However, fixed wireline networks also offer similar services.  In general, the fixed

networks have greater bandwidth and availability than wireless networks.  On the other hand, the

wireless networks provide the services while the user is on the move: commuting, traveling, or

just walking around the shopping mall.  The vision of third-generation wireless is to provide near

wireline availability and high data rates to the mobile user.  One anticipated delivery device is

the PDA.  A cognitive PDA would have the extensive array of sensors summarized above.

Cognitive  radio may also be embedded in vehicle electronics (e.g. for intelligent highway

applications) and in networks.  One of the fundamental questions facing the telecommunications

industry is the degree to which future mobile PDA’s will attract market acceptance versus the

desktop/ wireline version of similar services.

Table 4-3 Cognitive Radio Impact Areas

Impact Area Contribution

Radio Resource Management Etiquette for Spectrum Pooling (“rental”)

Network Management User Profile Protocol

Service Delivery Service Mediation Protocol (Plan, Execution)

Type Certification Proof of Stable Behavior
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Cognitive radio can have a beneficial impact in those areas listed in Table 4-3.  Spectrum

pooling, first, is a novel approach to radio resource management enabled by cognitive radio.

Pooling is the rental of public and government spectrum by the present owners to cellular service

providers (see Appendix D).  User profiling, next, extends the present practice of statistically

characterizing demand to symbolically characterizing time-space patterns of demand.  To do this,

a PDA expresses its (user’s) plans for movement and use of wireless to the network, reducing

uncertainty about future demand.  Third, cognitive PDAs can negotiate with the network on

behalf of the user to assist users in obtaining needed services.  And finally, cognitive PDAs can

autonomously manage their internal structure to conform to type certification requirements,

assuring stable behavior under program downloads.

These use cases are summarized in Chapter 5.  The complete analysis of my licentiate

thesis [2] includes simulations that quantify the benefits of cognitive radio.  These benefits

defined the design requirements for RKRL 0.3 and CR1.
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5 Cognitive Radio Use Cases

This chapter analyzes four cognitive radio use cases.

5.1 Radio Resource Management:  Spectrum Pooling

Radio resource management includes the assignment of allocated spectrum to

communications functions to employ that spectrum efficiently.  Spectrum allocation is an

institutional process by which governments (and their surrogates such as international

organizations) determine the parts of the radio spectrum that are authorized for specific purposes

such as communications, navigation, and radar.  Resource management and spectrum allocation

are related.  As technology brings greater economic value to some uses (e.g. cell phones), social

pressures mount to re-allocate spectrum from less used bands to over-used bands.  Spectrum

managers are concerned that social contracts for spectrum uses are fair, meet the objectives of

the governments, and are enforceable.

Cognitive radio offers technology-based mechanisms for supporting the social contracts in

a way that enhances the utilization of the radio spectrum.  One fundamental issue in the

application of this technology is the tradeoff between intelligence in the network infrastructure

and intelligence in the mobile devices.  An assumption of this use case is that there are few limits

on the computational capacity of infrastructure.  The focus then shifts to the mobile devices.

This section seeks to answer the following question:

“What novel contributions can cognitive devices make to the ability of wireless

infrastructure to employ radio resources efficiently?”

In general, cognitive radio can apply its awareness of the local radio environment and

communications context to enhance efficiency as shown in Table 5-1.  This section therefore

begins with a parametric analysis of spectrum pooling, a spectrum-rental arrangement that

requires radio etiquette offered by cognitive radio that has not been feasible with conventional

radio technology.  Since the parametric analysis is promising, it includes a statistical analysis of

demand offered over space and time.  This leads to the identification of specific steps that can be
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taken to shape demand in the market transition towards greater use of email and multimedia in

wireless.  The initial analysis of demand uncertainty motivates the use-case analysis of profiling

demand at the source.

Table 5-1 Potential Contributions of Cognitive Radio to Radio Resource Management

Contribution Mechanism RKRL Implications

Spectrum Aggregation Spectrum Rental Etiquette Structure Modeling

Shape Data Demand Buffer/Burst Email & Files Space-Time Awareness

Reduce Demand Uncertainty Demand Source Profiling Plan Generation & Matching

5.1.1 Spectrum Pooling

Spectrum pooling, for the purpose of this thesis, is the arrangement under which current

owners of spectrum agree to rent it to each other for time periods as brief as one second.

Spectrum that could be made available for pooling includes those bands already allocated to

mobile terrestrial uses.  The large radiation patterns and rapid movement of aircraft and satellites

essentially preclude the use of these bands in spectrum pools.  In addition, radio navigation and

radar bands are not considered in the readily pooled spectrum.  This yields relatively large pools

summarized in Table 5-2.

Table 5-2 Mobile Spectrum Pools

Band RFmin (MHz) RFmax (MHz) Wc Core Applications

Very Low 26.9 399.9 315.21 Long range vehicular traffic

Low 404 960 533.5 Cellular

Mid 1390 2483 930 PCS

High 2483 5900 1068.5 Local, Indoor and RF LANs

The assumptions about radio devices that access these pools are as follows.  Within a few

years, an affordable software radio PDA should be able to access the low and mid bands for

outdoor use.  It also should have a high band channel for indoor RF LAN use.  Vehicular radios

will also be able to access the very low band.  Infrastructure will access all bands.  Thus, any

physical cell site at which there is presently a single-band single-mode tower (e.g. a police

station) will in the future access all the bands using software radio technology.
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The spectrum pooling strategy and related radio etiquette are described in [4], Appendix D

of this thesis.  This protocol provides for the advertising and rental of spectrum; for the posting

of “sold” signs; and for the polite deferral to legacy users.  To assure that the spectrum is

available to legacy (non-cognitive) radios, renters must employ a protocol that facilitates the

near-instantaneous release of the spectrum.  Thus, the polite deferral protocol employs 5 ms

windows during renting transmissions to receiver listen for legacy interruptions.  When these

windows occur on 25 ms intervals, a legacy user is assured of immediate release of the spectrum

by the renter.  This protocol could be essential in fire and rescue bands, for example.  The

protocol also allows the listen-windows to occur less frequently, increasing the net throughput on

the channel.  This requires the legacy user to wait longer (e.g. 250 ms) for the channel to be

released.

Pooling can be more efficient, if each renting participant (network and mobile) is location-

aware.  That is, each radio knows where it is located, where the intended receivers are located,

and how the emissions will propagate.  This knowledge is needed for distributed power

management.  Pooling efficiency increases further if each radio is environment-aware [26].

Environment-aware radios, for example, know when they are entering a smart building.  The

building tells them about the availability of a high band RF LAN.  This knowledge allows them

to change quickly to the indoor mode, releasing outdoor radio resources back to the lower bands.

Each radio must also be able to differentiate authorized legacy users from other forms of

interference.  This requires a signal recognition capability.  The protocol also provides for an

order-wire channel, an ad-hoc signaling channel that can be sustained by the mobile radios for

distributed network management.  Related protocols are beginning to emerge [168, 169].

5.1.2 Parametric Analysis of Spectrum Pooling

A cognitive radio-access network would employ the etiquette summarized above and

described in detail in the appendix.  For the parametric analysis, the implication of this etiquette

is that the demand of all users may be treated as an aggregate demand against the total spectrum

pool.  This is not fully representative of implementation constraints, but it permits one to

determine the first-order question of whether the concept has potential merit.
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With this treatment, a group of cognitive radios and infrastructure could evolve the

operating parameters shown in Table 5-3.  The total spectrum available for pooling is 1.463 GHz

(mid and low bands).  Frequency Domain Duplexing (FDD) is assumed.  Voice channels are

attributed 8 1/3 kHz of spectrum use in each direction, yielding about 29,270 equivalent voice

channels per cell.  For simplicity, the entire population of 609,000 individuals offers load to 40

commercial cellular cells and 40 public cells.  Offered demand is projected to include

multimedia, so it increases from a typical 0.02 Erlang per voice subscriber to a notional 0.1

Erlang in the multimedia future.  This yields a total demand of about 761 Erlangs for a net

spectrum per user of 320 kHz.  Depending on fading and efficiency, data rates range from 160 to

1281 kbps per user on the average.  These rates are gross data rates not discounted for Quality of

Service (QoS) features such as forward error control which can lower these rates substantially

when low bit error rates are required (e.g. for file transfers) [170].  They also do not include

signaling overhead.  On the other hand, 3G technology is supposed to achieve 0.45

Mbps/MHz/cell [171], so these rates are representative of the ranges achievable with a mix of 2G

and 3G technology.

Table 5-3 Illustrative Cognitively Pooled Radio Access Network Parameters

Parameter Illustrative Range of Values Remarks

Total Spectrum 0.4 to 2.5 GHz 1.463 GHz pooled

Duplexing Frequency Domain (FDD) Evolved from cellular services

Voice Channel 8 1/3 kHz-equivalent, TDMA or CDMA Evolved from second generation

Channels per cell 29270 Usable, including 6:1 reuse and FDD

Coverage area 4000 square kilometers The size of Washington, DC

Number of cells 40 commercial (plus 40 public sites*) 5.5 km average cell radius (3.9 km)

Population 609,000 The entire population of Washington, DC

Offered demand 0.1 Erlang Multimedia level (vs. 0.02 for voice user)

Demand per cell 761 Erlangs Increases to 1522 excluding public sites

Spectrum per user 320.4 kHz with public sites) .16 to 1.28 Mbps per user

* Public cell sites use towers of police, fire, military, and other government/ public facilities pooling spectrum

With pooling, each mobile outdoor user would have an average of 440 kbps.  This assumes

today’s infrastructure density and ~2G-equivalent bandwidth efficiency (0.2 Mbps/MHz/cell).

With spectrum pooling, multimedia bandwidths can be achieved without a major increase in the

number of cell sites.  In part, the sharing of what are now dedicated public sites in other bands

increases the number of sites.  In addition, the pooling of spectrum is more efficient than block
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allocations.  Through cognitive radio etiquette, police, fire, and rescue units participating in

spectrum pooling will have precedence for spectrum.  They can also communicate seamlessly via

the shared SDR cell sites.

Appendix D shows parametric variations on the values presented in the table.  Figure 5-1

(a) shows the equations of this parametric model.  Figure 5-1 (b) shows the values that

correspond to the equations of (a).  The “Mix” parameter approximates the data rate effects of

log-normal fading using a weighted average of the high and low data rates supported by the air

interface.  The “High Rate” of four bits per Hz corresponds to channel modulation of 16 state

Quadrature Amplitude Modulation (16 QAM), a proposed 3G mode.  [2] provides further details.

Non-sortable Notional 1G model
Population 609000
Peak loading 1
Peak =Peak_loading*Population
Cells 80
Peaking 1
Users =(Peak/Cells)*Peaking
Offered 0.1
Traffic =Users*Offered
Wa, kHz =(Spectrum!C339)*1000
Wc 8.33333333333
Reuse Factor 6
Nc, FDD =(Wa/(Reuse_Factor))/Wc
VGC/ user =Nc/Traffic
Capacity, kHz/user =(Wa/Traffic)/Reuse_Factor
Low Rate 0.5
High Rate 4
High =High_Rate*Capacity
Low =Low_Rate*Capacity
Mix (low/high) 3
Service (kbps/user) =(Mix*Low+High_kbps)/(Mix+1)
Length 50
Width 75
Area =Width*Length
Cell Area =Area/Cells
Radius =SQRT(Cell_Area/3.14159)
Efficiency =(Service*1000*Traffic)/(Wa*1000)

odel Non-sortable Notional 1G model
Population 609000
Peak loading 1
Peak 609000
Cells 80
Peaking 1
Users 7612.5
Offered 0.1
Traffic 761.25
Wa, kHz 1463500
Wc 8.333333333
Reuse Factor 6
Nc, FDD 29270
VGC/ user 38.45
Capacity, kHz/user 320.4159825
Low Rate 0.5
High Rate 4
High 1281.66393
Low 160.2079912
Mix (low/high) 3
Service (kbps/user) 440.5719759
Length 50
Width 75
Area 3750
Cell Area 46.875
Radius 3.862743652
Efficiency 0.229166667

(a) Equations of the Parametric Model                               (b) Corresponding Values

Figure 5-1 Parametric Model of Spectrum Pooling

This parametric analysis addresses the question: “Is spectrum pooling attractive enough in

principle to warrant further investigation?”  Given the increase in spectrum efficiency suggested

by the parametric analysis, the answer is “Yes, it is worth looking into further.”  So far, however,
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the analysis assumes that all kinds of traffic can be merged into a single aggregate demand and

distributed wherever necessary in frequency and over space.  In addition, it does not differentiate

among classes of users who will offer different patterns of demand to the system.  A statistical

analysis that reflects specific features of cognitive radio and RKRL seems warranted.

5.1.3 A Statistical-Structural Model of Pooling

This use-case examines the behavior of cognitive radio objects in a realistic scenario.

Figure 5-2 shows a map of a notional small to moderate sized urban area.  Its daily pattern of use

of the mobile terrestrial radio spectrum includes demand offered by government entities; police,

fire, and other public entities; and consumers.  Although commercial services like taxis and

delivery vehicles constitute a potentially important distinct niche, for simplicity they were not

explicitly modeled in this use-case.

Stadium

Airport

Autobahn

City Center

Industrial

Shopping

Residential

Suburb

Figure 5-2 Statistical-Structural Use Case City Plan

The daily pattern includes commuting from the suburb and residential area to the city

center and industrial area.  The airport has a high concentration of business travelers on

weekdays and of vacationers on holidays.  The stadium area offers relatively low demand except

during sporting events.  Each of the eight places shown in the figure corresponds to the coverage

of one macro-cell site.  The top-level structure of the model that was used in the analysis is

illustrated in Figure 5-3.  The space-time-context distribution allocates classes of user to parts of

the city as a function of time of day.  The space-time-context model defines the structure of

space and time and translates the distributions into fractional allocations of demand to space-time
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epochs.  The RF Model defines the radio bands, cell sites, channels available to class of user, and

tariff structure.  The tariff structure is notional but representative so that the relative economic

value of the potential cognitive radio contributions can be measured.  The user traffic model

includes an e-mail and files sub-model that allows one to build multi-media demand from

fundamental parameters such as the number of emails a user receives and sends in a day.  The

Baseline Case model allocates demand to channels and computes total revenue generation and

revenue lost due to lack of capacity.

User Traffic

Model

RF Model

Space-Time-

Context

Space-Time-

Context

Distribution

Baseline

Case

Alternative

Cases

Figure 5-3 Statistical-Structural Model

Users are classified as Infrequent, Commuter, Power Commuter, Police, Fire & Rescue,

Government Users, E-mailers, Browser, and Tele-Commuters.  The normal day has been

partitioned into 9 epochs of 2 or 3 hours each.  The spatial distribution of users consists of a

uniform distribution over all eight of the spatial regions plus a statistical aggregation of users

into specific areas according to the distribution matrix of Figure 5-4.
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Figure 5-4 Space-Time Context Distribution for Normal Commuters

The instantaneous fractional distribution of the user population to locales is given by

adding the weights of the matrix to the number of locales to yield a denominator.  A matrix

consisting of one plus the matrix shown is the numerator.  Thus, for example, if the distribution

matrix is all zero, the numerator of the fractional distribution is 1 and the denominator is the

number of regions (8) for a uniform distribution of 1/8 of the population in each region.  The first

line shows weights of 4 (autobahn), 1 (residential) and 1 (suburb) indicating that most

commuters are on their way to work in the morning rush hour on the autobahn, but some are

either still at home or are using the residential roadways. The fractional distributions that result

are 7.143% at the airport, 35.71% on the autobahn, 14.29% in the residential and suburb areas

and the rest distributed as at the airport.  So normally 35% of the commuters are actually in the

area of the autobahn, while the rest are at still at home or elsewhere during the morning rush

hour.
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Figure 5-5 Diurnal Pattern of Commuter Locations (partial)

Figure 5-5 shows how commuters move around the city from the suburbs to the city center

and back to the residential areas late at night.  This space-time aspect of locations modulates the

offered demand.  Offered demand is defined by class of user and type of content using separate

Beta distributions for each period of time.  Police, for example, can offer substantial voice traffic

during some periods of the night as illustrated in the Beta distribution of Figure 5-6.
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Figure 5-6 Probability Density of Demand Offered by Police
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The corresponding cumulative probability density (Figure 5-7) shows that demand is likely

to peak at about 0.15 Erlang in the “Late Night” epoch (from 1 until 3 AM).
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Figure 5-7 Cumulative Probability of Police Demand

These temporal variations of demand are multiplied by the spatial fractions to yield

probability distributions of demand as a function of space and time.

The notional wireless infrastructure to which this demand is directed consists of cell sites

in each of the eight urban regions.  The commercial sector has 100 traffic channels per site in this

notional model.  The police, fire, and rescue have four sites serving the city center and industrial

region; the shopping and stadium; the autobahn and suburbs; and the residential and airport

regions respectively.  The 100 police, fire and rescue traffic channels are re-used at each of the

four sites.  The government has one site for the entire urban area, allocating its channels

uniformly to demand from any region (this site overlooks the entire area).

A representative tariff structure is illustrated in Figure 5-8.  Similar tariff tables exist for

pooled and allocated strategies for each of three RF bands (Cellular, Public, and Government).

Morning Rush

Morning

Lunch

Afternoon

PM Rush

Evening

Night

Late Night

Wee Hours

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Airport Autobahn CityCenter Industrial Shopping Residential  Suburb Stadium

Figure 5-8 Illustrative Tariffs (Normal Cellular Weekday)

Since there are 167 modules in this Analytica [172] model, a detailed description is beyond
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the scope of this analysis.  The model includes cross-checking to assure internal consistency of

the results.  Results of its use are presented in the following section.

5.1.4 Statistical-Structural Analysis of Pooling

The analysis examined the cases shown in Table 5-4.  The purpose of this initial analysis is

to characterize the contributions of spatial and temporal demand on the effectiveness of the

pooling strategy.  This serves as both an illustration of the benefits of the cognitive etiquette, and

a baseline for the reallocation of demand analysis to come.

Table 5-4 Analysis Cases for Pooling (24 Hour Averages)

Case Allocated Pooled

Revenue Lost Revenue Revenue Lost Revenue

Baseline (Mostly 1G) $136k $132k $242k $47k

Growth with 2G $145k $213k $305k $87.9k

Explosion with 3G $147k $243k $335k $109k

Explosion with 1G $162k $629k $458k $465k

In the baseline case, the population of 37,200 subscribers offers a 24-hour demand of

11,600 Erlangs.  In the allocated scheme, about half the potential revenue is lost because of the

statistical overload conditions at peak hours.  When this demand is spread across 84.6% more

channels that become available through pooling, the lost revenue shrinks to only 16% of the

total.  Note that in addition, the total revenue-generating capability of the system has increased

due to the revenue-bearing role of the pooled government and public bands.

The second through fourth cases shows what happens as email and multimedia/ file

transfer traffic increases over time.  In the fourth case, Explosion with 1G, the infrastructure

employs only first generation traffic channels, resulting in huge losses of potential revenue.

Although spectrum pooling helps, almost 25% of the potential revenue is lost even with 3G

technology.  All of this revenue growth is from wireless e-mail, electronic maps, stock broker

services on the move, and other services that appear attractive to consumers as mentioned in the

background discussion above.
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The 2 and 3G cases are interesting.  As illustrated in Figure 5-9, different classes of user

have different levels of e-mail per day.  The scenario employs a weighted average among low,

medium, and high e-mail users.  In addition, over time, the size of each e-mail file (without

attachments) keeps increasing.  A migration from 2k Bytes to 200kB was analyzed.  In addition,

the size and number of e-mail-attachments increases over time (not shown).
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Figure 5-9 Levels of Email Activity and Size (in Bytes) of Each Email Message

At the same time, however, the introduction of 2 and 3G technology will increase capacity per
channel as illustrated in Figure 5-10.  The baseline case included very little e-mail and
multimedia traffic.  This traffic is readily handled by narrowband modems with a net rate of only
2.4 kbps (after forward error control and other inefficiencies).  The effective data rates for this
digital traffic increase as new wireless technology is introduced.  The 3G scenario includes a mix
of the high rate mobile (384 kbps) and lower data rate bearers as the infrastructure is rolled out to
meet the demand.
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Figure 5-10 Channel Characteristics and Distributions per Scenario

The scenario C mix also reflects the fact that not all channels in all bands will be able to

support 3G because of the spectrum pooling arrangement.  In particular, the 40% of the bands

that are using first or second generation traffic channels do so in part because they must give up
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those channels to legacy users (e.g. conventional police radios) whose offered demand has not

diminished.

The analysis above shows the effect of distributing demand over space, time, and user

classes on spectrum pooling.  The fact that the etiquette allows all cells to employ all channels is

a benefit of cognitive radio.  The demand that is offered in these cases is offered exactly when it

is generated.  Cognitive radio can employ its models of its user, space, time, content (urgency)

and communications context to improve the situation further as shown in the next section.

5.1.5 Cognitive Shaping of Demand

Since a cognitive radio maintains a model of the user and the communications context, it

has the capability to shape demand.  It may offer demand to the network at the point in time (and

potentially in space) that balances benefit to the user (e.g. rapid delivery of email, rapid retrieval

of items from the web, etc.) against cost to the network (e.g. offering the demand during off-peak

periods).  Scenario C above (3G in the context of a wireless digital traffic explosion) exhibits the

pattern of digital traffic shown in Figure 5-11 (a).  In the afternoon, for example, 68% of the

demand is either email or file transfers of some type.  If only 30% of this traffic is delayed by

from one to four hours, there is an increase in total revenue shown in (b).  The total revenue

potential is decreased because the demand is shifted from peak to off-peak.  Revenues increase

by about 3 to 4.5 % while total traffic supported increases by about 5%.
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(a) Fraction of traffic that is digital         (b) Revenue Impact

Figure 5-11 Digital Demand Profiles

This relationship between traffic carried and revenue generation is worth pursuing further.
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Consider the scenario from the viewpoint of the users.  They might not want to maximize the

revenue of the network, but rather to maximize their traffic while reducing total cost (their

payment to the network).  Instead of being merely shifted in time, the digital traffic that is not

time sensitive could be diverted to the corporate RF LAN.  Assume that only 25% of subscribers

are indoors and find the high band RF LAN convenient while the other half still require mid and

low band cellular service.  The result is shown in Figure 5-12.  Diverting traffic to RF LANs

increases total traffic substantially.  The upper half of the figure shows the traffic offered without

the opportunity to divert to RF LANs, while the lower half shows the value of cognitive delay-

shaping as above.  In this case, the value of including the RF LAN in the pool is 8.9%, with an

additional value of cognitive delay-shaping in the 3G scenario of 4.8% of the total traffic.
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Figure 5-12 Analysis of Offered Traffic Structure (Erlangs)

The conclusion of this analysis is that traffic shaping due to the delay of e-mail and other

non-critical file transfers can have a beneficial effect on the overall efficiency of radio resources.

In the case investigated, the impact was measurable, but not overwhelming.

5.1.6 Implications for Cognitive Radio

Table 5-5 summarizes the implications of this use-case for the design of CR1.
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Table 5-5 Spectrum Pool Use Case Implications for Cognitive Radio

Cognitive Capability Required Function Modeling Features of RKRL

Defer to legacy users Signal recognition User model to include waveform association

Power management Location aware Location taxonomy, propagation modeling

Build order-wire Protocol structure Representation of need-structure of protocols

Shape Demand Smart Buffer/Burst User Model, Network Load Model, Planning

Source Profiling Pattern Learning Space-time, Content, Planning Under Uncertainty

5.2 Network Management Protocols Use Case

This use case addresses the question of source profiling.  Two profiles are considered.  The

power-user profile is a statistical characterization of a heavy user whose patterns of demand are

consistent for some period of time (days, weeks, months, or even years).  The second profile

includes the registration of an autonomously generated resource-needs plan with the network.

5.2.1 Power User Scenario

This use case is based on an Analytica model of cell handoff strategies.  The four cases test

the potential value of representing user patterns of demand.  In this notional cell structure, the

size of each cell is fixed and cells cannot be re-allocated from one cell to another using dynamic

channel-allocation techniques.  In the first strategy, the baseline, all channels are used for all

traffic, both originating in the cell and being handed off from adjacent cells.  The second strategy

allocates a fixed proportion of the channels for handoff traffic.  The third strategy gives priority

to “power users” who account for the bulk of the handoff traffic.  This strategy requires adjacent

cells to reserve space for handoffs based on the presence of a power user in the originating cell.

The fourth strategy is based on a plan filed with the network by A COGNITIVE PDA.  The plan

includes the established pattern of use of wireless including location versus time.

In the following simple data set, the first four users are power users.  The table indicates

the cell in which the user is located at time instants from 0 to 10.  Zero in the table indicates that

the user is not consuming traffic capacity, although it may exchange small data messages such as



74

its own location with the network.

Minutes

Users

User1
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0 1 1 1 1 1 2 2 2 2 2
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1 1 1 0 0 0 0 0 0 0 0
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1 1 1 1 0 0 2 2 0 0 0

1 0 0 0 0 0 2 2 0 2 0

1 0 0 1 1 0 2 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10

Figure 5-13  Network Use In Time And Space

The Analytica model of this situation contains 116 nodes.  It calculates total offered traffic,

call attempt events, forced termination events, revenue-generating traffic serviced, revenue lost

due to inability to allocate a traffic channel and other parameters such as cross-checks used to

verify the model.  The users are offering 64 traffic minutes in eleven minutes (5.18 Erlangs) into

a network of three adjacent cells, each of which has only three traffic channels.  This heavy use

causes 2 forced terminations of users from cell 1 or 3 transitioning to cell 2.  It also causes the

loss of 17 minutes of random traffic in 13 blocked calls.  The assumption is that all channels are

available to support all users.  Total revenue earned consists of 47 minutes of traffic.

Since forced terminations carry a larger penalty in terms of customer satisfaction than

blocked calls, most networks allocate a fraction of traffic channels to handoff traffic.  In this

simple network, the allocation of only 1 traffic channel comprises 1/3 of the total channels.  But

the examination of the details of using this strategy is informative.  Only 42 revenue minutes are

earned with 11 blocked calls and 3 forced terminations.  The additional forced terminations

occur because of the relatively high density of cell handoff traffic, temporarily exceeding the

reserved channels.  Since the handoff channels are not available for other traffic, an additional

forced termination is caused by user 3 entering cell 2 in minute 4.  User 4 occupies the handoff

channel from an assignment made in minute 3,.  With 5 Erlangs offered in minute 4, what had

been a blocked call was converted to a forced termination due to the non-availability of the

handoff channel.

In strategy 3, the network differentiates the power users from others based on amount of

service used.  Since power users have temporal patterns, such as using the car phone during a
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long commute home, this service provider decides to force each cell to allocate enough handoff

channels to support all power users.  This dynamic reservation policy in fact drives forced

terminations to zero.  However, it also reduces total revenue minutes to 39.  This isn’t much

worse than the 42 earned using the handoff limited policy, but it is low compared to the 47

minutes that the system could support if forced terminations were not an issue.

In strategy 4, the cognitive PDA learns user’s fluent of time-space use patterns.  It then

conveys the plans of the power-user to the network.  These plans are not merely statistical.  If the

cognitive PDA is used as a cell phone to tell a friend of a plan to visit after work, it can let the

network know that it does not expect to be on the Autobahn at the usual time.  This exchange

could be subject to customer agreement regarding the privacy of such information.

The handsets and network track the location and progress of each power user through the

cell system.  It allocates only 1 minute of blocked channel at the time the power user is about to

transition from one cell to the next.  Due to random collisions, the algorithm blocks 15 calls for a

total of 19 minutes, with 45 revenue minutes earned and no forced terminations.  The likely

cognitive PDA contribution was simulated through the parameters of the Analytica model.

Without a cognitive PDA, this high level of efficiency could not be realized.  The cost of a

cognitive PDA includes the cost of monitoring the network more closely for plan conformance.

In addition, it is possible that a user’s behavior would not match the plan perfectly.  Many types

of observation, planning, prediction and correction of errors could occur.  In addition, this

example provides a useful case against which to test the CR1 rapid prototype.

The above treatment of channel allocation is simplified.  But this simple case establishes

circumstances under which the sharing of a plan with a network can reduce forced terminations

of high revenue-generating customers.  This strategy also improves revenue by 5.3%.  The

combination of customer loyalty plus increased revenue constitutes a measurable positive impact

on radio resource management.  The combination of the two could be more significant than the

mere statistics of the mathematical analysis suggest.

5.2.2 Planning Use Case Analysis

In strategy 4, THE COGNITIVE PDA learns the plans of the power-users.  How should it

represent a plan and communicate it to the network?  First, the network and the handset need a
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means of exchanging knowledge about the user.  This could be done in a limited way by

programming a fixed set of parameters into the handset, which the network could later read.

With today’s limited radio platforms, this approach would be acceptable.  Cognitive radio could

use KQML to represent the request.

(ask-one :content (User ?daily-log) :receiver handset :language RKRL :ontology Time)

Such a stimulus would enter the cognitive radio as an interrupt, dispatched to the RKRL-

based cognition cycle.  Assume that the present cycle is quiescent, in which resources have been

allocated to passively listen to the network.  The Observe process would parse the message.  If

the dialog is to be conducted in expressions that are as close to natural language as possible, must

have an ability to interpret the natural language expression “daily-log?” It could recognizes the

message header “(ask-one” by matching KQML patterns “(“ followed by a performative, “ask-

one”.  This suggests that an ability to automatically form pattern matchers from specifications of

message content could be beneficial to the Observe process. Additional details are provided in

the companion Licentiate thesis.

5.3 Services Delivery Use Case

Next generation services require support of the information concepts illustrated in Figure

5-14.  Wireless has the potential of generating information with a unique degree of focus on the

user.  This use case addresses the capabilities that cognitive radio needs in order to provide

enhanced environment-aware services.  An initial baseline scenario shows how a mere location-

aware software radio can fail to deliver the required services because it lacks awareness of

interactions among radio, environment, user, and services.  The cognitive radio scenario then

shows how the baseline may be enhanced in order to achieve the required level of performance.

The analysis that follows then identifies the features of RKRL needed to represent the radio

services domain well enough to realize the high performance cognitive scenario below.
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Information Needs
-  Locate people, places, events, services
-  Understand customs, laws, language
-  Get help (medical, police, financial, legal…)
Location Relationships
-  Near curb <-> Need a Taxi?
-  Toy Department <-> Beanie Babies
-  Entering Hotel (first time) <-> Reservations
-  Train Station <-> Ticket, map, directions
-  Traffic jam <-> Alternate route, e-mail, good book?

Figure 5-14 Radio Domain Services Representations

5.3.1 Baseline Use Case

Consider a location aware PDA in the use- case scenario suggested in Figure 5-15.  The

companion Licentiate thesis provides the details of a negative scenario in which advanced

services cannot be delivered effectively due to propagation artifacts, ineffective equalization,

vocoder inefficiencies, and other common wireless impairments.

• Location-aware GSM “cell phone” info appliance

• “Taxi to Grev Turgatan 16?”
– Poor voice quality “Direct-Map is Unavailable”

• “Need cash”
– Incompatible security: “Direct-cash Unavailable”

• “Need real-time language translation”
– Unequalized multipath:  “Direct-Swedish Unavailable”

• Got lost: “Where is nearest taxi stand?”
– Batteries are dead - I want my money back!!

• Location awareness is a good start, but ...

Figure 5-15  Scenario With Location Aware Cell Phone Type Information Appliance

5.3.2 Cognitive Radio Use Case

The cognitive wireless PDA and information infrastructure contemplated in this aspect of

the use case enhances the consumer’s experience.  Consider the same scenario as above, but with

cognitive radio employing the capabilities suggested in Figure 5-16.
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• “Taxi to Grev Turgatan 16”
– Upload Hindi vocoder from handset to network
– Excellent voice quality results in map retrieval

• “Need cash”
– Network recognizes incompatible security modes
– Network asks handset for 1 kbyte for new algorithm
– Prompts user for date of birth, downloads algorithm
– “Direct cash available at restaurant around the corner”

• “Need real-time language translation”
– Handset prompts user to move near the shop doorway.
– Destructive multipath is now constructive interference
– Clear real-time translation of Swedish and English

Figure 5-16  Scenario 2 With Cognitive radio Mobiles and Infrastructure

The measures listed in the figure are discussed in detail in the companion Licentiate thesis.

The conclusion is that RKRL should represent knowledge of networks, users, user activities (e.g.

making a purchase), physical locations (e.g. on a city map), and related radio propagation.

5.3.3 Global Travel Use Case

The act of making a long distance telephone call can be tedious when traveling in a foreign

country.  In the above scenario, the cognitive PDA simplified the process with a “script from the

network”.  Consider the process by which such a script is created.

Before travel, an agent (human or software) creates an itinerary that is downloaded to the

cognitive PDA.  The combination of cognitive radio and infrastructure should be able to reason

through the scenario suggested in Figure 5-17.  First, the download of the itinerary to a

workstation should both result in a transfer to the user’s PDA and permission from that user to

send the itinerary out to the larger network.  The distribution of the itinerary should be a function

of both the itinerary and the user’s normal travel habits.  A global model of the earth (“global

plane”) is needed for international travel.  The figure illustrates the use of a notional airline

lounge, the “Red Carpet Club” for international travelers who are members.  Assume the traveler

typically allows sufficient time before flights for contingencies.  Consequently, there is a half-

hour before departure in the Red Carpet Club.  The PDA could log on.  If the itinerary includes

travel to London, the network could create a script for the PDA to access the home server from
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London.  Support of this sequence requires both reasoning on the spatial hierarchy, and planning

on that hierarchy so that the data needed by the user is available when and where needed.

Global                            To London                                     
Regional                    To Red Carpet Club                      Hold in London 
Metropolitan          To Server                        MCI Access Number    Page at Airport
Local                                                        Long Distance Call                    Guest Service
Immediate            IR to PDA                                                                         Pick RF LAN
Fine Scale           IRDA or Bluetooth?                                                              Equalize
Internal          Create an Itinerary             PDA Script                                      Receive

  (9,0800980222, ,…)                         File

Figure 5-17  Global Reasoning on the Protocol Stack

The PDA has to know that it needs a special number to access a US long distance carrier

(say, MCI) from London.  This access fact could be associated with a Metropolitan plane on the

network.  But the PDA has to know to send the request for a script to London in order for the

script to be available when needed.  This requires a planning component that can reason about

network access with respect to a travel itinerary.  London then creates a script based on the

hotel’s PBX codes as in the figure:  (“9,, 0800890222,, <MCI>. <Service’s 800 number>).  If a

suitable inter-carrier services support protocol existed, the script would be passed to MCI for its

number in London, and back to the home service provider for its 800 number.  This script could

then be held at the Red Carpet Club.  Later, the network would sense that the PDA is in the Club

but not logged in.  Again as shown in the figure, it could end an autonomous page “If you log in

now, you can get your remote access script.”  If the user says ignores the request, the network

holds onto the script, keeps track of me and provides the script later in Stockholm.  Alternatively,

the user may have empowered the PDA to conduct limited business on the user’s behalf.  It

would then log in by RF LAN as the user walks by the Red Carpet Club, downloads the script,

and saves it for later use in Stockholm.   Without such support, international travelers sometimes

have to make numerous attempts to connect to US and to work the bugs out of a login script.

This includes setting the right number of commas for wait time, selecting the proper log-in

modes, etc.

This scenario raises questions of trading off privacy versus enhanced services. There are

also potentially physical security issues associated with sharing the necessary personal

information.  But given proper safeguards against compromise and disclosure, one might be
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willing to share limited personal information in order to obtain personalized services.  Filing a

travel itinerary with a cognitive PDA and network might be worth the potential invasion of

privacy if its use resulted in truly enhanced services.

5.3.4 Local Reasoning and the Protocol Stack

Support of the cognitive radio services delivery scenario requires reasoning on the ISO

protocol stack.  The physical layer contributes knowledge of local CIR, fading, and congestion of

the wireless network.  Competence on this level requires an ability to scan the radio spectrum for

activity and to infer the significance for the delivery of wireless services.  For example, although

a channel may be fading, it could take 20 seconds, say, on average, to register in a different band.

Thus, the radio must have some way of knowing (from the network or other mobiles) if the

fading will change shortly.  It could predict that information (e.g. a propagation model).

Otherwise, the decision to change bands and service providers would be uninformed.

The data link layer processing is the domain of a standard software package (e.g. GSM or

3G).  But the cognitive aspect of the radio should monitor the behavior of the data link layer to

make link-aware choices for the user.  The array of choices emerging includes the many

parameters implicit in Table 5-6.  These are a function of RF band, air interface, and protocol.

Thus, goal-driven behavior requires at least a tabulation of these critical parameters as a function

of band and mode.

In some cases, the service provider will not offer all data rates.  In other cases, the air

interface will include some measure of QoS, plus a mechanism for automatically changing

among the available modes.  Since the link properties are somewhat asymmetrical, the cognitive

radio PDA may have some latitude in telling the network what it wants the network to hear.  For

example, to attain an extremely low BER on a small amount of critical traffic, a cognitive PDA

might need to include an excess CIR margin of, say, 3 dB.  Should PDA’s do things like this?

Such an approach could offload aspects of QoS management to the mobile units.  In order to

perform such a task, the cognitive PDA requires the ability to reason over the mode metrics of

Table 5-6.  In addition, the PDA should model the implications of the parameters for both the

itself (e.g. lower BER) and for the network (greater congestion).
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Table 5-6 Illustrative E-Mail Modes

Bearer Mode Data Rate Other Metric(s) Remarks
GSM GPRS CS-1 9.05 kbps Code Rate ½, 40 BCS Best protection

GSM GPRS CS-2 13.4 kbps Code Rate 2/3, 16 BCS Punctured (CS-2-4)

GSM GPRS CS-3 15.6 kbps Code Rate ¾
GSM GPRS CS-4 21.4 kbps Code Rate 1 Highest throughput

IS-136 HS Class C <=384 kbps Delay <1.5s; BER<10-6 BER after ARQ

IS-136 HS PCS 6 69.2 kbps Isochronism But expensive
IS-136 HS PCS 5 57.35 kbps Isochronism PCS n sequence

IS-136 HS PCS 2 34.2 kbps Isochronism PCS 6,5,…1.

IS-136 HS PCS 1 22.8 kbps Or CS-4 packetized Bearer selected
WCDMA Low Rates 8, 16, 32 kbps Code rate All users

WCDMA Medium 64, 144, 384 Cell loss rate for ATM video Pedestrian

WCDMA High Rates 384, 2048 Continuity of rate Indoors
AMPS CDPD < 5 kbps FEC Protected, low CIR 40 bytes offered

VHF V.xx 9.6 kbps Hybrid ARQ Notional

UHF V.xx 28.8 kbps Hybrid ARQ Notional
LMR Proprietary 20 kbps Hybrid ARQ Notional

IEEE 802.11 2 Mbps ~500 kbps 300% overhead 40 bytes offered

IEEE 802.11 2 Mbps ~1.84 Mbps 8% overhead 1500 bytes offered
IEEE 802.11 11 Mbps ~860 kbps 1179% overhead 40 bytes offered

IEEE 802.11 11 Mbps ~7.59 Mbps 31% overhead 1500 bytes offered

HiperLAN/1 EY-NPMA ~1.52 Mbps *CAP 0, highest priority 40 bytes offered
HiperLAN/1 EY-NPMA ~15 Mbps *Channel Access Priority 1500 bytes offered

HiperLAN/2 W-ATM ~7.4 Mbps DSC0 delay, FEC 40 bytes offered

HiperLAN/2 W-ATM ~16.67 Mbps DSCx delay, ARQ/FEC 1500 bytes offered
DECT Notional 155 kbps avg Interleaved, FEC Peak 892.4 kbps

Consider the emerging alternatives for exchanging e-mail implicit in Table 5-6.  The GSM,

IS-136, WCDMA, and AMPS CDPD modes would be available outdoors where the

corresponding cellular infrastructure is available.  If the cellular infrastructure is unavailable, the

VHF or UHF modes with V-series modems could be used, for example, to forward email using

pooled spectrum.  The Land Mobile Radio (LMR) mode suggests spot-sale of spare capacity

from a land mobile service such as a taxi or trucking service.  In urban congestion, the use of

such modes could route the traffic away from congested cell sites toward uncongested sites.

When the user nears or enters a building, the RF LAN or WCDMA indoor modes become

available.  IEEE 802.11 and HiperLAN exemplify modes that may become available as RF

LANs proliferate. Similarly, local DECT infrastructure may have no airtime cost.  Thus, a

cognitive business PDA should have the capability to scan the DECT and/or RF LAN bands for
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such low cost infrastructure.  It should know how to change bearers to minimize total costs

within the required service envelope, if that is the goal.

Figure 5-18 shows inferences that a cognitive PDA should be able to make in support of

the cognitive services scenario.  This entails reasoning on the protocol stack.  Contributions of

each layer are highlighted in the figure. Reasoning evolves in three stages in this scenario (again

from Figure 5-18).  The owner begins the use of the appliance by attempting to obtain directions

to the nearest antique dealer <1, in the figure>.  A cognitive PDA would use the RKRL-defined

syntax to parse the owner’s query message so that it can adapt its services to the user’s needs.

The user’s outgoing message might be composed by menu selection to query a Merchants

database for Antique Dealers in the Local area.  The semantics of a query sequence at an

information kiosk should be as unambiguous as the use of a bar-code at a check-out counter.

Without extensive standardization of such things (unlikely), cognitive radio requires significant

natural language processing capability (hard but more likely).  The network knows where the

user is located, so it can generate a map of dealers <2>.

In addition, the cognitive radio should parse the message in the relevant contexts.  Lacking

an information kiosk where the user could interact using queries, the cognitive radio should

compose an RKRL query for the network:

 (advertise :ontology Merchants :content (:seeks “Antique Dealer”

 :constraint Local) :sender User :receiver Yellow-Pages )

This KQML statement represents the inference Seeks(User, Antique-Dealer) shown in the

figure. In addition, however, the concept of Merchant needs to be defined.  So the radio needs a

local context within which to reason about merchandise and currency.
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Near Central Station Walking to Dinner Art Dealer
Services “Nearest Antique Dealer? “Pre-war Japan?” “Price?”
Multimedia  At the Info-kiosk Video Hold Info-kiosk Audio ?

Copy Map Copy Inventory
Mobile IP Tunnel to Antiques User->DECT->Kiosk User->Antiques
Link Layer DECT local SMS DECT->GSM ->WCDMA
Physical Lowest Power Gap Filler For Quality

DECT  GSM   UTRA  

Goal Inferences
1.  Seeks (User, Antique-Dealer)
2.  Move_plan (:owner User (:from Kiosk :to “Gustav’s”) :distance 350m 

(:via (Taxi :probability .03) (Foot :probability 0.9)))
3. Move_plan (:owner User (:from * :to “Gustav’s”) :distance 210m 

:via Foot :direction NE)
4.  Comm_plan (:owner Self  :goal Get_info (:item antiques :seller “Gustav’s”)

(:mode DECT  :location Kiosk  :environment (:fades 25m) :map (:lose_link 80m))
(:mode GSM    :location CentralStation :envt (:clear  30m) :map (:lose_link 350m))
(:mode UTRA  :location Hohbild           :envt (:clear  50m) :map (:lose_link 1500m)))

5.  Request_mode_handover (:owner User :mode UTRA :location Hohbild :duration 120sec
:service Translation (:from English :to Swedish) )

6.  Protocol sequence handover to maintain continuity of audio to user on his walk
7.  UTRA locked in as primary mode
8.  UTRA advises session layer video clip is available at a special price

1

2

3

4

5

6

7

8

5

Figure 5-18  Local Reasoning has Protocol Implications

This knowledge could be represented in a notional case grammar (where Object, Plan, and

Flow are roles)

(Sell Object Merchandise)

(Sell Flow (Merchandise Merchant->User))

(Pay Object Currency)

(Pay Flow (Currency User->Merchant))

(Buy Plan (Find(#Merchandise)->Check(#Price)->Buy(#Merchandise))

The system must now infer the user’s plan to move from the Kiosk to “Gustav’s” the

antique dealer’s shop, which is 350 meters away.  The system should also recognize that the user

may move by taxi or by foot and that the distances suggest travel by foot as the most likely

movement for this user.

In the process of walking to the dealer’s location <3>, the user requests further information
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using voice queries.  First, the act of walking should be sensed locally by the PDA’s

accelerometers so it is not confused by random GPS or network location perturbations.  The

sensing of motion at speeds compatible with walking should cause the plan to be updated to a

definite movement-by-foot.  The user wants porcelain from pre-war Japan.  The notional

multimode PDA can use DECT, GSM or W-CDMA <4>.  Near the kiosk, DECT was in use.

But the projected immediate environment includes a fade region 25 meters away and heavy

usage that will last for an estimated 30 minutes.  GSM is clear and lightly loaded, which could be

an unusual condition.  And W-CDMA is also lightly loaded.  Since only W-CDMA supports

video, the system requests a mode change to UTRA/ W-CDMA <5>.  Next a protocol sequence

is required to continue the tunneling through to the “Antiques Data Base” across the physical

layers <6,7>.  W-CDMA is locked in as the primary mode.  The user asks verbally for the price

of specific items <8>.  In addition, the W-CDMA offers the user the possibility of a video clip of

the porcelain of interest for a promotional price.

In this example, plausible inferences are to be made from data represented in the local and

immediate regions.  Information could be provided to the user over several mobility

environments.  The well-informed use appropriate air interface modes should be accomplished

by the PDA, in conjunction with the network.  In the transition from an era in which wireless

connectivity is relatively limited to one in which wireless has a proliferation of bands and modes,

the cognitive PDA’s have a complex job to do  The above scenario suggests how an

appropriately constructed inference hierarchy might be employed by cognitive radio to deliver

better services.

5.4 Implications – Representing the Services Parameter Space

Goal-driven choice of RF band, air interface, and protocol requires reasoning in at least

two dimensions.  Source parameters define the information structure of the source bitstream.

Service parameters define the tolerance of the source bitstreams to errors and other impairments

(Table 5-7).  The source parameters have been studied extensively [173].  In addition, Quality of

Service (QoS) metrics for the wireline system have been normalized for wireless networks [170].

In principle, a simple goal-driven radio could be outfitted with tables of service-quality

parameters as a function of band and mode for the bands and modes it can access.  When an
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additional air interface is downloaded to the radio, its service parameters could be downloaded as

well.  Again, in principle, the goal-driven radio could select the band and mode that is available

and that best meets the source requirements.

Table 5-7 Critical Mode Selection Decision Parameters

Information Structure Parameter Remarks
Source Bitstream Bit Rate Quality and coder complexity

     Burstiness Constant (CBR) or variable (VBR) Min, max, sustained

     Isochronism None, real-time or near-real-time Data transfers are not isochronous
     Burst parameters Maximum burst size Large files create long bursts

     Tolerance Tolerance of parameter mismatch See service quality parameters

Service Quality Error rates Losses and delays
     Bit error-related Bit (BER), symbol (SER) errors Requires error control

     Delay-related Transfer delay, variance, jitter Excessive delays result in loss

     Buffer-related Packet or Cell Loss Rate (CLR) Overflows may preclude desired rate
Reliability Probability(link), Grade of Service Link and network provisioning

Assuredness Authentication, privacy Significant for e-commerce

Cost Peak, off-peak, service-related Can be the critical factor

Wireless decision parameters vary temporally with location, time of day, exact frequency

subband, traffic elsewhere in the network, weather, and other contextual parameters.  There are

daily and weekly patterns of business, sports and leisure that shape demand and hence

congestion of bands.  They also vary cyclically with month of the year. Cognitive radio can adapt

its use of spectrum bands and modes if it has an appropriate set of traffic parameters and space-

time patterns.  It also must include computational models that represent the implications for

dynamic context-driven planning (Table 5-8).

Table 5-8 Contextual Parameters For Planning

Information Structure Parameter Remarks
Traffic Structure Statistics of offered load From radio resource monitoring

Temporal Cycles Diurnal, weekly, annual, other Identify periods of peak demand
Location information Propagation, services Services and bandwidth versus location

Global Bands/ Modes Goals (e.g. cost vs. performance) Tabulate mix vs. geography

Weather Precipitation, road conditions Highway routing, emergencies

Information about traffic structure is used in admission control and handoff.  Historically,
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the network measures these parameters, but does not share this information with the mobile(s).

Cognitive radio may employ parameters provided by the network or infer parameters by

scanning the spectrum. As suggested in the table, the traffic structure varies as a function of time

and space.  A cognitive PDA learns user patterns of offered demand and then treats these as a-

priori models of temporal patterns to generate expectations about the radio environment.  The

reinforcement levels of patterns of offered demand in some sense predict the pattern of future

demand, such as the use of the PDA’s cell-phone features while commuting.  Since a cognitive

PDA also monitors communications and email for communications-related events, it can identify

user states that would shape the offered demand.  This allows the network to infer, for example,

the level of multiple access interference is likely to increase or decrease during a given time

interval.  Global roaming continues to increase.  Global travelers constitute a small but critical

niche market of customers who value global interoperability and can pay for it.  To support such

a niche, cognitive radio architecture should support the capability to upload a-priori parameters

based on a traveler’s itinerary.  It also needs to observe, validate, and update the critical

parameters.  Additional parameters useful in the determination of context are summarized in

Table 5-9

Table 5-9  Additional Context Parameters

Information Structure Parameters Remarks
Immediate relative position In pocket, building, on the ground Thermal and light sensors

Orientation Direction of travel E.g. from video frames

Travel Mode (Auto, train, air, foot), speed,
constraints

Correlation to known  routes
User Profile Identity, use patterns Current and historical

User speech profile Topics of discourse, needs From parsing speech traffic

User data profile Topics of interest, needs From parsing data, email
Immediate needs profile Scope qualifiers Life/death, business, pleasure...

Linkage needs Criticality of remaining connected to
network, peers

Emergency, medical, commercial,
consumer profilesSecurity profile Authentication, encryption Identity of trusted entities

Intended recipient(s) Generic, class, instance Unknown, any doctor, my wife

These additional parameters define context to sufficient breadth and depth to allow the

cognitive radio to make well-informed choice of band and mode as a function of offered traffic

within a well-defined operational context.  The immediate relative position, for example, can be

sensed thermally (in pocket/ in hand).  Intensity of sunlight versus GPS availability and signal

strength can be used to infer whether one is inside or outside of a building.  Direction and rate of



87

movement can be inferred using imaging sensors and signal processing.  Mode of travel may be

inferred through monitoring fade rates, which are different for pedestrian versus vehicular

transportation.  Each mode of transportation implies constraints on band, mode, and ability to

support desired quality of service.

Cognitive radio thus will employ a rich set of user profiles.  These include the identity of

the user, and the user’s historical patterns of use, organized as a function of context.  In addition,

cognitive radio must have the skills to passively observe the user in the communications

environment to infer the communication contexts.  The user’s speech patterns need to be mined

for the presence of context triggers found in the cognitive radio’s context taxonomy.  These

include word patterns related to medical emergencies, business transaction, sports, and other use

cases.  Email and other textual forms of communication also provide rich sources of contextual

cues.  In addition, the user may have some specific role in society that imparts communications

preference, such as for medical professionals, fire fighters, etc.  These aspects are part of

extended context that is represented in RKRL and embedded into CR1.

5.5 Type-Certified Downloads

According to the SDR Forum, downloaded software will fall into distinct categories [13]:

• High-level communications and computing applications

• Protocol entities for modification or changing of the air interface or the bearer
service

• Low-level signal processing algorithms for modification or changing of the
communication physical layer processing

Again, according to the Forum, downloads will enable the following applications:

• Download of new computing and communication applications

• Download of new user interface (look and feel) and I/O drivers

• Adaptation of air interface to implement a new standard (inter-standard
adaptation)

• Adaptation of air interface to implement different features (e.g., increased
bearer data rate) specified within a standard (intra-standard adaptation)

• Download of incremental enhancements (module or entity replacement)

• Download of patches for software bug-fixes

• Download of reference material, e.g, locally available services and operators
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• Download of activation licenses to activate downloaded applications, upon
verified receipt of payment

5.5.1 Download Scenarios

The following methods of downloading software are envisioned by the Forum:

• Distribution of new software via SIM-card or other removable media

• Downloading software via a modem and fixed network, e.g., telephone or
cable service

• From a handheld field device

• From CD-ROM or Internet/Intranet, via a PC;

• From a street side terminal, e.g., download onto SIM card via an Automatic
Teller Machine (ATM)

• Download from a Point of Sale terminal in a shop or service center

In the case of over-the-air reconfiguration by downloading software over a wireless link,

the options of point-to-point and point-to-multiple-point are available.  This allows forms of

broadcast reconfiguration.  The Forum anticipates the obvious form of download patterned after

Microsoft’s Telephone Applications Programmer Interface (TAPI) or the ITU’s H.320 video

teleconference recommendations.  These are based on a capability exchange and on pre-defined

levels of capability.  The essential steps are defined in the companion Licentiate thesis.

The complexity of a plug-and-play environment for modular radio software raises the

question of whether a download is stable.  In particular, radio software often has to support

isochronous services like voice.  In addition to the determinism of the operating system,

properties of the applications code can violate stability.  In an unstable condition, software

consumes unbounded resources in the equivalent of a while loop that has no termination

condition.  For example, it is possible for two stable modules to be mutually unstable.  Consider

the following pseudo-code.

Module 1  Set-test(RF)

(Runtime value of RF=30)

Module 2:  Test-Receiver(max-rf)

j=150;
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While j < max-rf, tune (j); j++; end-while

Module 1 was designed to operate in HF.  It sets its RF tuning word to 30 MHz, its

maximum value.  It then calls Control-Receiver, which was designed to operate in VHF.  Module

1 normally calls a Module 2 that loops from the minimum RF (for the purposes of this example,

a global that is defaulted if not set) to a maximum supplied by the Set-test function.  The

assumption on which Module 2 was designed is that RF will never be less than 150 MHz.  The

assumption of Module 1 is that it will never be greater than 30.  When these two modules come

together in a software radio, the Set-test function calls Test-receiver with a value, 30, which is

less than the lowest assumed value, 150.  The while loop that runs the tuning test keeps

incrementing forever in search of the termination condition.  There are several programming

discipline errors committed by the programming team.  But such errors happen.  Attention to

computability reveals provable mechanisms for essentially eliminating these kinds of crashes

from radio code (even if the programmers do the kinds of things illustrated above).

5.5.2 Computability Aspects

The architecture paper “Software Radio Architecture: A Mathematical Perspective” was

published in the IEEE Journal on Selected Areas in Communications, April, 1999.  This paper is

an appendix of this thesis.  This paper addresses the question of computability of cognitive radio.

Cognitive radio, by definition, is first of all a radio.  As such, it must deliver services with high

quality.  This means that it must finish its cognition cycle in time to deliver services

isochronously.  The architecture paper shows that full Turing computability is not required for

isochronous tasks.  Instead, the bounded recursive functions are sufficient.  The bounded

recursive functions preclude unconstrained While and Until loops, substituting instead resource-

constrained versions of those functions.  In order to do this, one must compute in advance an

estimate of the computational resource required for every While and Until loop.  The primary

resource to be estimated is time.  To allow cognitive radio to reason about such resource

constraints, RKRL should specific mechanisms for characterizing time allocated to programs,

modules, and hardware execution (e.g. despreading).  This process precludes crashes due to the

use of excessive resources as in the example above.  The details are deferred to the appendix.
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5.6 Summary of Use Case Analyses

These use cases prioritize models RKRL should express, as summarized in Table 5-10.

Table 5-10 RKRL Model Representation Priorities

Contribution Mechanism Models RKRL Should Express
Spectrum Aggregation Spectrum Rental Etiquette Spectrum Structure, Propagation
Select Alternate Air Interfaces Model Bands, Modes Data rate, code rate, QoS Metrics
Shape Data Demand Buffer/Burst Email & Files Space and Time, Delay(message)
Reduce Demand Uncertainty Demand Source Profiling Plans, Demand vs. time
Negotiate with Network(s) KQML using RKRL KQML, user, network, location
Convenience of Global Travel Learn protocols for locations Places, access protocols
Information Queries Wireless Internet Access Information needs (e.g. keywords, user

expressions of interest), Servers (e.g.
Yellow pages), Related points of entry
(e.g. information kiosk, local broadcast)

Node Selection Decisions Match to User Training Source, QoS, Reliability, Assuredness,
Cost Parameters

Context Sensitivity Recognize Communications
Context

Network Traffic, Time/ Space Patterns,
Weather

Context Interpretation Adjust Plans to User Contexts Position, Travel, User Interests from
Speech & Text, A-priori needs,
connectedness needs, security needs,
intended recipient(s)

Facilitate Certification Establish Stability under
Download by Induction

Computational Resources (Needs,
Capacities)
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6 The Radio Knowledge Representation Language

This chapter presents RKRL.  First, the approach to RKRL is developed using the

mathematical framework of point-set topology.  Next, an overview of the resulting language is

provided.  Formal syntax and axiomatic structure is described.  Finally, each of the micro-worlds

of RKRL 0.3 is summarized.

RKRL has been designed to meet the needs identified by the use cases analyzed above.

My licentiate thesis defined the first version of RKRL.  The doctoral research refined and

extended RKRL through further development of the mathematical foundations and through the

implementation of the CR1 rapid prototype.  This chapter summarizes the resulting Version 0.3

of RKRL.  RKRL is unique in that it employs heterogeneous model representations in an

axiomatic framework based on topological spaces.  The models accommodated by this

mathematically precise framework range from natural language (in some sub-spaces) to semi-

formal models (e.g. if-then rules) to formal axiomatic models (in other sub-spaces).  RKRL’s

semantics are defined in its computational models.  Its syntax, semantics, and initial knowledge

are described in this chapter.  To enhance access by researchers, the 4,100 frames of RKRL

Version 0.3 are available in the Extensible Markup Language (XML) [174].

6.1 Topological Analysis of Radio Knowledge Representation

In order to meet the use-case requirements of the preceding chapter, RKRL has to

accommodate heterogeneous semantics.  This section shows that topological analysis structures

context with the mathematical precision necessary for the control of component-based software

radios.  This section summarizes how that topological structure is represented in RKRL.

6.1.1 Heterogeneous Semantics

The notion of heterogeneous semantics in cognitive radio is illustrated in Figure 6-1.

Consider the semantics associated with symbolic structures in radio engineering implicit in the

use cases.  The example of the figure lists semantics ascribed to the word-level symbol “signal.”

Each of the roles cognitive radio could play invokes different semantics for this symbol,
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depending on the use context.

Signal => RF propagation Propagation Model
Signal => Flag set in data bits Modem Module
Signal => Message event Queuing Module
Signal => Part of a plan Planner

Signal => Argument in KQML KQML package
Signal => Highway traffic signal Route following module

Signal => Alert at kiosk Web browser

Signal => Failure indication Fault recovery module

Signal => End of superframe GSM protocol stack

Signal => INFOSEC alarm Security module

Signal => Semaphore Diagnostics module

Symbol  => Semantics Use Context

Figure 6-1 Context-Sensitive Implications of the word “signal”

Two aspects of this well-known problem of word-sense ambiguity bear on the formulation

of RKRL.  First, the user of a PDA may shift among alternative semantics with few syntactic or

sentence-level cues.  This establishes that RKRL cannot have context-free semantics for at least

some of its symbolic structures.  The development of natural language processing systems with

context-sensitive semantics is in its infancy.  Therefore, RKRL contributes to progress in this

area by defining context with mathematical precision.  RKRL may therefore facilitate the

integration of context-sensitivity into wireless applications of natural language processing.

More important for software radio, however, use-context implies the control of software

components as listed in the figure.  Different software modules may employ the same symbol,

“signal” in their control interfaces with different semantics.  On small PDR projects with under

100k LOC and a few dozen software components, word-choice in a data dictionary may be

tailored to preclude confusion in the project’s data dictionary.  With the proliferation of software

components at all layers of the protocol stack, the likelihood of semantic conflict in data

dictionaries increases at least quadratically.  This means, as a minimum, that a component-

oriented reuse environment faces substantial rework of data dictionaries and risks latent
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misunderstandings about module-to-module interfaces that can cause catastrophic system errors.

Explicit representation of word-use context is often used as an ad-hoc mechanism for

resolving such ambiguities.  In Java and most other programming languages, for example, name

spaces may be declared so that each package has a local name space.  Similar approaches are

taken in data interfaces among SDR components.  Suppose the convention is to express a name

as <Name-space>.<token>.  Then, Modem.dataRate may be in units of bps, while

UserInterface.dataRate is in units of kbps.  More subtly, the user interface may specify the

nominal value of the desired data rate, while the Modem.dataRate specifies the estimated value

averaged over the past 64 channel symbols.  Such semantic differences can be of crucial

importance in integrating SDR modules during development and/or in controlling them during

operations.  RKRL makes these differences explicit so that semantic ambiguities are uniformly

identified or resolved algorithmically.  This requires a formal treatment of context.

6.1.2 Formalizing Context:  The World, World Models, Predicates, and Maps

Researchers in natural language processing, expert systems, and machine learning have

recognized the potential advantages of context-sensitivity, but the formulation of context has

been illusive.  The notion of context has intuitive appeal, but it has no widely agreed to

mathematical definition.  Creating a rapid-prototype cognitive radio requires a definition that is

precise enough to guide the implementation of a specific software system.  But creating an

architecture for the future evolution of cognitive radio requires multipartite acceptance of a

definition that has mathematical precision.  This additional precision is needed to assure that

teams developing components at different times and/or in different locations use exactly the

same semantics for context.  They must also know exactly how much precision is associated with

each aspect of inexact contexts.  This treatment therefore defines context mathematically.

The mathematical analysis of context begins top-down, as illustrated in Figure 6-2.

Ordinary experience using a PDA at work, at home, and travelling, as delineated in the use cases,

the entails exposure of the PDA to many stimuli.  Denote the set of stimuli encountered in the

life of a PDA and associated actions taken by the PDA as the set X.  This is a very large set.

Stimuli consist of all of the digitized IF signals received, all of the digitized speech from the

PDA’s microphone channel, all of the email messages, etc.  For example, a PDA that receives
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100 messages per day and that supports 30 ten-minute phone calls per day assimilates

approximately 90 million word-level tokens per year.  If the responses (e.g. transmitting voice,

email, etc.) have similar complexity, X contains 180 million tokens.  This set is large, but not

necessarily intractable.  A closer look at Figure 6-2 reveals that these stimuli have some

structure.  Some stimuli refer to home and other places.  Some are e-mail from a GSM network.

Others are latitude-longitude-altitude vectors from a GPS sensor.  These ad-hoc associations

establish context but lack sufficient mathematical structure for an axiomatic treatment.

GPS

PDA

User

Home

Work

Today

Yeseterday

 Monday

GSM

GPRS

RF LAN

Database
Europe

X

Figure 6-2 Informal Context Associations Lack Mathematical Structure

Figure 6-3 begins to illustrate the mathematical structure of cognitive radio.  The PDA

must contain a computational model of the world, which should faithfully represent those aspects

of the world with which the PDA must exhibit proficiency.  This internal world model should

map to the external world in a mathematically precise way.  Since the internal world model is

constrained to be resident in computer memory, it consists of a finite set of symbols, S, with a

tightly bounded maximum size, |S|.  In theory of computing, if there exists |S| < M, then there

exist algorithms that decide properties of S.  If one cannot specify M in advance, then some of

the operations needed for cognitive radio are provably undecideable [22].  Given a PDA with

100 MB for control memory, M = 100 MB.  S has a finite number of states, less than 2M .  S

therefore has the mathematical structure of a discrete set of points with bounded maximum size.

Although algorithms that compute properties of S may require exponential time (“intractable”),
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since the dimensions are specified in advance, one can compute whether the property can be

determined within an acceptable time budget.  For example, if a search algorithm, f, requires at

most Ns steps per item examined in memory, then to search S for s requires not more than Nt =

Ns*2M steps.  If each step takes at most t seconds, and if the answer must be known in T

seconds, then if t(f) = t*Nt < T, one can decide whether S contains s.  If so, then the PDA may

compute it and use that outcome.  If not, then the PDA knows that it cannot tell.  It may so advise

its user, the network, etc., so that default or error-correcting action may be taken (e.g. allow more

search time, assume the worst, etc.).  In any  case, one of three outcomes is certain in T seconds

or less.  Either S ε  s or !( S ε  s), or t(f)>T.  In other words the PDA decides “Yes”, “No”, or

“Maybe (Can’t tell unless I think about it some more)”.

Error
Act

Sense

Observe

World

World-
Model

PDA

Predict

Describe

Sets of Points

Space

Time

Frequency

Figure 6-3 Mappings Required for Cognitive Radio

Attention therefore turns to the precision with which S, the internal model, can represent

the external world, W 7.  In conventional model-based semantics, predicate valuation functions,

V, map w ε  W onto s ε  S, V: w →  s.  The structuring of the predicates in contemporary practice

is left to the domain expert, knowledge engineer, etc.  In natural language processing, properties

of W may be represented as syntactic constraints on S.  In addition, semantic grammars augment

syntactic categories with domain categories, further constraining expressions [78].  This

                                                
7 By convention, items in the external world are in italics, while internal symbols are in bold.
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approach attributes sentential structure to stimuli, which is appropriate for well-structured

domains like machine translation.  Cognitive PDAs, however, have to perform in the relatively

unstructured domains described in the use cases.  In addition, a semantic grammar developed for

one of cognitive radio’s use-context domains may conflict with grammars in other domains.  As

further illustrated in Figure 6-3, cognitive radio employs multiple mappings to describe the world

and to predict the consequences of its actions.  Therefore, RKRL needs a top-down structuring of

the multiple sub-domains of the use-cases.  This top-down structure needs the formal

mathematical precision to assure that stimuli, responses, internal inferences, and external effects

achieve the performance required of the PDA.  These aspects are maps on S and W.

6.1.3 Point Sets and Maps in S and W

Since S is a point-set, the principles of point-set topology may be applied to study its

structure.  First, predicates and entity-attribute-value models of object-oriented knowledge

engineering are instances of a more fundamental mathematical structure: the point set.

Properties of points establish geometric relationships in appropriately defined spaces.

Time

Places

Radio

People

Sensor

GPS

PDA

User

Home

Work

Today

Yeseterday

 Monday

GSM

GPRS

RF LAN

Europe Database Software

X

Identify

Families
of 

Subsets

Figure 6-4 Analysis of Point-Sets Yields Families of Subsets

Informally, Figure 6-4 shows how one may identify families of subsets of entities in the

world (w ε  W) by analyzing point sets.  Those entities that share points and/or maps among point

sets in W and S comprise related subsets.  For example, the internal symbols “work”, “home”,

and “Europe” may all refer to points on the physical globe (e.g. home ε  S ↔   home ε Globe ⊂

W).  When used in the appropriate word sense, home corresponds to a specific address home,

while Europe corresponds to a region within defined borders of countries.  One can therefore



97

model home, Europe, etc as places on the globe, subsets of Globe  (home ⊂ Globe).  This

requires consistent internal and external representations for elements of S and W, e.g. sLL
i =

(Latitude i, Longitude i) ⊆  Globe, G:sLL→sLL and H: sLL → sLL.  In this case, G and H are

identity maps.  Thus, the informal notion “home” is formalized in RKRL as a family of subsets

of points on the surface of the physical globe (Globe ε  W), the internal representation of those

points (Globe ε  S), and the related maps.

Maps among temporal point sets must also be treated axiomatically.  Consider, for

example, the symbols yesterday, today, and Monday ε  S.  Yesterday may be formulated as a

map from a point set, the real line that represents time, T ε  W, onto itself, decrementing the day

of the week by one.  Just like the identity relations G and H for space, internal time TεS and

external time Tε  W must be related by the identity map  Monday, similarly, can be viewed as a

modulo-7 divisor of T.  With this approach, today:φ→T yields a 24-hour subset of T.  This

subset of S increments by 24 hours whenever calendars in W increment by one day.  Referring

again to Figure 6-3, the function today ε  S predicts the calendar value that one would observe in

the world.  These symbols are the corresponding subsets of T.  They form the specific subsets in

W and S, named “temporal” in RKRL.  In addition, the points of T form a compact subspace8 of

W.  The symbols for subsets of T are more closely associated with each other than points that are

not in a common subspace of W or S (such as “Home” or “Money”).  Intersections of such point

sets, particularly in orthogonal subspaces, create contexts, such as “Home” ∩ “Monday”.

Other important sets require more complex maps for G and H.  Consider a radio’s signal in

space, s(t) ε  W as illustrated in Figure 6-5.  When the PDA receives the signal, it is converted to

internal digital form by an ADC.  Thus, the signal is mapped first from the transmitted signal to a

received signal, Receive(s), e.g. by the addition of noise and multipath.  Next it is digitized by an

ADC to become the discrete signal x(i) ε  S.  Thus, the map H from W to S is

ADC(Receive(s(t))).  Although H corresponds in part to a physically realizable device, the ADC,

H is not a function that transforms signals.  H is a map among subsets of S and W.  In words, H

states: “The analog signal in the time interval surrounding the continuous point s(t) ε  W

corresponds to the discrete point x(i) ε  S at the sampling instant for N contiguous points.”

                                                
8 A compact subspace is covered by a finite number of subsets; in this case, T is covered by R.
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Figure 6-5 Maps G and H for a Radio Signal-In-Space and its Digital Representation

Similarly, the corresponding map G from S to W is not a digital to analog converter.  The

map G answers the question “How do subsets of x(i) map to subsets of s(t)?”  This is answered

in part by the Nyquist criterion.  If a signal s(t) is sampled at least as fast as specified by the

Nyquist criterion, then the analog signal s(t) may be reconstructed uniquely from the digital

samples, x(i), e.g. using Fourier series.  In addition, a received signal corresponds to some

transmitted signal modified by propagation, so G(x(i)) = Propagation(Nyquist(x(i))).  G also is

not a function.  One need not be able to perform G on actual signals.  G is the set-theoretic map

that specifies which members of S correspond to which members of W.  Thus, G and H are

ontological statements about the structure of the point sets s(t) and x(i).

The general strategy employed in defining RKRL, then, is to identify the point sets in W

and their associated mappings, and to represent them in S as corresponding point sets.  Both of

these ideas may be made mathematically precise as follows.

6.1.4 Inducing Topological Spaces on W and S

The topological structure of a point-set is defined by the family of subsets it induces.  In

particular, let X be a set and OX a family of subsets of X.  If OX contains X, the empty set,

countable unions and finite intersections, then (X, OX) is a topological space.  Specifically, if 1-4

below are true, then (X, OX) is a topological space [175]:
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1. OX contains X

2. OX contains φ, the empty set,

3. If B is a countable enumeration and Oα  ε OX, then α
αε

O
B

U  is also in OX,

4. If A is a finite index set and Oi ε OX, then, i
Ai

O
ε
I  is also in OX.

The product topology is induced by the set of all subsets of X, which is clearly a

topological space.  As illustrated in Figure 6-6, it is essential to know what point-sets exist,

which ones are relevant to the PDA’s communications tasks, and which of these have been

characterized.  A point-set has been characterized if the knowledge needed by the PDA is

represented in RKRL.  This knowledge is available to the PDA if it has been mapped from

RKRL into the PDA’s limited internal data store, S.

Topological
Space

Ox Contains
X, φ

Countable Unions  and 
Finite Intersections

What Subsets Are Characterized?

User∩RFLAN: No
PDA∩RFLAN: Yes
Europe∩Home: No

Europe∩Work: Sometimes?

Figure 6-6 Topological Spaces May Be Induced on W and S

Some subsets, like the intersection of User and RF LAN, may be empty for some purposes

(e.g. for communications) and non-empty for others (e.g. measuring health effects of RF

radiation).  Therefore, RKRL is based on the induction of product topologies.  In particular, if

w1, w2 ε W correspond to s1, s2 ε S, then RKRL’s representation of {s1,  s2} is complete if it

enumerates and characterizes s1 ∪ s2 and s1 ∩ s2.  Naming a subset enumerates it in the same

way that declaring a variable reserves space for it.  Characterizing a subset requires the

elaboration of the properties of that subset.  This is equivalent to providing a program that

supplies an appropriate value for the named variable.

Since the size of the product topology is 2|S|, the explicit enumeration of all subsets of

known entities would reduce the content of the knowledge base exponentially for fixed |S| < M.
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Since many subsets are sparse, in RKRL a set is completely defined when all the non-empty

subsets of the discrete topology have been identified.  If for {s1, s2}, s1 ∩ s2 is not explicitly in

OX, then this intersection does not exist.

The related knowledge is not complete until the identified subsets have been fully

characterized.  Thus, when a new entity is introduced to RKRL, its non-empty subsets may

intersect with other entities.  RKRL axiomatically assumes that any such induced unions and

intersections may exist and may be contain relevant knowledge.  The incremental development

of RKRL consists of exploring and characterizing subsets induced by the introduction of new

entities into S.

6.1.5 Knowledge as Topology-Preserving Maps

Given the induction of product topologies on W and S, one may characterize the fidelity

with which S represents W.  As illustrated in Figure 6-7, S and W are mapped to each other in

general terms by several topological maps.

Error
5 Act

Sense

1 Observe

World, W

PDA

Predict

Describe3 Plan

4 Decide

Sets of Points

Open
Ball

Space

Time

Frequency

World-
Model,

S

2 Orient

Figure 6-7 Inferences Map S to S, Actions Map S to W, and Sensing Maps W to S

Some of these maps describe the world to the cognitive PDA.  The PDA uses others to

predict the effects of its actions on the world.  In cognitive radio, these maps are realized initially

through a core set of knowledge expressed in RKRL and integrated into the PDA.  Subsequently,

they may be refined and re-defined by the interaction of the PDA with the world.  Thus, the five
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steps of the cognition cycle, plus sensing, constitute the specific set-theoretic maps by which the

world is characterized.  Inferences in the cognition cycle map S onto S.  Actions map S onto W.

The concatenation of sensing and observing maps W onto S.  The ability of such maps to

preserve the topology of the corresponding point sets is paramount.

A map, f, that is 1:1 from one topological space, X, onto another, Y, is continuous if the

inverse images of open sets in Y are open sets in X.  This generalizes the notion of continuity in

metric spaces (e.g. the epsilon-delta limit at infinity).  For RKRL, this means that a family of

subsets of S must have a corresponding family of subsets in W and conversely.  For example,

time in W is continuous, but T in S is a discrete approximation, e.g. to the millisecond.  Thus, G

and H may not be identity functions.  Instead, there may be a map, “timing,” between S and W.

Timing: S→  W

For each millisecond in W, there corresponds a unique value of the millisecond-counter in

T.  Furthermore, by the product topology, to each union of milliseconds in W (e.g. the next

hour), there correspond a subset of values in T.  Finally, any subset of values in T corresponds to

some time interval in W.  These values may be reached from W using timing-1.  If the internal

should clock drift or is not set properly, then the error may be expressed as an open ball, a set of

points in W.  If the clock is known to be set to within one second of GMT, then “Error < 1000

ms” is that open ball.  Since such open balls are equivalent to the more familiar notion of

distance, one may precisely characterize the fidelity with which S represents W using open balls.

If a map f: X→Y is continuous and has an inverse and if for each open set in X the inverse

image of open sets is also open, then f is a homeomorphism, a topology-preserving map.  Since

RKRL represents product topologies, each relationship between S and W can be tested for

homeomorphism.  If a map is a homeomorphism, then the proven properties of homeomorphism

apply.  Importantly, the composition of homeomorphisms is also a homeomorphism.  Therefore,

if all of the maps of Figure 6-7 are homeomorphisms individually, arbitrary compositions are

also homeomorphic.  For example, if sensing and observing each preserve topological structure

individually, then the inferences drawn from the concatenation of sensing and observing

correspond to situations in the world exactly as described in S.  Furthermore, if all the maps

preserve topology, then situations that develop in W are reflected in S, and inferences drawn in S
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for actions will yield corresponding effects in W.  If the observations conflict with the

predictions, then the space S and/or the maps need to be refined (e.g. via machine learning).

Testing the a-priori correspondences is a matter of checking the RKRL to see that subsets of W

and S are defined, and that a domain and range for each map associated with S is also defined

and has an inverse.  If the point set is discrete and all points are mapped in both directions, then

the power sets of the points induce the required homeomorphism.  Updating dynamic

correspondences is the task of the machine learning components of the cognitive radio.

The principles enumerated above establish the topological foundations for RKRL.  The

pragmatics of realizing this mathematical structure in an intuitively appealing language takes the

rest of this chapter.

6.2 RKRL Language Overview

Informally, RKRL consists of the following.

1. The set-theoretic model, introduced above, that encompasses the topological

foundations and that admits degrees of axiomatic and non-axiomatic semantics.

2. A syntax defining sets of frames, the statements of the language,

3. Axiomatic models of time, space, entities and communications among entities.  Entities

occupy subsets of (Time x Space) such as people, places, and things.

4. An initial set of knowledge including initial representation sets, definitions, conceptual

models, and radio domain models.

5. Mechanisms for axiomatically modifying and extending RKRL

6.2.1 Overview of RKRL Syntax

Informally, the syntax of RKRL specifies a structured set of statements called frames.

Frames are organized into a core set, RKRL0, and an arbitrary number of extensions, RKRLj.

RKRL0 consists of exactly three micro-worlds.  Its RKRL micro-world identifies the top-level

components of RKRL, including the Meta micro-world and the Universe micro-world ε RKRL0.

Each additional micro-world, RKRLj, is linked to one of these three micro-worlds through the

set-theoretic model ε, “contains” as illustrated in Figure 6-8.  RKRL 0.3 includes RKRL0 and
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about 42 additional micro-worlds.

RKRL j

<Frame>

<Handle><Model><Body><Context><Resource-specification>

RKRL contains

  Meta, Universe
Meta contains …
Universe contains ...

RKRL0

contains

<Root><Source><Time><Place>

<Resources><Depth><Breadth><Sub-Elements><Sub-Frames>

Micro-world j :=  {<Frame>}*

Extensible Markup Language (XML) www.w3.org 

Syntax

Air Interface contains GSM

GSM RF  > 860 MHz

The RF of GSM is at least 860 MHz

(Air Interface = GSM)&& ?RF => 860 MHz

Resource Models

    Control of Software Radio  Resources

    Control of the Reasoning Process

Figure 6-8 Overview of RKRL Syntax

Each frame is a five-tuple that consists of a handle, a model, a body, a context, and a

resource specification.  Each element of the tuple (“slot”) is a String, an array of concatenated

characters.  The handle names the subset of W or S characterized in the frame.  This can also be

used to provide access to the frame.  The handle is more than the name of the frame, in part,

because the same handle may apply to multiple frames.  The handles of a micro-world constitute

the named point sets and subsets of that micro-world.  All handles first appear as the body of a

contains-frame.  Thus, subsets are grown like branches of a tree from the more general to the

more specific.  For example, the following four (partial) frames name a spatial point set, the

Centrum building located in a suburb of Stockholm.

Universe contains global plane

Global plane contains Europe

Europe contains Stockholm

Stockholm contains Centrum

The model specifies the relationship between the handle and the body.  The body specifies
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the contents and/or parameter(s) of the model.  Together handle, model, and body specify the

knowledge of the domain frame.  These three items of information may behave like predicates,

neural networks, if-then rules, or cases, depending on how the frame is interpreted.  This aspect

of RKRL may be called dynamic semantics.

The frame’s context specifies the place where the frame fits in RKRL’s universal ontology.

All context roots terminate with the string “RKRL.”  This specifies that this frame belongs to

RKRL.  The context root is a path from RKRL to the frame through set-membership (via

contains) in the micro-worlds hierarchy of RKRL0 through RKRLj.  This path specifies the

version of RKRL, and the micro-worlds in order of ascending generality in which the frame may

be accessed.  Although there is only one context root per frame, a frame may be applicable in

more than one context.  Context also includes the source of the material in the frame (e.g. the

author), and the time and place at which the content of the frame was generated.  This additional

meta-level frame context supports machine reasoning about the validity of the frame.  If the

frame is out of date or was provided by a deprecated source, the cognitive agent can take

appropriate action to update the frame.

The frame’s resources specification includes software-radio domain computational

resources (e.g. processing time, computational capacity, memory, and/or interconnect

bandwidth).  This meta-level knowledge supports machine reasoning about the computational

resources needed to accomplish a wireless task.  For example, the resources associated with an

equalizer could specify the time within which the equalizer should converge. The cognitive radio

can apply computational constraints by setting a watchdog timer before invoking an equalizer

algorithm.  Failure to converge would be detected by the timer so that the cognitive radio could

take an appropriate action, such as switching RF bands.  Resources need not be computational.

Frames concerned with antennas, for example, might specify the maximum RF power that can be

supplied to the antenna.  The resources specification can be used to assign resources to air

interfaces, user interactions, etc.  The degree to which non-computational resource constraints

(e.g. RF power) can be controlled depends on the degree of instrumentation of the radio

hardware platform.  The computational resource specification is necessitated by the

mathematical analysis of Appendix B.  Without such constraints, cognitive radio could not

reliably reason about downloads, for example.  The additional resource constraint enforcement is
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needed to insure that the radio software operates within hardware constraints.

The resources-specification of the frame also identifies reasoning resources in terms of the

maximum breadth, depth, elements, and frames contained within the subordinate sets linked to

the frame.  This enables machine reasoning about resources needed for performing inferences

using the models of the micro-world.  Reasoning tasks include parsing stimuli and context-

sensitive planning during wake epochs and learning during sleep epochs.  A cognitive radio may

employ this meta-data using the resource-bounding algorithms exhibited in Appendix B.  This

can provide an upper bound on the duration of sleep epochs (e.g. so that it will not be in the

middle of a computationally-intensive model update cycle - asleep - when the user is next

expected to use the PDA).

6.2.2 Heterogeneous Knowledge Representation

In most machine reasoning systems, knowledge is represented homogeneously.  Rule-bases

all use rules, predicate calculus systems use Horn clauses, typically interpreted by a Prolog

engine.  Case-based reasoning systems tend to use a data base structure, as do many decision-tree

systems.  Object-oriented technology makes it easy to employ multiple representations for the

same information by attaching alternate representations to the object’s slots.  But Smalltalk

objects, Java objects, and C++ objects are all declared differently.  RKRL is a computer-

language independent representation of the set-theoretic and model structure of such objects,

mappable to any of them.  It supports heterogeneous knowledge representation.  In particular, as

illustrated in Figure 6-9, frames may incorporate one of the following model classes:

Model Class Interpretation Mechanism

1. Ontological (e.g. Contains, Set) Set theoretic

2. Natural Language (e.g. Definition …) Human interpretation of language

3. Axiomatic (e.g. Time, Now, Place, Location …) Preservation of axioms

4. Stimulus-Response (the default interpretation) srModel interpretation

5. Reserved (e.g. Excel, Rule, Predicate, Plan  …) Reserved for interpreters

RKRL does not specify that one form is preferred over another.  However, it does specify
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that if a string is used as a model, then that model has to be identified in the Models meta-world.

Space, time, RF (e.g. radio signals and propagation), and entities are axiomatized.

Meta-Level

Concepts

Stockholm

Time

Now
Date-Time

Year
Month

Day

Space

Person

PDA

Radio Knowledge

(partial)

Self

DSP Pool

Constellation

Modulator

Universe

Physical World

Global Plane

Regional Plane

Centrum

Metropolitan Plane

Iridium

Models
…
Space*
Time*
RF*
Entity*

* Axiomatic
   Models

Ontological Models
(Representation Sets)

Informal Models
(Natural Language)

New RKRL Frames:
DSP Pool Processors 
       Type = C6x
DSP Pool Processors 
       Number = 4
DSP Pool Processors 
       MIPS = 2600

Alternate RKRL Frames:
DSP Pool Contains
       Processors
Processors 
       Number  4
Processors 
       MIPS    2600

Space

Frequency

Time

Figure 6-9  Heterogeneous Knowledge Representation in RKRL

In addition, the semantics of that model has to be specified somewhere in the inference

hierarchy, e.g. by specifying the API.  Each model slot in an RKRL frame implies the related

interpretation mechanism.  For example, the contains model entails set-theoretic expansion of the

parent frame to contain child frames that inherit the parent’s context.  Natural language models

rely on human interpretation of language.  These may be as formal as the KQML micro-world or

as informal as the User micro-world, as the use context indicates.  Models of time and space

have to be preserved by the user as axiomatic.  In particular, the interpretation environment must

obey the associated axioms.  If the model is “reserved,” a specific model interpreter is needed,

such as a Prolog engine.  The srModels are bound to stimuli to yield responses as described

subsequently.  Because of RKRL’s syntax, any of these models may be interpreted as srModels.

That is, any frame may be interpreted according to the following pseudo-Java interpreter:

srInterpret (stimulus, context, resources, resources-available; Micro-world){

If(resources-available > resources) {

Return(getBodyMicro-world (findHandle(stimulus, context)));

}else{Return “I need more resources to investigate”+stimulus;}}

This interpretation treats each frame as an srModel.  This has some advantages in
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representation flexibility.  For example, Figure 6-9 includes abbreviated frames elaborating on

the DSP pool.  In the first approach, the DSP Pool is described in terms of a model called

processors.  With this approach, all of the new frames are part of the processors model.  To find

out the processor type, one must sort through the list of responses returned from presenting “DSP

Pool” as a query to the processors model.  This can be advantageous if one wants all the

information about the DSP Pool at once.

Alternatively, one could represent the same knowledge with the statement that the DSP

Pool contains processors.  This establishes processors as a named subset.  Other frames with

processors as the handle may elaborate.  The context for any subsequent processors frame is DSP

Pool/<prior context>.  Therefore, it is clear from the explicit context that the content of the frame

refers to the DSP Pool.  A frame may state that “Processors number 4.”  In this case, the model

semantics is “the number of processors is 4”.  The frame behaves like an entity-attribute-value

object.  The processors (of the DSP Pool) is the entity, the attribute is number, and the value is 4.

Thus, <model> specifications can behave like attributes, <body>s like values, and <handles>

like entities.  The more general expression of the semantics is “the attribute of the entity is value”

or “the <model> of the <handle><context> is <body>.”  A practical RKRL interpreter (e.g. CR1)

could consolidate these frames into srModel: DSP Pool, with frames denoting the following

values of attributes of the  processors entity:  (processors, number)->4, (processors, type) -> C6x,

etc.  The source frames would be:

Efficient srModel:

Handle Model Body

0. Digital Hardware Contains DSP Pool
1. DSP Pool Contains Processors
2. Processors Type-Query (Processors, type)
3. Processors Number-Query (Processors, number)
4. Processors MIPS-Query (Processors, MIPS)
5. (Processors, type) DSP Pool C6x
6. (Processors, number) DSP Pool 4
7. (Processors, MIPS) DSP Pool 2600

In this style of populating sets into RKRL, frames descend the ontological hierarchy until

they encounter an atomic unit of knowledge.  “There are four processors in the DSP Pool.”  This
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representation permits an efficient srModel to be expressed in RKRL and run using the simple

srModel interpreter srInterpret.  In addition, RKRL’s set-theoretic foundation provides a natural

way of deriving effectively-computable models.  In frames 0 above, the DSP Pool was named as

a subset of Digital Hardware, presumably of a PDA.  At this point, the subset has been

enumerated but not characterized.  In frame 1, the additional subset of DSP pool, processors, is

enumerated.  Frames 5-7 use DSP Pool as the model within which the properties of the

processors are defined.  This is natural since processors is a named subset of DSP Pool. The

point at which DSP Pool becomes a model is the point at which it is characterized.  A knowledge

acquisition algorithm can easily determine which named subsets exist in S.  It can then check to

see which of these is not used as a model in a frame.  If there are none, but that named subset

becomes relevant to an inference in S, then it can ask the system and/or the user to tell it about

that subset, creating a model.  The basic techniques would be those of Davis schema-schema

[35].  If number of processors, type, and MIPS are the only subsets enumerated for the set Digital

Hardware, then the characterization of DSP Pool would be algorithmically complete.

The named subset offers additional interesting ways of partitioning knowledge.  For

example, knowledge about queries can be kept at the concept level of RKRL, as follows:

Frames for Query Schema as a Concept
Handle Model Body Context Root

1. RKRL Contains Concept
2. Concept Contains Query RKRL
3. Query Contains Entity Concept/RKRL
4. Query Contains Attribute Concept/RKRL
5. Query Contains Class Concept/RKRL
6. Query Contains Value Concept/RKRL
7. Query Contains DeclarationFrame Concept/RKRL
8. Query Contains Value Frame Concept/RKRL
9. Declaration Frame Contains <Handle> Query/Concept…
10. Declaration Frame Contains <Model> Query/Concept…
11. Declaration Frame Contains <Body> Query/Concept…
12. <Handle> Sequence Entity Declaration Frame …
13. <Model> Sequence Attribute-Query Declaration Frame
14. <Body> Sequence (Entity, Attribute) Declaration Frame

These frames constitute a detailed schema for the declaration frame of an arbitrary query.

The frames 2-4 of the DSP Pool model conform to this schema and could have been interactively
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generated from it.  A few additional frames added to the Query Schema define the value frames (

frames 5-7) of the DSP Pool model, as follows:

Additional Frames for Query Schema Define Value Frames of a Query
Handle Model Body Context Root

15. Query Contains Value Frame Concept/RKRL
16. Value Frame Contains <Handle> Query/Concept…
17. Value Frame Contains <Model> Query/Concept…
18. Value Frame Contains <Body> Query/Concept…
19. <Handle> Sequence (Entity, Attribute) Value Frame/Query…
20. <Model> Sequence Class Value Frame/Query…
21. <Body> Sequence Value Value Frame/Query…

This completes the definition of meta-level frames needed to precisely model the informal

notion of Query as a characterized subset of DSP Pool.  Note also that the inclusion of the contex

root in the frames precludes namespace conflicts.  These frames act like a (serialized) class

specification.  Since they exist at the Concept level of the RKRL taxonomy, they are available in

any context, but they can also be overwritten in lower-level contexts without confusion.  For

example, there might be a context “SDR Forum/ Query/ Concept” that overrides this default

specification.  This alternative could be employed by those who wish to conform to the standard

offered by the SDR Forum.  Or there might be a context “ My PDA/ NexTel/ Washington DC/

North America/ Universe/ RKRL” that specifies the way NexTel structures this knowledge in the

Washington, DC metropolitan area.  Since the frames are available in XML, they could be

interpreted in Java, LISP, C++, Smalltalk or any other present or future development

environment with object-oriented capabilities.  RKRL, thus, is an extensible language for the

evolution of software-defined radios.

6.2.3 Overview of the Axioms

The primary set-theoretic axiom of internal representation consistency is that every RKRL

frame is a member of the set RKRL or one of its subsets.  This is the fundamental axiom of

RKRL as a topological space as formulated above.  All frames are therefore derived from other

frames via the expand operator.  Expand assures that a body of some frame contains the new

elements (members or named subsets).  This axiomatizes the property that all frames are linked

to the root frame containing only “RKRL.”  Multiple frames may have the same handle but
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different models, bodies, etc.  It is axiomatic that the context root of each frame expresses a path

from the current frame to the root, “RKRL.”  This permits one to express a variety of models

(types of information) that refer to the same concept, entity, attribute, object, situation, context,

etc.  The primary model-reference axiom is that there is a mapping between the sets represented

in RKRL and sets occurring in the world.  The fundamental axiom of the frame is that the

semantics each frame is specified in the frame’s <Model>.

Each frame may have natural language content, e.g. using natural language models

“Definition” or “Word Role.”  Other frames may serve only the set-theoretic function of

referring to sets of other frames.  Alternatively, the frame may be formally defined in terms of

axiomatic models.  Space, time, and objects that occupy (Time x Space) obey axioms.  Space is

represented using two overlapping coordinate systems.  Location is specified by latitude and

longitude, and optionally elevation and velocity (speed in each direction), e.g. from GPS

coordinates.  If only latitude and longitude are available, reasoning is required to infer altitude as

a function of context (e.g. at aircraft altitude if the user’s itinerary calls for a flight, or at ground

level otherwise).  The error associated with such location estimates is also axiomatic, and may be

a function of location and speed.  For positioning inside buildings, positions are axiomatic.

Position sensors read (x, y), (x, y, z) tuples, or the names of landmarks that are advertising their

presence (e.g. “The Front Door to the Centrum Building.”)  Objects that occupy (Time x Space)

may be people, places, things, concepts or hybrids.  Fore example, a river is a thing, but

Germany is a place concept having physical extent specified by its borders, a set of (Latitude,

Longitude) points.  Space, time, person, place (location and/or position), thing, temporal concept

and spatial concept are the logical sorts governed by these axioms.  A frame that mentions

“thing” in its model slot declares that the handle and body participate in the “thing” model.  For

example, the frame:

Antenna thing Radiates RF energy,

specifies that an antenna (handle) is something (model) that radiates RF energy (body).  If

an algorithm wants to know if an antenna could be a thing, it presents the string “antenna” to the

thing model in the appropriate context, and inspects the result.  If it is null, then the system does

not know of antenna as a thing in that context.  The user may then search the RKRL hierarchy

for other knowledge about antennas.  Alternatively, the handles of the RKRL frames may be
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searched for “Antenna” to identify the contexts in which it occurs.

The behavior of objects that emit and reflect radio waves is axiomatic.  The axiomatic

treatment of radio propagation is that the instantaneous field vector at any point may be

calculated from Maxwell’s Equations.  All objects in a scene, therefore, may interact with radio

waves.  Waves may be generated, reflected, diffracted, and/or absorbed.  Each function that

calculates the field vector is therefore, axiomatically, an approximation of Maxwell’s equations.

This admits high-fidelity approximations like the Geometric Theory of Diffraction (GTD) [176,

14, 177].  This also allows computationally intensive approaches like ray tracing [178, 176].  On

the other hand, much simpler, less computationally-intensive, empirical techniques are also

admitted that approximate received signal strength based on a few parameters [179, 180, 181].

The behavior of most modeled objects is expressly not axiomatic.  Except for the

occupancy of space and time and radio propagation, any object may behave in any observed

way.  The statements of a specific micro-world may constrain or intensionalize behavior.  If so,

that is a property of the micro-world admitted by RKRL but not imposed by RKRL.  This is an

important ontological stance.  Intensional models, like expert system rules or functional

grammars, impose structure on a domain.  RKRL may be used to express that structure if it is

present, but RKRL can express knowledge extensionally if structure is not present or is not yet

formulated.

Finally, the axiomatic treatment admits extensions that are set-theoretic but that do not

conform to the other axioms.  In other words, arbitrarily represented knowledge may be

expressed by contains with appropriate models in an RKRL frame.  This is useful in building up

a dictionary of stimuli to which a cognitive radio has been exposed but about which it has no

further information.  The list of such unknown stimuli can be used as a basis for interactive

knowledge acquisition with the user, network, or designer.

Micro-worlds are built up using a mix of axiomatic and non-axiomatic sorts.  They may be

built up as cases through the experience of cognitive PDAs, for example.  Other micro-worlds

are designed for specific purposes, such as defining a high level or novel data exchange protocol.

Low level encapsulated protocols like TCP, GPRS, etc. are managed by cognitive radio and thus

are expressed as parameter sets defined over an Applications Programmers Interface (API) in
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RKRL.  The details of TCP usually would not be expressed in RKRL frames.  The modules of a

dynamically defined protocol, on the other hand, would be expressed in RKRL and manipulated

by cognitive radio, e.g. in tailoring a protocol to an application.  Frames may also specify state

machines and message sequence diagrams using the phrase-structure grammar developed for

CR1.  This might not be the most computationally-efficient way to realize a protocol, but it is

flexible in order to mediating higher level tasks such as selecting from among protocols, setting

up protocol parameters, and the like.

6.2.4 Interpreting Frames

Each frame can be interpreted as an srModel in which the handle is matched (resolved or

bound) to a stimulus and the body is the response of the model.  If the frame is purely

extensional, the body is the response.  If the model is partially intensional [28], the binding of a

stimulus to the handle returns model (handle, body, context, resources).  That is, the handle is

bound and passed to the model (optionally with the context and/or resource limits), returning a

result that has the form specified in the body.  As shown in Figure 6-10, this permits RKRL

frames to be interpreted as propositions, genetic structures, expert system rules, predicates, Horn

clauses, cases, or a data base.

RKRL j

<Frame>

<Handle><Model><Body><Context><Resource-specification>

RKRL contains

  Meta, Universe
Meta contains …
Universe contains ...

RKRL0

contains

<Root><Source><Time><Place>

<Resources><Depth><Breadth><Sub-Elements><Sub-Frames>

Micro-world j :=  {<Frame>}*

Syntax

Air Interface contains GSM

GSM RF  > 860 MHz
The RF of GSM is at least 860 MHz
Air Interface = GSM & RF? => 860 MHz

srModel:  Stimulus -> Response

Propositional Calculus
Entity-Attribute-Value Analysis
Vector Attributes
Neural Networks
Genetic Structures (partial GA)

IF (Model, Handle, Context) 
THEN (Body)

Rule-based Expert Systems
Forward Chaining
Predicate Calculus
Limited Theorem Proving

CASE:  Model(Handle, Body, Context)

Case-based Reasoning
Nearest-Neighbor Retrieval
Decision-tree Retrieval
Data Base Analysis
Conceptual Clustering

Interpretations

Figure 6-10 RKRL Frame Interpretation Depends on the Model and Context
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This approach enables heterogeneous knowledge representations to co-exist in a single

XML syntax.  Instead of interpretation using a single style implicit in the use-environment,

RKRL makes the mode of interpretation explicit as the model of the frame.  For example, if the

model is “RULE” the handle may be interpreted as the antecedent of an if-then rule with the

body as its consequent.  A different rule-based inference engine might want the handle to

represent a unique name for each rule and the body to represent the antecedent and consequent of

the rule.  That is not precluded, provided the model is explicit, e.g. the rule model is Nexpert-

Rule.  Other frames may be interpreted as problem-solution cases in which the context and

handle specify the model aspect of a problem, and the body specifies the solution.

6.2.5 Incremental Extensions

Frames may be added by asserting a frame for which the model is contains and the body is

the new item.  That body then may be the handle of a new frame that further defines the new

entity or concept.  If not, then the entity is one of the leaves of the RKRL taxonomy, functioning

as a member of the set indicated in the handle.  Consider the following two abbreviated frames:

     <Handle> <Model> <Body> <Context>

(1) Protocol contains UDP Networks/Concepts/Version 0.3/RKRL

(2) Protocol contains TCP Networks/Concepts/Version 0.3/RKRL

These two partial frames say that protocols are network concepts and they include (but are

not limited to) UDP and TCP.  The details of TCP would be provided in amplifying frames.  In

addition, the UDP-defining frames might also be reachable from the context

Telia/Stockholm/Europe/Earth/Universe/Version 0.3/ RKRL if Telia’s uses UDP on a network in

Stockholm.  Frames from that context might differ from frames in the Networks/Concepts

context, overriding them as appropriate to the local conditions of the network.  Thus, the addition

of frames to RKRL can achieve the same effect as overriding a slot or method in an object-

oriented representation.  The frames that are closest to the invocation context will be used first,

overriding similar frames elsewhere in the hierarchy.  Frames may be represented as serialized

Java objects, and conversely.

RKRL is therefore an extensible language for representing radio knowledge in a way that is
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independent of software operating environment, but mappable to any object-oriented, rule-based,

or logic-programming target use platform.  In addition, its set-theoretic foundations are based on

point-set topology, not the valuation functions of the predicate calculus.  This brings

mathematical precision to the relationship between entities in the real world, W, and the internal

world of the software radio, S.  The identification of point sets, the evaluation of the

homeomorphism properties of behaviors that map among W and S is unique to RKRL.  In

addition, RKRL thus formulated has the flexibility to address many aspects of the use-cases in

ways that are awkward at best using any of the homogeneous approaches.  Finally, since RKRL

is available in XML frames, it is a starting point for an open-architecture language for the rapid

evolution of software radio.  Important details are now discussed.

6.3 Syntax

The syntax of RKRL is as follows.

1. RKRL := RKRL0 ∪ RKRLj

2. RKRL0 :={<Frame>}0

That is, RKRL is the union of an initial set of frames, RKRL0, and extension(s) RKRLj.

A frame is a tuple:

3. <Frame> := [<Handle> <Model><Body><Context><Resources>]

4. <Handle>, <Model>, <Body>, <Context>, <Resources> ε String.

Each frame is defined in the context of a set S of frames (e.g. RKRL0, RKRL1, etc.) as

follows:

5. ∃ S = {<Frame>*}, and for each frame Fi ε S.

6. <Frame>j+1 is derived from <Frame>j ⇔

<Handle>j+1 = <Body>j; and <Context-root>j+1 = <Handle>j/<Context-root>j

The predicate Link(<Frame>j+1, <Frame>j) is true in 6.  In addition, Link is transitive and

inherited by sets of frames:

7. Link(<Frame>x, <Frame>y) and Link(<Frame>y, <Frame>z)



115

⇒ Link(<Frame>x, <Frame>z)

8. Link({<Frame>x}, <Frame>y) ⇔ Link(<Frame>x, <Frame>y).

The following axioms apply to the structure of all frames:

9. Hj is a <Handle> ⇔ ∃ Fi ε S such that Hj = <Body>i and <Model>i = “Contains” and

10. Mj is the Model of Fj ⇔ ∃ Fi ε RKRL such that  Mj= <Body>i and <Model>i =

“Model”

11. <Context> := <Context-root>, <Source>, <Time>, <Place>, where:

12. <Context-root>j := RKRL | <Handle>j-1/<Context-root>j

13. <Source> ε String and <Source> specifies the source of the frame

14. <Time> ε String and <Time> specifies the time of creation of the frame

15. <Place> ε String and <Place> specifies the place of creation of the frame

16. <Resources> := <Model-resources>, <Depth>,<Breadth>, <Sub-elements>,<Sub-

frames>

17. <Depth> is the maximum number of elements in any <Context> linked to <Frame>

18. <Breadth> is the maximum number of frames that have a mutual handle

19. <Sub-elements>y is the number of frames for which <Handle>x=<Body>y

20. <Sub-frames>y is the number of frames for which Link(<Frame>y, <Frame>x) is true

21. RKRL+ := {<Frame>}* such that ∀ Framei ε RKRL +, Link(RKRL0, Framei).

The following summarizes the import of these axioms.  All elements of frames are

representations, strings.  The model expresses the relationship between the handle and the body.

The context root specifies the most general point of insertion of this statement in the tree of

representation sets.  Extended context also specifies the time and place of the entry and its

source.  The resources specify the software radio resources needed to perform the operation

represented in the frame, if any.  This includes the computational burden associated with the

frame.  If the frame is purely declarative (contains no computational model), then resources may

be null.  Micro-worlds are collections of frames.  Each micro-world contains at least one frame.
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6.4 General Logical Sorts and Axioms

The logical sorts and axioms of RKRL implement the mathematical foundation of RKRL

in point-set topology.  The identification of point sets and subsets in RKRL is the primary

paradigm for knowledge organization in RKRL.  The hierarchical inheritance of object-oriented

approaches is replaced by inference over the RKRL ontology of sets, subsets, and super-sets.  A

class is a set that is interpreted as a template for another set.  Thus, any set may be interpreted as

a class.  Objects are encapsulated by associating related data structures (slots) and procedures

(methods) to a class.  An instance then inherits slots and methods from the class.  RKRL’s

representation-sets give names to slots and methods in frames.  Slots and methods, then are

interpretations of RKRL frames.

6.4.1 Ontological Expressions

RKRL sets and subsets are enumerated via a contains frame.

[<Handle>  contains <Body><Context><Resources>]

If such a statement is present in {<Frames>}, the set of frames in use, then <body> is an

enumerated point-set or subset of a point set.  The <body> may appear as a <Handle> in other

frames that characterize the set or subset.  In RKRL 0.3, for parsing pragmatics, the name of a

point set or subset must not include white space.  Any <body> that contains white space may not

be part of a contains frame.  The following sequence of frames establishes Europe and the

Atlantic Ocean as named subsets of the physical world.

Handle Model Body Context  (Place Time Source)

RKRL Contains Universe Version 0.1

(Fairfax, VA  9904282137 J. Mitola III)

Universe Contains Physical World RKRL/Version 0.1 (Fairfax…

Physical World Contains Global Plane Universe/RKRL/Version 0.1 (Fairfax…

Global -Plane Contains Europe Physical-World/Universe/RKRL/Versi…

Global-Plane Atlantic Ocean Contains Physical-World/Universe/RKRL …

(Since the contexts are tedious, the obvious higher levels are implied in ellipsis for clarity)

Each of the other major geographical regions of the world is included in the Global-Plane
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in RKRL 0.3.

Handle Global Plane
Model Set

Body (Africa Alaska Atlantic Australia Canada Caribbean China Europe GEO
A GEO B GEO C GEO D HEO Orbit India Information Interconnect Japan Low-Earth-
Orbit Mid-East Pacific Russia South America South Asia Temporal Pattern Travel USA )
Context  Physical World Model/Universe/RKRL …
Place : Rehoboth, DE
Time: 7/25/99 11:22
Source SetAccumulate()

Figure 6-11 SetAccumulate() Yields the Set Frame

The model “set” is reserved.  In RKRL, set-accumulation lists the enumerated subsets of a

named set.  Applying set-accumulate to Global Plane yields the associated RKRL set frame of

Figure 6-11.  In natural language this frame is read “The Global Plane set is (Africa, …) in the

Physical World Model, according to the SetAccumulate() operator of RKRL that was run on

7/25/99 at 11:22 AM in Rehoboth, Delaware.”  A CR1 planner, for example, can find how the

world is divided into regions from this set frame.  Its extended context permits reasoning about

whether it is authoritative or might need to be updated.

Definitions are formal RKRL models that establish relationships among natural language

expressions.  For example:

Handle Model Body Context  (Place Time Source)

And Definition Logical Conjunction Models/Universe/RKRL Version…

This frame in the Models micro-world defines And to be a logical conjunction. (Statements

from RKRL 0.1 show how to compute the conjunction using Excel’s AND operation; 0.3

supports Java).  Such definitions allow a user to accompany an RKRL computational models

with natural language statements, e.g. documentation.  In other cases, such as the following, it

helps to describe general and specific knowledge about radios:
Handle RF Channel
Model Definition
Body Epoch in radio frequency allocated to a single carrier for a specified
time interval in a specified place
Context: Air Interface/Radio Functions/Universe/RKRL/Version 0.1
Place : Rehoboth, DE…
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Handle Carrier Bandwidth
Model Definition
Body 200 kHz
Context: GSM/Air Interface/Radio Functions/Universe/RKRL/Version 0.1
Place : Rehoboth, DE …

Through the definition model, RKRL has a way of going incrementally beyond ontological

awareness.  These chunks of knowledge can be played back to users and/or networks in the

interactive acquisition of incrementally more formal models.  A production-quality RKRL

interpreter (e.g. an extension of CR1) would employ definition frames to interactively

characterize point sets.

6.4.2 Axiomatic Model of Radio Communications

In Shannon communications, a source presents information to a noisy channel that delivers

the information to a receiver.  The model of Figure 6-12 expands this model to an axiomatic

treatment of users and context.  The formal objects consist of physical space and time, originator,

recipient, node(s), and channel.

Originator

Node

Content Needs

Node

Recipient

Content Satisfaction

Channel

Channel 1,j1

Channel 2,j2

Channel n, jn

...

Channel 1,k1

Channel 2,k2

Channel n,kn

...

Choose

Prepare 1

Prepare 2

Prepare n

...

Transmit 1

Transmit 2

Transmit n

...

Select

Receive 1

Receive 2

Receive m

...

Recover 1

Recover 2

Recover m

...

Feedback

Select

Receive 1

Receive 2

Receive m

...

Recover 1

Recover 2

Recover m

...

Choose

Prepare 1

Prepare 2

Prepare n

...

Transmit 1

Transmit 2

Transmit n

...

Feedback

Space Time

Frequency

Figure 6-12 Model of Radio Communications

People and radio nodes are distinguished objects.  People are the only objects that create
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data that contains information, while only radios can transmit and receive signals, which are

signals over time, space, and frequency.  People may create devices such as radio beacons that

autonomously transmit signals, but in this formal treatment, the information content originates

from a person (or a group of people such as the Federal Aviation Administration).  Each

cognitive radio has a global list of things that it knows. ”  The logical sorts that formalize these

statements are provided in Table 6-1.

Table 6-1 Logical Sorts for Distinguished Objects

Logical Sort Notation

The World W

The Model of the World S, |S| < M, a finite upper bound known a-priori

Universe, the set of all things in the universe U ⊆ W; S(U) ⊆ S; fU:U→S(U)

Person P ⊆  W; S(P) ⊆  S; fP: P →S(P) see below

Node Node ⊆  W; S(Node) ⊆  S; fNode: Node →  S(Node)

Concept, an abstraction that is formally defined C; C ⊆ U

The Integers Z; Z ε C

Sequence XZ ⊆ X x Z

Signal X(t) ⊆ C x T;  C are the complex numbers

Information C ⊆ I; I* ε C (I is represented as a concept)

Message M ⊆ I; M* ε C

Stream Stream ⊆ M x Z; Stream* ε C

Maps Map ⊆ IxIx…I, a finite Cartesian product of I

Data D ⊆ O; D* ε C

State M ⊆ O, memory, aspects of an object that are persistent

Instruction (of an Instruction Set Architecture) i ε  ISA ⊆ I x D

Program P  ISA x Z

Channel (in a spatial zone Z) CZ ⊆ E x T x RF, CZ* ε C

Radio Noise η ⊆ F x RF; η* ε C

Event V = (t, X ⊆ O x E x T x RF); V ε C; |V∩T|=0

Fluent F ε V, such that |F∩T|>0

Transmit Transmit:  S →  Cz

Receive Receive:  Cz →S

Inference Inference:  S→S

Prepare, Choose, Feedback, Select Prepare, Choose, Feedback, Select ε Inference

*Formal representation X* is the formal representation of X

The Universe, U ⊆  S, is the set of everything known about the universe.  C is the set of
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concepts that have been formalized.  It is not possible to put all the information in the universe, I,

into C ⊆ S.  But the formalization of all that information, I*,  is on this “list.  None of the items in

in C, but their formal representations are in C.  This treatment consistently distinguishes between

point sets in W and representation sets in S.  Thus, a context, X, occurs in the universe, but only

X*, the representation, is in C.

6.4.3 Space, Time, and Physical Objects

Space, time, and physical objects are formalized in Table 6-2.  Predicates map to TRUE,

FALSE, UNKNOWN, and (CHECKING, T).  Unknown means that the predicate cannot

determine whether it is true or false given the information in S and current resource constraints.

Checking means that the information is not available locally, but the predicate knew who to ask

(e.g. the network) and has initiated a query with maximum time allowed of T.  Such predicates

permit processes to proceed in a wait-free way with incomplete information.  A Java thread, for

example, might suspend itself until T.  People, radio nodes, and computational elements have

axiomatic properties as shown in the table.

Table 6-2 Logical Sorts for Space, Time and Frequency

Logical Sort Notation
Point w
Set W; w is a member of W is noted w ε W
The empty set φ
Space, a set of points in 3-space E, Real Euclidean space, ∃ e0 ε E
Region or Zone R ⊆ E, or G, ⊆ E, the geodesic subset of E
Somewhere, an arbitrary location EX; EX ε E
Physical Objects O ⊆ E; o ε O is closed and compact
Person P ⊆ O, and p ε P is closed and compact
Radio Nodes RN ⊆ O, and r ε RN is closed and compact
Computational Element CE  ⊆ O, and c ε CE is closed and compact
Time, a set of points orthogonal to E T;  t ε T is an instant
Time Interval (or Period) TI,j ⊆ T
Context, a confluence of space, time and state X ⊆ T x E x M; X* ε C
Radio Frequency RF, or fI ε RF; RF ⊥  E x T; RF* ε X
Map M ⊆  W x W x … W, for any set W

Additional non-logical primitives axiomatize the behavior of space (Table 6-3) and time

(Table 6-4).  The predicate near axiomatizes proximity.  The Physical Object predicate

determines whether x is known in S to be a member of the physical object family of subsets.
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Table 6-3  Spatial Primitives

Spatial Primitive Characteristics

Location(x) function Latitude and Longitude of x, with error σ

Position(x) function Local coordinates (x, y) or (x, y, z) within Location(x)

Near(e1, e2, b), predicate; b ε R Location e1 is within b of e2

e ε R, predicate Location e is in spatial region R

R1 ⊆ R2, predicate Spatial region R1 is a subset of R2

Physical-Object(x), predicate x ⊆  E, x is not empty, closed, bounded, and equal to the
interior of its closure

Locale(x), predicate Space sensed by x; Locale(t,p) is the space sensed by
Self at time t from position p = (x, y, z)

Intersection(R1, R2), function Yields the intersection of R1 with R2 or φ

Image(R, M), function Yields the image of R under map M (⊆ E x E)

Temporal primitives establish relationships among fluents and contexts.  Eval yields the

value of F in X if F is a property of an object.  If F is a set, it yields the members.  If F is a

function, it executes it and returns the value, if any, returned by the function.  The context S is

the context for the evaluation, e.g. from the <context root> and local dynamic context.

Table 6-4 Temporal Primitives

Primitive Characteristics

Holds(S,F), Predicate Fluent F holds in context S

Eval(F,S), Operator Computes the value of F in context S

[Si < Sj]( e0, b) Predicate Context Si precedes Sj b-near point e0 in E

As objects such as cell towers and other radios enter and leave the local environment of the

cognitive PDA.  The axioms reflect this using Appeared and Disappeared.  Location and

position refer to self, fixed, or last known absolute spatial characteristics of the objects.

Table 6-5 Physical Primitives and Functions

Primitive Characteristics

Exists(O), function Fluent of the point set occupied by O at EX

Present(O), function Fluent of the point set occupied by O ∩ S

Location (O), function Maps shape(O) b-near to e0 on O as a
 (Latitude, Longitude) pair or GPS vector

Position (O), function Fluent that orients O at e0 as (x, y), (x, y, z) or sεS

Appeared(O,X), function Object O appeared in context X

Disappeared(O,X), function Object O disappeared in context X
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6.4.4 Executable Models

Executable code is a formal model.  Bindable expressions from computer languages that

are incorporated into RKRL are designated using the name of the language as the <model>.  An

executable expression performs according to the language specification.  Expressions in RKRL

from interpreted languages like LISP perform the task indicated by the context and/or body when

bound and invoked.  In RKRL 0.1, Excel was the host language platform.  Therefore,

expressions like “=Weight 3 Model * Tap 3 Model + Weight 2 Model * Tap 2 Model + Weight 1

Model * Tap 1 Model” compute the values indicated when installed in a cell in an Excel

worksheet.  In this sense, Excel is a dynamically interpreted language suitable for building self-

extending systems.  The <model> family “Excel” designates the body as such an expression.  An

Excel macro can create a statement using string operations and insert it into a worksheet cell

where it is immediately interpreted.  This permits a macro to extend an Excel spreadsheet based

on data in the spreadsheet.  A macro cannot create new macros that way, so its extensibility does

not extend to the automatic creation of new meta-level primitives.

As an object-oriented language, Java’s data structures are readily extended, e.g. with the

srModels of CR1.  Java strings are not as readily attached to a variable and Evaluated as

programs (methods) from within a Java program as LISP, or even Rexx or Perl.  Java was used

because of the large number of software packages, including freeware, that facilitated the rapid

prototype implementation on a short schedule.  The WebL Java [85] dialect is simpler and easier

to extend than Java.  The Java dialect JPython [182] also permits user scripting, which is a

limited form of extensibility.  In addition, both WebL and JPython are dynamically typed,

alleviating many of the problems with attempting to extend Java directly at run time.

Machine learning in the form of acquiring new srModels does not require such dynamic-

extensibility.  Machine learning sometimes includes acquiring new skills.  For example, a core

machine learning program could construct a program to control a new effector by synthesizing

an explanation of its interface (API) into a program that calls the effector.  This requires a run-

time extensible language with persistence (so the new methods defined in a session are not lost).

Web interest in mobile agents seems to be creating renewed momentum for auto-extensible

languages.  The language needs for machine learning fly dramatically in the face of “good

programming practice.”  Writing self-modifying code has been practiced since at least the IBM
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709 era, but has been in disfavor as a programming style in the past.  The renewed emphasis on

machine learning forces one to rethink this predisposition.  It might be better to define

characteristics of “good” self-modifying code (e.g. provable stability, politeness in asking for

permission before modifying itself, etc.) to avoid “bad” self modifying code.

6.5 Micro-worlds of Space, Time, Spectrum, and Users

The space, time, and users micro-worlds implement the axiomatic strategy presented

above.  The environment-aware use case requires reasoning about radio propagation at the

physical layer and about means for sustaining services on the higher layers of the protocol stack.

RKRL therefore includes a spatial inference hierarchy organized into layers or “spatial planes”

for the above scenarios.  The Global plane supports international travel, the Regional plane for

shorter trips, the Metropolitan plane for urban areas, and a Local plane for the immediate

vicinity.  The knowledge structures are useable both horizontally and vertically.  Horizontal

reasoning refers to inferences within a specific plane, such as matching an international travel

itinerary to a list of world cities.  This reasoning generally occurs within a limited context (e.g.

planning a trip or on travel).  Vertical reasoning refers to the use of multiple levels of the spatial

hierarchy, such as using knowledge of the structure of a Metropolitan area to access the

appropriate wireless band and mode.  Sometimes a mix is required as in the following example.

The Time micro-world defines temporal primitives from nanoseconds to millennia.  The

primitives (in alphabetical order) are: days, Decades, Epoch, Hours, Instant, Interval,

microseconds, Millennia, milliseconds, Minutes, months, nanoseconds, Seconds, Session, years.

In addition, temporal epochs have subsets corresponding to atomic stimuli, phrases, dialogs and

scenes.  Atomic stimuli are parsable tokens.  The associated temporal epoch is the time required

to sense a parsable token.  Phrases are sequences of parsable token that occur between phrase

markers.  Phrase markers include time epochs of a specified duration and changes of context

including change of speaker.  Scenes are identified by communications context.  This set of

temporal subsets is tailored to the specific needs of the wireless PDA use-cases of the previous

chapter.

The Spectrum micro-world contains nearly 300 frames describing radio spectrum

allocations.  There is also an embedded model of potentially pooled spectrum that was used in
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the use case above.  As cognitive radio is implemented, this micro-world must include the

detailed characteristics of each band within which the radio will operate.  This micro-world

includes preliminary templates of signals accepted for operation in each band.  This includes the

usual air interface characteristics of allocation, RF channelization, modulation, power envelopes,

etc.

The User micro-world defines characteristics of users, including Sex, Name, and Home.

Capabilities of users are also defined: Record (as in, to write something down), Remember, Sell,

Buy, Hear, See, Relieve, Speak, Listen, Walk, Sleep, Eat, and Plan.  In the development of CR1,

the user micro-world was expanded to include dialogs from foreign language phrase books.  CR1

was trained on these dialogs using the material from RKRL 0.3.

6.6 The Spatial Micro-worlds

The ontological micro-worlds provide the axiomatic treatment necessary to define concepts

unambiguously and to support the automatic generation of proofs (e.g. of the viability of a plan).

The spatial micro-worlds are those ontological micro-worlds with the data structures and related

domain knowledge necessary to accomplish mobile wireless tasks using spatial reasoning.  These

micro-worlds consist of the Global plane, Satcom, the Regional plane, the Metropolitan) plane,

and the Local micro-world, which defines local, immediate, and fine-scale spatial structures.

6.6.1 Navigating Spatial Planes

Since the spatial calculus is defined over sets, a spatial plane is a representation of a subset

of space.  The default test for inclusion in a spatial region is the intersection of the radio’s

present-location with the set (or a subset) of the region in question.  For example, the region

Europe includes an explicit list of cities like Stockholm.  Therefore, if the set that represents

present-location (“Here” in CR1) includes Stockholm, the intersection of the present-location set

with the cities of Europe contains at lest the point “Stockholm”.  If Here includes a latitude-

longitude tuple, then the computational model of set intersection for that element is a search of

latitude-longitude boxes using the metrics from R.  If the intersection of present-location with all

the spatial planes is empty, then the cognitive radio does not know where it is located.

But location is defined on many levels including distance from the nearest cell tower.
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Thus, spatial reasoning micro-worlds include the location of fixed transmission facilities.  A

cognitive radio could employ its KQML-ask skill to obtain this information from cognitive

infrastructure.  Regions are included in each other to the degree that their sets overlap.  Thus,

cognitive radio’s internal characterization of its location is the set of all spatial sets that intersect

with items independently placed in its present-location set.  Its GPS receiver, for example,

provides an independent input to this set.  A network’s reply to a KQML query would also be

independent input.  The inference drawn about whether the radio is indoors or outdoors from its

environment sensors is also an independent input.  This representation mechanism supports

reasoning about the mutual consistency of members of present-location.

6.6.2  Global Plane

Figure 6-13 shows the top level of the physical-world inference hierarchy.  This is the

global plane in which telecommunications patters that are global in scope are represented.  This

can include global demographics such as population, global connections, global connectivity

statistics, and global calling patterns.  Its primary purpose is to represent deep knowledge about a

specific user, such as the owner of a mobile PDA.  If that user is in the middle of a trip around

Europe, for example, his travel itinerary is mined for information useful to both the PDA and to

the networks in which it finds itself during the trip.
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Figure 6-13  Global Plane of the Inference Hierarchy

The global plane micro-world includes the countries of the world, the oceanic areas used
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for telecommunications and the satellite systems that connect more than one country at a time.

This space has a characteristic distance of about 10,000 km.  The characteristic distance is a

measure of the average spread in distance among objects at this level of the hierarchy.  This

plane has a characteristic time of about a year.  That means that its properties should be updated

about once a year.  In addition, significant motion in a domain requires a rate of speed that can

transit a substantial fraction (>10%) of the characteristic distance in an hour.  Such a traveler

would be traveling at 1000 km/hr, e.g. in an aircraft.

In addition to a set of objects with aggregate characteristics, each plane has additional

properties including specific interconnection mechanisms, movement patterns and other

mechanisms as defined above.  These properties include the following:

1. Characteristic Interconnect:  Fiber trunks, Satcom

2. Characteristic Travel:  Air (rail, ship)

3. Temporal Patterns:  Annual (vacation, business events), demographics, day-

night zones

4. Space-time:  User Itinerary filed with network

5. Information:  Location, telephone #, Internet-address, mobility, path length,

delay, data rate, QoS, traffic density

Items in parenthesis such as (rail, ship) may be relevant to the topic but would generally be

secondary in nature.  The space-time mechanism captures the ways in which relationships among

space and time are aggregated in this domain.  The information aspect indicates the factors that

most effect access to information or availability of information.  At the global level, one’s

location in the world has the first order impact on access to information infrastructure.  Even

with the forthcoming operational status of Iridium, access to ISDN, video teleconferencing and

high speed internet services will be driven by location.  In addition, one must have a known

address to be reachable.  And the characteristics of the information pathway must be capable of

supporting the information service.

6.6.3 Regional Plane

The next level down the RKRL spatial inference hierarchy is the regional plane.  Each
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member in the global-plane (e.g. Europe) has RKRL frames for its own representation set that

defines its structure.  Figure 6-14 illustrates part of the regional plane for the European

Community.  Each plane is faithful to real-world data to the degree necessary for cognitive

radio’s goals.  When transiting through the airport, one does not need much detail.  When

arriving for an extended stay, greater detail is appropriate.  In addition, the degree of error on

each plane is represented by open balls in the applicable topological space.

Oslo

London

Stockholm

Copenhagen

Paris

Berlin

Helsinki

Characteristic

Distance:  1000 km
Time:  1 week
Speed:  200 km/hr

Figure 6-14 Regional Plane Consists of Major Urban Areas in a Global Region (e.g. EC)

The additional properties of this region include:

1. Interconnect:  Fiber trunks, Satcom (Terrestrial microwave)

2. Travel:  Commute by Air (rail, ship, automobile)

3. Temporal Patterns:  Weekly (annual, daily), seasonal

4. Space-time:  Itinerary, commuting habits, day-night boundary

5. Information: same as global level plus constraints imposed by the nature of

geopolitical boundaries such as national borders; physical barriers such as

mountain ranges; etc.

6.6.4 Metropolitan Plane

The next level of the cognitive radio hierarchy is the metropolitan region illustrated in

Figure 6-15.  Metropolitan areas generally contain the greatest intensity of telecommunications

infrastructure.  Clearly, regions defined at this level may not be metropolitan areas

demographically.  A large wilderness parkland, for example, could be on the metropolitan plane
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of the inference hierarchy.  Stockholm located within 100 km of the hub could be of relevance to

service-delivery tasks of cognitive radio, depending on the location of the user’s home,

depending on vacation habits, etc.  In addition, commuters have a daily pattern that involves

movement among these regions, typically by rail or automobile.  RKRL’s representation sets are

defined to capture information that is relevant to services delivery, while not creating a

computational burden.  A protocol for updating a cognitive PDA’s local store of this level of

knowledge could be built on RKRL’s KQML facility.

Stockholm

Uppsula

Kista
Norrtälje

Enköping
Südertålje

Characteristic

Distance:  100 km
Time:  1 day
Speed:  50 km/hr

Figure 6-15  Metropolitan Area Plane Defines Adjacent Geography and Infrastructure

Other significant properties of this level of the inference hierarchy include:

1. Interconnect:  Wireless, Fiber trunks, (Satcom) Propagation:  Coverage is the

primary issue

2. Travel:  Commute by Rail, auto, (air, ship)

3. Temporal Patterns:  Daily, (weekly, annual, seasonal)

4. Space-time:  Commuting habits, to-do list

5. Information: Wide area access, best service provider

At this level of the hierarchy, the extent of wireless coverage becomes important.  In

addition, temporal patterns shift to a daily cycle driven by commuting and leisure pursuits,

depending on the day of the week and the season.  A commuter’s normal pattern will be shaped

by a notional “To-Do” list, which may cause significant variations in the space-time pattern of

demand offered for wireless.  Visits to clients, luncheon engagements, etc. can shape the needs

of wireless power-users such as corporate executives.  Since power-users may be early adopters

of the new level of services contemplated in this research, their patterns provide relevant use case
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scenarios in which to test cognitive radio concepts.

6.6.5 Local Plane

Continuing down the initial inference hierarchy, one encounters the local area plane

illustrated in Figure 6-16.  The local area is the region that is within a 5-10 minute walk, subway,

or automobile ride.  A subscriber’s location will typically vary over this area throughout the

course of a day.  In the example of the figure, a visitor to the SAS Royal Viking hotel in

downtown Stockholm might take a walk around town.  The Åhlens and NK department stores

are located within a few hundred meters of the hotel and of each other.  This is adjacent to the

large green area of the Kungstradgarden, a parklike walkway to the river.  The vicinity of the

Opera is adjacent to the old city of Gamla Stan in which there are a number of restaurants and

shops.  The bridge connecting Gamla Stan via the Centralbron to the Central Station rail

terminus provides convenient access back to the Royal Viking.  These key places in town are

part of the local area that constitute important elements of the spatial domain for a user visiting

this part of Stockholm.

Grev Turgatan
Park

Opera

Gamla StanBridgeCentral
Station

SAS Hotel

Åhlens

NK Characteristic

Distance:  1-10 km
Time:  1 hr
Speed:  5 km/hr

Figure 6-16  Local Area Plane of the Inference Hierarchy

Additional aspects of this radio access space include:

1. Interconnect:  Wireless, Cordless, Satmobile (Propagation:  Reflection, scattering,

multipath; preferred Bands: VHF, UHF, (EHF, HF)).

2. Travel:  Foot, taxi, train

3. Temporal Patterns:  Daily, (weekly, seasonal)

4. Space-time:  To-do list, meals
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5. Information: Local access, local coverage/ gaps

The local area plane is the logical level of abstraction for a next-generation level of depth

in defining wireless access.  The higher levels support a travel scenario, but this level supports

routine daily use of wireless.  Fade zones, areas of constructive interference and overlap among

coverage of service providers may be captured by a cognitive radio by cataloging signal fluents

across the dimensions of interconnect, space-time and information access.

6.6.6 Immediate Area

But fourth-generation capability could also reach to the next level of the hierarchy.  This is

the immediate area plane illustrated in Figure 6-17.  Although the local area can be described

using two or 2 ½ dimensional models, (x, y, and height in selected places), the immediate area

requires the full three dimensional treatment.  Sensors of an environmentally aware radio

characterize this plane as it continuously changes to reflect the immediate vicinity of the owner

of the mobile information appliance.  The characteristic distance of this area ranges from one to a

hundred meters.  The characteristic time scale is on the order of seconds to minutes.

Characteristic

Distance:  100 m
Time:  1 minute
Speed:  1 m/sec

Figure 6-17  Immediate Area Plane Characterizes Propagation in Three Dimensions

In addition, the information focus has changed as suggested by the following

characteristics:

1. Interconnect:  Voice, Wireless, Cordless

Propagation: Vehicular reflection, multipath

Preferred Bands: VHF, UHF, (EHF, HF)

2. Travel:  Foot, (taxi, train refer to inside of vehicle)
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3. Temporal Patterns:  Hourly/ momentary action needs

4. Space-time:  Use of artifacts, dead reckoning navigation

5. Information: Nearest infrastructure access point

Travel in this plane is limited to walking or movement within vehicles which themselves

may be moving.  On the global plane, the user is one of millions of others represented from a

statistical perspective.  A unique itinerary in the global plane allows the network to plan and

deliver customized support for the user.  But, that plane itself is itself not user-centric.  The

immediate area plane, however, is the user-centric plane.  It is best described by a coordinate

system that moves with the user, reflecting his immediate environment.  Its creation will require

a mix of models.  The distribution of data about this plane would certainly place significant

demands for bandwidth on conventional cellular infrastructure.  One wonders whether the cost

would be worth the benefit.  A local RF LAN, however, could deliver large volumes of data

about one’s immediate area at low cost.

6.6.7 Fine Scale

A still deeper level, the fine scale plane, is probably beyond the descriptive capabilities of a

cost-effective network.  This plane consists of the objects within 10 meters of the user as

suggested in Figure 6-18.  Assume that a cognitive radio PDA is carried or worn by the owner.

It may interact with other objects in the environment such as the owner’s personal computer

(PC), e.g. using Bluetooth, or an Infrared port (IRDA).

Characteristic
Distance:  10 m

Time:  1 µsec

Speed:  .1 m/s

Figure 6-18  The Fine Scale Plane Characterizes Each Significant Object

Propagation effects in the fine scale plane are those that change over fractions of a

wavelength. This plane has the following additional characteristics:
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1. Interconnect:  Physical Contact

Propagation: Reflections from body parts, walls, furniture, appliances

Preferred Bands: Infrared, optical, EHF, (SHF)

2. Travel:  Movement of body, artifacts

3. Temporal Patterns:  Segment of momentary motion

4. Space-time:  Fine scale effects

5. Information: Very low power local exchange possible

Space-time patterns could be induced from the unit’s own knowledge of its own location

plus measurements continuously made by the unit.  One benefit of knowledge on this level is the

design of very low-power high-data-rate exchanges among information appliances.  The hand

held unit could periodically probe the RF bands to determine if there is a computer or other

information appliance in range.  Cognitive radio could employ its fine-scale to enhance local

connectivity.

This concludes the definition of the spatial inference hierarchy.

6.7 The Generic Radio Micro-worlds

The Generic Radio micro-worlds define those aspects of radio that are generally applicable

to terrestrial mobile wireless.  These micro-worlds include Propagation, Architecture, Functions,

Internal, and Hardware

6.7.1 Propagation

The Propagation micro-world consists of 33 frames that identify the interfaces to

propagation models.  This micro-world describes the Walfisch model to provide an exemplar.

The spatial scale of these models is the local to immediate planes of the spatial hierarchy.  The

functional interfaces expressed in RKRL are the (fact of a) terrain model, the type of RF

parameter estimated (e.g. received signal strength), and the fidelity of the estimate.  In addition,

RKRL requires a resource estimate.  This could be an elapsed time estimate for typical and

worst-case situations on the target machine.  These axioms and interfaces permit one to integrate

an existing propagation model as an inference component in a cognitive PDA as illustrated in
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Figure 6-19 [183, 184].

RFCAD Propagation Map and Contour Profile, © Biby Engineering Services

Figure 6-19 Illustrative Contributions of Propagation Modeling Components

The best models require a three dimensional map of the local area that is accurate to 1

meter in three dimensions.  Typical propagation models at this scale are accurate to about 2 to 5

dB [185].  Embedding such models into the propagation micro-world can predict the extent of

deep fades given the location of nearby cell towers and buildings.  Cognitive radio could use this

information to avoid offering a long file to a network in an area where it has low probability of

fast error-free transfer on a given air interface.

6.7.2 Internal Plane

The Internal micro-world describes the components of a software radio.  RKRL 0.3

includes over 100 frames in the Internal micro-world.  This micro-world enumerates Hardware,

Software, Modem, Demod, Equalizer, and Memory as subordinated micro-worlds.  The

description includes black-box capabilities and parameters for Antenna, Antenna Arrays,

Baseband Processor, IF Processor, Modem, ODP software for distributed processing, and RF

Conversion.  This plane is illustrated in Figure 6-20.  It contains or points to all the sets that

represent the internal states of the unit itself.  This plane allows the unit to perform self-

referential reasoning.  Such reasoning is necessary, for example, for the unit to determine

whether a download of a new personality or capability would be beneficial or detrimental.  In a

single-mode network-centered world, handsets do not need such capabilities.  In a multi-band
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multi-mode terminal-centric future, such reasoning capabilities will be essential to protect the

PDA from unintentional injury by the networks.  This plane contains a simple functional model

of the radio unit such as the functional model proposed by the SDR forum.  In addition, it

contains configuration data on the hardware, software, and firmware as illustrated in the figure.

This micro-world may refers to the architecture, hardware, and software micro-worlds for

additional detail.  These items could include analog parts, FPGA’s, DSP’s, buses, and general

purpose computers.  Each is characterized at least in terms of function, interfaces, processing

capacity and memory.

Hardware

Software

                                     Application                                   

         Radio Modes         Network Modes

State Machines

                          Infrastructure Middleware                    

                          Operating System, Drivers ...                 

Analog HW FPGA DSP Host MIPS Memory

Antenna Wireline

RF
Conversion

Modem INFOSEC
Inter-

networking
User

CORBA

Figure 6-20  Internal Plane

This plane also has information access concepts including the following:

1. Interconnect:  Electronic and logical inside of node

2. Travel:  Movement of data in streams, packets, CPU

3. Temporal Patterns:  Isochronous streams, instruction cycles

4. Space-time:  Data capacity of info path/ protocol/ reliability

5. Information: On which processor is the data/program hosted?

Interconnect now refers to the process of joining items inside the radio to each other.  The

antenna is connected to RF conversion, etc.  One “Interconnect” is defined in a set-theoretic way,

the facilities apply as well to the interconnection of an antenna and an RF converter as to
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interconnecting the US with Europe.  Travel at this level of abstraction now concerns movement

of data.  Data includes applications data such as streams of digitized voice.  It also includes

instructions packaged as data loads and comprising personalities or capabilities for the radio

node.  Space-time now refers to the distribution of data on processors.  Information access is

determined by the location of the data on specific processor or memory components.

6.7.3 Architecture

The Architecture micro-world consists of over 90 frames that define the generic

architecture of the software radio.  It identifies functions and components, including the standard

reference framework of the SDR Forum.  The set frame for this micro-world is as follows:

(Channel Coding and Decoding , Channel Set , CORBA Middleware , Evolution Support ,

IDL , INFOSEC , Joint Control , Modules , OE , Personality , Service and Nework Support ,

Source Coding , Source Decoding , Source Set , Views , )

6.7.4 Functions

The Function micro-world defines the radio functions of Access, Networks, Access Points,

Air Interfaces, Components, Core Networks, Global Services, and Mobile Units.  It includes

pointers to the Radio Propagation Environment.  Its set frame is:

(Access Networks , Access Points , Air Interface , Components , Core Networks , Global

Services , Mobile Units , Radio Propagation Environment , )

6.7.5 Hardware

The Hardware micro-world defines the hardware concepts of Hardware, Module,

Availability, Red (side of an INFOSEC device) Black side, IDEF1, Data Model, and

Maintenance.  It also defines specific hardware modules including Chassis, Exciter, Phone,

Receiver, and Transmitter.

6.8 The Software Micro-worlds

The Software micro-worlds define software and specific software tools needed for software
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radio including CORBA, UML, ODP, and MPI.

6.8.1 Software

The Software micro-world defines the software concepts, not software configuration items.

These include Applications, Framework, Operating Environment, Operating System, POSIX,

Resource, and Services.  This micro-world also has pointers to CORBA, IDL, KIF, KQML,

ODP, and UML.  Theses definitions provide the links necessary to expand the knowledge (e.g.

via web queries) as the need arises.

6.8.2 CORBA

The CORBA micro-world defines the core concepts of the Common Object Request

Broker Architecture.  This includes the basic concepts (e.g. ORB, IDL) plus the software radio

aspects of a reuse Factory, Core Services, Core Applications, and Base software radio interfaces.

The integration of the SDR Forum’s domain manager into this micro-world would be a useful

extension to the present research.

6.8.3 UML

The Unified Modeling Language (UML) micro-world  defines UML concepts.  These

include Relationship, Active, Class, Source, Target Class, Inheritance, Child, Parent,

Multiplicity, Association, and Uses.  The purpose of this micro-world is to provide a starting

point for the future definition of a direct interface between RKRL and UML.

6.8.4 ODP

The ODP micro-world defines the core of X.900 capabilities needed to reason about

control of distributed processing.  This includes to suffer-delay and to fail.  Basic sets include

Information and Distributed Processing.

6.8.5 MPI

The MPI micro-world defines software processes and process groups using the Message

Passing Interface (MPI) process control language.
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6.9 The Wireless Function Micro-worlds

The wireless functions micro-worlds define air interfaces, providing specific details on

modem, demodulation, equalization, and memory.

6.9.1 Air Interfaces

The Air Interface micro-world consists of over 250 frames that define general knowledge

of air interfaces including bitstreams, channel states, modulation, and power control.  It provides

the core from which users could evolve a comprehensive taxonomy of all known and proposed

air interfaces.  This supports the autonomous development of new interfaces in terms of features

of existing or proposed interfaces.  Selected subsets of this full taxonomy would be downloaded

to mobile units to assist them in conducting dialogs with new networks during global roaming.

As a minimum, a production-quality micro-world would define CDMA, GSM, DECT,

PCS-1800, PCS-1900, UWC-136, and a generic air interface.  Additional concepts of this micro-

world include Error Control, Framing, Multiple Access, Multiplexing, Bit Rate (Rb), Security,

Source Coding, and Spread Spectrum.  A Generic air interface is defined to include Carrier

Bandwidth, Frame Rate, Handoff, Handover, Power, RF Channels, Sectorization, Services

Access Bandwidth (Wa), Baseband bandwidth (Wb), RF Channel bandwidth (Wc), and IF

Bandwidth (Wi).

6.9.2 Modem

The Modem micro-world contains 50 frames that define the modem functions of

modulation and demodulation. Examples of modulators include 16 QAM modulator, 64 QAM

modulator, 8 PSK modulator, BPSK modulator, and QPSK modulator.  Concepts for modems

consist of bits per symbol, bitstreams, carrier frequency, IF waveform, baseband, IF/RF carrier,

sample instant, and symbol duration.  Types of modulation defined include AM, FM, PSK, FSK,

MSK, and QAM.  The parameters for control of the modems are patterned after [154].

6.9.3 Demod

The Demod micro-world defines the internal functional building blocks of a demodulator

including bit decision, carrier detection, carrier tracking, despreader, equalizer, filter, squelch,

symbol decision, symbol enhancement, symbol estimator, timing recovery, and timing reference.
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6.9.4 Equalizer

The Equalizer micro-world defines a generic equalizer.  Its functions includes the delay

line, weight matrix, and weighted result.  This micro-world includes a three-tap equalizer model

embedded into the RKRL statements.  The RKRL statements from Version 0.1 are as follows.

Handle Model Body Context

Demodulator Contains Equalizer Modem/Internal…

Equalizer Contains Delay Line Demodulator/Modem…

Delay Line Contains Number of Taps Equalizer/…

Delay Line Contains Tap Vector Equalizer/…

Delay Line <Range> Tap Vector Equalizer/…

Delay Line Contains Taps Equalizer/…

Taps Contains Tap 1 Delay-Line/Equalizer/…

Tap 1 Numerical value 0.995 Taps/Delay-Line/Equalizer/…

The complete extended context is not shown in the frames.  Each tap is defined by similar

frames.  The “Numerical-value” of Tap-1 is the value currently in use by the software radio.  The

parallelism of the pattern Tap-1, Tap-2, Tap-3, supports automatic extensions of an air interface.

From such a structure, a genetic algorithm could hypothesize additional taps, and RKRL readily

supports the implementation of the hypothesized new equalizer.  In addition, other statements

show that each is linked to the other by a unit delay element.  The output of the tapped delay line

is defined through additional RKRL statements as follows.

Handle Model Body Context

Equalizer Output Weighted Result Demodulator/…

Weighted Result Numerical value 1.1209227 Equalizer/…

Weighted Result Definition Sum of Products of tap values times weights

The complete model of the three-tap equalizer requires about 50 RKRL statements.

6.9.5 Memory

The Memory micro-world consists of a model of memory allocation for a demodulator that

includes a separate equalizer memory allocation.
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6.10 The Protocol Micro-worlds

The Protocol Stack micro-worlds consist of Protocol, Physical, and Data Link.

6.10.1 Protocol

The Protocol micro-world consists of about 300 frames that define the basics of network

protocols.  This includes establishing connections, maintaining connections, use of Protocol, and

termination of connections.  The ISO protocol stack is defined to consist of an Applications

layer, a Data Link layer, a Network layer, a a Physical layer, a Presentation layer, a Session

layer, and a Transport layer.  The hierarchical relationship among these layers is also defined.

This micro-world also defines Platforms, PDU (protocol data unit), and Service Facilities. Other

aspects defined in this micro-world include E-Care, IS-683A, OTA (over the air), OTAMD

(mobile diagnostics), OTAPA (parameter administration), OTASD (software download),

OTASP (service provisioning), general data link layer Processes, TCP, and the WAP (Wireless

Applications Protocol).

6.10.2 Physical

The Physical micro-world provides a more detailed definition of this layer of the protocol

stack.  It includes procedural access to the physical medium, functional access to the physical

medium, electrical access to the physical medium, and mechanical access to physical medium.

6.10.3 Data Link

The Data Link micro-world define concepts and models for this level of the protocol stack.

It includes error control, Error detection, FEC, flow control, frames, Header, Packet Number,

Packetize, Payload, Sequence Number, synchronization, Timing, and Training Data.

6.11 The Network Micro-worlds

The Network micro-worlds consist of Network, Cellular, Segmentation, and Messages.

6.11.1 Network

The Network micro-world is one of the largest at over 400 frames.  It defines Air Interface

and radio Functions from a network perspective.  It also defines ATM (and its AALs), cellular,
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connection, destination, SAP (service access point), encapsulation, re-assembly, router, segment,

segmentation, and simulation. traffic classes include CBR (constant bit rate), ABR (available bit

rate), and VBR (variable bit rate).  Subclasses of VBR include timed VBR, connection-oriented

VBR, rt-VBR, nr-VBR, connectionless VBR.  A generic traffic contract is defined in terms of

QoS Parameters.  This includes ATM-oriented definitions of CDVT (cell delay-variation

tolerance), CLR (cell loss rate), Feedback, maximum CTD (cell delay tolerance), MBS

(maximum burst size), MCR (minimum cell rate), PCR (peak cell rate) Peak-to-peak CDV (cell

delay variance), SCR (sustained cell rate), and other traffic parameters.

6.11.2 Segmentation

Segmentation consists of an embedded computational model of the segmentation of a

message into packets, affixing header and trailer, etc.  This model is an example of an

independent model of the function of a typical layer of the protocol stack.  Using such a model,

cognitive radio can independently determine whether the a segmentation module is functioning

according as it should.  Using such a model, cognitive radio will also be able to incorporate

segmentation into automatically defined protocols.

6.11.3 Messages

The Messages micro-world defines message handling functions.  These include control,

format, generate, get, next, propagate, receive, respond, send, and transmit.  In addition the

concepts defined in this micro-world point to the other protocol micro-worlds.

6.12 Mechanisms for Extending RKRL

RKRL may be extended using the expand() operator on a contains frame.

Expand (Frame i) = Frame i+1.

In the resulting frame, the new handle names the subset to be expanded.  This may consist

of the enumeration of subsets or new point sets using by using the contains model in the new

frame.  Alternatively, the new frame may provide a characterization of that subset using any

other models.

The define() operator creates frames needed to characterize the body of the argument as a
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topological map, as follows:

Define (<Handle><Model><Body><Context><Resources>) =

1. <Body>Domain <Domain subset> …

2. <Body> Range <Range subset> …

3. <Body> Process <Process Specification>

These three frames require the body of the argument frame to be specified in terms of the

point-sets on which it operates (domain and range) and the transformation that it makes.  This

transformation may be encapsulated as the name of a software module that accomplishes the

transformation.  Alternatively, it may be expressed as CORBA IDL that shows how to request

the transformation from an object request broker.

Auxiliary functions such as find(), sort(), etc are needed to manipulate frames to assure that

new frames are integrated into the existing RKRL frames effectively.
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7 The CR1 Prototype

The purpose of the CR1 prototype is to refine the initial framework of cognitive radio.

This required the integration of machine learning, natural language processing, and radio

architecture.  Radio domain knowledge was organized into reinforced hierarchical sequences.

These internal data structures that are processable across a continuum from radio protocols to

natural language.  In addition, these data structures facilitate machine learning.  CR1 implements

case-based learning, but the architecture derived from CR1 supports a range of contemporary

machine learning techniques.  The development of CR1 led to the definition of the cognitive

radio architecture discussed in the following chapter.  This chapter describes the CR1 rapid

prototype in terms of its operation in a simulated environment, its software architecture, the way

it performs radio control tasks, and performance metrics.  All of the capabilities described have

been simulated in Java.  The result is a simulated PDA that could be implemented with

technology available within five to ten years.  The thesis addresses research issues and not

implementation issues.  The primary research issue addressed is the organization of radio domain

knowledge into data structures processable in real-time that integrate machine learning and

natural language processing technology into software radio.

7.1 Illustrative Scenarios

CR1 is envisioned as a hand-held PDA.  The PDA face, illustrated in Figure 7-1, represents

sensors and effectors.  These address time, space, radio, and user interactions.  Effector displays

are editable as user input.  Axiomatic time uses Java facilities to determine the Year, Month,

Day, Hours, Minutes, and Seconds of the global “nowField.”  The Now display area is both a

sensor display and an effector.  If the user wants to interact with the PDA about the future (e.g.

planning a trip), the user enters the time of interest in the Now field.  The PDA can tell that this

is hypothetical time because it is not identical to the Now field.

The “Lat” and “Lon” fields display GPS latitude and longitude coordinates when available.

The PDA’s Azimuth heading is also displayed from GPS with inertial updates (e.g. from a

MEMS sensor).  Local grid references provided by wireless nodes such as the IR badge system
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at KTH are registered in the X and Y fields.  Since these are editable, a user could tell the PDA

“The Coke Machine is here” by editing the X and Y fields.  Place is displayed by the PDA from

its interpretation of Lat, Lon, X, and Y sensors.  The rapid prototype does not use altitude, speed,

or velocity, although such parameters could help set communications context.  The subset of

parameters chosen addresses the research issues.

Figure 7-1  The CR1 Prototype PDA

Keyboard inputs are supplied in the User Text area.  The radio resources are displayed in a

set of radio-channel status displays.  These consist of RF-LAN, PCS, GSM, AM, FM, and

weather broadcast (WX, e.g. the US National Oceanographic and Atmospheric Administration -

NOAA - weather channels).  Temperature shows the average of its Temperature-Front and

Temperature-Back sensors that would be used to determine if the PDA is being held or not.  The

Audio Speech area represents notional spoken inputs in textual form.  It is called Speech-Front

because it reflects the user input.  A Speech-Back sensor (not simulated) would pick up

background noise for active cancellation.  Speech-Back could also recognize aspects of the

environment (e.g. quiet, discernable conversation, noisy, etc.).  SpeakerID tells the user who the
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PDA thinks is talking.  This can include the speaker’s name or a generic identity (e.g. Speaker1).

The user can express feedback in a way that is more heavily reinforced than speech or text

using the TRAIN button, ATTN (attention) button, APPROVE button, and/or DISAPPROVE

button.  The attention button resets the lower levels of the PDA’s internal states so that the user’s

inputs are not cluttered by its monitoring of the environment.  As long as ATTN is depressed, the

PDA responds only to changes in user inputs, not to the background (e.g. speech, incoming

email, RF states).  These could be processed and queued, but not enter the dialog.  Not shown is

the Light Level sensor, which helps the PDA determine whether it is indoors or outside.

The PDA’s effectors include the X, Y, and time displays; all of the radio-related fields; a

text display area; and a speech synthesizer.  The “Shows” field contains the PDA’s textual

responses.  In addition, the user can edit this field to advise the PDA of what it should have said

or should say in a given context.  The “Says” field shows in textual form what the PDA would

provide to its speech synthesizer.

The identification of a user’s communications context and the definition of wireless use

patterns in a way that enhances traffic shaping benefit from machine learning.  The mutual

associations of such sensory stimuli mapped to user communications context (e.g. Table 7-1).

Table 7-1  User Communications Contexts and Sensors

Context Illustrative Sensory Stimuli

Home (Outside) GPS (250m), Light(Day →Bright; Night →Dark), No LAN

Home(Inside) No GPS, Light (Dim), Home LAN, CT Home #, Recent Home(Outside)

Neighborhood Strong GPS(Home), weak CT signals

Spectator Neighborhood/ Soccer-related Speech

Commuting

(Automobile)

Strong GSM, Weekday, 6-7AM, Auto Noise in Acoustic Background

CT= Cordless Telephone
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7.1.1 Detecting Basic Communications Contexts

Cognitive radio should reliably identify user communications context so that radio

functions can be managed in support of differentiated user needs.  Needs and priorities on a trip

to the shopping mall are to be differentiated from those in a medical emergency, for example.

When shopping, an RF LAN might be preferred to 3G, but in a medical emergency, the urgency

of the situation could outweigh the cost of 3G.  In addition, wireless service providers benefit

from traffic shaping in which large attachments to email are delayed from peak- to off-peak

epochs when the user context of the traffic permits.  To manage offered traffic in a way that is

acceptable to users requires that the PDA learn use-contexts and related communications needs.

Context knowledge needed by CR1 was extracted from language learning materials [186], as

suggested by Maguire.  These materials contain prototypical dialogs in the speaker’s native

tongue and in the foreign language.  The prototypical contexts define user-interactions that may

be mapped to generalized communications context.  They include those items listed in Table 7-2.

Table 7-2  A Priori Use-Context Relationships

Use Context Observable Features

Travelling Departure, arrival, passport control, customs, baggage, changing money, seeking

directions, planes, trains, automobiles, taxi, car rental, reservations

Hotel Check in, registration, staff, telephone, difficulties, laundry, grooming, check out

Eating out Meal times, cuisine, service, menu, starters, soups, salads, … desert, the bill

Sightseeing Finding, admission, who/what/when/where

Friends Introductions, weather, invitation, dating

Relaxing Cinema, opera, nightclubs, sports, beach

Shopping Shops, bookstore, clothing, grocery, …

Money Banking, post office, terms, telegram

Medical Doctor, body parts, accident, illness …

Other Maps, basic grammar, general expressions
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CR1 has been trained on introductions, eating out, and needing a doctor.  Each of these

user states has associated information-management tasks for the PDA, many of which include

the use of radio resources.  For example, if greetings are detected, the PDA attempts to identify

names by binding the dialog to prior cases.  It may then ask a net-based search engine for the

person’s e-mail address, home page, on-line business card, etc.  CR1’s response to a simple

greeting is to recognize that a greeting is being offered as in Figure 7-2 (a).

(a) Recognizing a greeting context   (b) Responding to an introduction

Figure 7-2 Recognizing and Responding to Greetings

In order to generate the response to Chip, the PDA matches the current input sequence “let

me introduce Chip” to all of its prior phrase level knowledge, yielding the following internal data

structure (“l.e.t,m.e,” is the delimited internal format of the external words “let me”):

Layer3 >Pair( PDA 0  2 7 l.e.t,m.e,i.n.t.r.o.d.u.c.e,?, l.e.t,m.e,i.n.t.r.o.d.u.c.e,f.i.r.s.t.n.a.m.e )9

Since Chip is an unknown name, its partial-sequence correlator at the phrase level inserts a

? in place of the unknown word.  It binds this parameter to “f.i.r.s.t.n.a.m.e”.  During training, the

                                                
9 The punctuation is inserted by CR1’s observation layers, each of which have distinguishing delimiters.
The period (.) delimits letters in words, the comma (,) delimits words in phrases, the vertical bar (|)
delimits phrases in dialogs, the at-sign (@) delimits context components, and the # sign delimits dialogs
in scenes.
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use of this phrase is externally reinforced, increasing the relevance of that phrase to this

situation.  The variable “f.i.r.s.t.n.a.m.e” is then bound to “Chip.”  Most natural language

processing systems tag the parts of speech.  For example, the Tilburg memory-based speech

tagger [187] yields:

let/VB me/PRP introduce/VB Chip/NN ./.,

where: NN   Noun, singular or mass; VB   Verb, base form; PRP, personal pronoun.

Processing such a tagged structure requires an intensional model of natural language and of

the task domain.  Cognitive radio architecture accommodates such approaches.  CR1’s case-

based machine learning approach, on the other hand, treats each stimulus as a problem to be

solved by retrieving an appropriate stimulus-response case.  Each case is called a stimulus-

response sequence.  Each related collection of such cases is called a stimulus-response model, an

srModel.  For example, the following simple srPair is from CR1’s Hearsay srModel:

Hearsay:  l.e.t,m.e,i.n.t.r.o.d.u.c.e,f.i.r.s.t.n.a.m.e →   say, now, here, G.r.e.e.t.i.n.g.s,f.i.r.s.t.n.a.m.e

This variable f.i.r.s.t.n.a.m.e is a word-level sequence that is part of a phrase-level stimulus.

The phrase-level response is “G.r.e.e.t.i.n.g.s, f.i.r.s.t.n.a.m.e.”  Such sequences are one of the

fundamental data structures of CR1.  Applying this case to slightly unfamiliar situations requires

several binding steps.  First, the binding of “?” to “Chip” occurs in the observation phase.  Since

Chip is a previously unobserved word-level token, it is bound to “?”.  Next, there is a partial

match between the known phrase l.e.t,m.e,i.n.t.r.o.d.u.c.e,f.i.r.s.t.n.a.m.e and the new phrase

l.e.t,m.e,i.n.t.r.o.d.u.c.e,c.h.i.p.  In this case-based retrieval, reinforcement value is earned by “l.e.t”,

“m.e,” and “i.n.t.r.o.d.u.c.e.”  In addition, f.i.r.s.t.n.a.m.e accrues binding cost when it is bound to

“Chip.”  It then takes on the first name role in the response, which is a plan to generate the reply.

In this instance, the intended reply “Greetings Chip” is generated as expected.

The Hearsay model is an example of the shallowest reasoning of CR1’s internal models.  It

is synthesized in a PDANode, a Java neural-network like data structure.  PDANodes implement

the srModel structure of RKRL.  Any frame of RKRL may be realized in such an srModel, and

any srModel may be translated into an RKRL frame.  The rapid prototype does not synthesize

RKRL exactly, but its load/store personality capability saves and retrieves the <handle>,

<model>, and <body> parts of the frame.  Adding the <context> and <resources> parts is
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straightforward.

The strategy behind using such simple reasoning capabilities in CR1 is three-fold.  First,

wireless PDAs put a premium on computational efficiency.  Therefore, the representation of

procedural knowledge in a way that it can be used with minimum computational burden (e.g.

with minimal intensional processing) is particularly appropriate to wireless systems applications.

Thus, the shallow intensional reasoning of the srModel is explored in lieu of the deeper

intensional models of many conventional natural language processing (NLP) systems.  This is

not offered as a realistic alternative to conventional NLP, but as an exploration of how a very

limited theory of language (in the srModel) supplies useful dialog in a constrained application.

Secondly, however, such models are very easy to train.  In CR1, the knowledge of how to

respond to such a greeting is not pre-programmed.  The user performs the following sequence:

1. Depress the TRAIN button

2. Enter the following in Local Speech10:  “Let me introduce Joe”

3. Enter the following in the PDA Says area: “Greetings Joe”

4. Click “OK”

This user-friendly sequence of operations follows the strategy that the user should train the

PDA by showing it what to do.  The relationship between the Speech-Front (local speech) sensor

model and the PDA-Says effector model is called “Hearsay.”  That meta-level knowledge is built

into CR1, but the domain knowledge (e.g. of greetings) is not.  This push-button training

sequence appropriate for users also is equivalent to the following textual training sequence which

was used in training CR1:

“train   hearsay let me introduce firstname   say now here greetings firstname   done       ”

Thus, a programmer or network that knows of the relationship among the PDA’s internal

models could present the new knowledge in the form of textual training sequences, e.g., using

KQML performatives.  In addition, a professional trainer could provide training sequences that

                                                
10 The simulation of a speech channel via text illustrates what can be done on noiseless data.  The
approach could be adapted to streams of phonemic hypotheses for speech applications.
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clarify the roles expected in applying the cases (“firstname” is clearer than “Joe” as a variable,

although they are functionally identical).

The third reason for experimenting with such simple extensional models is to gain insights

for the definition of an architecture supportive of the interactive acquisition of intensional

models by evolution from simple extensional models.  Sequence binding provides an opportunity

to acquire an incremental chunk of intensional knowledge.  In many case-based reasoning

systems, the dimensions of the case are defined a-priori, typically in a database [52].  The raw

data is preprocessed to extract the parameters of the case database.  This can be a labor-intensive

process, or an automated process that is prone to error.  The approach taken in CR1 is to

integrate this aspect of case generation into an interactive machine-learning framework.  In

particular, the binding of the stimulus phrase “let me introduce firstname” to “let me introduce

Chip” processes this phrase-level sequence as if it were the lambda expression [74]:

λ(x) (“let me introduce ” & x) from the two examples.

The binding process represents substantial information, the surface structure of which is

exploited in CR1.  The variable firstname could become a discourse variable embedded in an

existing srModel, or it could become a new srModel.  CR1 makes provision for the machine

learning of such variables but does not fully implement the automatic creation of new srModels.

In addition, “Chip” can be associated with the context.  Since RKRL axiomatizes space and

time, CR1 can be trained to uniquely identify Chip by the time and place of the introduction,

differentiating among future Chips.  It could also characterize Chip by the times and places at

which Chip appears and disappears.  This type of association requires more complex reasoning.

7.1.2 More Complex Reasoning:  Spatial and Temporal Composition of srModels

Reasoning more complex than Hearsay is constructed by the composition of srModels.

Composition may be accomplished temporally or spatially.  Spatial composition is the

interconnection of multiple srModels so that the responses of one node are the stimuli of another

node.  Temporal composition is the sequential processing of a response from an srModel as a

stimulus to that same srModel.  (In order to stay within the bounds of computational stability

developed in Appendix B, such feedback is strictly limited to primitive recursion or bounded
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minimalization, not arbitrary recursion).  Temporal composition occurs when one of the PDA

phases (e.g. Plan) iteratively stimulates a specific srModel.  At the dialog level, for example, the

detection of an introduction could stimulate the completion of a dialog-level sequence:

Dialog1:  i.n.t.r.o.d.u.c.t.i.o.n →  r.f.l.a.n, n.o.w, h.e.r.e, t.c.p, q.u.e.r.y, f.i.r.s.t.n.a.m.e| r.f.l.a.n, n.o.w,

h.e.r.e, t.c.p,r.e.s.p.o.n.s.e, l.a.s.t.n.a.m.e| s.a.y, n.o.w, h.e.r.e, a.r.e, y.o.u, l.a.s.t.n.a.m.e.?|

The communications goal in this example is to learn the person’s last name by querying a

VCARD database on the local RF LAN.  The sequence Dialog1 consists of multiple phrases.

Each phrase consists of a command, a context, and a body.  The command is a word or phrase

that is recognized by the PDA Phase nodes.  For example, the command “s.a.y” is included in

the srModel of the PDA Phases “orient,” “plan,” “decide,” and “act.”  In this case, the command

is also the name of an effector.  The r.f.l.a.n effector sets up the protocol parameters (e.g. t.c.p)

and posts the query to the simulated RFLAN.  In temporal composition, the PDA attempts to

“complete the sequence.”  Completing sequences is the CR1 default plan, executed sequentially

as illustrated in Figure 7-3.

Dialog1

Observe

Scenes

Dialogs

Phrases

Words

Orient
Intro-

duction

Plan
Intro-

duction

Firstname = chip

 r.f.l.a.n, n.o.w, h.e.r.e,t.c.p, q.u.e.r.y, f.i.r.s.t.n.a.m.e
=> r.f.l.a.n, n.o.w, h.e.r.e, t.c.p, r.e.s.p.o.n.s.e, l.a.s.t.n.a.m.e|

s.a.y, n.o.w, h.e.r.e, a.r.e, y.o.u, l.a.s.t.n.a.m.e.?

 r.f.l.a.n, 
n.o.w, h.e.r.e, 

q.u.e.r.y, 
c.h.i.p

Next-phrase pointer

Figure 7-3  A Plan-Phase Node May Iterate Through an srModel Temporally

Dialog1 is composed temporally as follows.  The PDA poses the query for firstname to the

(simulated) RF LAN.  Modeling the interchange with the network as a dialog, it expects to

receive a KQML query response that includes “lastname.”  The response may be the

distinguished reply NULL, or it may be a KQML-formatted list of lastnames.  The third phrase

of Dialog1 causes the PDA to pose the question via its speech synthesizer “are you Chip

Maguire?  In the rapid-prototype, the emphasis is on the definition of the knowledge

representation architecture and interfaces.  These examples suffice for that research objective.  In

a more advanced system, WebL’s document calculus [85] could be used to form the query and
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consolidate multiple responses.  A natural language processing component could then pose a

more sophisticated question from the WebL structures.  Dialog1 defines the RF LAN interface.

In addition, if the PDA detects local conversation before the RF LAN response is available,

it detects a planning conflict.  CR1’s planning capability is limited.  It can perform multiple

similar tasks at once, such as saying two different things at the same time.  If that fails failing, it

can only ask the user for help.  The cognitive radio architecture, however, is designed to admit a

wide range of alternate strategies.  For example, the architecture permits triggered parsing, e.g. to

attempt to ascertain the lastname from the speech stream if ‘chip’ occurs again.  The depth to

which Chip is understood would be a function of the degree to which CR1’s srModels have been

exposed to that person.  In any event, that person’s association with communications context is

learned, but other general knowledge is not.  Since the emphasis of this research is on wireless

data communications, CR1’s internal srModels have been structured for and trained on aspects of

wireless, such as the selection and parameterization of air interface waveforms.

7.1.3 Selecting Waveforms Using an srModel

CR1 has been trained on radio modes including notional RF-LAN, GSM, GPRS, and 3G

parameters.  It is trained via the speech/ text interface, e.g.:

srModel 3G:  Data Rate → 128 kbps;   Cost-per-Mbit → $0.20

srModel GPRS:  Data Rate → 32 kbps;   Cost-per-Mbit → $0.07

Since GPRS and 3G have srModels from RKRL 0.3, CR1 associates Data Rate as a GPRS

model stimulus and 32 kbps as its associated response.

Reasoning about these parameters requires the information flow illustrated in Figure 7-4.

Text is provided both to the email system and to the srModel of the email system through the

observation phase processing (not shown in the simplified figure).  The e-mail model

characterizes the email in metrics useful to the messages-model.  The messages-model generates

the size of the email in Mbits.  The email system model defines adjustments to this message

length.  Compression coding reduces the message length, while FEC expands it.
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Figure 7-4  Flow of Mode Choice Decision

The GPRS sensor provides its status of that radio link to the Observation phase where it is

parsed (through the operation of observation-phase PDA Nodes) and made available to the cost

model, which is in the plan phase.  The cost model combines the size of the buffer from the

messages-model and the data rate from the GPRS sensor status to determine the cost of

transmitting on GPRS in its current mode.  The mode-choice model, part of the decision phase,

then selects among candidate modes to determine which mode is best for transmission.  In

general, this decision depends on communications context including the PDA’s location,

predicted duration of the present mode, time to reach a better mode (e.g. RF LAN), etc.,

according to the criteria provided by the network and/or the user.  In CR1, the choice is location-

dependent.

The flow of this model illustrates the structure of radio knowledge in CR1.  Each sensor,

effector, and PDA subsystem (e.g. modem, INFOSEC, etc.) has both a software (and/or

encapsulated hardware) module that performs the radio function and a related model that

supports reasoning about that function.  The related model performs a shadow-function,

continually observing the SDR module’s inputs and outputs.  It thus monitors the behavior of the

module and provides structured inputs to the appropriate components of the cognition cycle.  The

related models are those defined in XML in RKRL 0.3.  After experience using these models in a

given locale, a CR1-follow on could write those details in XML for web-based knowledge

exchange, or it could generate a KQML “tell-one” sequence to a host network.
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7.1.4 Setting Waveform Parameters by Concatenating Models

Selection of waveform parameters in the decision phase is also a function of use context.

The observe-phase processing integrates the user context (RKRL 0.3’s definitions of greetings,

shopping, eating out, traffic accident, etc.) with current location and time.  In a spectrum rental

scenario, the waveform parameter control also would be based on propagation modeling.  In

conventional cellular radio, the network power control and handoff algorithms manage mutual

interference.  In the spectrum rental scenario, each mobile unit has to manage power pro-actively

to avoid jamming legacy users when joining the rental network.  These contextual inputs would

drive models that control selected states of the waveforms.  The controlled entities include the

SDR Forum radio-entities defined in RKRL 0.3, including the modem.  These flow through a

CIR/dataRate Model that CR1 has acquired by supervised learning.  The information flow is

illustrated in Figure 7-5.

Modulator

GPRS Sensor

GPRS Effector

Observe

Protocol

Here, Now

RF/
Channel

CIR/dataRate Model

GPRS Parameters
Model

ModelsProtocol

Demod

User Context

SNR

BER

GPRS Mode

Data Rate

Figure 7-5 Waveform Parameter Nodes Control Action

In this case, the CIR/dataRate Model determines the data rate that can be supported for a

given CIR and communications context.  The context imposes constraints on radiated power, for

example.  In addition, radiated power or data rate may be constrained at specific locations or

times of the day.  In the spectrum rental protocol of Appendix D, for example, the spectrum

owner may specify power constraints as a function of transmitter location, activity level, or time

of day.  Illustrative srModels are as follows:

srModel CIR/dataRate:  (CIR, Now, Here, User-context) → @dataRate

(24, 5AM, Autobahn, Any) → 21.4;  (18, 6AM, Autobahn, Any) →  21.4

(12, 7AM, Autobahn, Any) →9.05;
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srModel GPRS Mode:  (@dataRate, User-context) → @GPRS Mode

(9.05, Any) → CS1; (21.4, Emergency) → CS1

(21.4, Any) → CS4

The performance is context-sensitive.  If a user emergency is detected, the GPRS Mode

Model selects the low data rate mode (CS1) when high data rate is possible, to maximize the

probability that the Emergency 911 call will be received error-free.  These srModel sequences

behave like simple production rules, propositional calculus, or expert-system rules with minimal

bindings.  From such sequences, one may express a plan as a higher level sequence.

7.1.5 Waveform Parameter Control by Executing a Plan

The waveform parameter control models are equivalent to a planning sequence.  That is,

concatenated srModels may be (algorithmically) consolidated into an aggregate sequence, and

conversely.  That sequence may then be executed sequentially, with a corresponding increase in

processing time, but using fewer PDANodes.  This could occur as follows:

srModel Plan:

Set-Mode @Now@Here@GPRS →

CIR@CIR@Now@Here@Context| GPRS-Mode @dataRate@Context

This plan to set the mode of GPRS consists of two phrases, delimited by “|”.  The first

phrase ascertains the data rate for a given SNR by binding to the following sequence:

(CIR, 24, 5AM, Autobahn, Any) → (@dataRate, 21.4);

This is a template for the srModel CIR/dataRate from the prior discussion.  The response

from this sequence is a Pair, a Java ObjectSpace object that has two components.  The pair is

written like a vector.  This Pair is the equivalent of a variable binding step.  It expresses the

binding of the first element to the second element.  This links the response of the first sequence

implementing the plan to the stimulus of the second phrase.  The interpreter instantiates the

sequence @dataRate → 21.4 from this Pair.  The local variable @dataRate is bound to 21.4 in

the srModel Plan by this action.  The second phrase, GPRS-Mode @dataRate@Context therefore

binds to:
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(GPRS-Mode, 21.4, Emergency) → CS1, if an emergency context has been detected.

The result of these three srModel actions is the same as the concatenated operation of the

CIR/dataRate model and the GPRS-Mode model.  Concatenated models may be implemented in

separate processors, creating an inference pipeline with short, deterministic processing delay.

The equivalent iterated models store procedural knowledge more compactly, that is, using fewer

processors.  A plan may be explained in a training session as a long sequence.  That training

session will be a Scene consisting of a concatenation of dialog sequences.  A long sequence of

one node is therefore computationally equivalent to concatenation of short sequences.  This is

similar to human skill acquisition.  When initially acquiring a skill, the procedure is explained as

a sequence of steps.  Subsequently, that knowledge becomes encapsulated and “automatic.”

Although the automatic transformation between long sequences and concatenated short

sequences is not implemented in CR1, its use of these sequences as the primary knowledge

representation mechanism creates an architecture compatible with this enhancement.

7.1.6 Shaping Wireless Demand: Planning Primitives

When a PDA downloads a large file such as a detailed map to a restaurant, it may be

destroyed or stored for future reference, e.g. in the home computer to conserve space in the PDA.

The PDA could send GPRS or 3G email to the user’s home to store the map.  A user’s

willingness to pay for an expensive wireless connection may be a function of the content of the

map and of the nature of its use.  In addition, as the PDA’s memory resources are consumed, it

must generate a plan to replenish them (e.g. upload the least-used data to the home PC).  The

PDA may infer that the user will be home in 30 minutes, where the cost of the wireless

connection is zero.  In such situations, the PDA should apply relevant goals, such as minimizing

communications costs.  CR1 has an internal planning component that uses a simple planning

language to represent plans and to resolve plan conflicts.  A plan in CR1 is a structured text

sequence:

<Plan> := <Plan-Phrase>| <Plan-Phrase>*

<Plan-Phrase> := <Request> <When> <Where> <What>11 |

                                                
11 This form of plan-phrase does not include user context, while the form on the next line does.
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<Request> <When> <Where> <Context><What>

<Request> := Say | Transmit | Receive | Go To | Wait |Dial | Connect

<When> := Now | <Day> | <Month> | <Year> | <Hour> | <Minute> | <Second> |

<DateTimeGroup>

<Where> := Here | <Place>|<Lat><Lon>|<X><Y>

<Context> := Any | Normal | Unknown | Introductions | Home (Inside) | Home (Outside) |

Commuting | Travelling | Hotel | Eating out | Sightseeing | Friends | Relaxing |

Shopping | Money | Medical | Other | <New-Context>

A plan may consist of multiple plan phrases.  Each request corresponds to an operation that

can be accomplished by an effector.  Alternatively, a request may correspond to the sensing of an

action performed externally.  The GoTo and Wait effectors ask the user to go to a place or to

wait until a specific time or for a specific duration.  <Place> is a known place name, <What> is

an arbitrary string, e.g. a message or model body.

The axiomatization of time in RKRL establishes the way CR1 compares times and time

delays.  Time is associated with every stimulus and response presented to CR1.  Thus, the delay

between repetitions of characters, words, phrases, dialogs, etc. are associated with each stimulus-

response sequence.  These may be included in the detection of user context and in machine

learning.  In the rapid prototype, this facility is under-developed, consisting of the capability to

measure all the delays in terms of local clock ticks (not wall clock time).

When CR1’s planner detects a conflict in user goals, it proposes an alternative.  In CR1’s

rapid-prototype implementation, it can propose a delay of an action until a specific time or place.

For example, when the user attempts to send a large email file while on the autobahn (detected

by GPS coordinates), the Cost model introduces a plan to wait until RF-LAN connection is

available.  This may be at Home or at Work, depending on the time of day (morning commute or

afternoon commute).  The planning conflict is represented by comparing the plan sequences

related to the user input versus the plan sequence from the user’s mode choice model:

User Input Generates the internal plan:  Send @ Now @ Here @GSM <message buffer>
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The ModeChoice model generates:  Send @ Now @ Here @RF-LAN <message buffer>

They are reconciled with:  Send@Home@5PM@RF-LAN <message-buffer>

This elementary level of planning suffices to shape the traffic on the network as analyzed

in the use case scenario.

7.1.7 Mediating a Download Protocol

The last of the use-cases entailed assuring stable downloads of SDR software modules.

The SDR Forum has published its download specification [21].  Table 7-3 shows the initial

message exchange.  The contemporary software-development process might represent in a

message sequence chart, using SDL [5].  This human-readable form is then compiled, e.g. into C

or C++.  In the process, the explicit domain knowledge represented in the SDL and its embedded

annotations is lost.  Retaining SDL in the operational system presents an alternative that requires

substantial processing infrastructure.  This is in part because SDL tightly integrates procedural

knowledge (e.g. the sequence of steps) with functional knowledge (e.g. the design of operations

like “Acknowledge Download Request.”

Table 7-3 Illustrative SDR Forum Download Message Sequence (simplified)

NETWORK Step TERMINAL
Initiation

Page terminal
Initiate Download Request Acknowledge Download Request

Mutual Authentication
Authenticate Terminal

Authenticate Source
Capability Exchange

Request Capability Data
Capability Response

• Terminal Configuration
• API structure supported by terminal
• Hardware Resource Capabilities
• Resident Software Profile
• Resident software/operator licenses

IF an appropriate software module exits, open
download channel, ELSE Terminate download

Hardware Resources include Program Memory, Data Memory, Processing Power, Installed Peripherals, Real-Time capability, etc
Software Profile includes Program/Data memory and processing resources required per resident entity.
An appropriate software module complies with current terminal capability and configuration

A cognitive PDA, on the other hand, partitions the download knowledge into an srModel

and a set of effectors that invoke the appropriate functional modules in the appropriate context.

The following illustrates how to model this download protocol using CR1:

GSM@Download-request → (Download, Start) | GSM Download-acknowledge()
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GSM@Authenticate@Start → (Download, State1) | GSM Authenticate-source()

GSM@Capability@State1 → (Download, State2) | GSM@Terminal-capability |

GSM Send | GSM@API | GSM Send | GSM@Hardware Resources | GSM Send |

GSM@Software Profile | GSM Send | GSM@Licenses | GSM Send

GSM@Terminal-capability → GSMTC32-077-033 (etc. for each capability)

GSM@Software Profile → GSM Baseband | GSM Modem | GSM INFOSEC

Other states terminate the download sequence and perform error checking.  A full

implementation of the SDR Forum download protocol would require about 50 stimulus-response

sequences.  Much of the knowledge, such as the software profile, is maintained in the srModel

Download where it is available for more flexible KQML interchanges with a cognitive network

or peers.  In addition, a high-performance natural language processing and database schema

system (e.g. patterned after [188]) could be embedded in such a PDA.  Sequences like those of

Table 7-3 may translated into srModels based on such schema.

The Java software architecture that supports the machine learning, services support, and

download knowledge outlined above is now described.

7.2 The CR1 Java Environment

This section describes the CR1 development environment and the software components

from which CR1 was constructed.  CR1 consists of 40 Java classes.  A dozen of these create the

simulation environment.  CR1 also instantiates about 60 srModels.  CR1 is built using a PDA

design language specific to CR1.  This language could be invoked during operations.  Although

CR1 does not have that capability, the foundation is laid for future self-extensibility using

model-acquisition techniques that call the PDA design language.

7.2.1 CRHome

CRHome is the Java Swing container that controls the CR1 environment.  As shown in

Figure 7-6, CR1 buttons allow one to set up a simulation, to design, and to run an arbitrary PDA

built up using CR1 nodes.  It also permits the inspection of the internal structure of the system.
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Figure 7-6 CRHome

7.2.2 Simulation

The simulator control designates files to which CR1’s environmental stimuli and generated

responses may be saved.  The data is contained in a static public variable of CRHome called

localEnvironment.

Figure 7-7  Simulation Control Window
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The screen that controls parameters that may be set up in the simulator is shown in Figure

7-8.  Not all of these parameters are fully functional in CR1, but the available subset supports the

use cases.

Figure 7-8  Simulation Setup Screen

Items defined in this view become globally accessible via CRHome.

7.2.3 PDA Inspector

The PDA inspector permits the developer to examine the internal states of the PDA.  Its

scrollable window displays PDA node names, process, node number, and class.  The embedded

models (“srModel”) can be viewed by entering the process number and node number.  In

addition, the PDA’s personality, consisting of all the embedded models, can be stored to a text

file and previously saved PDA personalities can be retrieved.



161

Figure 7-9  PDA Inspector

The inspector facilitates investigations into the role of a-priori personalities in interpreting

sensory stimuli.  Each srModel is implemented as a finite number of pairs, where a pair is an

ObjectSpace data structure:  Pair(<stimulus>, <response>), where <> are objects of any sort.

CR1 uses strings and other pairs (e.g. binding lists) as srPairs.  The response of an srModel to a

stimulus is F(srModel . get(<stimulus), srCount.get(stimulus), srDelay.get(stimulus)), where F is

the response function defined by the node’s runNode algorithm.  For more complex nodes, the

response is a function of a list of these responses or of the links between the atomic stimuli and

known sequences.

7.2.4 PDA Process Organization

The CR1 rapid prototype is implemented as the Java object protoPDA.  All PDAs are

members of the class PDA that hosts the PDA design components.  Processing within the PDA is

organized into pdaProcesses that are carried out sequentially for each of the cognitive radio’s

phases and epochs.  The protoPDA acquires a phrase-sized block of stimuli from all sensors

before attempting to interpret any of it.  The speech, text, and radio channel stimuli consist of at

least one phrase, but each channel may offer multiple phrases as well.  Block processing reduces
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ambiguity and allows set-associative recall to operate efficiently.  The organization of processes

of protoPDA CR1 is illustrated in Figure 7-10.

Proc0
  Sensors, Sequencers, Triggers

Proc1
  Character-level Processing
  Known/new Letters, 
  Word Aggregation, Word Links

Proc2
  Word-level Processing
  Known/new Words, 
  Phrase Aggregation, Phrase Links

Proc3
  Phrase-level Processing
  Known/new Phrases, 
  Dialog Aggregation, Dialog Links

Proc4
  Dialog-level Processing
  Known/new Dialogs, 
  Scene Aggregation, Scene Links

Proc5
  Scene-level Processing
  Known Scenes, New Scenes

Proc6  Orient Phase

Proc7  Plan Phase

Proc8  Decide Phase

Proc9  Act Phase
  Effectors

Environment

O
bs

er
ve

 P
ha

se

Figure 7-10 CR1 Process Organization

Processes 0 (Proc0) through 5 structure all stimuli into hierarchical sequences of words,

phrases, dialogs, and scenes.  Processes 0 through 2 are performed for all text, speech, and radio

stimuli.  In CR1, the radio status sensors provide the interface to the simulated modems and

protocol stack.  Phrases parsed from these channels are aggregated into phrase-level contexts.

Word and phrase “roles” are detected in the srModels Word Role and Phrase Role.  These

models cue the Orient phase about the communications context (e.g. training, greetings, eating

out, etc).

These models are similar to the word-sense attributes of lexical-functional grammars [74].

CR1 does not entail machine-translation level of competence with grammar.  Instead, its natural

language capabilities are oriented towards inferring communications context and controlling

software radios.  The natural language processing capability is therefore limited to detecting
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contexts from words and phrases and to following explicit instructions.  CR1 also learns to

recognize the user’s stylized patterns of expression, but only in the limited domain of using

wireless.  In addition to representing human dialog, the word and phrase structures represent

protocol sequences such as the high-level download protocol.

The pdaProcess nodes control the timing of internal PDA operations.  Processes execute

sequentially, running the nodes in a specified sequence.  Processes can request that some other

process run by placing a request in a global list.  Any process with such a request pending will

run.  The completion of word-level aggregation results in a phrase-level “time-tick” request, for

example.  The detection of word roles triggers a request for orient-phase processing.  Each

observation phase process has about 10 nodes, while the other phases have only a few

specialized nodes.

7.2.5 PDA Node Organization

PDA Processes Consist of PDA Nodes Organized in Layers.  Each pdaProcess is organized

to transform concepts from atoms to concept clusters in layers, each of which is organized as in

Figure 7-11.  Each layer maps lower layer elements onto higher level sequences.  This follows a

bottom-up flow up the concept hierarchy.  Known sequences may be activated in any of these

layers.  In addition, new sequences are assimilated by the novelty nodes.  The processing of

stimulus sequences occurs in time windows.  In the rapid-prototype, different amounts and types

of white space delimit conceptual structures.  Long segments of white space delimit multiple

layers up the hierarchy, closing sequences.  Black space is the inverse of white space.  Objects

occupy black space, while the (temporal) distance between objects is measured in units of white

space.

At the bottom level of the layer, elements are detected by the layer’s srModel of Known

Elements.  Since these elements may correlate partially to known sequences, this model’s

response stimulates the partial sequence detector, implemented in the Java construct

PDANodeLinks.  Positive correlation with known sequences yields a response from this node.

These nodes bind the partially recognized series of elements to known sequences embedded in

the linksModel of the node.  The binding is available is expressed as a pair (Stimulus-sequence,

Best-match) in which the best-match includes bindings of the form @New-element = Known-
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element@.  The binding first generates the intersection of all known sequences with the current

stimuli.  If the intersection is empty, then the best intersection is retained.  This is the smallest

non-null intersection with the elements in the stream.  If this set contains more than one element,

all bindings are computed, and the best-binding is provided as the response from this node.  The

best-binding accumulates value for identical matches and cost for binding unequal elements.

Element Stream

srModel
(White Space)

Invert

Sequence Stream

Novelty  Node

Null 
Detector

Partial Sequence 

Detector 

“Links” Node

Context Detector

Nodes

New Elements

Known
Elements

White Space
Accumulator

Sequence
Accumulator

srModel 
Node

      OR Node      Non-White

Current Sequence

Hierarchical Parsing

Lateral

Inference

Lateral

Inference

sleep

sleep

Figure 7-11  Structure of Observe-Phase Layers (simplified)

In addition, a limited-scope dynamic time warping [189] is performed.  This permits more

than one new element to bind with one known element and conversely.  The response from this

node contains the bindings necessary for support phase-to-phase lateral inference.  Typically

information flows laterally from the observation phase processes to the orient-phase process(es).

Novelty nodes in each layer acquire stimuli not recognized by the layer’s Known Elements

srModel.  Any non-null response from this model is accumulated into a higher level sequence.

Null responses cause the novelty node to acquire the element and create a response that is the

value of the stimulus (identity function).  This response is then selected for sequence-level

accumulation by the OR Node.  Sequence accumulation is implemented in the Java

PDANodeCum class.  In addition, the stream of known and new elements stimulates nodes that

detect context.  These are typically srModel nodes with named models.  The naming of models

permits the automatic acquisition of new stimulus-response sequences into these models.  In the
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simplest training sequences, the models to be trained are named explicitly by the trainer.  In more

natural training sequences, the names of the models are inferred by the communications context,

implementing supervised knowledge transfer from the user.

7.2.6 Memory-Based Concept Structures

The pattern of accumulating elements into sequences illustrated in Figure 7-11 is repeated

at the levels corresponding to words, phrases, dialogs, and scenes.  The data structures generated

by PDA Nodes create the concept hierarchy of Figure 7-12.  These are the reinforced hierarchical

sequences.  Unless digested (e.g. by a sleep process), the observation phase hierarchy

accumulates all the sensor data, parsed and distributed among PDA Nodes for fast parallel

retrieval.  Since the hierarchy employs memory-base learning techniques [190], this is a

memory-intensive approach.  In addition, recent research shows the negative effects of

discarding cases in word pronunciation [191].  In word pronunciation, no example can be

discarded even if “disruptive” to an intensional model.  Each exception has to be followed.

Sequence Level of Abstraction

Primitive Sequences Words, token, image

Basic Sequences Phrases, video clip, message

Sequence Clusters Dialogs, Paragraphs, Protocol

Context Cluster Scenes in a play, Session

Atomic Symbols Raw Data, Phoneme, pixel

Atomic Stimuli External Phenomena

Figure 7-12  Concept Hierarchy of CR1

Similarly, in CR1, each stimulus from the user or network is a case in which knowledge

may be present.  As a minimum, if the identical context occurs again, the PDA will follow

exactly the prior course of events.  To the degree that the prior situation yielded training, it will

respond more appropriately, however.  Each occurrence of a stimulus is therefore retained and

counted, reinforcing that sequence.  The time delay between successive occurrences is also

measured.  If time delays match, the sequence is further reinforced.  Counting successful
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stimulus-response pairs occurring throughout the architecture reinforces experience.  Counting

time delay enables reasoning over time.  Sequence elements vary from the atomic to the

complex, as a function of the level of the concept hierarchy.

The principle of operation of the concept hierarchy follows from the operation of the PDA

Nodes.  Atomic stimuli (e.g. from a microphone) are converted to atomic symbols (e.g.

phonemes) by preprocessors such as speech-to-text phoneme recognizers.  Temperature,

pressure, time, location, and radio-channel states determined by lower-level SDR software are

processed in parallel.  The PDA Nodes process the resulting logically parallel streams of atomic

symbols.  The observation phase builds a parsed internal representation of the sensor data.

Sequences are initially encoded in novelty nodes.  After a sleep cycle, they are transferred to the

srModels for known elements and sequences, with activation links to constituent elements (e.g.

in the Links Nodes).  Consequently, the all the fine structure of a time-space experience is

encoded in the sequence hierarchy and available for rapid context-sensitive recall.

Sequences are delimited by designated delimiters, typically the most common element(s).

For example, white space is the most common character in text, so it delimits atomic symbols

(characters) into primitive sequences (quasi-words).  The inter-utterance pause is the most

common temporal epoch in speech, so this white space delimits primitive sequences into basic

sequences, quasi sentences.  Since the white-space detector is an srModel, the white-space model

may learn that other things constitute white space.  Noise background in a speech stream, for

example, could be identified as white-space so that the PDA only responds to speech epochs with

high SNR.  This processing flow has structural similarities to neural networks, but has the

advantage of transparent transduction of information, up the hierarchy.  Neural networks

encapsulate the information in the synaptic weights, reducing the explicit flow of information

through layers of neural networks.  This approach is an intentional departure into somewhat

uncharted territory, driven by the lack of structure of the task domain.

Context Clusters correspond loosely to RKRL micro-worlds.  These include

communications-context sequences, radio-context sequences, network- context sequences, and/or

user- context sequences.  This approach yields a proliferation of context clusters.  Some may be

deleted during the sleep cycle, depending on the type of machine learning incorporated in that

epoch.  The analysis of memory requirements of context clusters below shows that machine
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learning in the sleep epoch should drive the higher levels of the concept hierarchy towards a

small number of prototypical scenes (e.g. 100).  Each scene may be supported by a larger

number of dialogs (e.g. 500) and a reasonable vocabulary (e.g. 2000 words) without exceeding

memory capacities available in PDAs within about five years.

7.2.7 PDA Nodes

Each component of the PDA is a member of the Java class PDANode.  The class hierarchy

is illustrated in Figure 7-13.  All of the subordinate nodes inherit the core stimulus-response

model (an ObjectSpace HashMap) from PDA Node.  These classes each override that node’s

runNode() method to provide unique behavior.  In addition, each node class has some unique

internal data structures.  Slot-type data structures link nodes to each other.  All nodes have a

responseSlot which contains its output, as with neural networks.  The stimulusSlots may be

strings or arrays (e.g. stimSlot).

PDANode
  srModel,srCount, srDelay
nodeName, modelName 

PDASensor
  observation

capability 

PDAEffector
  currentEffect

capability 

PDANodeCum
  enableSlot, trigger-,state
window, parseWindow 

PDANodeLinks
  linksModel,-Count, -Delay

state 

PDANodeSequencer
  state

PDANodeTrigger
  state

PDANodeWord
  runNode( )

PDANodePhrase
  runNode( )

PDANodeNovelty
  enableSlot, 
state, capacity

PDANodeNullDet
  Array stimSlot

PDANodeOr
  Array stimSlot

PDANodeBuffer
  window

Figure 7-13  PDANode Classes

Sensors extract data from the localEnvironment which has been placed there by either the

protoPDA or by the simulation or both.  Effector nodes place their effects into localEnvironment

from which relevant data is extracted by either protoPDA (in the rapid prototype) or by the

simulation (interfaces are provided, but live interactive simulations are not included in the rapid

prototype).
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When run, the PDANode class checks for a valid input.  The flag “INACTIVE” tells the

node that it has not been stimulated, so it usually does nothing.  Otherwise, it looks up the

stimulus in its srModel.  PDANodes may also be called srNodes.  The stimulus can be any

object, as can the response, so this is a very general functional map associative memory.  An

arbitrary function may be run on the retrieved response before posting it to the response slot.

Pre-defined srModels include known words, phrases, dialogs, and scenes, word roles, phrase

roles, user, network, and radio models discussed above.  All of these models are savable and

retrievable using the inspector.  Novelty nodes are the companions to srNodes.  When an srNode

lacks a model, its companion novelty node creates a model of the stimulus, creating the default

response that is exactly equal to the stimulus.  When a novelty node acquires new knowledge, it

places itself on the needsSleep list and decrements its capacity.  When capacity meets variable

thresholds, the node complains to the Orient phase that it is tired, which advice would normally

be passed on to the user.  During the sleep cycle, novelty nodes transfer what they have learned

into the companion (“partner”) srNode.  Sleep does not take a long time (a few seconds for

CR1), but the PDA cannot do anything at all while it is sleeping because outside stimuli would

interfere with the knowledge consolidation process.

Sequence accumulation is accomplished in the Cum (pronounced quume) nodes.  These

nodes create srModels in which the elements are the items from its stimulus slot and the

sequence is the accumulated value of its parseWindow.  After the first stimulus, the Cum nodes

insert programmable delimiters into the sequence forming in the parseWindow.

Links nodes are continuously computing the partial correlation of the current elementary

stimulus with the known sequences of those stimuli (characters->words, words-> phrases, etc.).

When links nodes observe “INACTIVE”, they embed “?” into their accumulation window.  If the

links node is attached to KnownWords, for example, it inserts ? wherever an unknown word

appears in a phrase.  Links nodes are given linksModels from the srModel of a companion Cum

node.  The current prototype computes only the exact (time synchronous) cross-correlation of the

stimulus sequence with the known sequences.  Links nodes use dynamic time warping to recall

sequences that are not well time-aligned, but the time warp examines only a limited number of

hypotheses in order to avoid combinatorial explosion in this operation.

Sequencer nodes perform parallel to serial conversion so that each element of a stimulus
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block can be processed by the lower level processes.  OR nodes perform parallel to serial

conversion, aggregating items processed along parallel lower level afferent paths.  OR nodes

aggregate contexts, for example, by forming speech, text, time, place, and RF-related stimuli into

sequences that can be analyzed by the orient and plan phases.  The phase nodes transform these

aggregated sequences into planning and action sequences.  The effectors perform the tasks

specified in the action sequences.

7.2.8 The Cognitive PDA Design Language

The prototype PDA is designed from the PDANode components using the design language

summarized in this section.  The language consists of calls to Java operators that instantiate PDA

Nodes from the classes summarized above.  Some language statements populate the nodes with

capabilities.  Although arbitrary a-priori knowledge may be preprogrammed using the design

language, this approach is deprecated.  In CR1, only the absolute minimum a-priori knowledge

was provided, less than two dozen srPairs needed to permit the interactive bootstrapping of all

subsequent knowledge via machine learning.  This section is essentially an annotated listing of

the Java class “Design.”  This class operates on a PDA List in CRHome.  It generates one or

more PDA’s.  The presentation style of this section is to show the Java code in bold and to

comment on it.  The following is the first code from the Design class of CR1:

    PDA protoPDA = new PDA();  // PDA shell

    protoPDA.putName(protoPDA.makeName());

    //PDA 0

ProtoPDA is given the name PDA 0.  Multiple PDAs would be possible with minor

revisions to the Java code.  The following sequence of Java creates CR1’s sensors, giving them a

default value and the capability to access specific data from the localEnvironment.  For example,

the latSensor has a default value of “00” and the capability to access the information on “Lat” in

the local Environment.

//Initialize sensors

int latSensor = protoPDA.newSensor("00", "Lat");

int lonSensor = protoPDA.newSensor ("00", "Lon");

int speechFront = protoPDA.newSensor("NO_OBSERVATION", "Speech-Front");
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This sensor also wants to be processed one character at a time, so it requests proc0 and

proc1 by asking for “Character” level time-ticks.  The designer does this by setting a “tick-

request,” TickRQ, onto the speechFront sensor.

protoPDA.setTickRQ("SENSOR", speechFront, "Characters");

The other sensors defined for CR1 are as follows:

    int hereSensor = protoPDA.newSensor ("00", "Here");

    int xSensor = protoPDA.newSensor ("00", "X");

    int ySensor = protoPDA.newSensor ("00", "Y");

    int azSensor = protoPDA.newSensor ("00", "Az");

    int rflanSensor = protoPDA.newSensor ("00", "RFLAN");

    int pcsSensor = protoPDA.newSensor ("00", "PCS");

    int gsmSensor = protoPDA.newSensor ("00", "GSM");

    int tempSensor = protoPDA.newSensor ("00", "Temperature");

    int wxSensor = protoPDA.newSensor ("00", "WX");

    int amSensor = protoPDA.newSensor ("00", "AM");

    int fmSensor = protoPDA.newSensor ("00", "FM");

int yearSensor = protoPDA.newSensor ("00", "Year");

    int monthSensor = protoPDA.newSensor ("00", "Month");

    int daySensor = protoPDA.newSensor ("00", "Day");

    int hoursSensor = protoPDA.newSensor ("00", "Hours");

    int minutesSensor = protoPDA.newSensor ("00", "Minutes");

    int secondsSensor = protoPDA.newSensor ("00", "Seconds");

    int speakerID = protoPDA.newSensor("joe","SpeakerID");

The first process created is PDA-0-0, processs 0 on PDA 0.  This process handles time-

ticks called “characters.”  This is accomplished in Java as follows:

//PDA-0-0

    int proc0=protoPDA.newProcess();

    protoPDA.addTick(proc0,"Characters");

Nodes are then added to realize the character-level parsing functions.  The first node is

PDA-0-0-0.  It is a sequencer, a node that presents a block of sensory stimuli one character at a
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time to subsequent nodes.  Although somewhat counter-intuitive, sequential parsing followed by

parallel context aggregation yields a consistent set of phrase-level data for the rest of the

cognition cycle.

 //PDA-0-0-0

    int node00 = protoPDA.newNodeSequencer(proc0);

    protoPDA.setModelName(proc0, node00, "SEQ");

    protoPDA.enableTrigger(proc0,node00);

    //Connect the sequencer (node 0,0) stimulus to the sensor at sensorlist(2)

    //setStimulus PDA-0-0-2 <- PDA 0, Sensor 2

    protoPDA.setSensor(proc0, node00, 2);

The next PDANode is the srModel for known letters.  This needs a name, a stimulus, and a
layer in the inference hierarchy on which to place its results.  In addition to the layered response,
(a pointer to) this node may be placed on the stimulus slot of any other node to make its
responses available to that node.

    //PDA-0-0-1

    int node01 = protoPDA.newNode(proc0);

    protoPDA.setModelName(proc0,node01,"KnownLetters");

    protoPDA.setStim(proc0,node01,proc0,node00);

    //Give node 01 the ability to report on level 1

    protoPDA.setLayer(proc0,node01, new Integer(1));

The white-space detector node is an srModel that has been pre-programmed with the
ability to detect delimiters such as blanks.  Its stimulus is set to PDA-0-0-0, the sequencer.  This
establishes the flow of information illustrated in the layer processing above.

//PDA-0-0-2 //The white space detector to enable white accumulation

    int node02= protoPDA.newNode(proc0);

    protoPDA.addSR(proc0,node02," ", "ENABLE");

    //Connect sequencer at 0 to drive sr at 0 2, the whitespace node

    //setStimulus PDA 0 0 2 <- PDA 0 0 0

    protoPDA.setStim(proc0,node02,proc0,node00);

    //Timing control node: processes speech looking for x|3 blanks

In addition, a series of nodes detect blocks of white space, triggering higher layer nodes to
provide a response at the time the white space that delimits these entities is detected.  In a real-
time system processing speech, these detectors would look for epochs such as inter-syllabic gaps
and inter-utterance gaps.  Alternatively, a character stream from an existing speech recognizer
could indicate the nature and duration of noise epochs.  The word trigger node is defined as
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follows:

    //PDA-0-0-3   triggers words

    int trig1 = protoPDA.newNodeTrigger(proc0);

    protoPDA.setSensor(proc0, trig1, speechFront);

    protoPDA.setSpan(proc0, trig1, 2);

    protoPDA.enableTrigger(proc0,trig1); //sets state to enable

    protoPDA.endTrigger(proc0, trig1); //forces trigger when no terminal blanks

    //Timing control node: processes speech looking for x|5 blanks

    //PDA 0 0 4      triggers phrases

This pattern continues, defining phrase and other triggers.  Sensor processing nodes are
then defined as instances of word and phrase processing nodes.  The word and phrase level nodes
parse formatted streams, e.g. from waveform sensors such as the GSM waveform.  These streams
are not expected to have new, unrecognized items, so the machine learning of the observation
layer is deferred in preference for less memory-intensive conventional parser.  If the internal
channel were considered to be noisy or if the waveform is new (and therefore could present
unfamiliar sequences), these less capable nodes could be exchanged for about 10 nodes each that
accomplish the parsing function, but with the novelty nodes and accumulators needed for
machine learning in the sleep cycle.

    //PDA 0 0 7  - start of sensor processing nodes

    int latNode = protoPDA.newNodeWord(proc0);

    protoPDA.setSensor(proc0, latNode, latSensor);

    //protoPDA.setTickRQ(proc0,latNode,"Action");

    …

The next series of nodes define the word-level process, PDA-0-1.  This process includes
null-detection, accumulator, OR, inverter, links, etc. as needed to complete the first processing
layer.

    //PDA 0 1 // the second pda process

    int proc1 = protoPDA.newProcess();

    protoPDA.addTick(proc1,"Characters");

    //Add a PDANodeNullDet, a node that detects a failure to respond

    //PDA 0 1 0

    int node10 = protoPDA.newNodeNullDet(proc1);

    //Give this node the ability to monitor the first node bank

    //addStimulus PDA 0 1 0 <- PDA 0 0 1 //this monitors all the a priori known stuff

    protoPDA.addStim(proc1,node10, proc0,node01);
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Next, a novelty node is defined and linked to the sequencer.

    //PDA 0 1 1  // PDA Novelty

    int novelty1= protoPDA.newNodeNovelty(proc1);

    //Install the sequencer node on the novelty node's stimulus slot

    //setStimulus PDA 0 1 1 <- PDA 0 0 0

    protoPDA.setStim(proc1,novelty1, proc0, node00);

    //Install the Null detector node on the novelty node's enable slot

    //setEnable PDA 0 1 1 <- PDA 0 1 0

    protoPDA.setEnableNvND(proc1,novelty1,proc1,node10);

    //Install a partner node for ML in the novelty node's partner

    //setPartner PDA 0 1 1 <- PDA 0 0 1

    protoPDA.setPartner(proc1, novelty1, proc0,node01);

    protoPDA.setLayer(proc1,novelty1, new Integer(0));

The partner node to a novelty node is the srModel to which the novelty node will transfer
its knowledge during a sleep cycle.  The node operates only if its enable slot is active.
Otherwise, the slot’s value is the distinguished internal string “INACTIVE”.  This serves as a
gate to assure that the novelty node assimilates a stimulus only when the Known Element node
does not recognize the element.  The next node accumulates the white space elements into
sequences of white space.  In principle, this allows a protoPDA to process both background and
foreground simultaneously.  In CR1, only the foreground sequences are processed.

    //addNodeCumulator PDA 0 1 2

    int cum1 = protoPDA.newNodeCum(proc1);

    //protoPDA.setTickRQ(proc1,cum1,"Words");

    //Install the sequencer node on the cumulator node's stimulus slot

    //setStimulus PDA 0 1 2 <- PDA 0 0 0

    protoPDA.setStim(proc1, cum1, proc0,node00);

    //Install the sr node 002 on the cum node's enable slot this is whitespace

    //setEnable PDA 0 1 2 <- PDA 0 0 2

    protoPDA.setEnableCum(proc1,cum1, proc0, node02);

    //protoPDA.setTickRQ(proc1, cum1, "CUM1");

    protoPDA.setLayer(proc1,cum1, new Integer(0));
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    protoPDA.setMax(proc1, cum1, 2); //Sets to trigger on inter-phrase? Pauses

The details of the inverter and other accumulator node have been deleted.  The next step is
to initialize the links node.  This node was initially populated with some test data that has been
commented-out.  The word “one” was recognized through its association with the characters “o,”
“n.” and “e.”  In addition, this node is given a right-delimiter of “.”.  This results in and internal
format for words that have the embedded periods.  This format makes it easy to parse strings at
different levels of the hierarchy using a String Tokenizer, a standard Java construct.

    //PDA 0 1 5

    int links1 = protoPDA.newNodeLinks(proc1);

    //protoPDA.addLinks(proc1, links1, "o", "one");

    //protoPDA.addLinks(proc1, links1, "n", "one");

    //protoPDA.addLinks(proc1, links1, "e", "one");

    protoPDA.setStim(proc1, links1, proc0, node01);

    protoPDA.setLayer(proc1, links1, new Integer(2));

    protoPDA.setModelName(proc1,links1,"LetterLinks");

    protoPDA.setEnableLx(proc1, links1, proc1, inverter1);

    protoPDA.setDelimiters(proc1,links1,"", ".");

    //Link this links node to cum2

    protoPDA.setPartnerCX(proc1,cum2,proc1,links1);

The following sequence of comments shows the nodes of the second layer in the
observation phase.

    //PDA 0 2 // the second pda process

//PDA 0 2 0

    int words = protoPDA.newNode(proc2);

    protoPDA.setModelName(proc2, words, "KnownWords");

//PDA 0 2 1 newNodeNullDet(proc2);

//PDA 0 2 2protoPDA.newNodeNovelty(proc2);

    //PDA 0 2 3    int or1 = protoPDA.newNodeOR(proc2);

//PDA 0 2 4  whitespace enabler

/PDA 0 2 5   int cum3 = protoPDA.newNodeCum(proc2);
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//PDA 0 2 6   int inverter2 = protoPDA.newNode(proc2);

//PDA 0 2 7  - phrase level parsing    int links2 = protoPDA.newNodeLinks(proc2);

//PDA 0 2 8    int cum4 = protoPDA.newNodeCum(proc2);

//PDA 0 2 9 - integrates phrase-level contexts

    int orP = protoPDA.newNodeOR(proc2); ….

//PDA 0 2 10    int wordRoles = protoPDA.newNode(proc2);

//PDA 0 2 11    int end2 = protoPDA.newNodeEnd(proc2);

The third, fourth, and fifth layers are analogous to layer 2.  Layer 3 processes phrases, layer
4 processes dialogs, and layer 5 processes scenes.  Next, each subsequent phase (orient, plan,
decide and act) are set in dedicated processes.  Process 6 comprises the orient phase, with its
primary inference-control node, the Java class PhaseOrient.

proc6 = protoPDA.newProcess();

//PDA 0 6 0

    int orientPhase = protoPDA.newPhaseOrient(proc6);

    protoPDA.setWords(proc6,orientPhase,proc2,or1);

    protoPDA.setWordRole(proc6,orientPhase,proc2,wordRoles);

    protoPDA.setPhrases(proc6,orientPhase,proc3,or3);

    protoPDA.setPhraseRole(proc6,orientPhase,proc3,phraseRoles);

    protoPDA.setLayer(proc6,orientPhase,"ORIENT");

    protoPDA.setTickRQ(proc6,orientPhase,"Plan");

    //PDA 0 6 z - end phase

    int end6 = protoPDA.newNodeEnd(proc6);

    protoPDA.setTickRQ(proc6,end6,"Orient");

The End node terminates processing for this phase by removing “Orient” from the tick-list.
The planning process (proc7), decision process (proc6) and action process (proc9) are defined
analogously to the orient phase processes.

7.3 The Wake Cycle

CR1 uses the minimal knowledge of syntax provided in the Design phase to bootstrap

knowledge as reinforced hierarchical sequences.  CR1 supports both passive and active machine

learning during its wake cycle.  If the Train button is not depressed, then the phrase in the local
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speech buffer (“let me introduce firstname”) is parsed and correlated to known words and

phrases.  Before CR1 has acquired content into its internal models, it passively parses and

acquires everything into its novelty nodes, but can not respond.  As internal models are

populated, it develops the capability to respond as indicated in the use scenarios.  This section

traces that development of knowledge.

Figure 7-14  Passive and Active Machine Learning

The user can train CR1 the same way that the designer trains it as illustrated in Figure 7-14.

The trainer expresses a phrase or sentence in speech or text, edits the PDA’s output area, presses

the Train button and then presses OK, which serves as the start button for CR1’s internal

processing cycle.  The PDA takes the sensory input as a stimulus to be paired with the response

given by the values that the trainer has placed in the effector area.  In the example, the PDA is

supposed to Say “Greetings firstname” when the expression “let me introduce firstname” appears

as speech input.  The Train button causes the PDA to ignore all context cues except the ones that

the user has edited since the last interaction cycle.  This input is taken as context-free.  If the

latitude and longitude had been edited, it would have learned to associate this response loosely

with the vicinity of Washington, DC (which could be helpful in social situations).  The first

occurrence of such phrases will be reinforced whenever their use yields appropriate positive
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feedback.  The trainer could have said “let me introduce charlie” but then the phrasodic template

for introductions would have used charlie as the variable representing the first name.  It is easier

to debug the knowledge structures if the items being used as templates look like templates,

although that is not at all necessary.

7.3.1 Learning to Detect Contexts

The Berlitz Phrase Book and Dictionary for Swedish was used to train CR1 in greetings

and eating out.  The srModels thus generated are stored in personality files.  Each personality

contains the stimulus-response sequences (srSequences) for all the nodes with named models in

the PDA.  For example, the Introductions personality consists of 56 kB of text consisting of 569

srSequences.  These load in less than a second and run handily in real-time interactions with

CR1.  The introductions training sequence is as follows:

How do you do; Pleased to meet you; may i introduce firstname;

this is firstname lastname; excuse me; john this is mary; john this is joe

may i present mary; my name is charles; my name is rebekka

my name is lars; my name is firstname lastname; what is your name

pleased to meet you; how are you; fine thanks and you; how long have you been here

i have been here a week

These 18 phrases consist of 74 words (36 different words).  The 569 relationships represent

the parsing of these phrases into characters and words, and the fact that each character is fully

indexed (in a Links node) at the word level, each word is indexed into each different phrase, etc.

The process of training the PDA that these phrases are introductions is informative.  In rote

training of the PDA, the trainer tells the PDA it is being trained, the trainer provides a stimulus-

response sequence for an internal model, and says, “done.”

train   phrasesense let me introduce firstname   introductions   done.

An easily parsed natural language version of this sentence is

“The phrase sense of ‘Let me introduce firstname’ is ‘introductions.’”

Somewhat more convoluted, but more natural:

“During introductions, I could say ‘Let me introduce firstname.’”
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The subjunctive case “could” signifies that this is a training sequence.  This is implemented

by training the Word Sense srModel with the case “could → train.”  The phrase ‘During

introductions’ signifies the response that a phrase sense model should produce.  Finally, the fact

that ‘introductions’ is a user communications context establishes that this chunk of knowledge

needs to go in the phrase sense model that detects such contexts at the phrase level.  CR1 handles

the first format of such expressions as illustrated in Figure 7-15.
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Figure 7-15 Lateral PDA Nodes Detect Communications Context

The models Hearsay, Phrase Sense, and Word Sense are the lateral models that respond to

stimuli from the observation hierarchy.  The instruction constitutes a dialog-level sequence.  The

words, “train” and “done,” are registered in the Orient phase srModel as warranting a change of

internal state during the processing of this dialog.  When the PDA detects “train” in this stylized

context, it expects intervening phrases until the training delimiter “done” or any of its equivalent

expressions occurs.  In addition, “introductions” is already known as the name of a model (by a

similar prior training sequence).  The command “model phrase sense | let me introduce firstname

| introductions” is synthesized by the orient phase.  The context @now @here is also generated.

The context is resolved and stripped from the command by the intervening plan and decide

phases.  The act-phase passes this command to its PDANode Actuator that has been given the

capability to modify any named internal models.  The new phrase sense is therefore added to the

phrase sense model.  Subsequently, if that phrase is used, it evokes “introductions” into the orient

phase.
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Other models in CR1 are trained using this machinery.  The result is that CR1 bootstraps

its knowledge from a small amount of meta-level knowledge about how it is constructed.  It first

is trained on the meaning of its internal models.  This is accomplished by associating the model

name with the word(s) or phrases needed to properly orient to the named model.  This is a many

to one map where multiple words or phrases may isolate a single named internal model.

Subsequently any of these models may be populated by being named either explicitly or

implicitly.  The trainer has to follow training decorum in order to be sure that the internal models

are populated properly.

Subsequently, CR1 can detect the user communications context using the srModels if the

phrase occurs exactly in the future.  If the phrase is not an exact repetition, then the Links node

produces the closest match with an associated binding.  If the earned value is high and the

binding cost is low, then the PDA may act on such partial information.  If the earned value is not

high enough or the binding cost is too high, the PDA will ask permission before acting.

7.3.2 Acquiring Radio Knowledge

One advantage of this somewhat shallow model of natural language processing is that it is

directly applicable to radio protocols such as downloads and mode selection.  RKRL data was

used to train the system about the parameters of GSM, GPRS, and a notional RF LAN.  Its

internal models of modem, etc. were acquired using exactly the training machinery defined

above.  The trainer says:

“train   GPRS dataRate CIR >30   is   21.4   done     ”

This sequence installs 21.4 as the dataRate model for a stimulus GPRS@CIR > 30 (dB).  In

CR1, that model was trained following the data content of the RKRL 0.3 XML.  Automatic

instantiation of RKRL 0.3 statements into future cognitive radio srModels would be a logical

step in the further development of cognitive radio.  The flow of information to the lateral models

associated with this training sequence is as illustrated in Figure 7-16.
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Figure 7-16 Acquiring and Using Radio Knowledge

During training, the sequence from the speech or text user interface (or from KQML via

RF) is parsed, yielding phrase senses that update the CIR/dataRate model.  Other models that

participate in the setting of the GPRS mode as a function of context are also updated.

Subsequently, the models process the BER as a function of context to set the appropriate GPRS

mode.  Since user context drives mode selection, it may choose a low data rate high probability

of connection mode if the context so dictates.  Thus, the processing flow within CR1 establishes

the character of setting of radio bands and modes as a function of user communications context.

7.4 The Sleep Cycle

After a session of interaction with the user and the radio networks, the PDA requests a

sleep epoch.  During this period of time, stimuli are to be integrated into the PDA’s set of

knowledge.  CR1’s sleep cycle accomplishes the following tasks:

1. Transfers those items since the last sleep cycle from the novelty and accumulator-class

nodes to the real-time performance nodes, the partner srNodes.

2. Replenishes the capacity of the novelty nodes and accumulators to acquire new

knowledge, e.g. by clearing their srModels and resetting the capacity to an appropriate

level.
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3. Digests the models in the srNodes to assure that the computational capacity remains

within bounds.  The primary issue is to manage the memory of the ObjectSpace Hash

Maps so that they are not more than 50% occupied, either by allocating more memory

or by removing nodes with the lowest estimated value.  Estimated value is a function

that combines count, temporal extent, and context.  For example, all srModel (stimulus,

response) pairs with a trainButton in the context are preferred over those without that

preferential context.  (This aspect has been defined but not fully implemented in the

rapid prototype because, unexpectedly, CR1 never ran out of memory.

In a more fully developed system, the PDA would reconcile negative reinforcement items

via a machine learning process such as decision tree formation [51], In addition, CR1 would

generate questions from the word, phrase, dialog, and scene-level srModels.

Given any new dialog, CR1 learns the dialog as both the stimulus and response of the the

dialog level srModel.  Because of this specific type of knowledge organization, CR1 could

readily compose questions like, “What kind of dialog is ‘Let me introduce Chip?’”  A few such

questions could be queued for user interaction upon wakening.  If the user replies

“Introductions,” then the response to the srModel of ‘Let me introduce Chip’ would be set to

“Introductions.”  Subsequently, whenever a matching expression is detected, the user-

communications context “Introductions” would be reinforced to the Orient phase.  This maps

dialogs to scenes in a way that acquires this generalization knowledge relatively painlessly from

a helpful user, incrementally customizing the system’s communications services.  Alternatively,

a network administrator could provide the training for users that are not so helpful.

The transfer of srModels from novelty and accumulator nodes that acquire the raw learning

data to the srModels that perform the associations in real-time acquires procedural knowledge.

This is akin to encapsulation of skill through repetition.  Fodor’s monograph Modularity Of Mind

[192] argues that such encapsulation is a cornerstone of human learning.  The sleep cycle

attempts to emulate that encapsulation algorithmically.  R. Sun’s CLARION system [193], on the

other hand, has a two-layer learning architecture that learns high level declarative knowledge

(predicates) from low level procedural knowledge (Q-learning).  Such encapsulation is necessary

for a resource-limited system that has to perform acceptably in real time (or die, perhaps, as in

theories of human evolution).  The architecture therefore accommodates a variety of such
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approaches.

In a more fully developed system, the new terms would be analyzed for contextual cues to

role.  For example, the binding of a new word to a pattern in which the known word has a known

word-sense can be interpreted as evidence that the new word shares the word sense with the

known word. In the example discussed previously:

Layer3(Let me introduce chip, Let me introduce firstname) with firstname = chip.

In CR1, firstname has no particular word role, since its internal models are designed to

detect communications context (introductions), not to populate databases.  But the sleep cycle is

designed to facilitate the integration of other machine learning algorithms.  If the cognitive radio

kept a natural language address book, the word-sense of firstname would be Name.  Therefore, a

set-cover or abductive inference algorithm could infer the word-sense of Chip as a Name from

the context in which it was introduced.  The architecture therefore supports the integration of

additional machine learning algorithms as applications opportunities arise.  In CR1, the sleep

cycle refreshes the novelty nodes, transferring the new stimuli to the known srModels.  It also

reinforces the stimuli, increasing the reinforcement level of prior stimuli.  A more elaborate sleep

cycle could remove non-training examples that are not highly reinforced, gradually removing

noise.  CR1 therefore demonstrates a framework for machine learning beyond the capabilities

implemented in this rapid prototype.

7.5 The Prayer Cycle

Not all items that cannot be resolved during the sleep cycle may be resolved through

interaction with the user.  The architecture envisions the resolution of the remaining items by

interaction with external entities.  These include the network operator(s), perhaps a cognitive

radio home page, and, of course, the designer(s).  The need for some such external support is

clear.  CR1 did not implement such a cycle, however.  Instead, the Inspector was used to

diagnose CR1’s internal states.  KQML interaction with a cognitive network seems particularly

appropriate to a sleep cycle, especially since it is likely to occur in off-peak hours, given the

simulations of the earlier use cases.
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7.6 Performance Metrics

The primary performance metrics associated with cognitive radio would measure user

satisfaction with the PDA’s control of wireless voice, data, and/ or multimedia services.

Quantification of these metrics can draw from established disciplines.

7.6.1 Precision and Recall of User Communications Context

Probability of detection (Pd) of a communications context is analogous to the recall metric

of text retrieval/ document clustering.  This is the number of documents retrieved expressed as a

fraction of those that are known a-priori to be relevant.  Similarly, CR1’s ability to detect

contexts for which it has been trained may be expressed as:

Pd = (Detections/ Events)

Probability of false alarm (Pfa) is similar to the precision metric of text retrieval.  Precision

is the number of documents that are relevant expressed as a fraction of the number retrieved.

Thus, if 100 contexts are detected and 90 of them represent the state of the user, the precision is

90%.  For large text corpora, algorithms that employ stemming, hierarchical clustering, and a

certainty calculus achieve recall in the 80% range with precision of 50% [80].  Similarly,

cognitive radio’s false alarm rate would be measured as follows.

Pfa = (Detections-Errors)/Detections

An error is any detection that leads to negative reinforcement by the user.

7.6.2 Confusion Matrices

Although precision and recall characterize error rates, they do not provide much insight

into the nature of the errors.  The confusion matrix expresses the rate at which Context A is

mistaken for Context B.  The non-normalized confusion matrix of Table 7-4 shows a confusion

matrix for 8 test cases in which CR1 was trained to detect introductions, eating (e.g. at home),

and eating out.  The test is not very representative because of the small amount of data available

and because the test data was prepared by the developer.  In a valid test, the training data and test

data would be obtained from uncorrelated sources.  As a minimum, the tester should be unaware

of the training data and conversely.  The confusion matrix brings rigor to the evaluation of

performance, when that becomes the primary research objective.  Since this thesis is oriented
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towards architecture, substantial effort was not put into training and testing of performance, but

into the analysis of the data structures and information flows supporting the reasoning

architecture.

Table 7-4 Communications Event Confusion Matrix

↓ Actual/ PDA → Introductions Eating Out Eating Other

Introductions (2) 2 0 0 0

Eating Out(2) 0 1 1

Eating(2) 1 1

Other(2) 1 1

7.6.3 Conflict Rate

The rate at which the PDA’s actions have to be overridden by the user is also a useful

metric.  The use concept behind cognitive radio is that the user can always pre-empt the PDA.

Such preemption may be processed as a training experience.  A follow-up dialog would extract

from the user reasons for the conflict.  This is a subject for future research in the machine

learning of computational models of discourse.

7.6.4 Combinatorial Aspects

Finally, the use of memory and processing resources by cognitive radio’s intelligent agents

cannot be ignored.  A software radio continues to emerge, the complexity of modulation,

equalizer, coding, decoding, and the protocol stacks continues to increase.  Interference

suppression, for example, can enhance Carrier to Interference Ratio (CIR) for an increase in

processing capacity.  In some cases, the number of operations per bit can increase by three orders

of magnitude between the most elementary conventional algorithms and advanced algorithms

like sequential interference cancellation for W-CDMA [194].  In addition, trellis decoding is

memory intensive.  Thus, cognitive radio has to balance processing and memory resources of the

software radio against other uses including user applications and cognitive processing.  The

following preliminary combinatorial analysis of the computational needs of cognitive processing

is therefore relevant.

The most severe user of computational resources in CR1 is the observation phase.  A fully
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trained version of CR1 could have a 2000 word vocabulary with competence distributed among

50-100 models.  The number of stock phrases such as introductions, asking for directions, etc.

could be 2000.  Trained contexts would be less because multiple phrases align to each context.

The number of dialogs and scenes, similarly, are reduced as one climbs the abstraction hierarchy.

The space complexity of reinforced hierarchical sequences is quadratic, proportional to the

square of the number of items because of the correlation function of the links nodes.  The linear

factors due to the other nodes comprise less than the square root of the resulting total, so that is

ignored in this analysis.

Table 7-5 Combinatorial Analysis of Space (Entries)

Aspect #Known Links
Trained Characters 40 0
Trained Words 2,000 80,000
Trained Phrases 2,000 4,000,000
Trained Contexts 1,000 2,000,000
Trained Dialogs 500 500,000
Trained Scenes 100 50,000

The space required is calculated by multiplying the number of elements (e.g. characters)

times the number of known sequences (#Known, e.g. words), an almost quadratic function.  The

number of items to be stored in Hash Maps, then is about 6.63 million, plus or minus a factor of

two for uncertainty in the tradeoffs of amount of training data versus performance.  Since Hash

Maps like 50% spare space to assure O(1) versus O(n) recall speed, space must be reserved for

another 6.6 million items (to be conservative).  If items require on the average 100 bytes of

storage (pretty efficient, but not unattainable), then the PDA needs 1.3 GB of RAM.  According

to Moore’s law, that amount of memory will be here within a decade in a PDA, so the memory-

intensive approach required to support reinforced hierarchical sequences is not out of reach.  In

addition, the human brain is thought to contain on the order of 1015 elements of storage, so it is

not out of the question that human reasoning may employ similar mechanisms.  In fact, the

human brain is known to be massively parallel and to store information in a distributed way.

Thinking of the structure of the hash-maps in computer memory, one has a highly memory-

intensive and massively parallel algorithmic architecture that might well map onto some special

purpose processors.  The clustering of stimulus-response knowledge in PDANodes partitions that

knowledge for convenient mapping to massively parallel hardware, if one were so inclined.
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The rate of growth of memory requirements will be a function of the degree to which the

PDA is exposed to new stimuli.  A PDA that is used “around the house” and not for extensive

Internet queries, but perhaps for shopping will be exposed to a low rate of new stimuli.  This

could include twenty new words and 1000 new phrases per day of strong use (mostly from

Internet queries while engaged in consumer practices such as shopping).  It is hard to tell just

how much memory would be needed to support meaningful use without forgetting so much that

the consumer is dissatisfied.  Examination of the prosodic correlation properties of Internet text

would no doubt shed light on this aspect of cognitive radio.

Finally, the above analysis emphasizes human communication because that is the most

demanding in terms of generality of expression and complexity of storage.  The radio knowledge

consisting of 4000 essentially phrase-level chunks of knowledge need not be stored in every

PDA.  The PDA’s a-priori training is assumed to include the 1000 elements related to the PDA’s

network, area of sale and areas of the world in which the PDA would normally operate.  The

number of radio words is extremely low (< 100) and the number of radio contexts is also very

low (<100)  On the other hand, if one were to use cognitive radio to map propagation

environment, then the storage required increases linearly with the number of locations known.

Assuming 100 meter GPS regions, all the propagation knowledge of a user’s track in the urban

scenario would take less than 1 million elements of storage, less than 20% of the notional

capacity of the PDA.  An interesting question, then, arises of how much can one afford to

reallocate memory to propagation measurement to support a network or user who is very

concerned about radio performance (e.g. a military user) versus how much memory one might

like to have to support natural language processing.

7.7 Observations and Research Issues

This section summarizes the research issues and lessons that were learned from the

development of CR1.  Any inter-disciplinary research project such as this generates questions

that are already at least partially under consideration in the separate disciplines.  The goal of this

section is to highlight the nature of the intersection of those disciplines with cognitive radio.

7.7.1 Word Vector Research Issue

The lower layers of the sequence-recognition structure for user context detection is similar
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to word-vector document clustering [30].  Sahmi’s information-theoretic normalization approach

works well for documents because there are enough words for statistical significance.  One could

process dialogs obtained from simulated interactions with cognitive PDAs in the same way that

Sahmi’s algorithms process documents.  The resulting word-vectors could be used in mid-layer

processing to identify contexts at the level of dialogs and scenes, e.g. in the sleep cycle.

There are few words to cluster in real-time dialog interaction with a PDA.  Thus, symbol,

word, and sequence counts are not meaningful.  For this reason, the element counts are not

explicitly normalized in CR1.  Implicit normalization occurs in the activation of the strongest

high level sequence(s) in the sequence matcher.  Consider:  “PDA, make me some coffee” (PDA

Action:  Request coffee from home’s RF LAN). Or, “How’s the weather?”  The PDA repeats

latest sequence from NOAA (National Oceanographic and Atmospheric Administration) weather

radio.  The topic is reliably detected if the words in the current situation occur exactly in that

order in prior experience in which the user trained the PDA by manually selecting the weather

channel.  Therefore, instead of normalizing the reference knowledge in a probabilistic way, the

non-normalized activation strength is the degree of belief.  This is tantamount to the weight of

the equivalent word vector.  In addition, partial words partially activate word nodes.  This allows

CR1 to link word variants that occur in similar phrase contexts.  If that link is subsequently

negatively reinforced, the link’s strength is reduced (count is decremented by k) so that that

sequence is no longer the strongest when multiple activations occur.

Statistically-oriented reinforcement normalization may be accomplished during a sleep

epoch.  Since CR1 assimilates all words, phrases, dialogs, and scenes in novelty nodes during a

wake cycle, they may be readily accessed for batch processing during a sleep cycle.  The metrics

of the statistical learning algorithm should be re-normalized to the integer counts in order to be

consistent with CR1’s real-time reinforcement algorithms.  Although probability theory pushes

one in the direction of normalizing over [0, 1], CR1 needs normalization instead over the integer

domain [1, Max].  Any stimulus that is part of a PDA’s experience has been observed at least

once (in training), so zero is meaningless as a reinforcement value.  Zero might mean that the

sequence is thought to be illegal, but it would not be a reinforcement value.  Max is the

maximum number of reinforcements observed of any stimulus in any srModel.  Although some

bias is introduced by approximating a probability by a scaled integer, small integers are easier to
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interpret algorithmically than small fractions.  For example, if the reinforcement value of a

sequence is 1, then the sequence has been observed exactly once.  If the reinforcements are

normalized to 1 like a probability, then it is difficult to tell what 3.23*10-6 means.  Has that

stimulus appeared only once or more often?  A phrase that has appeared only once in the past

year might be more safely purged than one that has appeared even twice.  Consider the

combinatorial limits to such an approach.  The number of seconds in 10 years can be represented

in a 29 bit integer.  Thus, a 64 bit integer is capable of counting all the elementary sequences and

their combinations presented to a 20-channel PDA in a 30 year life.  Thus, the use of integer

counts as degree of belief scales up to practical applications, subject to truncation errors.

7.7.2 Memory-based Learning

Knowledge representation in srModels follows case-based or memory-based learning.  The

use of memory in CR1 is therefore subject to combinatorial explosion.  For example, only 18

phrases short translate into 569 srSequences in 25 srModels.  The impact on real-time

performance and memory use was less than feared.  The Java prototype used the ObjectSpace

HashMap and HashSet constructions for all internal models.  These constructs save sequences

efficiently and recall them in Ο(1) steps if the memory is only half full12.  This means that

phrases did not have to be pruned (in the sleep cycle) to stay within the bounds of a few hundred

phrases readily supported on the Dell Laptop used for development.  The laptop’s 128 MB of

RAM sufficed for near-real-time performance of the test cases.

In addition, memory-based learning exhibited high domain selectivity.  For example, the

cognitive radio was trained the exclusive-or relation that daunted linear perceptrons and that

require many iterations of learning for a neural network.  Memory-based learning assimilates the

relation in exactly one exposure.  It can tell you what 1 XOR 1 is because that stimulus binds so

precisely to the case 1 XOR 1 equals 0.

The ability to train the PDA using sequences seemed natural.  One of the touted advantages

of memory-based learning is that it requires no a-priori intensional model of the domain.  Indeed,

                                                
12 O(1) is a fixed number of steps independent of the size of the hash map; O(N) is linear growth; O(2N)
is exponential growth, etc.
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one can express anything from the Berlitz phrase book, from the SDR Forum download protocol,

and from the GSM API without recourse to an a-priori model.  This gives a lot of latitude in

defining (and re-defining) the details of the knowledge representation.  This is also consistent

with the need for RKRL to support heterogeneous representations.  Sequence matching is a

simple, computationally efficient way of implementing the functional equivalent of rule-binding

or resolution theorem proving over small rule sets.

This does not mean that hierarchical sequences are “better” than expert rules or Prolog.  In

general domains, one needs a Turing-capable engine with the power of Prolog.  Prolog is much

better than hierarchical sequences for general inference tasks.  But cognitive radio is not a

general reasoning domain.  Its functions are limited to the identification of user communications

contexts and the support of wireless access.  But these functions have to be performed reliably in

short, isochronous windows, either for the user or for the network.  In addition, the resources to

be used have to be predicted in advance of their use (e.g. in the planning phase).  Thus, the

advantages seem to outweigh the lack of generality.  Uniformity of expression of words, phrases,

dialogs, and scenes in testing and training, and across speech, text, radio protocols, etc. made the

system easy to train and evaluate.

The primary research issue associated with memory-based learning in cognitive radio

might be generalization.  Memory-based learning by itself offers few strategies for generating

generalized templates from a large collection of nearly identical templates.  Otherwise, the

consolidation of phrase and dialog level interactions into coherent scenes is left to an interaction

with the user.  Perhaps the combination of text-retrieval approaches and memory-based

approaches would be an interesting research area.  In addition, one would like to be able to

replace a long dialog with a user about, say, sending email with a shorter sequence that

accomplishes the same result and that frustrates the user less.  This is akin to the search for

macro-operators, possibly using means-ends analysis [54, 28].

7.7.3 Difficulties in Quantitative Assessments of Interactive Agents

How does one develop the large sets of data needed to generate standard confusion

matrices?  In TREC [80], for example, there are large standard corpora of text data.  During the

mid-1980’s numerous “good” text retrieval engines were developed and tested on standard text
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corpora of about 60 MB.  Later, the first 2 GB corpus showed how truly deficient these “good”

algorithms were.  The situation is similar for CR1.  CR1’s “corpus” of dialogs would depend on

the way CR1 interacts with the environment and user.  This makes it a very labor-intensive, time-

consuming task to create and run meaningful scenarios.  What techniques could be used to create

large, standard data sets?  Maguire’s notion of using Berlitz language guides for training might

be extended.  One could identify language training scenarios for training the user-interface

processing of a cognitive PDAs.  One might then use standard foreign language tests in which a

small but representative number of alternatives can be generated, e.g. by a state machine

simulation of a user.

How does one characterize the relationship between the closed set of knowledge that can

be sustained inside of a PDA and the open-set of knowledge in the world?  The digital libraries

program showed that multiplicative normalization and hierarchical document partitioning yields

better scores than non-hierarchical approaches.  RKRL provides a reference taxonomy that might

be used in getting at this issue.  Obvious metrics like the size of the PDA’s vocabulary and the

number and scope of its acquired models might provide a superficial treatment.  But the

equivalent of a confusion matrix is hard to formulate for open-set constructs.

7.7.4 Grounding versus Difference of Opinion

How does one characterize the degree of success of human-computer communication?

Suppose the user asks the PDA:  “Will it rain today?”  The PDA plays back the latest NOAA

weather broadcast.  It has inferred “Rain” as its weather state.  The user says, “No, I do not think

it will rain today.”  Has the PDA successfully communicated with the user?  This aspect of

human-computer communication is often called grounding.  Grounding is the alignment of

internal states of two cognitive entities.  Grounding errors can include (a) failure of one entity to

express an internal state to another, (b) lack of access of the recipient to the expression, (c) and

misinterpretation of a perceived expression.  A metric has been described which expresses an

agent’s inclination towards a communications act to correct a detected grounding error [195].  A

state-confusion matrix (patterned after the confusion matrices used in pattern recognition and

language processing) could compare the internal states of two agents that are supposed to be

sharing identical internal states.  Such a matrix would characterize the success of
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communications, but would not give much insight into the underlying agent-agent or human-

machine communications phenomenology.  Additional metrics might:

a. Express the relative importance of internal states with respect to the task at hand.

b. Express the agent’s ability to know its own internal state.  Most internal states of

conventional software radios are not computationally accessible.  Although many

internal states of cognitive radios are accessible, many meta-level states are not.  For

example, CR1 does not yet have algorithms that diagnose its need for a new srModel.

Thus, it can not express such a need.  A predicate over meta states might be used to

quantify whether agents have the capabilities required for grounding.

c. Express the reliability of one agent’s means of expressing internal states to another

agent.  That is, it would express the degree to which two agents share language syntax

and semantics.

d. Express the cost of expressing the internal state.  Some states might be expressed only

through long dialogs, or at the expense of doing other tasks.  How can such costs be

quantified?

Some function could map these additional metrics into a space suitable for comparing

agents’ communications capabilities.  Alternatively, items a-d could be assessed as independent

dimensions of agent communications.

Various forms of disagreement have been treated as grounding errors, but that view seems

misleading.  If the PDA’s internal state reflects X (“It will rain today”), but the user thinks !X

(not X, e.g. “It will not rain today”), the two disagree about the weather.  If a cognitive PDA’s

internal state was derived from the speech processing of the NOAA radio weather broadcast, its

internal state was derived from a legitimate source.  The user’s view may be based on experience

that the weather forecasters are wrong 30% of the time, perhaps coupled with optimism.  If the

PDA expresses its internal state to the user, then miscommunication has not occurred.  If the user

tells the PDA “It will not rain today,” then the PDA should detect a conflict.  Suppose it looks up

its srModel for weather and finds “Today -> Rain.”  This was deposited there by its processing of

the NOAA weather forecast.  It can say to the user “NOAA Weather Radio says it will rain

today.”  The reply might be “I don’t think so.”  At which point, the PDA could replace “Today -
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> Rain” with “Today -> No Rain”.  Alternatively, it could extend the context by creating two

pairs:  “(NOAA, Today) -> Rain” and “(User, Today)->No Rain” in its srModel of Weather.  In

either case, the user and the PDA are communicating about a state where the differences are not

due to miscommunication.  The extended context approach resolves the conflict of internal states

by augmenting the internal state in such a way that the PDA’s problem of storing conflicting

models is resolved.  The disagreement remains, but the computational difficulty is overcome.  In

addition, the PDA can employ the user’s state (“no rain”) when acting on behalf of the user (e.g.

reserve a table on the patio at the restaurant).

The observation is that conflict presents an opportunity for a cognitive agent to learn.  In

order to do this in a computationally-effective way, the agent must:

(a) Detect the conflict (e.g. replacing “Rain” with “No Rain” is a problem),

(b) Encode the situation that led to the conflict as a problem state (User versus NOAA as

sources for the srModel of weather),

(c) Recognize the aspect of context that can convert a conflict over internal state into

multiple internal states (extend the Weather model stimulus from Today, a temporal

constant to (User, Today), a vector), and

(d) Obtain the data needed to create multiple states (in the example, srWeather:  User ->

“Today-> No Rain” and srWeather: NOAA -> “Today -> Rain” existed internally, but

would not be recognized as such without specialized internal data structures and related

processing), and finally

(e) Deal with the multiple internal states from that point forward.  It would update all of its

internal models that ask about weather to express (agent, time) as the stimulus to the

srWeather model.  It could also install the dialog “Today -> ERROR | Askfor (<agent>,

Today)” in the srWeather model.  Any internal or external process that asks for the

weather will know that that is a function of the context variable <agent>.

(f) Setting up and accessing such context variables imparts implies internal structure to the

cognitive agent that may not be present until such a conflict is detected.  Mechanisms

to do this are open-ended in that the PDA can reshape its internal structure, potentially
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leading to unstable behavior (such a PDA would be Turing-capable and thus potentially

unstable)

A disagreement regarding the value of an internal state is a specific example of conflict.

Other types of conflict are present in CR1.  For example, a user can always take over control of

the PDA’s radio resources in a way that differs from the plan offered to the user by the PDA.  In

any of these situations, the PDA is presented with a learning opportunity.  The reinforcement

mechanism built into CR1 could trigger communications with the user, to employ internal

machine-learning algorithms, and to allocate more internal resources (e.g. permanent case

memory) to those situations that occur often enough.  Those conflicts that occur only once might

be safely ignored.  Conflicts occurring more than once might be dealt with through machine

learning in the next sleep cycle.  Those that cannot be resolved autonomously could be presented

to the network or to the user for assistance.  Only a very limited implementation of this machine

learning strategy has been implemented in CR1.

The use cases, RKRL, the design of CR1, and these observations support the definition of

an architecture for cognitive radio, presented in the next chapter.
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8 The Cognitive Radio Architecture

An architecture for cognitive radio consists of the functions, components, and design rules

necessary to support the evolution of cognitive radio.  The architecture integrates the

contributions of researchers focusing on the specific disciplines of software radio, network

engineering, natural language processing, and machine learning.  This architecture minimizes the

dependence on knowledge-engineering through the integration of machine learning.  It also

minimizes the burden on the user through the integration of natural language processing.  This

chapter defines the cognitive radio architecture that emerged through the definition of RKRL and

its refinement and use in CR1.

8.1 Primary Cognitive Radio Functions

Cognitive radio is a software-defined radio that incorporates applications, interfaces, and

cognition functions identified in Figure 8-1.

Radio Networks

Other Networks

User

Environment Cognition 
Functions

Applications

Software
Defined 

Radio
Functions

User Interface
Functions

Environment Sensor
Functions

Effector
Functions

Cognitive Radio

Figure 8-1 Functions of Cognitive Radio

The primary radio cognition functions consist of:

1. Recognize user communications context.

2. Mediate wireless information services as a function of context.

The recognition of user communications contexts should be passive to the maximum extent

possible.  That is, the cognition functions should rely on processing streams of user interaction
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with applications as its primary means of inferring communications context.  Only as a last resort

should the cognition functions require user input that has no purpose other than to assist the

cognition functions.  When such input is necessary, the cognition functions should structure that

interaction to be as intuitively appealing as possible.

The mediation of wireless information services includes continually keeping track of the

parameters of wireless networks are present in the environment.  These parameters include

spectrum occupancy, received signal strength as a function of time and space, available QoS, and

related cost(s).  The fidelity of parameter estimation should be sufficient to plan context-sensitive

wireless access on behalf of the user.

8.2 Behaviors

Cognitive radio support functions include three modes of behavior: waking, sleeping, and

praying.  Behavior that lasts for a specific time interval is called a behavioral epoch.  The

axiomatic relationships among these behaviors are expressed in the topological maps of Figure

8-2.

α - action cycle; δ - incremental machine learning; 
β - non-incremental machine learning; γ - learning conflicts
λ - RKRL/KQML requests for external assistance; 
µ - authoritative assistance; π - attempt to resolve problems
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Figure 8-2 Cognitive Behavior Model Consists of Domains and Topological Maps

8.2.1 Waking Behavior

The waking behavior is optimized for real-time interaction with the user, isochronous

control of software radio assets, and real-time sensing of the environment.  The conduct of the
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waking behavior is informally referred to as the awake-state, although it is not a specific system

state, but a set of behaviors.  Thus, the awake-state cognition (α) maps environment interactions

to the current stimulus-response cases, the dynamic subset of the embedded srModels.

Incremental machine learning (δ) maps these interactions to integrated knowledge, the persistent

subset of the srModels.

8.2.2 Sleeping Behavior

Cognitive PDAs detect conditions that permit or require sleep.  For example, if the PDA

predicts or becomes aware of a long epoch of disuse (e.g. overnight), then it PDA may

autonomously initiate sleeping behavior.  Otherwise, it would request permission to enter

sleeping behavior from the user.  During the sleep epoch, the PDA process experience from the

waking behavior using non-incremental machine-learning algorithms.  These algorithms map

current cases and integrated knowledge onto integrated knowledge (β).

A conflict is a context where the user overrode a PDA decision about which the PDA had

no little or no uncertainty.  Map β  may resolve the conflict.  If not, then it will place the conflict

on a list of unresolved conflicts (map γ).

8.2.3 Prayer Behavior

Attempts to resolve unresolved conflicts via the mediation of the PDA’s home network

may be called prayer behavior.  The unresolved-conflicts-list is mapped (λ) to RKRL XML

queries to the PDA’s home network expressed in KQML.  Successful resolution maps network

responses to integrated knowledge (µ).  Alternatively, the PDA may present the conflict

sequence to the user, requesting the user’s advice during the wake cycle (map π).

8.3 Cognitive Radio Components

Cognition functions implemented via cognition components.  These include data structures

and related processing components identified in Figure 8-3.  The cognition functions are

allocated to these components.  Data structures are shown as rectangles (e.g. Dialogs), while

processing components are shown as maps (e.g. Π ).  The important entities are shown as

rounded rectangles.  These are the world, W, the PDA, and the PDA’s World Model, S.  Entities

in the world include the differentiated entities “Own User” and “Home Network.”  The
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architecture requires that the PDA be able to identify these entities so that it may treat them

differentially.  Other networks, people, places, and things may be identified in support of the

primary cognition functions, but the architecture does not depend on such a capability.
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Figure 8-3  Architecture Based on The Cognition Cycle

The data structures include the reinforced hierarchical sequences Words, Phrases, Dialogs,

and Scenes of the Observe Phase.  Within each of these sequences, the novel sequences represent

the current stimulus-response cases of the cognitive behavior model.  The known sequences

represent the integrated knowledge of the cognitive behavior model.  Known sequences may

consist of RKRL statements embedded in the PDA or of knowledge acquired through

independent machine learning.  The Nearest sequence is the known sequence that is closest in

some sense to the novel sequence.  The World Model, S, consists primarily of bindings between

a-priori data structures and the current scene.  These structures are also associated with the

Observe Phase.  Dialog states, action requests, plans, and actions are additional data structures

needed for the Observe, Orient, Plan, and Act Phases respectively.  Each internal data structure

maps to an RKRL frame consisting of handle (e.g. set, or stimulus), model, body (e.g. subset, or

response), resources, and context (RKRL URL, source, time, and place of the frame).

The processing components of the architecture are modeled as topological maps, following

the approach defined in Appendix B.  The input map ϑ consists of components that transform
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external stimuli to the internal data structure Sensory Data.  The transformation Θ consists of

speech recognition, lower-level software radio waveform interface components, etc., that create

streams of primitive reinforced sequences.  A cognitive radio also includes components that form

successively higher level sequences from the data on the immediately lower level.  Reasoning

components include the map ρ  that identifies the best match of known sequences to novel

sequences.  These are bound to scene variable by projection components, Π .  The maps ϑ, Θ, ρ ,

and Π  constitute Observe Phase processing.  Word and phrase level bindings are interpreted by

the components Φ  to form dialog states.  Train, for example, is the dialog-state of a training

experience in CR1.  The components Γ  create action requests from bindings and dialog states.

The maps Φ  and Γ  constitute Orient Phase processing.  Scene bindings include user

communications context.  Context-sensitive plans are created by the component Σ  that evaluates

action requests in the Plan Phase.  The Decision Phase processing consists of map ∆  that maps

plans and scene context to actions.  Finally, the map Ε  consists of the effector components that

change the PDA’s internal states, change displays, synthesize speech, and transmit information

on wireless networks using the software radio personalities.  Selected aspects of this architecture

are now elaborated.

8.4 A-Priori Knowledge Taxonomy

Cognitive radio is based on an a-priori taxonomy of knowledge summarized in Figure 8-4.
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Figure 8-4 Minimum Taxonomy of Radio Knowledge
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As a minimum, that taxonomy should include the named sets of RKRL 0.3.  The radio

knowledge should be axiomatized according to Chapter 6.  Minimum concepts to be represented

internal to the cognitive PDA include time, space, RF propagation, radio networks, external

entities, and user communications contexts.  In addition, the a-priori knowledge taxonomy must

include a hierarchical model of the physical world and a model of the internal structure of the

SDR.

8.5 Observe-Phase Data Structures

The observe-phase employs the reinforced hierarchical sequences of Figure 8-5.  Word,

phrase, dialog and scene should be topological spaces with the power-set topology.
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Figure 8-5  Reinforced Hierarchical Sequences

The components of the observation phase maps may be tailored.  As illustrated in Figure

8-6, the speech and/or text channels may be processed via natural language facilities with

substantial a-priori models of language and discourse.  The use of those models should entail the

use of homeomorphic mappings among the word, phrase, dialog, and scene levels of the

observation phase hierarchy and the encapsulated component(s).



200

Speech / Text 
Interfaces

Dialogs

Scenes

E
nc

ap
su

la
ti

on
 o

f N
at

ur
al

 L
an

gu
ag

e 
P

ro
ce

ss
in

g

Sensory Interface

Characters

Words

Phrases

Dialogs

Scenes

O
bs

er
ve

 P
ha

se
 H

ie
ra

rc
hy

 o
f R

ei
nf

or
ce

d 
Se

qu
en

ce
s

Encapsulated
Natural

Language
Processing
Functions

Other Processes

Other Processes

Other Processes

Auxiliary
A-Priori
Natural

Language
Knowledge

H
om

eo
m

or
ph

ic
 M

ap
pi

n
gs

Figure 8-6 Natural Language Encapsulation

The Observe Phase components match new stimuli to known stimuli.  When an exact

match is not possible, the components may deliver one or more hypotheses.  Hypotheses may

consist of best-match, or a prioritized list of partial matches.  Bindings may be computed as the

interface from the observation phase hierarchy to the orient phase.

8.6 Radio Procedure Knowledge Encapsulation

Radio knowledge may be embodied in components called radio knowledge sources.  If so,

they are organized as set-theoretic maps among wake-cycle phases (observe, orient, plan, decide,

act).  A subset of these (e.g. radio procedure KSs) may control radio personalities as illustrated in

Figure 8-7.
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These knowledge sources accept a-priori knowledge from RKRL an associated XML

micro-world.  Each knowledge source also saves the knowledge it learns in RKRL format,

conforming to RKRL axioms.

8.7 Orient-phase Components

The Orient-phase determines the novelty of stimuli represented in the sequence hierarchy.

The orient phase components bind variables and structure requests for planning.  These

components may directly invoke decide-phase or act phase components if the immediate context

dictates.  The orient-phase components may preempt planning if the stimuli strongly invoke

immediate action.  The orient phase determines when the PDA needs sleep or prayer behaviors

and requests them according to the communications context.

8.8 Plan Phase Components

The plan phase represents plans for the control of the software radio personalities.  The

plan phase may include a plan calculus.  The plan calculus may represent the following planning

information:

<Plan> := <Plan-Phrase>| <Plan-Phrase>*

<Plan-Phrase> := <Request> <When> <Where> <What> |

<Request> <When> <Where> <Context><What>

<Request> := Say | Send | GoTo | Wait |Dial | Connect

<When> := Now | <Day>|<Month>|<Year>|<Hour>|<Minute>|<Second>|<DateTimeGroup>

<Where> := Here | <Place>|<Lat><Lon>|<X><Y>

<Context> := Any | Normal | Unknown | Introductions | Home (Inside) | Home (Outside) |

Commuting | Travelling | Hotel | Eating out | Sightseeing | Friends | Relaxing |

Shopping | Money | Medical | Other | <New-Context>

The plan calculus may include reasoning over time, space, user identities, and contexts.

Each request corresponds to an operation that can be accomplished by an effector.  The

axiomatization of time permits times to be compared and time delays to be computed.  The plan

calculus generates and compares plans and detects conflicts.  The Plan-phase generates

alternatives, including expressing plans to peers and/or the network to obtain advice.  A plan

element may be a sequence that has been mapped to [Here, Now].  There may be competing and



202

partially fulfilled plans.

8.9 Decide-Phase Components

The decide-phase selects among alternatives generated by the planning phase.  Its

knowledge representation depends on the radio procedure components.  The decide-phase

allocates computational and radio-resources to subordinate (conventional radio) software, based

on the activation of a plan.  Autonomous decisions may be taken when the correlation between

the current situation and the reference situation is high, and when the radio has been in this exact

spatial-temporal context before.  Tentative decisions may be offered to the user for confirmation,

which makes it more likely to be invoked in the future.  In the case of unresolved conflicts

among plans, the decide phase lets the user do the task, observing and recording the user’s

initiation of low level communications and information processing tasks.

8.10 Act-Phase Knowledge Representation

The Act-stage initiates tasks with specified resources for specified amounts of time.  The

PDA thus provides the user with access to radio resources (bands, modes).  The knowledge

representation of the act phase depends on the radio knowledge sources contributing to the

parameters of or participating in the action.

8.11 Design Rules

The following design rules circumscribe the way cognitive radio functions are mapped to

the components of a wireless PDA within the envisioned architecture, as follows:

1.  The cognition functions shall maintain an explicit topological model of the world, of

the environment (including the user, the physical environment, and the radio networks,

and of the internal states of the radio).  Context shall be axiomatically represented

using the topological model.

2. The model of the world shall follow an explicit axiomatic treatment of time, space,

radio frequency, radio propagation, and the identity of entities.

3. Models shall be represented in an open architecture radio knowledge representation

language suited to the representation of radio knowledge (e.g. RKRL 0.3).  That

language shall support topological properties and axiomatic models of cognitive radio.
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4. The cognition functions shall maintain location awareness, including the sensing of

location from global positioning satellites, and sensing position from local wireless

sensors and networks.  Location shall be an element of context.

5. The cognition functions shall maintain awareness of time to the accuracy necessary to

support the control of radio functions.  Time shall be an element of context.

6. The cognition functions shall maintain an awareness of the identity of the PDA, of its

primary user, and of other legitimate users designated by the primary user.  Current

user shall be an element of context.

7. The cognition functions shall reliably infer the user's communications context and

apply that knowledge to the provisioning of wireless access by the SDR function.

8. The cognition functions shall model the propagation of its own radio signals with

sufficient fidelity to estimate interference to other spectrum users.  The cognition

function shall also assure that interference is within limits specified by the spectrum

use protocols in effect in its location (e.g. in spectrum rental protocols).  It shall defer

to the wireless network in contexts where the network manages interference.

9. The cognition functions shall model the domain of applications running on the host

platform, sufficient to infer the parameters needed to support the application.

Parameters modeled include QoS, data rate, probability of link closure (Grade of

Service), and space x time x context domain within which wireless support is needed.

10. The cognition functions shall configure and manage the SDR assets to include

hardware resources, software personalities, and functional capabilities as a function of

network constraints and use context.

11. The cognition functions shall administer the computational resources of the platform.

The management of software radio resources may be delegated to an appropriate SDR

function (e.g. the SDR Forum domain manager).  Constraints and parameters of those

SDR assets shall be modeled by the cognition functions.  The cognition functions shall

assure that the computational resources allocated to applications, interfaces, cognition

and SDR functions are consistent with the user communications context.
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12. The cognition functions shall represent degree of belief in external stimuli and in

inferences.  A certainty calculus shall be employed consistently in reasoning about

uncertain information.

13. The cognition functions shall recognize preemptive actions taken by the network and/or

the user.  In case of conflict, the cognition functions shall defer the control of

applications, interfaces, and/or SDR assets to the network or to the primary user,

according to an appropriate operations assurance protocol.
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9 Conclusions

This thesis introduces cognitive radio.  It describes RKRL and summarizes CR1.  Lessons

learned from CR1 lead to the Cognitive Radio Architecture.  The results from CR1 justify the

conclusion that cognitive radio provides an interesting framework the integration of natural

language processing and machine learning with software radio.

As the degree of computational intelligence of networks and handsets continues to

increase, the allocation of intelligence between them takes on increased importance.  Within 5

years, the capabilities of DSP’s and memory will be such that the focus of this tradeoff will shift

from what can be done (in terms of power limitations) to what should be done.  Professor

Maguire [26] has argued that the computing platforms will become so powerful that the

emphasis in mobile communications will shift to the realms of environment awareness and

mobile computer-to-computer communications.  Cognitive radio is a computer-intensive

technology to balance a user’s communications and computing goals against those of a variety of

networks with which that user could operate.  This tradeoff includes the degree of flexibility that

we create a-priori (e.g. via a new protocol) versus the degree of autonomy that we allow the

radios themselves.  The doctoral research explored this question through the refinement of

RKRL into an XML baseline, and through the implementation and analysis of the Java rapid-

prototype CR1.

9.1 Summary

The CR1 prototype includes a Java implementation of a large enough subset of the micro-

worlds to characterize the evolutionary path of cognitive radio.  The prototype developed in a

simulated environment employs use-cases that examine specific aspects central to the use of

cognitive radio in future wireless networks.  The radio applications focus of the prototype

complements the natural language processing and machine learning aspects that organize radio

domain knowledge for the cognition cycle.  This knowledge organization includes the use of

RKRL for a-priori knowledge that can be shared via XML.  It also includes the wake, sleep, and

prayer behaviors.  Supporting the wake behavior are the phases of the cognition cycle.  The
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reinforced hierarchical sequences of the observation phase structure both interactions with users

and machine-oriented protocols such as secure downloads.  The orient-, plan-, decide-, and act-

phases each accommodate a different style of automated reasoning.  CR1 established that it is

possible to accomplish the functional needs of cognitive radio using these phases.

When the author presented cognitive radio as a potential novel approach to the

management of the radio spectrum before the US Federal Communications Commission in April,

1999, he introduced the term cognitive radio to the media.  Subsequently, the term cognitive

radio has been used in the spectrum management community as a “really smart” radio.  This is in

spite of the fact that the definition supplied with the term stipulated that the radio employ model-

based reasoning about its environment, location, radio propagation, networks, protocols, user,

and its own internal structure.  The more precise definitions based on point-set topology with

associated axiomatic treatments should help serious researchers differentiate among what will no

doubt become a proliferation of different types of very smart radios.

9.2 Research Issues

Maguire’s question:  “How do cognitive radios learn best?” merits attention.  The

exploration of learning in cognitive radio includes both the internal tuning of parameters and the

external structuring of the environment to enhance machine learning.  Since many aspects of

wireless networks are artificial, they may be adjusted to enhance machine learning.  This thesis

did not attempt to answer these questions, but it frames them for future research.

This thesis therefore provides an important inter-disciplinary contribution linking natural

language processing, machine learning, and radio engineering in a way that is useful for the

further evolution of software radio.
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Appendix A  Software Radio Architecture Evolution
Foundations, Technology Tradeoffs, and Architecture Implications

(Invited Paper)
Joseph Mitola III

The MITRE Corporation, McLean, VA, USA, and
KTH, The Royal Institute of Technology, Stockholm, Sweden

Abstract – Software radio has emerged as a focus of both
academic research and commercial development for future
wireless systems.  This paper briefly reviews the foundation
concepts of the software radio.  It then characterizes the
tradeoffs among core software-radio technologies.  Object-
oriented analysis leads to the definition of the radio
reference platform and the related layered object-oriented
architecture supporting simultaneous hardware and software
evolution.  Research issues include layering, tunneling,
virtual machines and intelligent agents.

KEYWORDS: Software Radio, Digital Radio

I. FOUNDATIONS

An architecture is a framework in which a specified class of
components is used to achieve a specified family of functions
(e.g. communications services) within specified constraints,
the design rules [1].  Industry organizations including the
Software-Defined Radio (SDR) Forum are in the process of
defining open-architectures for SDR [2].  The wireless
functions of an  SDR architecture are shown in Figure 1.
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Figure 1.  Functional Model of a Software Radio Node

A. Functions of the Software Radio

Technology advances are enhancing the physical-layer
flexibility of wireless devices.  Multiband antenna and radio
frequency (RF) technology [3, 4], now enable access to more

than one RF band at once.  The Channel Set therefore
includes multiple RF bands.  Personal Communications
System (PCS) base stations [5] and mobile military radios [6]
can also use fiber and cable, also included in the channel set.
Channel coding encompasses programmable RF/ Channel

Access, IF Processing, and Modem.  Multiband antennas
and RF conversion comprise the RF/ Channel Access
function.  RF functions may include interference suppression
[7].  IF Processing may include filtering [8]; further frequency
translation; joint space-time equalization [9]; integration of
space diversity, polarization or frequency diversity channels
[10]; digital beamforming; and smart antennas [11].  Bitstream

processing  includes Forward Error Control (FEC) and soft-
decision decoding.  Although many applications do not
require Information Security (INFOSEC), there are
incentives for its use.  For example, authentication reduces
fraud, and stream enciphering ensures privacy.  INFOSEC may
be null for some applications.  The source set may include
voice, data, facsimile, video and multimedia.  Some sources are
physically remote from the radio node, e.g. connected via the
Synchronous Digital Hierarchy (SDH), a Local Area Network
(LAN) [12], or other network through Service & Network

Support.

Multimode radios [13] generate multiple air interface
waveforms (“modes”) using the modem, the RF channel
modulator-demodulator.  Waveforms may be in different
bands and may span multiple bands.  Each combination of
band and mode is one of multiple personalities.  Each
personality combines RF band, channel set (e.g. control and
traffic channels), air interface waveform, protocol, and related
functions.  In a software radio, all these functions are
implemented using digital techniques in multithreaded
multiprocessor software managed by a Joint Control

function.  Joint control assures system stability, error
recovery, and isochronous streaming of voice and video.
Joint Control may evolve towards autonomous selection of
band, mode, and data format [14].

The functions of Figure 1 may be singleton (e.g. single band),
multiple, or null.  IF-Processing may be null, for example, in a
direct conversion receiver [15].  In addition, dynamic
compilation of software and real-time switching among
personalities can allow a set of radio functions to be
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integrated into a data-driven component such as a Field
Programmable Gate Array (FPGA).  The personality of an
FPGA varies as a function of the processing requirements
represented in a packet header [16].  A software radio can
download new personalities [2].  These personalities may
modify any aspect of the air interface.  The resource demands
for isochronous performance (e.g. bandwidth, memory, and
processing capacity) of the resulting personality must not
exceed those available.  Evolution support is therefore
necessary to define the waveform personalities, to download
them (e.g. over the air) and to assure that each new
personality is safe before being activated.  To type-certify
such a radio, one must guarantee that the properties specified
by the regulatory bodies are preserved in spite of this high
degree of flexibility.

B. Classes of Software-Defined Radio (SDR)

The software-radio parameter space of Figure 2 represents
radio implementations as a function of digital access
bandwidth and programmability.  The horizontal axis
characterizes programmability in terms of the ease of making
changes.  For example, the HF STR-2000, a commercial
product of Standard Marine AB shown at point (A) used
baseband Analog to Digital Conversion (ADC), with DSP in
the TMS320C30 for high programmability.  Commercial Off
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Figure 2. Software Radio Parameter Space

The Shelf (COTS) cellular telephone handsets fall near (B).
Application Specific Integrated Circuits (ASICs) deliver
processing capacity, shifting these designs toward the less
programmable end of the axis.  Digital cell site designs, (C),
similarly, rely heavily on digital filter ASICs for frequency
translation and filtering, even though they access the
spectrum at IF.  SPEAKeasy II, (D), provides a GFLOP of

programmable DSP, shifting this implementation to the right
[17].  The Virtual Radio [18], (V), delivers a single channel
radio using a general-purpose processor, DEC’s (Compaq’s)
Alpha.  Point (X) is the ideal software radio with digital RF
and all functions programmed on a RISC processor.  Although
maximally flexible and thus of great research interest, such
designs are currently economically impractical.  This
parameter-space quantitatively differentiates software radios
((V)-(X)) from Programmable Digital Radios (PDRs) ((A)-(D)).

PDRs may have more than one RF band and mode.  The
programmability is achieved via baseband DSPs; without
digital IF, a PDR is not a software radio.  PDR hardware
modules, “slices,” must be interchanged to change RF bands.
Such a slice radio is a hardware-defined radio, not a an SDR.
A multi-slice radio with all slices in the radio, selectable by
software, on the other hand, is an SDR.

In an SDR transmitter, baseband signals are transformed into
sampled channel waveforms via channel modem functions
implemented in software that drives high performance DACs.
These signals may be pre-emphasized or non-linearly pre-
coded [19] by the IF processing software.  A PDR is not an
ideal software radio if any crucial aspect of the channel
waveform is implemented using programmable hardware (such
as a voltage-controlled oscillator) rather than using software
(e.g. sin/cosine lookup table). The current generation of SDRs
are evolving towards the ideal software radio as technology
continues to advance.  SDR architecture must accommodate
this evolution, subject to the following technology tradeoffs.

II. TECHNOLOGY TRADEOFFS

Antenna architecture determines the number and bandwidth
of RF channels.  This constrains the number and bandwidth
of ADCs.  Some waveforms currently require dedicated ASICs
(e.g. W-CDMA despreaders) instead of ADCs.  Digital
streams connect FPGAs, DSPs, and general-purpose
processors yielding a multi-threaded, multi-tasking, multi-
processing operating environment.  This section characterizes
the tradeoffs among these SDR platform technologies.

A. Antenna Tradeoffs

Flexible antennas, RF hardware, and IF processing is a major
technology challenge for software radio.  Optimum analog
performance requires resonant narrowband antennas.  As
illustrated in Figure 3 (a), this results in multiple parallel
antenna/ RF-conversion channels.  In this example, a Personal
Digital Assistant (PDA) accesses first generation (1G) cellular
(AMPS), 2G digital cellular (PCS), or 3G waveforms in the 1G
or 2G bands.  For location-aware services, it has a GPS
receiver.  It also uses the corporate wireless LAN (WLAN).
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One could fabricate such a PDA with 4 parallel RF-ASIC
channels, a commodity GPS chip and a future low cost
Bluetooth-class [20] wireless local interconnect.
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The broadband approach of Figure 3 (b) simplifies the
antenna and RF to two parallel channels, reducing parts
count.  Figure 3 (c) shows a unitary wideband channel.  The
antenna response is not uniform across such a broad RF
range.  High performance in multiple RF bands drives one
towards parallel narrowband channels.  This can be an
effective approach if cost is not at issue.  Transmission
efficiency and impedance matching is more challenging as
bandwidth increases.  Since antennas, RF conversion, IF
processing and the ADC can account for over 60% of the
manufacturing cost of an SDR, reducing the number of RF
channels may be a significant design goal.
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Anticipating the Joint Tactical Radio System (JTRS) program
of the US DoD [21], SPEAKeasy attempted to realize a unitary
antenna [13].  The RF range extended from 2 MHz to 2 GHz, a
ratio of 1000:1 or 3 decades.  This requires a technology
breakthrough, since the maximum relative-bandwidths of well-
established designs are at most 10:1, one decade.  Through in-
depth technology tradeoffs, it was determined that at least 3

bands were needed.  SPEAKeasy bands were: 1) 2-30 MHz; 2)
30-400 MHz; and 3) 0.4 to 2 GHz.  Band 2 was implemented in
SPEAKeasy I.  Bands 1 and 2 were implemented in
SPEAKeasy II.  Currently affordable RF access is limited to
less than one decade per channel.  Therefore, a reference
antenna configuration employs four high-performance bands
(Figure 4 (b)).

B. RF and IF Processing Tradeoffs

The second tradeoff concerns RF and IF conversion.  The
transmitter may require both linear operation (e.g. for QAM
waveforms) and non-linear operation (e.g. class-C amplifier for
high power efficiency with FSK or PSK waveforms).

Single-channel receivers may non-linearly distort the
waveform, e.g. in a direct-conversion architecture [15].  Multi-
channel receivers (e.g. for cell sites), however, must provide
linear response for the strongest and weakest subscriber
signals (“near-far ratio,” typically 90 dB).  The RF and IF
conversion linearity and dynamic range must match the ADC
and Automatic Gain Control (AGC), and must support digital
filtering and signal enhancement algorithms.  The goal of this
tradeoff is to balance the noise, spurious components,
intermodulation products, and artifacts as illustrated in Figure
5.  The noise floor is determined by the total bandwidth (e.g.
in interference-limited bands below 400 MHz), or by the Low
Noise Amplifier (LNA) e.g. in microwave bands.  Spurious
responses and Local Oscillator (LO) leakage sometimes can
mask subscriber signals.  LO leakage is problematic in
homodyne receivers.  A conservative design keeps the peak
energy of all noise, spurs, and artifacts at about half of the
Least Significant Bit (LSB) of the wideband ADC.
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C. Interference Suppression

Antenna separation, frequency separation, programmable
analog notch filters, and active cancellation suppress
interference at the RF stage.  A programmable interference
suppression filter is illustrated in Figure 6.  The filter is called
a roofing filter because the interference sets the maximum
linearly processable signal level (“roof”), while the dynamic
range sets the minimum (“floor”).
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Figure 6. Workable Situation for Roofing Filter

Without the roofing filter, the roof of the dynamic range is so
high that weak signals fall below the floor, resulting in
dropped calls.  With the filter, the roof is low so that the
dynamic range reaches the noise floor.  Roofing filters need
low insertion loss (< 0.5 dB), programmable center frequency,
and programmable bandwidth.  Amplitude and phase ripple
must be near zero to avoid distorting subscriber signals.  If
there are more than four interference signals, the roofing
filters typically introduce excessive distortion.

Active cancellation is the process of introducing a replica of
the transmitted signal into the receiver so that it may be
coherently subtracted from the input signal.

Wideband antennas and RF exacerbate interference.  SDR
algorithms can contribute to interference suppression.  For
example, a table of constraints may limit combinations of
waveforms to a well-behaved subset.  The constraint table
specifies parameter limits on power, frequency, data rate, and
number of simultaneous channels supported.  The SDR
monitors mutual constraint satisfaction to minimize self-
generated interference.

D. RF MEMS

Most RF integrated circuits require off-chip resonators,
inductors, and capacitors.  Each discrete device increases the
cost of production manufacturing, which is nearly a linear
function of the number of parts (not cost per part).  RF MEMS
replaces these with on-chip 3D structures.  For example, MIT
developed a VLSI-compatible sealed cavity thin-film resonator
(TFR) using piezoelectric films.  TFRs exhibit a 1.36 GHz

fundamental longitudinal resonance with a 3.5 dB insertion
loss [22] and Q of 80,000 in 250 square microns.  The device is
six orders of magnitude smaller than discrete-component
circuits.  Wideband RF MEMS in GaAs and CMOS may be in
production by 2001-2003.

MEMS RF switches are an electromechanical alternative to
PIN diode switching circuits (needed to select RF path),
substantially reducing size, weight, and power while
improving performance.  MEMS switches and tunable
capacitors operate up to 40 GHz.  In antenna interface units
for airborne systems, they reduce size by 1000:1 and power by
10,000:1 while improving off isolation [23].  Continuing
research in MEMS switch arrays targets a 1 Gbps data rate
reconfigurable in 100 ns [24], a prototype of which is
illustrated in Figure 7.  Such components reduce the RF/IF
device size, enabling multiband PDAs as an SDR-delivery
platform.

Design

Prototype

Courtesy Professor Paul Franzon, North Carolina State University

Figure 7. High Performance MEMS Switch Fabric

E. Digital Architectures

An illustrative organization of DSP components for high
performance SDR is shown in Figure 8.  This abstraction may
be used as a reference platform to the degree that it specifies
functional groupings and interfaces but not design.

Many possible signal flows may be implemented on such a
hardware suite.  In an N-element array, the channel isolation
filters extract channels for each of K subscribers on each of N
elements.  Algorithms in the DSP pool form beams.  They also
extract first-stage soft-decision parameters. Channels with low
Carrier to Interference Ratio (CIR) are thus identified.  Their
bulk-delayed signals may be isolated for sequential
interference cancellation, which also is performed in the DSP
pool.  This pool provides the processors for modulation and
pre-distortion, including beamforming for transmission [25].
Switching functions employ the low-speed bus.

Matrix inversion for smart antennas substantially increases
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the processing requirements, but yields improved
performance.  Consequently, many techniques have been
investigated to reduce the computational burden of optimal
algorithms, or to enhance the cancellation capability of
simpler algorithms.  A taxonomy of smart antenna techniques
is provided in Figure 9.
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Smart antennas will eventually dominate the digital hardware
architecture of radio nodes, requiring 1 to 3 orders of
magnitude more processing resources than a conventional
node.  Conventional nodes are supported by a smart-antenna
architecture by nulling paths and components, but not
conversely.  The smart antenna architecture therefore
provides a reference platform for SDR node evolution.

III. ARCHITECTURE ANALYSIS

Software functions may be organized into real-time objects.
The hosting of these objects onto the complex SDR operating

environment requires architecture analysis.

A. Architecture: Definition and Goals

Because of the open-ended nature of radio services and
technology, architecture must support the evolution of new
services, software, and hardware platforms.  In addition,
architectures should support enterprise-level component
reuse.  Industry-wide component reuse is called “plug-and-
play.”  In an architecture that supports plug-and-play, the
functional partitioning, component interfaces, and related
design rules ensure that hardware and software modules from
different suppliers work together when plugged into an
existing system.  Hardware modules require physical and
logical interfaces that are compatible with the host hardware
platform.  Software modules require a comprehensive but
simple interface to the software-operating environment.  A
module that offers its description to this environment may be
integrated as a resource.

B. Layering and Virtual Machines

Protocol layering [12] is a well-established method of
achieving some of the goals of radio architecture.  For
example, wireless Internet services are supported by the
Wireless Application Protocol (WAP) [27].  WAP maps
Internet applications to the limited data rate, connectivity,
computation, and display limitations of cellular radio
handsets.  WAP therefore is an interface layer between
applications and the radio platform.  Access to the underlying
platform is limited.

Java [28] provides increased access to the underlying
computational engine of a handset.  It provides more than
WAP, but less than existing software (e.g. C).  The Java
Virtual Machine (JVM) defines a general purpose computing
engine that hides the details of the computer’s native
Instruction Set Architecture (ISA).  In addition, Java’s input
streams, output streams and related facilities hide the details
of host operating systems, resulting in a platform-
independent Internet applications language.  Java, however,
cannot access the underlying radio communications
capabilities of a handset or PDA.  It has no primitives to
modulate a sine wave or tune a receiver.  These are not yet
elements of the JVM, therefore one might use Java’s Native
Interface (JNI) with radio-specific enhancements.

C. Object-Oriented Analysis

One approach to SDR architecture would be to extend Java
with classes that access or implement such radio primitives.
Ada, C, and C++ have been used to implement radio
functions.  Motorola’s SPEAKeasy II Applications
Programming Interface (API) [17] was the first public set of
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radio primitives according to which one might define such an
extension.  This API was based on a set of software objects.
Through object-oriented analysis, those objects evolved into
the entity reference model of the SDR Forum [2].  This
partitioning of functions into objects is similar to that of
Figure 1.  The SDR Forum’s entities consist of Antenna, RF,
Modem, Black1 Processing, INFOSEC, Internetworking,
System Control, and Human-Computer Interface.

Implementation of these entities requires more than WAP and
Java.  WAP is tailored to wireless but not suited to integrating
heterogeneous radio applications like a modem object and an
IF Filter object.  Java interpreters may be computationally
inefficient compared to C and assembler.  One would like
objects whose internal structure could be computationally
efficient such as: C, an encapsulated FPGA, or part of an
ASIC.  Object request broker (ORB) technology provides the
interface needed among software modules.  The Common
Object Request Broker Architecture (CORBA) and its
associated Interface Definition Language (IDL) implement
efficient interfaces among software objects [29].  The SDR
Forum adopted CORBA as its middleware.  With this
approach, radio objects use facilities of a CORBA-based Core
Framework (CF) to access radio facilities and computational
resources.  The CF includes framework control, a repository of
software resources, a file manager, and a resource manager as
illustrated in Figure 10.
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Figure 10.  SDR Forum Core Framework [2]

Entities conform to the Common Object Model which links
SDR entities across distributed processors via the Processor
Object abstraction.

IV. RESEARCH ISSUES

Several research issues arise in using such architectures to

                                                
1 Black is military jargon for encrypted data.

support the evolution of the software radio.  First, the
computational stability of the radio objects is undefined.
Second, a mechanism for characterizing the radio-related
capabilities of the hardware platform is needed.  Third, many
applications need direct access to hardware facilities.  Finally,
the integration of multiband multimode services is left up to
the user.  Each of these research issues are addressed below.

A. Computational Stability

Mathematical analysis of software radio includes the
modeling of radio architecture using point-set topology [1].
Radio objects may be modeled as maps among topological
spaces as illustrated in Figure 11.  The IF-Waveform space,
for example, defines the interfaces between the dual-band
antenna and the IF processing operations.
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Figure 11. Topological Model of Dual Band Handset Streams

The integration of radio objects (e.g. using CORBA) is
topologically equivalent to the composition of maps.  If each
map is a partial-recursive function, then the evolving radio is
partial.  Two radio objects that are well-behaved separately
may cause the system to crash by attempting to use excessive
processing or memory resources.  Radio objects, unlike
general purpose computing objects, are isochronous.  Radio
objects must run-to-completion within a fixed time-window.
They therefore do not need Turing-computability.  The
bounded recursive subset of the total recursive functions is a
sufficient subset for radio objects.  This guarantees that the
use of computational resources may be computed in advance.
Loop bounds may be derived from the duration of the
isochronous window.  This can preclude unbounded iterative
loops.  Consequently, arbitrary combinations of such
bounded objects are computationally stable.  For example, a
genetic algorithm may combine modem and protocol objects
to autonomously evolve new radio protocols.  Without
computational stability, such a radio endangers a network.
With assured computational stability, one obstacle is
removed from the autonomous evolution of software radios.
An immediate practical benefit is the simplification of type-
certification by removing the need to exhaustively test all
combinations of radio personalities [1].  An architecture that
prescribes bounded recursion achieves these benefits.
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B. Hardware Reference Platforms

With a variety of hardware implementations, it is difficult to
determine whether a specific hardware configuration will
support a specific software configuration.  The radio reference
platform abstracts the properties of the hardware environment
that determine its capability to support classes of software
modules.  Table 1 identifies the hardware reference-platform
parameters appropriate to a software radio.  If these
parameters are specified with precision and if the hardware
conforms to the reference platform, then software developed
for one member of the family will port readily to another
member of the family.

Table 1. Software Radio Reference Platform Parameters

Critical Parameter Properties
Number of Channels Number of antenna/RF/IF channels
RF Access Continuous coverage
Digital Bandwidth Maximum ADC/DAC per channel
Dynamic Range End to end (RF, ADC, processing)
Interconnect
Bandwidth

For those buses, ports, backplanes,
etc. that limit throughput

Timing Accuracy Precision and stability of clock(s)
Frequency
Performance

RF, IF, and Local Oscillator (LO)
accuracy and stability

Processing Capacity
(MIPS, MFLOPS)

Use standard benchmarks, (per
processor class if appropriate)

Memory Capacity RAM, ROM; mass storage
Hardware
Acceleration

Parameterize encapsulations
(despreader ASICS, FPGAs, etc.)

Operating
Environment

OS, CORBA, APIs, with
benchmarked throughput

Such a table defines a top-level reference platform.  The smart
antenna reference platform introduced above, suitably
parameterized, is an example of a detailed reference platform.

C. Direct Access to Hardware Facilities

Process tunneling is the direct access to hardware facilities
using a single, lightweight software wrapper.  This bypasses
intervening layers of middleware, operating system, etc.  With
this approach, the application invokes the hardware as if it
were a software object.  A tightly integrated, efficient software
wrapper passes arguments and control signals to the
hardware directly.  This wrapper object accommodates the
unique ISA and operating system requirements.  The Virtual
Radio’s GUPPI interface [18] is an example of tunneling.
Virginia Tech’s Soft-Radio FPGA reconfiguration facility is
another example [16].

Figure 12 shows how tunneling and virtual machines may be

integrated with CORBA and radio applications objects.  The
radio infrastructure layer incorporates resource management,
timing, frequency distribution, middleware [26], and tunneling.
These facilities enable software to evolve in platform-
independent computer languages (e.g. Java) or ORB-
compliant software modules.  At the same time, the tunneling
wrappers permit efficient access to ASICs and FPGA
personalities.
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Constraint detection, introduced earlier, is extended to detect
conflicts in access to hardware.  The radio applications layer
embodies radio objects at whatever level of abstraction is
convenient.  Waveform personalities may be monolithic
wholes accessed by a radio API from the application layer; or
they may be partitioned into an FPGA-based reconfigurable
Front-end with a CORBA-based back end; or they may be
partitioned into SPEAKeasy II objects as suggested in the
figure; or SDR Forum entities.  The lowest layer conforms to
some radio reference platform, such as the smart antenna
platform.  The layered virtual machine architecture therefore
provides a flexible basis for the evolution of current PDRs
towards the ideal software radio.

D. Service Integration

The deployment of 3G, the proliferation of wireless LANs, and
the integration of GPS, video, thermal sensors, etc. into PDAs
offer a bewildering array of alternatives to consumers.
Enhanced autonomy has been identified as a means of
integrating these alternatives into customized services.
Autonomous agents may use a Radio Knowledge
Representation Language as a basis for inferring user needs
for wireless bands and modes from use-context [14].  PDAs
with propagation-modeling tools may even be able to rent
radio spectrum from each other [30].
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V. CONCLUSION

Industry-standard SDR architecture will shape the degree to
which waveform plug-and-play is realizable for the wireless
marketplace.  The SDR Forum has made significant progress
in defining such an architecture.  Research issues include
better understanding of the computational properties of
heterogeneous radio objects.  Additional layering, tunneling,
and virtual machines extend the current architectures to a
basis for the graceful evolution of SDR hardware and software
components.  As such architectures allow complexity to
increase rapidly, agent technology will be needed to integrate
services in a context-sensitive way, further propelling this
evolutionary process.

Disclaimer:  This paper is not endorsed by The MITRE
Corporation, the JTRS Joint Program Office, nor the US DoD
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Appendix B: Software Radio Architecture1

A Mathematical Perspective

Joseph Mitola III
The MITRE Corporation

Abstract
As the software radio makes its transition from research to practice, it becomes increasingly im-
portant for researchers, product developers and service providers to develop insights into the
mathematical foundations of software radio architectures.  This paper contributes to this goal by
critically reviewing the fundamental concept of the software radio, using mathematical models to
differentiate this rapidly emerging technology from similar technologies such as programmable
digital radios.  The key resources of the software radio include programmable processing capac-
ity and dynamically-defined services.  The bounded recursive functions, a subset of the total re-
cursive functions, are established as the largest class of functions for software radios with desired
resource use properties.  Analysis of the software architecture of a typical implementation yields
a layered distributed virtual machine reference model and a set of architecture criteria for the
software radio.  The discussion introduces the topological properties of software radio architec-
ture that promote plug-and-play applications.
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1. Introduction

It is well established that a communications system is the set of devices by which one employs a
communications channel to convey information to a recipient.  From a radio engineering per-
spective, the communications device must first encode the information from the source into some
suitable electronic representation.  The device must then transform this internal form into a
waveform compatible with the radio frequency (RF) communications channel.  The channel
distorts the RF signal, adds noise, and creates distorted replicas of the signal.  The process is
(imperfectly) reversed in the receiver as illustrated in Figure 1.

Originator Recipient
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Channel
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Source
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Figure 1. Traditional Model of a Radio Communications System -

In this venerable historical framework, control of the radio needs little attention, generally lim-
ited to power on/ off; audio volume control; a noise-riding receiver threshold (“squelch”); and a
switch to manually select from among pre-defined RF channels.  Several such transmitter(s) and
receiver(s) located and working together comprise a radio “node.”  The multiband, multimode,
multi-threaded, multi-personality capabilities of software radios require expansion of this model.

1.1 Essential Functions of the Software Radio
Technology advances have ushered in new radio capabilities that require an expansion of the
essential communications functions of Figure 1.  Multiband technology [1], first of all, accesses
more than one RF band of communications channels at once.  The RF channel of Figure 1, then,
is generalized to the Channel Set of Figure 2.  This set includes RF channels, but radio nodes
like Personal Communications System (PCS) base stations [2] and portable military radios also
interconnect to fiber and cable; therefore these are also included in the channel set.  The channel
encoder expands to RF/ Channel Access, IF Processing and Modem.  Antennas and RF conver-
sion that span multiple RF bands comprise the RF/ Channel Access function.  IF Processing
may include filtering, further frequency translation, space/time diversity processing, beamform-
ing and related functions.  Multimode radios [3] generate multiple air interface waveforms
(“modes”) defined principally in the modem, the RF channel modulator-demodulator.  These
waveforms may be in different bands and may span multiple bands.  The source and channel
coders of Figure 1 therefore become the multiple personalities of Figure 2.  A personality com-
bines RF band, channel set (e.g. control and traffic channels), air interface waveform, and related
functions.

Although many applications do not require Information Security (INFOSEC), there are incen-
tives for its use.  Authentication reduces fraud.  Stream encipherment ensures privacy.  Both help
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assure data integrity.  Transmission security (TRANSEC) hides the fact of a communications
event (e.g. by spread spectrum techniques [4]).  INFOSEC is therefore included in Figure 2, al-
though the function may be null for many applications.
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Figure 2.  Functional Model of A Software Radio Communications System

In addition, the source coder / decoder pair of Figure 1 must now be expanded to include the
data, facsimile, video and multimedia sources implicit in Figure 2.  Some sources will be physi-
cally remote from the radio node, connected via the Synchronous Digital Hierarchy (SDH) [5], a
Local Area Network (LAN) [6], etc., through Service & Network Support of Figure 2.

These functions may be implemented in multithreaded multiprocessor software orchestrated by a
Joint Control function.  Joint control assures system stability, error recovery, timely data flow,
and isochronous streaming of voice and video.  As radios become more advanced, Joint Control
becomes more complex, evolving toward autonomous selection of band, mode, and data format.
Any of the functions may be singleton (e.g. single band versus multiple bands) or null, further
complicating joint control.  Agile beamforming supports additional users and enhances quality of
service (QoS) [7].  Beamforming today requires dedicated processors, but in the future, these
algorithms may time-share a Digital Signal Processor (DSP) pool along with the Rake receiver
[8] and other modem functions.  Joint source and channel coding [9] also yields computationally
intensive waveforms.  Dynamic selection of band, mode, and diversity as a function of QoS [10]
introduces large variations into demand, potentially causing conflicts for processing resources.
Channel strapping, adaptive waveform selection and other forms of data rate agility [11] further
complicate the statistical structure of the computational demand.  In addition, processing re-
sources are lost through equipment failures [12].  Joint control integrates fault modes, personali-
ties and support functions on a limited resource of Applications-Specific Integrated Circuits
(ASICs), Field Programmable Gate Arrays (FPGAs), DSPs and general-purpose computers to
yield a reliable telecommunications object [13].

In a software radio, the user can upload almost arbitrary new air interface personalities.  These
may modify any aspect of the air interface, including whether the waveform is hopped, spread or
otherwise constructed.  The required resources (e.g. bandwidth, memory and processing capac-
ity) must not exceed those available.  Some mechanism for evolution support is therefore neces-
sary to define the waveform personalities, to download them (e.g. over the air) and to assure that
each new personality is safe before being activated.  To type-certify such a radio, one must guar-
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antee that the properties specified by the regulatory bodies will be preserved in spite of this high

degree of flexibility.  The need for such guarantees motivates the study of the mathematical prop-
erties of the software radio.

For example, one may model the statistical demand for computational resources versus process-
ing capacity using queuing theory [14, 15, 16].  Real-time performance can be assured in a fixed
architecture using this approach [17].  Plug-and-play, however, creates a variable architecture as
modules are introduced into the environment and removed.  This raises the complexity of the
statistics, particularly in complex nodes such as a future cell site in which hundreds of users can
invoke dozens of variable-bandwidth services in a pool of shared DSPs.  Deeper understanding
of the statistical properties of such environments is not doubt needed.  And underlying such sta-
tistical analyses, there must be a predictable relationship of computational demand between the
plug-and-play module and the environment.  This calls for a theory of plug-and-play resource
bounds for the software radio within which such predictable relationships will exist.

An obvious challenge is to define interface points for plug-and-play hardware and software
modules.  Industry organizations including the Modular Multifunction Information Transfer
Systems (MMITS) forum are in the process of identifying such interface points using generalized
Applications Programmers Interfaces (APIs) [18].  A less obvious challenge is to define archi-
tecture principles that assure that plug-and-play architectures will have the mathematical proper-
ties of controllability and predictability necessary for true plug-and-play services.  These proper-
ties may be characterized in the following mathematical framework.

1.2 Towards A Mathematical Model of Plug-And-Play Architecture
The thesis of this paper is that the next-generation radio functions of Figure 2 have mathematical
structure that defines a natural partitioning of the software radio into plug-and-play modules.
The mathematical framework abstracts away the details of the radio functions, interfaces and
implementations, identifying the computational and geometric structure that diverse software
services and hardware platforms share.

In this framework, modules are modeled as mappings of signals among architecture interface
points.  These interface points are vertices in a topological space, a very general geometric space
with a few set-theoretic axioms [19].  Mappings are represented as edges or arcs in this space.
An edge is simply that which joins two vertices.  An RF ASIC, for example, transforms the RF
signal at the input vertex into the baseband signal represented by the output vertex.  An arc, on
the other hand, is a map that has properties in addition to its inputs and outputs, such as the
power dissipated by the associated RF ASIC.  This model may be used:

1. To identify top level plug-and-play interfaces;
2. To predict and control system performance;
3. To define a reference model that facilitates standards setting; and
4. To derive architecture principles for product evolution strategies.

Mathematical models of multiprocessor task specifications based on algebraic topology [20]
have been used to prove important properties of shared memory multiprocessors.  The model
used in this paper is akin to such models.  Rather than present the mathematical ideas formally
and at once, they are introduced throughout the paper as needed.  An illustrative model repre-
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senting radio hardware and software as functional arcs joining the interface points in a topologi-
cal space is shown in Figure 3.

Hi Band RF

Low Band RF

IF ADC
Channel Filter Modem

Vocoder

Interface Points

Functional Transformations

RF

UserVolume

Channel Selection

Control Transformations

Figure 3.  Topological Structure Of An Illustrative Radio

The abstraction in the figure shows a dual band receiver with an Analog to Digital Converter
(ADC) at Intermediate Frequency (IF), a Channel Filter ASIC, and software Modem and Vo-
coder (voice coding) functions.  Some arcs represent the movement of signals and data from one
interface point to another via isochronous, real-time streams (e.g. the Hi Band RF hardware and
Modem software of the figure).  Others represent the exertion of control that translates a set of
states (e.g. user choice of a channel) into a parameter that effects a stream (e.g. the Channel Fil-
ter).  The properties of the arcs are also dimensions of the underlying (high dimensionality)
topological space.  So, for example, the node between the IF ADC and the Channel Filter would
have the value “Hardware” in an “Implementation” dimension while the interface between Mo-
dem and Vocoder would have the value “Software”.  Other dimensions may be continuous, such
as the range of settings of a control parameter.  In addition, there may be infinite dimensional
subspaces, e.g. to represent random components of analog signals.  The dimensions, then, are
chosen to represent the relevant features of the architecture.

1.3 Architecture Goals
A successful plug-and-play modular architecture entails at least the following:

1.  Compatibility:  The structure of plug-and-play modules must be compatible with that of
the software radio environment - arcs must have nodes to plug into.

2.  Controllability:  Such modules must be controllable under module composition.
3.  Predictability:  Module composition must preserve radio service-defining properties of

the system and when control is exerted, it must not have unintended consequences.

An architecture is a set of components used to achieve specified functions within specified con-
straints and design rules [21].  Compatibility, controllability and predictability are the properties
of plug-and-play architecture studied in this paper.  A mathematical framework for a plug-and-
play architecture then should inductively establish desired properties of a given set of compo-
nents that implement specified functions (services) within specified design rules.  Due to the
open-ended nature of radio services and technology, such a mathematical framework must be
extensible both to new functions and to new implementation platforms.  This paper begins the
development of this framework with a top-down review of the properties of the software radio.
A bottom-up analysis of the computational properties of software radio components then sets the
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stage for the derivation of the layered virtual machine reference model.  Architecture principles
that support plug-and-play modularity are developed in the process.

2. Defining the Software Radio

This section defines the software radio from several perspectives.

2.1 Programmable Digital Radios
There are many ways to impart more than one personality to a radio.  The Programmable Digital
Radio (PDR) is a term applied to those radios that use a hardware-intensive mix of hardware and
software techniques to access more than one RF band with a choice of air interface modes [22].
A PDR’s programmability may be achieved using baseband Digital Signal Processing (DSP).
However, hardware modules or “slices” typically must be swapped in order for the radio to
change RF band and air interface mode.

The Software-Defined Radio (SDR) was defined by BellSouth to call for an evolution towards
greater programmability of wireless infrastructure [23].  This evolution includes programmable
multiband multimode radios implemented using the PDR approach.  An IS-95/AMPS handset,
for example, may employ a Code Division Multiple Access (CDMA) chip-set for IS-95; an
Analog Mobile Phone System (AMPS) chip set; a dual mode analog RF Integrated Circuit
(RFIC) chip-set [24]; a DSP chip [25] for filtering, voice coding, and other computationally in-
tensive tasks; and a microcontroller for user interface and system control.  Many of the functions
are programmable, but the CDMA modem, for example, is defined in an ASIC and may not be
changed in the field.  Over time, functions initially implemented in hardware (e.g. the baseband
modem) will migrate to software.  Conversely, functions initially defined in software (e.g. in a
simulation) may migrate to hardware (e.g. an ASIC).  The mathematical framework must there-
fore capture the architecture implications of SDR migration between hardware and software.

2.2 The Software Radio
The software radio, on the other hand, imparts multiple personalities to a radio in a specific way
[26].  A software radio defines all aspects of the air interface including RF channel access and
waveform synthesis (not just selection) in software2.  In the software radio, then, wideband ana-
log to digital and digital to analog converters (ADCs [27] and DACs) transform each RF service
band among digital and analog forms at IF as in Figure 4.  The single resulting digitized stream
of bandwidth Ws accommodates all subscriber channels, each of which has bandwidth Wc where
Wc << Ws.  The mathematical framework must differentiate alternative ADC and DAC designs,
with the attendant differences in waveform programmability.

                                                
2  Software here means algorithms stored in random access memory that run on general purpose computers and
which may in principle be downloaded.  Firmware, by this definition, is software to the degree that is can be
changed during radio operations; if it cannot be changed, it is part of the hardware personality of the radio, not part
of the software.
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Figure 4  Key Software Radio Functions and Components

In the software radio illustrated in Figure 4, IF ADC and DAC channels are processed isochro-
nously through digital hardware, interfaces and DSP software.  IF processing may include filter-
ing to isolate subscriber channels [28]; digital formation of nulls and beams [29]; integration of
space diversity [30], polarization or frequency diversity channels [31]; and other means of ac-
quiring a high quality waveform. There may be multiple IF frequencies (in the heterodyne re-
ceiver) or the IF frequency may be zero (in the homodyne receiver [32]).  IF Processing may be
null, for example, in a direct conversion receiver [33].  The mathematical framework, then, must
represent plug-and-play implications of such variations including optional “nulling” of functions.

Digital downconversion is the process of using the frequency domain periodicity of sampled
bandpass waveforms to translate the waveform to baseband without analog heterodyning [34].
As preselection filters with the necessary performance are reduced in size and improve in per-
formance (e.g. through superconducting RF filters [35]); and as local oscillator leakage is re-
duced, digital downconversion becomes more feasible.  In a software radio transmitter, baseband
signals are transformed into sampled channel waveforms via channel modem functions which
may be implemented in software using high performance DACs and dynamically reconfigurable
FPGAs.  The resulting output signals may be pre-emphasized or non-linearly pre-coded [36] by
the IF processor.  In some implementations, modem functions, IF processing and RF Channel
Access may be amalgamated into a single component such as a direct conversion receiver RFIC
[33].  In addition, dynamic compilation of software or real-time switching among FPGA person-
alities can allow these discrete functions to be integrated into a single component [37].  The
mathematical framework, then, has to represent both discrete and integrated implementations,
which can have significant impact on cost, time-to-market and plug-and-play characteristics.

2.3 A Software-Equivalent Model of Hardware Modules
The ADC and DAC define the point at which functions are potentially software-defined.  We
may call this point the digital access point.  This point may occur anywhere in the architecture.
Relatively inflexible analog and digital hardware such as ASICs may be necessary, e.g. for direct
conversion of the channel waveform to a bitstream in a handset.  Although an ASIC may have a
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few control parameters, the basic personality of optimized ASICs cannot be changed in the field
(e.g. from one air interface standard to another).  To change the air interface personality, one
must replace the ASIC; switch among different ASICS; or switch among modes of one ASIC.  In
the tradeoffs among, size, weight, power, cost and flexibility, fixed-function ASICs generally
consume less power, take less space, weigh less and cost less per device than the programmable
DSP equivalent.  Therefore, the increased flexibility of the software radio comes at a price.  One
way of representing these differences mathematically is to attribute equivalent computational
capacity to the non-programmable devices as illustrated in Figure 5.
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Channel Filter Modem

Vocoder
RF

UserVolume

Modem

Vocoder

UserVolume

RF

A.  RF ASIC

B.  Software-Equivalent Model

Figure 5  Topology of An RF ASIC (A) And Its Digital Equivalent (B)

In the topological model of the hypothetical radio (top), an RF ASIC (A) transforms the analog
signal from the antenna directly to input for the baseband modem.  The software-equivalent
model (B, bottom) postulates an RF ADC of a bandwidth exactly corresponding to the bandpass
characteristic of the RF ASIC.  The frequency translation behavior of RF ASIC A is modeled as
the Frequency Translation software process in B.  The filtering behavior of the RF ASIC is rep-
resented in the Channel Filter software of model B.  The sequence RF ADC, Frequency Transla-
tion and Channel Filter arcs constitute the software-equivalent model of this ASIC.  This soft-
ware is defined in terms of a canonical processor which is specified in conjunction with a given
architecture model.  Equivalent computational capability of RFIC (A) is the aggregate of the
computational demand of the postulated software processes (B).  Since analog hardware has
variable performance over time and over different devices, the exact filter model of a given RF
ASIC will change over time and will differ from other devices.  Thus, each device is represented
in a set of models.  The single arc A with its associated input and output nodes characterizes RF
ASIC A at a given point in time.  The uncertainty principle further assures that one cannot meas-
ure the properties of a device without changing them.  Each model therefore includes parameter
tolerances to account for such uncertainties.  These tolerances are represented by “open balls”
[38] in the model parameter subspace of the topological space (Figure 6).  One may also aggre-
gate multiple device models into a parametric model by taking set unions.  The set of all such
arcs and open balls comprises the complete topology of the device.
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Figure 6  Parameter Uncertainty Represented by “Open Balls”

Each device may also have parameter sets in other dimensions that characterize or predict such
diverse properties as internal timing, power dissipation, computational capacity with respect to a
given benchmark, etc.  Although the sequel focuses on computational properties, this set theo-
retic framework is general, capable of representing local properties of a device including inter-
face details, size, weight, and power.  Since topological spaces are not necessarily linear, aggre-
gate properties of the radio system in the higher order subspaces may have complex, non-linear
relationships to the properties of the components.

2.4 Quantifying Degrees of Programmability
The degree of programmability of an implementation is fundamental to software radio architec-
ture.  Since contemporary radios are made with a mix of processor types, one must characterize
this mix from a software radio perspective.  Consider the highest level arc-node model of a radio.
Each arc may be hierarchically divided into its primitive constituent arcs.  Those that may be
redefined in software in the field may be labeled.  The number of labeled primitive arcs divided
by the total number of arcs is a measure of the programmability of the device.  Since an ASIC’s
programmability is limited to the modification of a few parameters, most of its gate-level arcs
will not be labeled.
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Figure 7 Hardware Topology Indicates Incompatibility of Download

FPGAs are in principle completely programmable.  In practice, they are more programmable
than ASICs, but subject to gate and interconnect constraints.  Programmable radios have been
based almost entirely on reconfigurable FPGAs [39].  Intuitively, however, the field-
programmability of an FPGA is more constrained than that of a DSP chip, in part because of the
possibility of running out of usable gates on the FPGA.  The topological model of each type of
device allows one to characterize ease of programmability.  In the FPGA topology of Figure 7,
two dimensions of Euclidean space (e.g. states and interconnect) represent the commitment of
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logic to specific hardware.  Suppose an advanced timing recovery algorithm, comprising, say,
10% of the FPGA area is to be downloaded to the radio.  As shown, it is incompatible with the
gate use of the existing timing recovery logic.  It may be possible to redefine the entire persona l-
ity of the FPGA to accommodate the new logic.  In this case, the download bandwidth increases
from the 10% needed for the increment to 100% of the personality, a 900% increase in the size
of the download.  It is also possible that a moderately populated (70%) FPGA will be unable to
accommodate the 10% download because of hardware constraints such as the required placement
of I/O buffers, lack of state registers where needed, etc.
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Figure 8  DSP Hardware Commitment Subspace Topology

A similar topological model of a DSP chip with multiple Direct Memory Access (DMA) chan-
nels is shown in Figure 8.  The additional 10% of DSP code associated with the advanced timing
recovery logic (now implemented in software) is accommodated provided the Random Access
Memory (RAM) or electronically programmable Read Only Memory (ROM) has available
space.  In this case, the memory map allocates logic to RAM/ ROM hardware.  DSPs may appear
easier to program than FPGAs because RAM allocation can be accomplished by a compiler
while allocation of logic to gates and interconnect in an FPGA generally requires an experienced
designer.  New waveforms also seem to outgrow the gates on an FPGA more easily than they
outgrow the program memory of a DSP subsystem.  On the other hand, the topology of timing
constraints of DSP software may be more constraining than the timing of an equivalent FPGA.
This is in part because logic in an FPGA can run at the system clock rate, while the speed of DSP
code may be one to three orders of magnitude less than the system clock.  The interplay of ASIC
hardware allocation and DSP task timing is reflected in such topological models.

Complex or Reduced Instruction Set Computers (CISC/RISC) provide less hardware acceleration
than DSP chips.  To quantify the degree of flexibility of DSP, CISC and RISC processors, one
again defines an appropriate topological space.  Let {ISA} be the space of single-instruction
register-state transformations of a processor with a given Instruction Set Architecture (ISA).
From an arbitrary initial state, a DSP has many more edges connecting reachable data states than
a CISC processor that in turn has more arcs than a RISC processor.  So, from the perspective of
{ISA} topology, the RISC processor is the simplest and thus in some sense the most general pro-
grammable hardware platform, CISC is more complex and DSP the most complex of the fixed
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ISA machines.  Performance of high quality code underscores these differences.  DSP code that
employs zero-overhead loops with full register stacks and processing elements yields higher
throughput than CISC code of a processor with the same system clock, memory and I/O delays.
FPGAs, on the other hand, effectively have a variable ISA that makes them even more computa-
tionally efficient than DSPs, CISC and RISC machines, with an attendant loss of generality.

These relationships define a phase space for the software radio.  Physicists use a phase space to
represent states of a substance (e.g. solid, liquid and gas) as a function of parameters such as
temperature and pressure.  The software radio phase space of Figure 9 represents the states of
radio implementations as a function of the digital access point and the degree of programmabil-
ity.  The vertical axis represents the bandwidth at the digital access point.  The horizontal axis
represents degree of flexibility, the fraction of functionality that may be changed “in the field”
using plug-and-play software.  To place a system in the phase space, one examines the ADCs
and DACs, placing the digital access point where the functionality is fully programmable.  One
then examines the way in which the software radio functions of Figure 2 are hosted on the phys i-
cal devices.  One places the radio system on the horizontal axis according to the degree of pro-
grammability of the device technology, attributing equivalent “software” processing capacity to
digital ASICs and FPGAs where necessary.
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Figure 9 Software Radio Phase Space

Figure 9 places five types of radios in the phase space.  The HF STR-2000, a commercial prod-
uct of Standard Marine AB (A) employs baseband DSP using the TMS320C30.  Most Commer-
cial Off The Shelf (COTS) cellular telephone handsets fall near point B.  ASICs provide much of
the equivalent processing capacity, shifting these designs toward the less programmable end of
the axis.  Current software radio cell site designs, point C, similarly, rely heavily on digital filter
ASICs for frequency translation and filtering, but they access the spectrum at IF.  SPEAKeasy II,
point D in the phase space, provides considerable programmable DSP, shifting this implementa-
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tion to the right.  A product of research at the Massachusetts Institute of Technology, the Virtual
Radio [40], delivers a single channel radio using a general-purpose processor, DEC’s Alpha.
This is the most general-purpose computing platform reported in the literature.  Point X repre-
sents the Ideal Software Radio with the digital access point at RF and all functions programmed
in general purpose RISC processors.  Although maximally flexible and thus of research interest,
such designs tend to be economically impractical.  This phase-space quantitatively differentiates
software radios in the upper right quadrant from the PDRs elsewhere in the figure.

A PDR is not a software radio if any crucial aspect of the channel waveform is implemented us-
ing programmable hardware (such as a voltage-controlled oscillator) rather than using software
(e.g. sin/cosine lookup table).  A Joint Tactical Information Dissemination System (JTIDS) radio
[41] implementation with a 3 MHz IF from which hop frequencies are generated using a 250
MHz programmable local oscillator is not a software radio for that waveform.  On the other
hand, a 250 MHz digitized IF that could set every hop frequency in software would be a software
radio.  The radio may meet the software radio criterion for a large class of narrowband wave-
forms, while failing for wideband waveforms.  A topological model of such a JTIDS radio would
set the Implementation dimension of each arc required for the 250 MHz hopping as Hardware or
Software.  If the Implementation dimension of all such arcs is Software, then the implementation
is a software radio.  Such a model therefore unambiguously defines the specific degree to which
a given implementation is reprogrammable.  Such a model also identifies the components that
must be changed in order to migrate from hardware to software and conversely.

3. Top Level Component Topology

Radio components that map stimuli to responses, conditions to decisions, etc. are represented as
arcs in the topological model.  An arc may be a collection of other arcs, defining a natural encap-
sulation hierarchy for the radio system.  At the top level of the hierarchy, the radio node consid-
ered as a black box, maps air interface and user (or wire line) stimuli to appropriate responses.
The functional components of Figure 2 define a second level of partitioning with attributes out-
lined in Table 1.

Table 1.  Attributes of Top Level Software Radio Functional Components
Functional Component Attributes Remarks
Source Coding & Decoding Audio, video, fax and data interfaces Ubiquitous standard algorithms (e.g.

ITU[42], ETSI[43])
Service & Network  Support Multiplexing; setup and control; data

services; internetworking
Wireline and Internet standards in-
cluding mobility [44]

Information Security* Transmission security, authentication,
non-repudiation, privacy, data integrity

May be null, but is increasingly es-
sential in wireless applications [45]

Channel Coding & Decoding:

           Modem*
Baseband modem, timing recovery,
equalization, channel waveforms, pre-
distortion, black data processing, etc.

INFOSEC, modem, and IF interfaces
are not standardized

           IF Processing* Beamforming, diversity combining,
characterization of all IF channels

Innovative channel decoding for sig-
nal and QoS enhancement

           RF Access Antenna, diversity, RF conversion IF interfaces are not standardized
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Channel Set(s) Simultaneity, multiband propagation,
wireline interoperability

Automatically employ multiple chan-
nels or modes for managed QoS

Multiple Personalities* Multiband, multimode, agile services,
interoperable with legacy modes

Multiple simultaneous personalities
may cause considerable RFI

Evolution Support* Define & manage personalities Local or network support
Joint Control*

(over Channel Set)
Joint source/channel coding, dynamic
QoS vs. load control, processing re-
source management

Integrates user and network interfaces;
multi-user; multiband; and multimode
capabilities

*  Interfaces to these functions have historically been internal to the radio, not plug-and-play

The stream-oriented functional components are source coding and decoding; service and network
support; information security; modem; INFOSEC; IF processing; and RF access.  Each may be
represented topologically by a pair of arcs between the domain data interfaces.  A topological
model of a specific radio consists of those arcs that correspond to the components as imple-
mented.  An example of a dual-mode handset signal-stream topology is provided in Figure 10.
The dual band antenna and IF ADC are key aspects of this notional device which are readily ap-
parent in the topological model.

Hi Band Antenna

Low Band Antenna

IF ADC

IF Channel Filter

Demodu -
late

Voice Coder

Modulate

Voice DecodingRF Up Conversion

Speaker

IF Waveform Clear Bits

Baseband Waveform

Analog Audio

Figure 10 Topological Model Dual Band Handset Signal Streams

The top-level functional components of Table 1 share the data interfaces of Figure 11.  Analog
(audio and video) waveforms comprise the interface between Source Coding & Decoding func-
tions and the Source Set, for example.  Source bits define the interface between Source Coding &
Decoding and Services & Network Support.  In some cases, (e.g. in a handset) Services & Net-
work Support may be null.  If INFOSEC is null, protected bits are clear bits.  In addition, some
interfaces may be null from an implementation perspective.  An RFIC, for example, may sub-
sume the IF Waveform interface, exhibiting only Baseband and RF Waveforms in the highest
level topology.  Interface topologies are summarized in Table 2.
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Table 2.  Top Level Interface Topologies
Interface Key Characteristics Topological Properties
Analog Stream Audio, video, facsimile streams Infinite dimensional;

Filtering constraints comprise open ball(s)

Source Bitstream Coded bitstreams and packets.  ADCs
define a finite window into a quantized,
discrete-time sampled waveform.

Finite dimensional; frame and data structure
defines subspaces.  Finite precision defines a
Dynamic Range Subspace3 for the ADC

Clear Bitstream Framed, Multiplexed, Forward Error
Controlled (FEC) bitstreams and packets

Finite dimensional; FEC subspaces have rich
algebraic properties

Protected Bitstream Random challenge, authentication re-
sponses; public key; enciphered bit-
streams and packets

Finite dimensional; randomized streams; com-
plex message passing for downloads; If null,
interface reverts to clear bits

Baseband Waveform Discrete time synchronous quantized
sample streams (one per carrier)

Digital waveform properties determine fidelity
of analytic representation

IF Waveform Composite, digitally pre-emphasized
waveform ready for up-conversion

Analog IF has infinite dimensional topology;
Digital IF may have baseband product topology

RF Waveform Power level, shape, adjacent channel
interference, etc. are controlled

Analog RF has infinite dimensional topology;
Includes spatial and temporal dimensions

Network Interface Packaged bitstreams may require ATM,
SS7, or ISO protocol stack processing

Synchronous Digital Hierarchy (SDH), Sig-
naling System 7 (SS7) subspaces

Joint Control Control interfaces to all hardware and
software; initialization; fault-recovery

(Not illustrated in the figure) Parameter spaces;
non-linear logic subspaces

Software Objects Download from evolution support sys-
tems

Represents binaries, applets; includes self-
descriptive language subspaces

Load/Execute Software object encapsulation Download topologies are highly nonlinear

                                                
3 A Nyquist-Dynamic Range Subspace has been sampled so as to meet the Nyquist criteria for bandwidth recovery
of the sampled signal and has been quantized with sufficient  bits of sufficient accuracy to represent the two-tone
spurious-free dynamic range of the application.
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The analog stream interface, for example, may be represented in a topological space which in-
cludes not just the interface signal itself, x(t), but other meta-level characteristics:  implementa-
tion, impedance, connector type, carrier frequency, bandwidth, etc.  In addition, as shown in
Figure 12, the topological representation structures the meta-level aspects of the interface.  The
complete definition of the interface spaces of a generic ratio is tantamount to defining a knowl-
edge representation language (KRL) [46] for radio (RKRL), a significant undertaking that is be-
yond the scope of this introduction.  Important properties of plug-and-play interfaces may be
defined without a complete RKRL.

Domain:
Class:  Analog-Stream
Implementation:  Hardware
Signal-Interface: Coax-DC-Coupled

Impedance:  50 Ohm
Connector:  BNC
Interface-Pin:  2-7

Carrier Frequency: Baseband
3dB Bandwidth: 350 kHz
Signals:

Predetected-Signal
Band-Limited-Signal
Interface-Signal: x(t)

Control Parameters:
Gain:  0dB to 20 dB
Gain Control: AGC

Figure 12 Illustrative Meta-level Topological Space for Analog Stream Interface

Such an interface defines a plug-and-play module if it is effectively separable from the rest of the
system.  Effective separability implies at least the following topological properties:

(a)  Input and output subspaces are externally accessible in the host system.
(b)  Composition of the functional transform of the module over the defined interface

yields a well-defined function that results in the intended service.
(c)  Control subspaces are compatible (not necessarily identical) with the host system
(d)  Performance (e.g. spectral purity, data formats, throughput, response time, etc.) under

function composition is within specified bounds

The separability of modules at plug-and-play interface points is illustrated in Figure 13.  Plug-
and-play modules may be defined by top level functional components such as the modem.  Or,
they may be defined at some arbitrary point in the hierarchy such as at the vocoder. The statisti-
cal, computational and geometric properties of the module shape system behavior.  The goal is
that the system as a whole behaves as desired if the plug-and-play modules and the host system
each have the prescribed testable local properties.  The system-level properties of interest in this
paper center on reliable service delivery using bounded computational resources with guarantees
against wait-induced fault conditions.  Necessary interface properties include well defined be-
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havior; isochronism of voice and video streams; and acceptable timing of control interfaces.
While not an exhaustive list of desirable properties, these are essential for type-certification.

Hi Band RF

Low Band RF

IF ADC
Channel Filter Modem

Vocoder

Plug-and-Play Interface Points

Plug-and-Play Modules

New Waveform

New Vocoder

?
?

Figure 13.  Topology of Plug-And-Play Interfaces

4. Computational Properties of Functional Components

A fundamental aspect of software radio architecture is the set of conditions under which plug-
ging-in a module results in the intended system behavior.  Topologists have studied the compos-
ability of functions defined over topological spaces.  Homeomorphisms (topology-preserving
maps) may be composed to yield other homeomorphisms provided the domain of one function
and the range of the other are topologically compatible [38].  From a topological perspective, the
domain of software consists of those inputs over which its results are defined and its range con-
sists of the corresponding results (including side effects and returned values).  Under what con-
ditions can well-behaved software be composed with other well-behaved software to yield a
well-behaved system?  This very general question may be undecideable.  But software radios are
engineering systems with timing constraints that allow us to prescribe constraints on the topo-
logical structure of the software that establishes conditions under which composition of software
modules is well behaved.  The concept is that the bounded recursive functions are the largest set
of functions for which predictably finite resource consumption may be guaranteed.  In addition,
the composition of bounded recursive functions is also bounded recursive, so we have our proof
that defines conditions under which plug-and-play modules will not use excessive resources.
Furthermore, there is no practical constraint on the radio functions that can be computed with the
bounded recursive functions.  This analysis addresses a crucial aspect of type certification: the
ability to maintain throughput across changes of plug-and-play software modules.

4.1 Models of Computation
Earlier in this paper, the notion of software-equivalent hardware capability was introduced.  To
each ASIC and FPGA may be attributed the computational capability of a canonical processor
which may in turn be modeled as a (collection of) von Neuman machine(s).  Each procedure
encoded in the software on a von Neuman processor may be modeled in terms of computability
and concrete complexity as a Random Access Machine (RAM)[47].  A RAM consists of a state
machine, input and output arrays; internal registers; the capability to load and store data via di-
rect and indirect addresses; and the capability to increment memory values.  The RAM model
provides an intuitive but mathematically precise description of a single von Neuman processor.
The RAM model has also been proven equivalent to the Recursive Function and Turing machine
models of computing.  Important theoretical properties include the ability to simulate in polyno-
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mial time capabilities that require exponential time on Turing machines [48].  Let {RAM} repre-
sent the RAM model of the Instruction Set Architecture {ISA} of an arbitrary processor.  Theo-
rems outlined below use the Recursive Function and the RAM models to establish tight upper
bounds on processing resources, a necessary condition for predictable throughput.

4.2 Primitive Recursive Functions
The recursive function model of computing consists of a set of functions from N, the natural
numbers, onto N with closure properties that define classes of functions.  The primitive recursive
functions consist of the following functions:

1.  The zero function, z: N->N: z(x)=0, which yields the constant zero for any input,
2.  The successor function, s: N->N: s(x) = x+1, which associates a successor to each

natural number,
3.  The projection functions, Un

m: Nn->N: Un
m(x1,x2…xn)=xm  by which arguments may

be selected,  with closure under:
4.  Composition:  for g1, g2 … gm : Nn->N and h: Nm->N, f(xn) = h(g1(xn),

g2(xn)…gm(xn)), where (xn) is brief notation for (x1,x2…xn), equivalently f = h*(gm).
That is, the set is closed under composition of functions. One can compose functions
in a natural way that corresponds to function calls and/or selection of data inputs in a
random access machine.

5.  Primitive recursion: for g: Nn->N , h:Nn+2->N, and finite y>0,
f(xn,y) =     g(xn) if y = 0, or
h(xn, (y-1), f(xn, (y-1)) for y>0.
That is, the set of functions is closed under primitive recursion.

For y=1, and h(xn, 0, f(xn, 0)) = h(xn), f is simply the conditional execution of g or h based on the
value of y [i.e. since f(xn,0) = g(xn) but f(xn,1) = h(xn, 0, g(xn)) = h(xn)].  This recursive pattern is
equivalent to the if-then-else programming construct in terms of effective computability.  Since f
appears in its own definition, it requires a pushdown stack of successive arguments.  But since
initially y > 0 and y decreases at each invocation, the procedure will terminate and a stack which
is as large as |y| will not overflow.  It is assumed that the stack allocator in a specific {ISA}
keeps the finite stack from overflowing, provided an upper bound for |y| is known in advance.

The primitive recursive functions are the smallest set of such functions closed under composi-
tion and primitive recursion.  They include addition, subtraction4, multiplication and others that
do not require iterative search.  Sequential logic; transversal and recursive filters; bit manipula-
tion; and data packing are common primitive-recursive functions of software radios.

4.3 Total Recursive Functions
Iterative loops are not primitive recursive, but they are essential to radio software.  The simplest
model of iteration is bounded minimalization.

                                                
4 Unconstrained subtraction and division are not primitive recursive, but appropriately constrained subsets are
primitive recursive.
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6.  Bounded Minimalization: Let g: Nn+1->N be primitive recursive; then
f: Nn+1->N: f (x, y) = µz{z<y}[g(x, z)=0]   is also primitive recursive.

Read  µz as “f (x, y) is the least z less than y for which g(x, z)=0”.  The class of functions closed
under composition, primitive recursion and bounded minimalization are total. That is, they are
defined for all N.  The FORTRAN do loop exemplifies bounded minimalization.  Ackerman’s
function [49]  is defined everywhere but uses resources faster than any known function due to the
structure of its calling sequences.  It is not considered primitive recursive although it is a total
function.  Yet for given parameters of Ackerman’s function which are known in advance, one
can determine whether the function will exceed an allocated upper bound by using a suitable
step-counting function.  Any primitive recursive function admits a primitive-recursive step-
counting function.  Let the bounded primitive recursive functions 5 be the primitive recursive
functions with the associated step-counting functions and finite resource bounds that are speci-
fied in advance.  In software engineering terms, this model of computing insists that when a
module is tested, its resource use in isolation (e.g. MIPS) be tested for bounding parameter sets.
This is just good software-development practice for real-time systems.  Integer division, expo-
nentiation, generation of primes, finite logic predicates and finite iteration are examples of
bounded primitive functions.  These functions have properties attractive for software radio im-
plementations as expressed in the following theorems:

Theorem 1 (Primitive Bounded Resources): Any bounded primitive recursive function is
equivalent to a RAM program which terminates in a finite number of steps which can be
bounded tightly from above, given bounds yi, of the minimalizations from which the composite
functions are created.

Outline of the Proof6: Associate a sequence of RAM instructions with each bounded primitive
function and closure construct.  Each corresponding RAM instruction sequence is primitive re-
cursive and bounded.  These RAM instruction sequences are like in-line subroutines.  Each such
sequence has a small finite number of steps (the bound).  Compute the maximum concrete com-
plexity of the recursive function structure from the {ISA} and a suitably chosen step-counting
function [50].  Let the number of instructions from {RAM} be the step-counting function.  The
resources used by any bounded recursive function with a given set of calling parameters can be
computed from the parameters and the step-counting function.

Lemma 1 (Primitive Bounded Execution Time): The dedicated-processor RAM-equivalent of
any bounded primitive recursive function executes in an amount of time that may be tightly
bounded.  One determines the maximum execution time of each class of RAM instructions on a
specific ISA.  The execution time bound is the product of the number of steps from Theorem 1
times the maximum execution time for that class of instruction.  The time used by the function
tested in isolation on a specified dedicated machine is thus an alternative step-counting function.
                                                
5 The class of total functions includes closure under restricted minimalization (unbounded minimalization defined
everywhere).  This class of functions is too big for software radios because its resource use cannot be guaranteed to
be less than a bound specified in advance.
6 Since these theorems are applications of well known results from the theory of computing, only the outline of the
proof is given.
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From a software engineering perspective, this lemma states that the bounds allocated may be
specified in terms of execution time on a dedicated processor.

Relevance:  Software radio includes isochronous streams for which there is a fixed timing win-
dow during which specific functions must be accomplished in order for services to be delivered
properly and/or for the system to remain stable.  Unconstrained modules may use resources that
are within reason on test cases, but that “blow up” in other conditions.  This approach is qualita-
tively different from much conventional practice.  All primitive recursive functions can be gua r-
anteed to either (a) complete within a specified window or (b) be easily computed in advance to
be incapable of meeting that timing window (Lemma 1).  Such predictable timing properties
provide the foundation necessary to allocate computational resources to plug-and-play modules.
If the resources available in the host are less than necessary, the plug-and-play module is not
activated.  Queuing theory [14] and operational analysis [51] translate such reliable service times
measured in isolation into statistical bounds on isochronous performance in the service environ-
ment where other tasks are sharing the same processor(s).

4.4 Bounding The Partial Recursive Functions
Unfortunately, bounded primitive recursive functions do not express all of the programming con-
structs needed in software radios.  Notably absent are the while and until loops.  These loops
search for a condition under which to terminate.  This condition may never occur, so these RAM
programs may loop forever.  Hardware and software processes that wait or search for a condition
that may not occur are computationally equivalent to while or until loops.  Current research in
wait-free computation considers the related problem of defining instruction sequences (“proto-
cols”) which assure that any process that itself is not in such a fault condition will terminate in a
finite number of steps [59].  The source code of software radios like SPEAKeasy I and II reveals
the relatively widespread use of wait-prone constructs, e.g. waiting for sufficient signal strength
to initiate receiver processing.  The process-dispatch loop of the kernel operating system may
“consume” infinite resources to deliver resources to applications software.  Other infinite loops
are computationally equivalent to the partial recursive functions.  The computational structure is
called (unbounded) minimalization:

7.  Minimalization: for g: Nn+1->N,
f(xn,y) =  µy[ g(xn,y) = 0],
that is y is “the least y for which . g(xn,y) is zero”.

The search operator µ will continue to increment y and test g without bound.  The partial recur-
sive functions are the smallest set of functions closed under minimalization.  Unlike bounded
minimalization which consumes finite resources, the extent of which are computable in advance,
unbounded minimalization consumes resources until g is satisfied.  For many situations, g may
never be satisfied.  For example, a carrier detection loop that is waiting for a signal that will
never be transmitted due to an impossible RF value will never terminate.  It will keep using re-
sources until someone steps in to force the release of the resources.  The partial recursive func-
tions have been proven equivalent to the Turing computable functions, the Post productions, and
to the RAM model [52].  They compute essentially anything that we know how to compute.
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Theorem 2 (Unbounded loops): Software radio functions implemented with while and/or until
loops or their equivalents (e.g. implemented using go-to programming styles) cannot be guaran-
teed to use bounded computational resources.

Outline of Proof: Construct a while loop that simulates minimalization:
While(NOT(g(xn, y)=0), increment y); Return y;

One may show the equivalence of until, while and for loops to unbounded minimalization.  They
are thus in not total and hence may be undefined.  In these cases, the equivalent RAM procedure
will consume unbounded computational resources or will cause an execution fault.

The instruction set {RAM} of a programmable processor always includes instructions by which
such unbounded loops may be constructed.  There are, however, practical ways which radio en-
gineers and real-time programmers have devised for assuring system stability in spite of the
regular use of such constructs.  One may assign time limits to each search condition.  A time-out
yields an error state that deals with the excessive time to execute.  Such programming techniques
transform unbounded minimalization to bounded minimalization.  An unbounded function may
cause the radio to crash, while the bounded equivalent will cause the radio to enter an error-
recovery state due to exceeding its time limit.  Such limits must include the statistical effects of
competition for resources with functions that have higher priority for system resources.

Radio applications are distinct from general purpose computing applications in that there are a
rich set of timing constraints imposed on the creation, emission, reception, processing, conver-
sion, network interoperation and user interface of radio signals.  These timing constraints are
often represented in message sequence charts and state machines.  Timing constraints apply to
call setup and control; delivery of isochronous voice, video and multimedia streams; packet ne t-
working; and related control systems.  This is a heavily time-constrained applications domain.
The constraints imply timing and hence resource bounds that can be allocated to individual
hardware and software components in such a way as to constrain the logic (programming and
hardware) to tightly bounded computational constructs without the loss of functionality.  The
assignment of such bounds supports a theory of stable software radios as follows.

Theorem 3 (Local Feasibility of Bounded Partial Recursion): Single-threaded single proces-
sor software radio functions may be synthesized in RAM instruction sequences equivalent to a
resource-constrained subset of the partial recursive functions.

Outline of Construction (Local Bounded Partial Recursion): This proof builds on theorems 1
and 2.  Unconstrained While and Until loops and their “go-to” equivalents which cannot be
guaranteed to terminate are precluded.  Each such construct from a conventional implementation
is allocated a maximum number of iterations (or equivalently, a maximum processor time).
These limits are coded into bounded-while or bounded-until loops as indivisible operations (in
the same way one that a semaphore is an indivisible operation).  Hardware that waits until a con-
dition is met is similarly bounded, redesigned to generate a fault-interrupt if the condition is not
met after a specified time interval: watchdog timers provide an example.  Hardware and software
“read” operations that wait for a response from a port (which may wait forever) are precluded.
Poll and bounded-wait interrupt handshakes are substituted in which the system will continue



249

(with the read task suspended if the port has no data available).  “Read” is also allowed in which
the reading software task waits a specified time to be interrupted and then returns an error cond i-
tion.  Since there are RAM instruction sequences that implement these time-constrained
search/wait loops, they are guaranteed to complete (either successfully or in a time-out state) in
an amount of time that can be tightly bounded.  This constrains the structure of the software
(away from unbounded minimalization and hence from partial recursion) to bounded partial re-
cursion.  Since this construction applies to software within a given Von Neuman processor, the
proof establishes the local feasibility of bounded partial recursion.

Theorem 4 (Totality): The bounded partial recursive functions are total [53].
Outline of Proof: Total functions are those that are defined for all N.  Each of the primitive re-
cursive functions is defined for all N.  The closure under composition, primitive recursion and
bounded minimalization is defined for all N.  Bounded minimalization is defined for all N as
follows.  Associate with each range of arguments to a minimalization a step-counting function
with a limit ymax.  If the search terminates in less than |ymax| steps, the loop yields the result of the
minimalization.  If not, then the result is FAIL for all N> |ymax|.  Bounded minimalization is
therefore total.  The set of functions closed under such operations is therefore total.

Lemma 4 (Bounded Stability): The RAM instruction sequences that are equivalent to the
bounded recursive functions are total.  (Proof:  If not, then the RAM model is not equivalent to
the recursive function model, which would be a contradiction.)

Relevance:  A software radio has to deliver services predictably.  When combinations of inputs
and states occur for which responses have not been defined, the system’s behavior is unpredic t-
able, hence it will produce undesired results and may ultimately go into an unrecoverable “crash”
state.  Software radios - in particular those with downloaded applications modules - have many
modes and control parameters which result in a combinatorial explosion of control states which
makes it difficult to test every combination of such states.  However, if the software radio is con-
structed of modules that are each guaranteed to be total, then the state combinations will also be
total by induction.  Thus, some specific system behavior (non-crash) will be defined under all
conditions.  The results of such stable computations may or may not be as intended (i.e. “cor-
rect”), but if some specific state is defined, behavior will be repeatable, so unintended results
may be readily diagnosed and corrected.  Crash states due to undefined unstable behavior, on the
other hand, often require heroic labor-intensive debugging efforts.  Radio systems fielded with
software that is not total appear unreliable to the user.

Theorem 5 (Global Bounded Recursion): Multithreaded multiprocessor software-radio func-
tions implemented using RAM sequences that are equivalent to the bounded recursive functions
may be guaranteed to run to complete or to cause a resource fault.  The number of instructions
before a fault may be tightly bounded using polynomial resources to compute the bound.

Outline of Proof: (Existence of Globally Bounded Recursion) Nielson and Nielson [54] pres-
ent a process algebra for a polymorphic subset of Concurrent ML, a parallel multiprocessing
language [55, 56].  With this, they show that the number of processes and interprocessor com-
munications channels associated with a subset of Concurrent ML is finite.  They point out that
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their analysis is not complete: some programs with finite resource use will be rejected as poten-
tially infinite due to an inability to infer the finiteness of sequences of (unbounded) recursions
which terminate.  In addition, their semantics admit sequences in which an infinite number of
tasks terminate before a finite number begin, again resulting in an erroneous rejection of a finite
resource use-case.  Substitute bounded recursion into their schema to preclude partial recursive
constructs, rendering their analysis complete.  The formal language (the subset of Concurrent
ML) and semantics constrain all processors and the Concurrent ML to bounded recursion.  In
addition, the above guarantees that a step-counting function exists, but not that it will be effec-
tive in halting a process that is consuming inordinate resources.  Therefore, global bounded re-
cursion requires a two-level priority system in which the step-counting function can interrupt the
function being monitored.  An infinite regression can occur when step-counting functions them-
selves could consume excessive resources.  This may be precluded in building software radios by
constraining the step-counting functions to employ a real-time clock.  The existence proof is
therefore a first-order result (it assumes two levels of priority and only isolated clock faults), not
a completely general result.  But, it isolates the risk of exceeding resources to the reliability of
the real-time clock (ve rsus the millions of lines of code of the radio applications).

Generalizations:  The degree to which Theorem 5 may be generalized to asynchronous multi-
threaded heterogeneous multiprocessors of software radios touches on much current research in
computer science.  The degree of further generalization is no doubt limited.  Communications
paths, data sharing mechanisms and process control protocols (e.g. Compare and Swap; Load
Linked/ Validate/ Store Conditional [57]) would have to be bounded in a more general setting
than [54] for a fully general proof.  Topological space models of computation have produced
relevant results including necessary and sufficient conditions for wait-free protocols [58], the
asynchronous complexity theorem [59], Non-uniform and uniform Iterated Intermediate Snap-
shot models of wait-free computation [60] and related results.  In addition, practical non-
blocking primitives can be implemented on contemporary machines like the DEC Alpha, MIPS
R4000 and PowerPC [57].  The question of task termination has been proven to be undecideable
if even one process can be faulty (e.g. fail-stop [61] ).  Theorem 5 asserts that a mechanism for
ensuring bounded recursive interprocessor communications together with locally bounded recur-
sive software modules guarantees globally bounded resource.  This analysis yields an architec-
ture principle for the software radio.

Architecture Principle #1, Bounded Modules: Software radio architectures which limit (soft-
ware and hardware) control structures to those that constrain partial recursion to the {ISA}-
equivalent of bounded recursion will consume bounded resources, possibly entering a known
fault condition.  Components that conform to this criterion may be called total bounded modules.

Implications:  There are many implications to such an architecture principle.  Setting resource
bounds so tight that the statistical structure of the demand causes them to be exceeded frequently
can drive resource use to zero due to resource-use fault conditions.  Loss of service from mis-
allocating resource bounds is no less painful on the service provider than other types of deadlock,
but it is easy to avoid.  In addition, the theorems do not preclude combinatorial explosion.  That
is, using these constrained hardware and software structures, one may create data sets and in-
struction sequences with concrete complexity of O(2N).  One is guaranteed, however, that N is
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small enough for the exponential resources to be within those allocated in advance.  One must

know the bounds on N in advance in order to establish the time-out criteria for each loop in the
process.  Such controlled combinatorial explosion will balance the needs of an algorithm to
search a large space (e.g. in an equalizer), against the finite resources of the system.  It will also
guarantee that such algorithms will not consume more than the allocated resources.  In addition,
although the type of constructs that yield Ackerman’s function cannot in general be ruled out,
bounded recursion assures that such a construct would yield a resource fault after a specified
amount of resource use.  Such limits may be proscribed in the type certification process.  Thus,
any modules that meet the constraints when tested in isolation will not exceed them when in-
serted into the plug-and-play environment.  In addition, the system will not become unstable
because of undefined states since all functions are total.  Such guarantees help assure reliable,
predictable, plug-and-play software radios.

This section has presented an initial examination of the computational properties of software
radio functions.  The heterogeneous mix of ASICs, FPGAs, DSPs and general purpose comput-
ers can be constructed so as to consume predictable, tightly bounded resources.  One must con-
strain the logic to the bounded recursive constructs with prioritized fault handling for exceeding
the constraints.  The theorems provide an initial outline of a theory of service integrity needed
for plug-and-play modules.  The constructions from the proofs suggest engineering techniques
for applying the theory to development projects.  This stability theory must then be combined
with queuing theory [16, 26] and other resource management techniques that address the statisti-
cal nature of demand in order to provide a robust management of processing resources.

5. Interface Topologies Among Plug-And-Play Modules

Constraints on the computational structure of modules can ensure bounds on resource use for
plug-and-play.  Are there constraints on the interface structure among these modules that further
facilitate plug-and-play?  The answer requires additional aspects of the topological model.

5.1 Topological Spaces
Definition (Topological Space): A topological space, denoted (X, Ox) is a set, X, and a family
of subsets Ox, the “open sets”, which include X and the empty set, φ, and which are closed under
union and finite intersection [38].  The topology is the family of subsets, Ox, which has the geo-
metric and algebraic structure.

Topological spaces are very general spaces in which one can represent the geometric properties
of interfaces among software radio modules.  An interface to an analog source, for example, may
be modeled as an infinite dimensional waveform that obeys certain constraints.  These include
bandwidth, adjacent channel interference, minimum and maximum transmitted power.  An un-
countable number of such waveforms are possible in an analog interface, but regulatory bodies
and the hardware limit the waveform to a structured subset of the possible waveforms.  Since the
space of randomly perturbed signals is also a metric space [62], one can precisely define distance
among waveforms and thus the topological structure of analog interfaces.   Figure 14, for exam-
ple, shows two analog waveforms in the time domain (i); and in the frequency domain (ii).  A
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range of waveforms is allowed (A) and prohibited (B).  Time domain waveform A is within the
allowed geometry, while waveform B is not.

A

B

            

Power

Frequency

B => Prohibited

B

A

B

(i) Time Domain                                               (ii) Frequency Domain

Figure 14 Interface Waveform Topology [(A) Permitted and (B) Prohibited]

Such widely used interface constraints are set-theoretic in that they limit the elements in the in-
terfaces to a subset with specified properties.  These constraints are also geometric, defining an
interior, A, the conforming region; and an exterior, B, the non-conforming regions.  The regions
(i) and (ii) are homeomorphic because there exists a topology-preserving map among the two,
the Fourier transform.

5.2 Finite Interface Topologies
If a set X has a finite number of elements, |X|, all subsets are open sets (and are also closed sets).
If |X| = M, then the number of topologies that induce a topological space on X is 2(2^M -2), a dou-
ble exponential.  Not all of the candidate topologies satisfy closure under union and finite inter-
section as required for a topological space [63].  The huge number of possible topologies com-
pels one to define finite interface topologies more compactly.

Definition (Basis): A set B ⊂  X is a basis for Ox if the members of Ox are the union of members
of B.  A basis is a smaller set than Ox from which Ox may be induced by taking unions.

From a hardware perspective, a set of pins in a connector is an interface point, xi, ε X.  The set
{X =  U

N

xI , φ} is a basis for Ox; but Y=  {U
1N

xi ,{x1}, φ} which contains three subsets, {x1},

φ, and the union of all the other interface pins works just as well.  The basis with the most sub-
sets is {φ, {xi}}, the N+1 sets that include the empty set and each element of X taken as a sin-
gleton set.  If all the pins are needed for a viable connection, then {X} is the only subset of X
that consummates a connection and therefore is the only element in the topology.  In this case,
Ox = {{X}}; the topology is just the fixed set of required inputs X, which may be called the rigid
topology; this is not a topological space because it lacks the empty set.  The empty set is not a
valid member of the interface set if the interface will not “work” if no pins are present.  If the
system will “work” with the connector unplugged (e.g. resort to a default or fail-soft mode), then
the empty set is a member of the interface topology.

From a software perspective, an API may specify a call to the Synthesize() function, for exam-
ple, with arguments RF, frequency, and W, bandwidth.  If both are required, then Y={RF,W}
and OY = {{Y}}.  This is just as inflexible as the equivalent hardware interface.  On the other



253

hand, a tagged API with the expressions RF=859 or W=30 or both or neither would be defined
over a space containing {RF}, {W}, X = {RF,W}, and φ :

Ox = {{RF, W}, {W}, {RF}, φ}

The empty set is included in the topology because the interface “works” even if no arguments are
provided.  Thus, OX = {X, {RF}, {W}, φ}, the set of all subsets of X or power set, which is a
topological space.  This power-set topology is the discrete topology; it may also be called the
flexible API topology.  This flexible interface geometry is implemented, for example, if Synthe-
size() uses default values for the missing arguments.  Since the power set is the largest set of
subsets, the discrete topology maximizes the number of combinations of API parameters over
which the function call is valid.  The basis for the power set consists of the singleton arguments
plus the empty set:  {{W}, {RF}, φ}

5.3 Function-call Parameter Topologies
The geometric structure of parameter spaces may be better understood using additional notions.

Simplex:  A simplex is an ordered set of points in a topological space that are adjacent in some
sense, such as sharing a relation R 7.  Higher dimensionality simplexes induce lower dimension-
ality simplexes.  Simplexes may be embedded in Euclidean space, but need not be [64].

Complex:  A simplicial complex is a union of simplexes that includes the union of all the lower
dimensiona lity simplexes of a given simplex.

Q-Connected: Simplicial complexes that share a q+1 face are q-connected [65].

The three vertices of a plane triangle, [A, B, C] in Figure 15, for example, comprise a two di-
mensional simplex, adjacent in the sense that they are connected by the points in the plane.  Each
line segment joining these vertices comprises a one dimensional simplex (e.g. [A, C] ), the pairs
of vertices.  A second triangle that shares one line segment with the first is also a simplex.  Each
triangle together with its edges and vertices comprise a simplicial complex.  The two triangles
also comprise a simplicial complex in which the simplexes are 1-connected by the line [A, B].

A B

C

D

Simplex {A,B,C}

Simplex {A,B,D}

Figure 15 Simplicial Complex Consists of Two Simplexes

                                                
7 Strictly, an n-simplex is the convex hull of n+1 independent points in m-dimensional Euclidean space, which is the
intersection of all convex sets containing those points subject to completeness and closure axioms [Kahn, 95].  This
level of geometric precision is not needed for this software radio application.
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Interface parameter sets may be modeled as simplexes with a large number of dimensions.  In the
Synthesize() function above, suppose RF is discrete and has as its explicit basis the range
[400.001, 2400.000] MHz and resolution 1 kHz.  The RFs that are valid parameters of Synthe-
size() are adjacent in sharing the relation R = “valid for Synthesize()”.  They therefore constitute
a simplex consisting of the two million distinct RFs in this range.  Let BW be defined for {25,
30, 200} kHz.  The parameter space {RF, BW}, contains 6 million points, a simplicial complex
consisting of the union of three simplexes of 2 million RF points each, indexed by BW.  Then the
set of RFs reachable from Synthesize(925.000, 30) is exactly one, {[925, 30]}.  Synthe-
size(BW=30), on the other hand, reaches the two million point RF simplex, e.g. through a global
default.  Synthesize() reaches all six million points through defaults, connecting them in a single
simplex.

For the example function Synthesize() to have an explicit basis, its definition must include basis
tuples expressed as Parameter(Type, Range).  Parameter indicates the parameter being defined.
Type chooses among predefined subspace types (e.g. Discrete, Continuous).  Range sets the
valid values.  In the example above, an explicit basis could be BW(Discrete, {25, 30, 200}) and
RF(Discrete, [400.001, 400.002; 2400.000]) using Mathcad® range notation.  This explicit basis
can be enforced by the environment to yield an error result “Out of Range” for arguments that
violate the basis description.  Such semantics define Synthesize() as an effectively computable
function over all inputs.  A product topology on these bases yields the six million points of (BW
x RF) as the input space to this function.  However, it is often necessary to limit the parameters
to subsets of this space.  One might limit the 200 kHz bandwidth to the RFs allocated to GSM,
say, 925 to 960 MHz.  The simplex

NOT (200, {[925.000, 925.200, 926.000]}) -> ‘Bandwidth-out-of-range’

defines the set-complement subspace for which the 200 kHz bandwidth choice is mapped
to a fault condition.  To the degree that such subspaces can be changed while the radio node is in
the field, the service provider has a  “future proof” interface.  In order to be changed in the field,
the “capability” implicit in the interface constraints must be defined in such a way that the con-
trol algorithms can test and manipulate the constraints, e.g. to decide whether to accept a down-
load.  The geometric structure of the interfaces naturally defines plug-and-play constraints.

5.4 Plug-and-Play Interface Geometry
An implementation conforms to its own as-built interface (whether documented or not).  Histori-
cally software radios use a mix of custom internal interfaces not designed for plug-and-play.  The
implementation decisions made during design, development, integration and test constrain the
interface to some specified point within the space of interface topologies as illustrated in Figure
16.  An arbitrary interface simplex consists of all the parameters, signals, etc. related to an inter-
face, ranging over the (possibly infinite) set of possible values of each parameter.  The arbitrary
interface in the figure is the simplicial complex consisting of all subsets of the arbitrary simplex.
Each domain and range of a plug-and-play interface, however, consists of a designated subset of
this simplicial complex.  A plug-and-play interface defines an interoperable subset (not just a
single point) of the interface space.  These subsets include physical and logical interfaces (e.g.
defined in the APIs and interface control documents).  The physical interface subspaces must
change as a function of the hardware in which the service is delivered.  The logical interface sub-
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spaces also may have to change as a function of the software modules configured to deliver the
services.  Independent evolution of software and hardware requires interface geometry that is
independent of whether the interface is purely hardware, purely software or some mix of the two
evolving over time.  Extensible plug-and-play constructs a capability dynamically.  To do this,
the control system must have a way of comparing the range of one function to the domain of the
next to determine whether the functions are compatible.

Hi Band RF

Low Band RF

IF ADC
Channel Filter Modem

Vocoder

New Waveform

New Vocoder

?
?

Specified Interface

Plug-and-Play Interfaces

Arbitrary Interface

User

Channel Selection
Channel Filter Control

Interface

Figure 16. Interface Geometry Reflects Design Decisions

5.5 Extensible Capabilities
Plug-and-play modules -- hardware or software – should be accepted into a system only if it has
the capability to support them.  Capabilities may be represented as levels (or “tags”) such as the
type of video teleconferencing interface in the ITU H.320 Recommendation [66] or the type of
call control support from Microsoft’s Telephony Applications Programmer Interface (TAPI)
[67].  The advantage of the tag-based approach is its simplicity.  Capabilities are defined during
the standards-setting process and documented in the text of the standards.  One disadvantage of
this approach is the possible misinterpretation of the text of the standard.  To counter this chronic
problem in telecommunications standardization, ETSI has promulgated language that would
make the formal specification of the ITU Z.100 Specification and Description Language (SDL)
[68] the normative expression of the standard [69], with text providing amplification and expla-
nation.  Historically, the text has been normative while the computer-processable representations
have been auxiliary.  Another disadvantage is that levels of capability cannot be defined dynami-
cally by the radio system.  Nor can they be manipulated computationally by the joint control
system of the radio infrastructure.  For control of dynamically defined software radio-based
services, the constraints must eventually become dynamically computer-processable.  That proc-
essing must support automated reasoning over the constraint spaces and capabilities of the host
system so that the radio itself can construct the level of capability necessary for the specific plug-
and-play services.  SDL falls somewhat short of this vision since semantics are left to the de-
signer.  Dynamic capability definition requires designer-independent semantics.

The input and output spaces of an ADC, for example, might be as illustrated in Figure 17.  The
list of features defines the dimensions of the interface space.  Range expressions define sub-
spaces.  Discrete values constrain a subspace to a single point.  These spaces often need to be



256

extended.  Parts that are defined a-priori may be extended dynamically.  For example, to add a
control that selects from either the A or B buffer in a double buffered interface of this notional
ADC requires extension of the interface topology, adding sets and subsets to (X, OX ).

Resource:
Object Type:  ADC
Domain (Input Space):

Class:  Analog-Stream
Family: Coax-DC-Coupled

Impedance:  50 Ohm
Connector:  BNC

Carrier Frequency:  Baseband
3dB Bandwidth:  350 kHz
Signal:  {Analog, Predetected-Signal,

Band-Limited-Signal}
Control Subspace:

Gain:  [0dB to 20 dB, 1 dB steps]
Gain Control:  AGC

Dynamic Range:  70 dB
Range (Output Space):

Class:  Digital Stream
Hardware Family:  Serial-ECL

Clock:  15.44 MHz
Framing:  544 kbps

Sampling Frequency:  1 MHz
Nyquist Bandwidth:  500 kHz
Signal:  {Digital Signal, Predetected Signal,
Band-Limited Signal}
Resolution:   16 bits
Dynamic Range:  65 dB

Figure 17  Topological Space Representation of an ADC

It is easy to do this in a way that is readable by people.  To do this in a way that is processable by
a control algorithm requires a Radio Knowledge-Representation Language (RKRL) as suggested
in the example of Figure 18.  The meta-level expressions <Buffering>, <Buffer-Size>, <Buffer>,
and <Buffer-flag> introduce the primitives Buffering, Buffer-Size, Buffer and Buffer-flag. The
RKRL is assumed to include a-priori semantics for Resource, Type, Set-Extension, Output-
Space, Range, None, Double, and Singleton topologies.  The set extension augments the inter-
face topology (X OX) with new dimensions.  The syntax of the extension indicates that if Buff-
ering = None, then the effect is null.  This effectively glues this new subspace to the existing
subspaces in which there was no buffering.  In addition, the new subspace Buffering(Double)
has the rigid interface topology (e.g. this device has a double buffers A and B of 128 Bytes
each).  The Buffer-Flag has a singleton topology over interface port ‘2A1’ that would be set to
the value zero or one.  Topological spaces naturally express constraints geometrically.  Such an
approach represents radio capability in a way that can be processed by control algorithms.
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Resource:
Type:  ADC
Set Extension:

Range (Output-Space):
  {<Buffering>:= {None, Double},
    <Buffer-Size> = N,
    <Buffer>={Register(X[1,N])}
    <Buffer-Flag>:= {A,B}}
Buffering:  None (Null)
Buffering:  Double (

Buffer-Size: 128
Buffer (A); Buffer(B)
Buffer-Flag:  Singleton(‘2A1 = {0,1})

)

Figure 18 Resource Topology Extension:  ADC Buffering

The considerations involving interface topologies may be expressed in the following architecture
principle:

Architecture Principle #2: Explicit Extensible Interface Topology: API’s and hardware inter-
faces which exhibit an explicit basis for each interface parameter space and which are extensible
in the field exhibit a level of flexibility and adaptability suitable for extensible plug-and-play
applications.

Implications:  The requirement for an explicit basis assures that the interface topology is defined
completely, including error states.  Each of the key software radio interfaces defined by the top
level functional component maps has a corresponding set, X, and family of subsets, Ox,  which
characterize the interface.  The full extensibility of the topological bases in the field requires
some kind of RKRL-based representation of radio resources.  This is an area of current research
in wireless computer-communications systems [70].

6. Architecture Partitions

One goal of a plug-and-play software radio architecture is to provide computing resources from
as yet undefined hardware modules to support as yet undefined software modules for as yet un-
defined services.  The following architecture analysis examines the functions, components and
design rules of software radios towards this goal.  This analysis applies the computational and
topological properties introduced above to begin to identify the mathematically based partitions
of software radio components.  The approach initially examines the source code of a widely
published military software radio, SPEAKeasy I [71].  A sequence of virtual machines is then
derived that both expand the {RAM} equivalent instruction set and constrain the computational
geometry, yielding a layered virtual machine reference model for the software radio.
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6.1 SPEAKeasy I
SPEAKeasy I resulted in the software radio source code structure summarized in Table 3.

Table 3  SPEAKeasy I Software Modules
Module Source Ada Module Descriptions/ Functions
At (127 kB) C040 interprocessor communications
BIT (318 kB) Built-In-Test packages, including CRC, EEPROM, PID, I/O

registers, interrupts & DMA
Cm (1.29 MB) Configuration Management
  ALE (125 kB) ALE Receive (Rx) and Transmit (Tx) Functions
  ALE_Rx1 (378 kB) Automatic Link Establishment (ALE) Receive Modules
   Hvq (645 kB) Have Quick Communications Ensemble
      Hvq_Ct (109 kB) Control Modules (Initialization, Mode Control, Errors)
      Hvq_Glob (25 kB) Globals
      Hvq_ Rx (379 kB) Receive Mode (Synchronize, TOD, Rx, Active...)
      Hvq_ Tx (131 kB) Transmit Mode
      Work (299 kB) ALE packages & specs
Hfm (518 kB) HF Modem Communications Ensemble
  Hfm_ctrl (58 kB) Controls Waveform start/stop messages; RTS Events; PM

Query; TX/RX Done (local);
  Hfm_dc (22 kB) Data Control Packages, source messages error checking
  Hfm_ rx (289 kB) Receiver Bit & message operations, text I/O, Rx utilities, data

correlation tables, filters, queues
  Hfm_ tx (149 kB) Squelch, TX/RX mode, TX templates, RF Control,  Timing
Nbg (334 kB) Narrowband Frequency Hopping
  Nbg_ct (49 kB) State Machine, Sync Loss, TX/ RX, Waveform, PTT State...
  Nbg_glob (105 kB) Global parameters for NBG package
  Nbg_hp (57 kB) Hop Packages – timing, data request/processing, PTT ac-

knowledge, cryptographic processing...
  Nbg_rx (73 kB) Receiver Packages MFSK, Preamble, Galois (FEC), Dead

Bits, Flags, Bitsync, RX flush, Detect/Track
  Nbg_t (49 kB) TX: Amplitude, Preamble fill, IQ Samples, AM on Voice,

Filter, Inter-Process Communications (IPC) Messages, SSB,
DSB, QAM, OQPSK, Event & Constraint Checking

© Mitola’s STATISfaction, used by permission

The as-built code has some strong features - such as real-time performance and accurate handling
of timing differences between radio networks.  Since an Ada implementation was mandated, the
real-time executive is the Ada run-time kernel.  The Ada modules can be viewed as software
radio objects.  They include databases, channels, and agents.  Databases store personalities; filter
parameters; lengthy chunks of compiled code; and data sets to be loaded into a personality at
run-time.  Channels are abstractions around which modes (e.g. HAVE QUICK) are organized.  A
channel is supported by several Ada packages that perform the systems level functions of RF
control, modem processing, INFOSEC, and related internetworking.  A channel:
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(1) gets the system resources (paths or threads through the system);
(2) installs its personality on these resources to implement a mode; and then
(3) keeps track of the overall state of the processing thread that delivers the associated

services.

In SPEAKeasy I, lower level modules implement the personalities of the channels.  They also
serve as hosts for busses, manage IO processes, access timing and positioning data, and control
the radio.  Timing packages manipulate the system clock, Time of Day (ToD), the day/time for-
mat, and the timing resolution.  The RF control packages determine RF direction (i.e. transmit or
receive); the RF mode (e.g. linear or nonlinear amplification); pre-emphasis for pre-distortion;
and frequency of transmission.  The modem packages include modulation (AM, FM, QAM,
USB, MSK ...), demodulation, automatic gain control (AGC), loop bandwidth control, and data
packing and unpacking of protected bits.  Channels also keep track of the status of the mode,
number of resources employed, volume, data rate, throughput, network parameters such as ne t-
work number, and assigned time slot(s).  The system may also be asked to perform a loop-back
function for network testing or local diagnosis.  The back-end functions include message proc-
essing, internetworking, managing protocol stacks, and the user interface.  Radio control handles
system boot-up, initial ToD, current hop, calibration, status requests and security level.  Com-
paring the Nbg, Hvq and Hfm mode software shows a common pattern of control module(s),
global parameters, transmit (modem), and receive (modem) modules along with specialized
modules such as hop generation for frequency hopping modes.

The as-built code includes four distinct types of software: services such as voice, data, and chan-
nel bridging; software that structures the radio applications such as state machines; infrastructure
that moves data; and hardware-specific support software such as the operating system.  About 30
to 40 % of this code is infrastructure, 30 % structures radio applications and the remaining 30 to
40% implements services.  These different functions are almost inextricably intertwined.  Much
of the code is hardware-dependent.  The partitioning analysis that follows is oriented towards
reuse and therefore begins at the most primitive level of existing “code”, the hardware.

6.2 Hardware-Specific Partitions
The hardware interfaces define the lowest level physical partitioning of a radio system.  From a
topological perspective, a digital processor connects the states of data in its registers.  The set of
data states reachable in one clock cycle from any initial state constitutes the processor’s charac-
teristic simplex.  Let [RAM] indicate the characteristic simplex of a processor with instruction
set architecture {RAM}.  A processor with twenty 32-bit address registers, cache pointers, gen-
eral purpose registers, DMA registers and other registers can in principle assume any of 2(32*20)

states.  The number of states equals 10192.6 or 0.358846241 M 2 (see the Appendix for magnitude
notation).  This is the size of the processor’s instantaneous characteristic simplex.   Fewer regis-
ters yield a smaller simplex.  A more complex instruction set architecture yields a larger simplex.
An FPGA’s simplex is determined by its use of state memory, which will generally be much
larger than a DSP chip of the same area and device feature size.  The size of the simplex ind i-
cates how many different things the processor can accomplish in a single clock cycle.
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6.2.1 Paths in Simplexes Induce Partitions
Sequential simplexes are connected to each other by the clock sqeuence.  Over time, a series of
RAM instructions traces a path through a sequence of simplexes, the union of which is a sim-
plicial complex (SC).  In one second, a processor with a 100 MHz instruction clock may assume
any of (10192)^(108) or 0.87822M5 states.  In addition, a software radio with distributed multi-
processor hardware and interconnect devices has additional connectedness among processor
simplexes as illustrated in Figure 19.

Processor 1

Processor 2

Interconnect

S1
S1

S2 S2 S2

I

Time
k=1                  2                3                  4             5...

SC(P1,I,P2; 
     k=3…5)

Figure 19  Processor Simplexes (S1, S2), Interconnect Simplexes (I) and an Equivalent
Simplicial Complex, SC(P1,I,P2; k=3 ... 5)

At each clock cycle, an edge in the simplex is traversed (e.g. the solid arrow in Processor 1’s
simplex at time k=3 in the figure).  The path traversed through a sequence of simplexes may be
subsumed into an SC, e.g. SC (P1, I, P2; k-3 … 5) in the figure.  The dotted arrow in SC ind i-
cates the path traversed by data sent from P1 to P2 during clock sequence [3, 5].  The way in
which software constrains such paths implicitly defines architecture partitions.  A larger number
of possible paths indicates greater built-in flexibility while topological loops in such paths define
the natural partitions of the software.

6.2.2 Interrupt Service Routine (ISR) Topological Loops

Consider hardware-dependent software such as operating system services, which consumes
processing resources in a way that is tightly coupled to the hardware-related processor states.  A
typical ISR, for example, might turn off hardware interrupts, push the processor state onto a
stack, test the interrupt condition, set a dispatch pointer, restore the registers and exit.  In a real-
time system, this process could take from 10 to 100 instructions.  Windows NT requirements for
template data might expand this to 1000 instructions or more.  During this sequence, the ma-
chine’s simplicial complex, normally available for arbitrary computing, is constrained to a path
that involves states of a particular control register (the interrupt register).  In addition, the in-
struction sequence that is so constrained is defined temporally by the start of the interrupt and the
termination of the ISR.  This produces a path in the simplicial complex that begins with a hard-
ware interrupt “set” and a particular configuration of registers and ends with the interrupt “clear”
and the identical configuration of registers.  Define a convenient distance measure on data states
such as Hamming distance, the number of bits that are not identical.  A topological loop over
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([RAM], d) at x, a point in [RAM], is the shortest path in SC[RAM] that returns to within d of x
if one exists.  An ISR is a topological loop in [RAM] for d=1 in the above example.  Input / Out-
put drivers, task schedulers, disk access control, real-time clock support software and the like are
other examples of such hardware-specific software included in operating system kernels, which
have short characteristic topological loops.

6.2.3 The Topology of the Kernel Substrate
The set, {kernel}, comprises the lowest level software substrate.  Kernel sequences can be mod-
eled as extensions to the processor’s native ISA.  The hardware interrupt ISR, for example, could
be modeled as the function Service() defined over the set {Interrupt-Registers}.  Service() is an
instruction in {kernel}.  From a topological perspective, Service() defines a sub-graph within the
processor’s SC.  A processor with a library of such hardware-dependent modules can be viewed
as a machine with an extended instruction set, ISA+ = {RAM} union {kernel}.  The set {kernel}
may have a distinguished sequence of {RAM} instructions for the Idle state.  Idle ó {RAM} in
that during the Idle state, an arbitrary RAM sequence is possible.  Let {kernel-} represent the
kernel less Idle.  Minimizing the number of {RAM} sequences needed for the {kernel} maxi-
mizes the {RAM} capacity left for higher-level radio services.  The simplex of {RAM} union
{kernel-} is no larger than [RAM], but it contains a distinguished subspace corresponding to the
paths reachable through {kernel}.

6.3 Infrastructure Software Topology
Assume that each processor in a software radio has an associated set of kernel software.  The
next step in a bottom-up process of defining virtual machines identifies those functions that allo-
cate, set up and control the physical resources to create logical resources.  Figure 20 lists the
function calls required for distributed processing.  These functions include the structures recom-
mended in ITU’s X.900 Open Distributed Processing reference model [72].

Signal Flow Paths

Control Flow Paths

Timing, Frequency & Positioning

Initialize, Check-In, Shutdown, 
Create Port, Find_Port, Delete_Port
Get_Message, Send_Msg, Send_RPC(timeout)
Multicast_Register/Send/Release/Echo
Error(string), Extract_UDP_Socket/_IP/_Port

Load_Path, Load_Command_List
Path_Get_Status/_Type/_Size/_Cmd
Path_Echo,
Path_Open, Path_Close, 
Path_TxInit/_TxReset/_TxSetID/_TxLoad/_GetPTR
Path_RxInit/_RxReset/_RxSetID/_RxSetMask/
  /_RxContinuous/_RxSnapshot/_GetPTR/_Status
Path_Catch, Path_Throw (UNIX/VxWorks)
Device Specific (PCI, VME, DT, Transputer...)

Get_Time, Get_Drift (Inernal vs. GPS)
Clock_Status, Clock_Terminate (Port)
Clock_Realign(Parameters)
Send_Sync_Manager
     Init, Reset(error), Status, Trigger(parameters),
     TimeUp, TimeDn, TimeEqual, TimeLess, TimeGT
     Shutdown, GetRate, FreeList(FIFO), Load, Queue
     Clear, Test, TestStatus

Object Message Passing

Isochronous Streams

Automatic Realignment

Error Logging, Semaphores, Bus Logic

© Mitola’s STATISfaction, used by permission

Figure 20  Infrastructure Software Function Calls
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They also include structures unique to radio applications such as frequency distribution.  This
infrastructure code manages control flow paths; signal flow paths; and timing, frequency and
positioning information.  It also includes features needed for isochronous delivery of voice,
video and other real-time streams.  The control flow paths mediate message passing among most
objects in the system.  Error logging; semaphores that manage shared resources; and bus access
protocols are examples of control message flows.  The infrastructure functions initialize the sys-
tem, create and manipulate logical and physical ports, move messages, and perform remote pro-
cedure calls (RPC).  They also provide multicast services, handle error messages and support
standard protocol interactions such as Internet Protocol (IP).  Multicast simplifies programming
of multichannel operations such as initializing 100 subscriber channels distributed among 25
DSP chips.  The control-flow methods listed in the figure constitute a minimum set necessary for
software radio infrastructure.

The signal-flow methods listed in the figure, similarly, set up and manage signal flow paths
among processes on the same or on different processors.  These isochronous streams must meet
specified timing constraints.  Due to the overhead associated with path set up and tear down,
these paths must be opened and closed multiple times without being set up and torn down again.
Timing, frequency and positioning is a very involved process, a complete discussion of which is
beyond the scope of this treatment.  Time references obtained during network synchronization
must be maintained on a per-network basis.  Since the software radio generally participates in
multiple networks simultaneously, it must maintain absolute time per network.  This is accom-
plished not by changing the software radio’s clock, but rather by defining time offsets for each
network.  Additional ancillary functions related to queuing data messages (e.g. load, clear, test
status, and reset) are also part of infrastructure.

Applying the virtual machine paradigm to this set of software yields a new virtual instruction set
{Infrastructure} which consists of {Message-Passing}, {Isochronous Paths}, {Timing}, {Fre-
quency} and {Positioning} instruction subsets.  These extensions build on the facilities of {ker-
nel}.  The {RAM} simplex contains {Message-Passing}, etc.  Each such subspace depends on
{kernel-} services, the lowest layer of the emerging virtual machine hierarchy.

6.4 Radio State Machines
State machines control access to many software radio resources.  State machines typically con-
trol transmit and receive channels and fault recovery actions.  A resource-allocation state ma-
chine is illustrated in Figure 21.  Three states are shown in boxes: waiting for instantiation,
fetching a waveform and waiting for a response.  The arcs are labeled with conditions that cause
one to transition from one state to the next and with actions performed upon such a transition.
This control structure may be viewed as a software object with a set of control slots (the states)
and attached methods.  Methods test for state transitions and perform required actions.  Recom-
mendations for defining and simulating such state machines are provided in the SDL Recom-
mendation Z.100.
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Figure 21 Infrastructure State Machine

Such state machines may operate on several levels.  At the top level, each channel (e.g. HAVE
QUICK) has a top-level channel-setup state machine that keeps track of resources.  The next-
level state machine manages the mode, as illustrated in Figure 22.  The channel is initially idle.
When it has been set up, it enters the Ready state.  If the user (or network) initiates a “talk” se-
quence, the transmit (Tx) state is entered, upon which the radio will alternate between Tx and Rx
states until conditions are met which either suspend or deactivate the channel.

Idle

Setup
<Mode> 

Setup Error

<Mode>Ready

<Mode>Rx

Hard Faults

Tx/Rx

<Mode>Tx

Retry
Confirm
Bypass

Suspend

Close/Deactivate

RC: Mode
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Figure 22 Channel Control State Machine

Lower level modem state-machine tracks states for active plain text receive and transmit; crypto-
sync; receiving analog and digital; and bridging fades.  The SPEAKeasy state machines also
have built-in timing and error-recovery procedures.  Automatic Gain Control (AGC) and Squelch
(Sq) are adjusted on all transitions in the lower-level state machines.  Thus, the state machines
schedule both routine processes such as squelch and AGC and processes driven by channel con-
ditions such as bridging across fades.  States also reflect failure modes.  These include sync fail-
ure, loss of carrier and loss of system resources.  Such state machines are a central mechanism
for controlling system and radio resources in the software radio.

From a geometric perspective, the topological loops of these state machines begin and end on
conditions of identical state values.  That is, the states “set-up”, “transmit”, “receive”, etc. are the
constants or fixed points in the evolution of the [RAM] simplicial complex.  Periodically, the
processor’s register set will return to topologically close states for some suitably defined distance



264

d.  Since the functions called from these state transitions (e.g. “transmit next block”) employ the
facilities from {Message-passing}, {Isochronous stream}, etc., these state machines define a new
level of virtual machine built on top of the Infrastructure machine.  The boundaries of this layer
of virtual machines, then, may be based on the function calls attached to the state machine ob-
jects.  This new layer of virtual machine is the {State machine} instruction set, consisting of the
{RAM} sequences that set up, execute and control the state machine objects.  The state-machine
objects themselves comprise a virtual processor architecture

6.5 Channel Agents
The characteristics of SPEAKeasy I, SPEAKeasy II and other software radios have been ab-
stracted to create the software object diagram of Figure 23.  These high-level objects may be
called channel agents.  Each software object has been allocated functions from the radio func-
tional block diagram of Figure 2.
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Figure 23.  Channel Agent Software Objects

Those agents in the top row of the figure control the system while those in the lower rows im-
plement the traffic channels and related services.  Each of these high-level software objects has
subordinate objects, to the level of primitive single-function radio objects such as filters, modu-
lators, interleaving, clock recovery, and bit-decision objects.  Some of these may be implemented
in FPGA personalities, but most would be DSP code.  The protocol and speech processing “back
end” of the software radio employs a protocol stack such as ATM, TCP/IP, Mobile IP, etc.  Con-
sequently, internetworking to the wireline infrastructure consists of a few monolithic predefined
software objects.  The objects of Figure 23 implement the functions summarized in Table 4.

Table 4 Functions of Radio Software Agents
Radio Agent Object Methods and Slots
Antenna & RF Control (ARC) TX/RX, Power, Polarization
Channel Control (CC) Allocate Resources, Configure, State Machines
IF Processor (IF) Diversity combining, Beamforming, Pre-emphasis
Waveform Processor (WP) Generation, Timing, Fault Detection, Modulator and De-

modulator (Modem), link-related data processing
INFOSEC Control (IC) Key, Control Bridge to Black Side, Authenticate
INFOSEC Processing (IP) Encrypt, Decrypt, TRANSEC



265

System Control (SC) Initialize/ Shutdown, Test, System Status
User Interface (UI) Commands & Displays
Speech Processing (SP) Codecs;  Echo Cancellation, Voice Channel Modems
Protocol Processing (PP) Packetization, Routing

© Mitola’s STATISfaction, used by permission

These radio functions are relatively generic.  Thus, each waveform or mode of operation may be
expected to have either its own set of agents or a set of parameters and a script that tell the agent
how to treat that specific mode.  Radio services, like bridging across waveforms, would be con-
structed as scripts or Java-like Applets that interconnect Channel Agents and other high level
functions.  The semantics of such top-level modules are readily represented in the Unified Mod-
eling Language (UML) [73]

The timing and overall behavior of the channel agents are constrained by the lower level state
machines that essentially tell the agent what is going on in the channel.  Thus, from a geometric
perspective, agent subspaces in the [RAM] simplex subsume the {State machine} subspace.  The
extended instruction set for channel agents {Channel agents} is more of a category than a virtual
instruction set.  The specific functions {Antenna and RF Control}, {Channel Control}, {IF Proc-
essor}, {Waveform Processor}, etc. each constitute a set of virtual instructions.  Since these
channel agents must be mutually consistent in order to work together, the class {Channel agents}
refers to a mutually consistent set of such instruction set extensions.

6.6 Distributed Layered Virtual Machine Reference Model
The preceding sections have described essential software mechanisms employed in the construc-
tion of software radios.  When viewed in terms of the subspaces defined by the paths traced in
the simplex of an equivalent RAM processor, layers of successively less machine-dependent
software emerge.  The distributed layered virtual machine is a way of representing the resulting
hierarchy.  Each layer is a virtual machine built on subordinate layers.  The virtual machine inter-
faces may be held constant so that the implementation details and intellectual property present
within a component at a given layer are hidden from all other layers.  The software radio archi-
tecture that results from this process is illustrated in Figure 24.

As the capacity of FPGAs and DSPs continues to grow, the processing to support such virtual
machines becomes more affordable.  The services offered from the top-layer virtual machines
thus become independent of the hardware implementations in the bottom-layer virtual machine.
The FPGA and DSP hardware vendors, for example, could offer infrastructure software that sup-
ports radio applications.  This layer could be implemented in part using an augmented Message
Passing Interface (MPI) [74].  The state machines in the infrastructure and radio applications
layers would naturally fall into the domain of SDL.  Third party waveform vendors could offer
middle layers.  Interfaces among components may be represented in UML or the Interface Defi-
nition Language (IDL) [75], possibly augmented with Abstract Syntax Notation (ASN.1) [76].
Systems integrators and service providers could then define their unique value-added in the top
layers, building on the broad base of industry support at the lower layers.  In addition, Computer
Aided Software/ Systems Engineering vendors could embrace the wide range of reusable com-
ponents to assist developers to encompass the entire software radio distributed virtual machine
hierarchy for reduced time to market.
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Figure 24 Software Radio Distributed Layered Virtual Machine

These observations may be summarized in a third architecture principle:

Architecture Principle #3: Distributed Layered Virtual Machine Reference Model: Modules
implemented according to the distributed virtual machine reference model will insulate lower
layer hardware-dependent modules from upper layer service-defining modules.  In addition, the
topology of the interfaces can guide the further refinement of this initial model.

The economic incentives for widespread adoption of such a model have to do with integrating
markets for economy of scale.  The global wireless marketplace now consists of dozens of niches
defined by unique hardware platforms and waveform-unique infrastructure.  Industry is attempt-
ing to organize itself to integrate these diverse markets so that the next generation of wireless
will offer low-cost plug-and-play services.  The process of defining the required industry stan-
dards has already begun.  The MMITS forum, for example, has defined an architecture frame-
work based on functional threads in which a generic Applications Programmer Interface (APIs)
is being defined across the virtual machine.  MMITS is integrating the GloMo Radio Device API
[77] into its own.  The Object Management Group (OMG), on the other hand, has requested
technology for CORBA real-time objects [78] including multimedia at video data rates.  A real-
time CORBA could provide software radio infrastructure.  The partitioning strategy and layered
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reference model presented here may provide insights helpful in evolving towards broadly ac-
cepted standards for future software radios.

7. Conclusion

The computational and geometric properties of the software radio will determine the degree to
which plug-and-play is realized in the marketplace.  Greater understanding of the mathematical
properties of software radios should accelerate progress toward cost-effective plug-and-play
services to which developers aspire.  In particular, the architecture principles are revealing:

1. Bounded Recursive Modules: Construct the software radio system  -- host environ-
ment and plug-and-play modules – of bounded recursive modules.  These modules
will be defined for all inputs; and they will consume predictable system resources.
Although the software may contain errors, those errors will be much less likely to
cause faults in the delivery of audio and multimedia streams; they also will be less
likely to cause system crashes than unconstrained modules.

2. Explicit Extensible Interface Topologies: Define software radio interfaces using an
explicit basis for the underlying topological spaces.  Use extensible languages such as
UML, SDL, IDL and ASN.1 until a more general language such as a Radio Knowl-
edge Representation Language (RKRL) emerges.

3. Distributed Layered Virtual Machine : Position plug-and-play modules in the dis-
tributed layered virtual machine hierarchy in a way that maximizes the use of existing
(lower and higher level) components.

Appendix
Magnitude Notation

A recursive logarithmic number system makes the large size of simplexes and simplicial com-
plexes easier to understand and manipulate.  The notation yMn (“y Magnitude n”) indicates
raising y to the power of 10 n times where n is an integer and 0 < y < 1.  The magnitude, n, of
this measure of concrete complexity of a simplicial complex is a strongly nonlinear measure of
complexity.  For example, 32 = 101.5051 which equals 10^100.1775, which can be expressed in
magnitude notation as 0.1775M2, a magnitude 2 number.  The size of the processor’s simplex
above, 10192.6, equals 0.35884M3, a magnitude 3 number.  The one-second simplicial complex
has size 0.87822M5.  This magnitude 5 number is exponentially bigger than a magnitude 3 num-
ber by 1010.  Put another way, the size of this complex is 1010 raised to a power containing 35
million zeroes.  For a perspective on the size of this number, the number of neutrino-sized places
in the known universe (1040 meters on each side) over the last 10 billion years is only 10266 or
0.384836241M3.  Using the size of the simplex (10192.6) as a base and raising it to the power k =
100 million is not, perhaps, a familiar concept, but it establishes an upper bound on the size of
the simplicial complex associated with just one second of use of such a processor.  It is useful in
quantifying the architecture’s effectiveness in control of combinatorial explosion.
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Appendix C  Cognitive Radio: Making Software Radios More Personal1

Joseph Mitola III and Gerald Q. Maguire Jr.,

Royal Institute of Technology (KTH), Stockholm, Sweden.

 Abstract: Software radios are emerging as platforms for multi-band multi-mode personal
communications systems. Radio etiquette is the set of RF bands, air interfaces, protocols, spatial
and temporal patterns that moderate the use of the radio spectrum. Cognitive radio extends the
software radio with radio-domain model-based reasoning about such etiquettes. Cognitive radio
enhances the flexibility of personal services through a Radio Knowledge Representation
Language (RKRL).  This language represents knowledge of radio etiquette, devices, software
modules, propagation, networks, user needs, and application scenarios in a way that supports
automated reasoning about the needs of the user.  This empowers software radios to conduct
expressive negotiations among peers about the use of the radio spectrum across fluents of space,
time and user context. With RKRL, cognitive radio agents may actively manipulate the protocol
stack to adapt known etiquettes to better satisfy the user’s needs.  This transforms radio nodes
from blind executors of pre-defined protocols to radio-domain-aware intelligent agents that
search out ways to deliver the services the user wants even if that user does not know how to
obtain them.  Software radio [1] provides an ideal platform for the realization of cognitive radio.

I. INTRODUCTION

A GSM radio’s equalizer taps reflect the channel multipath structure.  A network might want
to ask a handset “How many distinguishable multipath components are you seeing?” Knowledge
of the internal states of the equalizer could be useful because in some reception areas, there may
be little or no multipath and 20 dB of extra Signal-to-Noise Ratio (SNR).  Software radio
processing capacity is wasted running a computationally intensive equalizer algorithm when no
equalizer is necessary. That processing capacity could be diverted to better use, or part of the
processor might be put to sleep, saving battery life.  In addition, the radio and network could
agree to put data bits in the superfluous embedded training sequence, enhancing the payload data
rate accordingly2.

Two problems arise.  First, the network has no standard language with which to pose a
question about equalizer taps. Second, the handset has the answer in the time-domain structure of
its equalizer taps, but it cannot access this information.  It has no computational description of its
own structure.  Thus, it does not “know what it knows.”   Standards-setting bodies have been
gradually making such internal data available to networks through specific air interfaces, as the
needs of the technology dictate.  This labor-intensive process takes years to accomplish.  RKRL,
on the other hand, provides a standard language within which such unanticipated data exchanges
can be defined dynamically. Why might the need for such unanticipated exchanges arise?
Debugging new software-radio downloads might require access to internal software parameters.
Creating personal services that differentiate one service provider from another might be

                                                
1 This paper was published in the IEEE PCS Magazine’s Special Issue on Software Radio, August, 1999
2 This raises a host of questions about the control of such complex, adaptive agents, network stability, and the like.
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enhanced if the provider does not have to expose new ideas to the competition in the standards-
setting process.  And the time to deploy those personalized services could be reduced.

Cognitive radio, through RKRL, knows that the natural language phrase “equalizer taps”
refers to specific parameters of a tapped delay-line structure.  This structure may be implemented
in an Applications-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA),
or in an algorithm in a software radio.  Since a cognitive radio has a model of its own internal
structure, it can check the model to find out how the equalizer has been implemented.  It then
may retrieve the register values from the ASIC (e.g. using a JTAG port), or find the taps in the
proper memory location of its software implementation.  A radio that knows its own internal
structure to this degree does not have to wait for a consortium, forum or standards body to define
a “Level H33492.x7” radio as one that can access its equalizer taps. The network can pose such
an unanticipated question in (a standard) RKRL and any RKRL-capable radio can answer it.   To
enable such a scenario, cognitive radio has an RKRL model of itself that includes the equalizer’s
structure and function as illustrated in Figure I-1.

Back End Control

Model-Based ReasoningRKRL Frames

Baseband Modem

Antenna RF Modem
INFOSEC

BasebandUser Interface

Equalizer

Equalizer
Algorithm

RAM

...

Antenna RF Modem Baseband User Interface

Hardware

Software

Cognition

INFOSEC

Software Radio
Software Modules   …..

Figure I-1 Cognitive Radio

In this example, the radio hardware consists of the antenna, the RF conversion module, the
modem and the other modules shown in the hardware part of the figure. The baseband processor
includes a baseband modem and a back-end control protocol stack.  In addition, this processor
contains a cognition engine and a set of computational models.  The models consist of RKRL
frames that describe the radio itself, including the equalizer, in the context of a comprehensive
ontology, also written in RKRL.  Using this ontology, the radio can track the user’s environment
over time and space.  Cognitive radio, then, matches its internal models to external observations
to understand what it means to commute to and from work, to take a business trip to Europe, to
go on vacation, etc.

Clearly, significant memory, computational resources, and communications bandwidth are
needed for cognitive radio, so this technology may not be deployable for some time.  In addition,
a collection of cognitive radios may not require human intervention to develop their own
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protocols.  Initially, intervention will be required in order to assure that networks of such radios
remain stable (or that we know who to blame if this is not the case).  Networks of such radios are
complex adaptive systems [2], the study of which is an emerging discipline concerned with the
non-linear behavior of large collections of adaptive entities that have complex interactions.
Although there are many technical challenges, the opportunities for enhanced personal services
motivate the development of cognitive radio.  This paper therefore outlines the key technical
ideas behind cognitive radio, RKRL, and related research at KTH.

II. PERSONALIZED SERVICES SCENARIOS

The services enhancements to be enabled by cognitive radio are motivated by a set of use-cases
[3] that require the radio to have an advanced degree of “understanding” of topics illustrated in
Figure II-1. Next-generation PCS will know the location of handsets and wireless personal
digital assistants (PDAs) to within 125 meters, for emergency location reporting. Location-aware
research [4] is creating technologies for location-aware services, such as flexible directory
services [5].  Cognitive radio adds locally-sensed recognition of common objects, events, and
local RF context.  Thus, for example, a cognitive radio can infer the radio-related implications of
a request for a taxi to a specific address.  It can then tell the network its plan to move from its
present location to “Grev Turgatan 16.”  The network then knows that this user (with high
probability) will move across three cell sites into a fourth within the next 10 minutes.  If this user
is headed for a conference center equipped with a local cell-phone jammer, it is unlikely to offer
the usual load to the network after the taxi ride.  Such exchanges could reduce uncertainty about
the load offered to a network, potentially enhancing the efficiency of the use of radio resources.

• “Taxi to Grev Turgatan 16”
– Upload vocoder from handset to network
– Enhanced voice quality results in map retrieval

• “Need cash”
– Network recognizes incompatible security modes
– Network negotiates with handset for 1 kB
– Prompts for permission to download security algorithm
– “Direct-Cash available at restaurant around the corner”

• “Need real-time language translation”
– Handset prompts user to move near the shop doorway.
– Destructive multipath is now constructive, enhancing SNR
– Clear real-time translation of Swedish and English

Understands User’s 
Goals

(Space, Time, Things)

Understands 
Networks

Understands 
Radio

Understands 
“Self”

Figure II-1 More Personalized Services Concepts

Software radios as presently conceived cannot have such an intelligent conversation with a
network because they have no model-based reasoning or planning capability and no language in
which to express these things.  For example, a software radio from the US may have the RF-
access, memory and processing resources to operate in Sweden.  If it lacks compatibility with
“Release Level G” of the host service provider, then it will not work.  A software radio cannot
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“discuss” its internal structure with the network to discover that it can be re-configured to accept
a download of the required software personality.  Cognitive radio, however, employs a rich set of
internal models useful for a wide range of such dialogs.  In addition, the space-time models of
the user, network, radio resources, and services personalize and enhance the consumer’s
experience. The analysis of such use cases yielded a large set of models, conceptual primitives
and reasoning schema necessary for cognitive radio.  What computer languages should be used
to express these things?

III. RADIO-RELATED LANGUAGES

In addition to natural language, several computer-based languages are relevant to the expression
of radio knowledge (Table 1). The International Telecommunication Union (ITU), for example,
adopted the Specification and Description Language (SDL) in its Z.100 recommendations. SDL
readily expresses radio state machines, message sequence charts, and related data dictionaries.
The European Telecommunications Standards Institute recently adopted SDL as the normative
expression of radio protocols, so one expects SDL modeling of radio to continue to expand.
SDL, however, lacks primitives for general ontological knowledge needed, for example, to
reason about a travel itinerary.

Table 1  Radio Knowledge Languages

Language Strengths: Lacks (or not designed for)

SDL [6] State machines, message sequence charts,
large user base, much encoded knowledge

Plan representation,
uncertainty

UML [7] General ontologies, structure, relationships Hardware, RF propagation

IDL [8] Interfaces, object encapsulation General computing

HDLs [9] Hardware, electronic devices, interfaces Geospatial, plans

KQML [10] General dialogs (ask/tell), tagged semantics General computing

KIF [11] Axiomatic treatment of sets, relations,
numbers, frames; ontologies

General computing,
Hardware, RF propagation

The Unified Modeling Language (UML) resulted from the unification of diverse object-oriented
analysis, modeling, design, and delivery methods.  This language readily expresses software
objects, including attached procedures (“methods”), use cases, and the packaging of software for
delivery.  In principal, it can be used to model common-sense knowledge including plans, space,
time, relationships, people – just about anything.  In practice, it has a strong presence in software
design and development, but it is weak in the modeling of hardware devices.  In addition,
although UML can provide a design framework for radio propagation modeling, the target
languages are likely to be C or FORTRAN for computational efficiency in tracing tens of
thousands of rays of radio waves.

The Common Object Request Broker Architecture (CORBA) defines an Interface Definition
Language (IDL) as an implementation-independent syntax for describing object encapsulations.
In addition to the 700 companies that comprise the Object Management Group, IDL is being
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used  by the Software-Defined Radio (SDR) Forum  [12] to represent interfaces among the
internal components of software-defined radios.  Since this language is specifically designed to
declare encapsulations, it lacks the computational power of general languages like C or Java.
IDL excels at architecture integration (e.g. the interface to an equalizer ASIC), but not at
expressing the functions and contributions of a component (e.g. the enhancement of Bit Error
Rate at low SNR).

The hardware description languages (HDLs), primarily Verilog HDL and VHDL readily express
the internal structure of ASICs, and the personalities of FPGAs.  But cognitive radio does not
need the level of detail present in most HDL data sets.  Moreover, it needs to know the functions
and contributions so that it can make tradeoffs, create plans, and reprogram itself.  While the
documentation package associated with HDL may provide some of this insight, the information
is not in a computationally accessible form.

The Knowledge Query and Manipulation Language (KQML), on the other hand, was explicitly
designed to facilitate the exchange of such knowledge.  Based on “performatives” such as “tell”
and “ask”, KQML readily express the dialog about “equalizer taps” and “multipath” by
introducing a few new “tags”.  The KQML plan to take a taxi from the information kiosk to Grev
Turgatan 16 uses the Tell performative to tell the network of the plan as shown in Figure III-1. In
this example, the radio also warns the network that its user is composing some email and so will
need either a DECT data channel or the GSM packet radio service (GPRS) while in transit.

(Tell :language RKRL :ontology Stockholm/Europe/Global/Universe/Version 0.1
:Move_Plan (:owner User (:from Kiosk :to “Grev Turgatan 16”) :distance 3522 m
(:via (Taxi :probability .9) (Foot :probability 0.03))

(:PCS-needs (:DECT 32kbps) (:GSM GPRS) (:backlog Composing-email)))

Figure III-1 KQML Expression of a Plan

The ontology performative could invoke an existing ontology or could express the local context,
as in this case. It normally would be defaulted unless it changed.  The other declarations are self
evident, which is one of the strengths of KQML.  Like IDL, however, KQML is an interface
language.  Although, for example, one can express rules from a knowledge base using KQML,
one must translate these rules into a convenient internal form (e.g. LISP or PROLOG) in order to
use them.  In addition, the expression of general spatial knowledge, such as the three-
dimensional structure of adjacent city blocks, is better expressed in structured arrays than in
KQML.  KQML could be used to send changes to such arrays, however.

The Knowledge Interchange Format (KIF) provides an axiomatic framework for general
knowledge including sets, relations, time-dependent quantities, units, simple geometry, and other
domain-independent concepts.  Its main contribution is strong axiomatization.  It has a LISP-like
structure, and, like IDL and KQML is not specifically designed for “internal” use, like C or Java.

Finally, most radio knowledge is represented in natural language.  It lacks precision, but in some
sense has the ultimate in expressive power, particularly if one includes graphics and multimedia
as natural language.  Natural language suffers from ambiguities and complexity that at present
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limit its use as a formal language.  RKRL Version 0.1 was created to fill the voids in the
expressive power of the computer languages while enforcing a modicum of structure on the use
of natural language.

IV. COGNITIVE RADIO AS A CHESS GAME

RKRL is supposed to represent the domain of information services that use software radios for
mobile connectivity.  Since a software radio has a choice of RF bands, air interfaces, data
protocols, and prices to be paid, in competition with other users, the domain is analogous to a
chess game.  The network may orchestrate the game, or in some bands (e.g. the US
Instrumentation, Scientific, and Medical bands), the cognitive radios will simply compete with
each other, hopefully with some radio etiquette.  The game board is the radio spectrum with a
variety of RF bands, air interfaces, smart antenna patterns, temporal patterns and spatial locations
of infrastructure and mobiles.  RKRL must provide a consistent way of describing this game
board.  The future wireless PDAs are the game pieces.  What moves are legal?  How will one
move impact others in the neighborhood?  If a game piece expresses its future needs or plan for
use of services to the network, can the network better orchestrate the use of radio resources?
And to what degree should the way in which spectrum is used over physical space, code space,
power, parameter space, and time be defined by the mobile units themselves?  No one knows the
answers to these questions because software radios are just emerging.  But the need to address
them in the future seems clear.  RKRL should express the game board and the legal moves.

Davis [13] defines micro-worlds as performance domains for naïve physics.  Cognitive radio
consists of the multiple micro-worlds (the meso-world) represented as in Figure IV-1.
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Figure IV-1 Meso-world structure of Cognitive Radio
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The meso-world of RKRL Version 0.1 consists of the forty-one micro-worlds summarized in
Figure IV-2.  Each is structured according to formal models, and each is described in a
knowledge base.  Competence comes from the pattern matching and plan generation capabilities
of a cognition cycle, mediated by the related inference engines.  RKRL includes syntax and
ontological information.  Parsing an RKRL statement includes interpreting that statement in
terms of the RKRL radio ontology and knowledge base. Thus, words, including KQML tags,
have a meaning that is fixed in a given context (although a single word can have different
meanings in different contexts). Thus, the scope of RKRL includes the formal models, the
knowledge base, the inference engine, multiple syntaxes, and a radio ontology.

(Globals,
Inference-Engine, Meta, Cognition,
KQML, KIF, Skills, Sets, Parsers

Universe, Self, Concepts, Models, Time, Space, User,

Global, Satcom, Regional, Metro, Local,

Functions, Air, Internal, Hardware, Software,
CORBA, UML, ODP, MPI,
Modem, Demodulator, Equalizer, Memory,
Protocol, Physical, Data Link, Network, Segmentation, Messages,
Propagation,

References, )

Meta-Level

A Priori
Knowledge

Current States Are Dynamic Models 
Embedded in the Structured Knowledge

Figure IV-2  RKRL Micro-worlds

The expression of syntax in RKRL permits one to embed knowledge from external
representations (especially SDL and UML).  RKRL may now be described syntactically.

V. RKRL

Instead of attempting to replace SDL, UML, IDL, or KQML, RKRL integrates them through
model-based reasoning as follows. RKRL is a parallel frame language. Each RKRL statement is
a frame:

<frame> = [<Handle>, <Model>, <Body>, <Context>].

The frame expresses a relationship between the handle and body, in a given context.  The
<model> part defines the exact relationship being expressed.  Handles should be thought of as
names for things.  If a thing contains other things, it can be viewed as an object.  If not, then it is
a terminal constant.  Frames are interpreted in parallel, like the cells in a spreadsheet. For
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example, the following RKRL statement says that South America is part of the Global Plane in
the Physical World Model of the Universe of RKRL Version 0.1.  Additional frames assert
Europe, etc.  into the Global Plane.  Since the Global plane is part of the Universe, it can be
thought of as an attribute of Universe, with a value that is a set of regions of the world.  But it
can also be thought of as just a list of the names of countries.  These semantics (e.g. object, list,
etc.) are NOT part of the semantics of RKRL.  Instead, the semantics are explicitly declared and
coded in RKRL using formal computational models.

Handle Model    Body Context

Global
Plane

Contains South America Physical World Model/ Universe/ RKRL/
Version 0.1

Figure V-1 An RKRL Frame Asserting that The Global Plane Contains South America

For example, the word “Contains” is a verb from natural language, used in an obvious way.
But Contains is also a formal model defined in the Models micro-world using the following
statements.

Handle      Model    Body Context

Contains <Process> SetAccumulate Models/Universe/RKRL/Version 0.1

SetAccumulate Excel <Control><Shift>S Contains/ Models/Universe/RKRL/Version 0.1

Contains <Test> modelVar = “Contains” Models/Universe/RKRL/Version 0.1

Contains <Domain> Sets Models/Universe/RKRL/Version 0.1

Contains <Range> Sets Models/Universe/RKRL/Version 0.1

Contains Definition This string-model asserts
that the body is a member
of the handle.

Models/Universe/RKRL/Version 0.1

Figure V-2  Statements Defining the Verb “Contains” As A Formal Model

Contains, the model, is defined in terms of a <domain> (the micro-world of Sets), a <range>,
a <test> for membership, and a <process> for finding members in a local context.  The first
frame says that “Contains” has a <process> called SetAccumulate.  The fourth line says that
Contains is defined over Sets (which is a complete micro-world).  The items in <brackets> are
defined in the Meta micro-world.  The <test> process consists of a chunk of Excel Visual Basic
for Applications (VBA) macro language that will test a frame with a standard binding (modelVar
is bound to the Model part of the frame).  These string models tell the RKRL interpreter
(embryonic at present) how to use chunks of code to construct programs that create and
manipulate objects, perform model-based reasoning, and otherwise control the software radio
platform.  To attach an existing VBA macro to an entity, one states (as in line 2 above) that its
Excel model is <Control><Shift>S, the associated keyboard macro.   In addition, one may re-
define contains in some other context.  If it is undefined in a local context, the interpreter
searches the micro-worlds ascending the context hierarchy, and then looks across micro-worlds
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until it either finds a definition or sets a Goal of “Getting” a definition.  In RKRL to Get includes
to Create (through inferencing) and to Inquire (e.g. of the user or of the network).

A. Knowledge About Equalizers

For a more radio-oriented example, consider the adaptive equalizer.  RKRL knows about the
equalizer running on its own platform from the following context: Equalizer/ Demodulator/
Modem/ Internal/ Fine Scale/ Immediate/ Local/ Metropolitan/ Regional Plane/ Global Plane/
Physical World Model/ Universe/ RKRL/ Version 0.1.  It also knows about a generic equalizer in
Equalizer/Demodulator/Modem/Concepts/RKRL/Version 0.1.  Facts that are known a-priori of
an equalizer include a frame [Equalizer, Property, Reduces inter-symbol interference …].  The
natural language phrase “reduces inter-symbol interference” is parsed because the Concept of
reduce has the Excel fragment “handleVar(bodyVar)<bodyVar” and ISI is defined in the
physical layer as “inter-symbol interference” with the property that it increases BER.  Since all
the elements reduce to either Excel, VBA, or a call to an embedded model, the frame is
completely interpretable.

The equalizer is defined from the <domain> IF-signal onto the <range> IF-Signal. Its taps are
defined using statements like: [Tap-0, 1.2745, Numerical model, Taps/Delay Line/
Equalizer/…].  The output is defined in a frame [Weighted-result, *, Numerical model, …],
where * is the Excel expression:

=Weight 3 Model * Tap 3 Model + Weight 2 Model * Tap 2 Model + Weight 1 Model *
Tap 1 Model

If the present RKRL were embedded in a PDA, the a-priori model of a three-tap equalizer
would be as above, but the Internal model would be a Dynamic model.  Dynamic models contain
the values from the current system that they are modeling.  A Unix Stream can be a dynamic
model, for example.  Thus, cognitive radio could tell the network about its equalizer by binding
its generic model to the Dynamic model stream and reporting the results in KQML to the
network.  Since such values change as a function of time, RKRL will access (and log) signals as
fluents [14] in order to detect regular patterns.

The current version of RKRL is implemented in Visual Basic attached to 41 Excel spreadsheets.
Object linking and embedding from Excel allows RKRL to access almost any existing software
as an executable model.  Thus, instead of writing the large number of subordinate models needed
for a comprehensive RKRL, the RKRL framework points to those that exist. In addition, KQML,
SDL, IDL, and UML primitives are represented in RKRL.  One of the benefits of this approach
is an ability to express a given item in more than one “standard” way.  Another benefit is the
ability to parse expressions from other languages in order to extract existing knowledge for use
in cognitive radio.
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B. Spatial Inference Hierarchy

RKRL embeds a standard spatial inference hierarchy for space and time as shown in Table 2.
Each of the planes consists of objects with associated space-time properties.  RKRL also declares
ways in which the radio can autonomously obtain information about objects on that level. The
global plane, for example, divides the Earth into large regions.  The properties of the global
plane change in annual cycles, e.g., through annual holiday patterns of travel. RKRL statements
at this level that define the components of standard annual cycles including seasons of the year,
weather, and holidays.  The radio can get information about its user’s interaction with the global
plane by examining the user’s travel itinerary.  Other planes contain objects appropriate to that
level of abstraction, including space-time characteristics and information sources.

The lowest level of this hierarchy represents the physical architecture of the software radio.  It
describes antennas, digital signal processors, memory (RAM and ROM), user interface devices,
etc. in terms of physical capabilities and interconnections. Although there is nothing to preclude
RKRL from invoking a complete HDL description of the radio, goals of cognitive radio concern
inference about higher level aspects of radio etiquettes. RKRL micro-worlds in the Internal plane
embed the architecture framework, applications programmer interface (API), and IDL of the
SDR Forum.

Table 2 Physical World Inference Hierarchy

Plane Objects Space Time Information Sources

1 Global Regions 10,000 km 1 yr Travel Itinerary

2 Regional Cities 1000 km 1 week Weekly Planner

3 Metropolitan Districts 100 km 1 day Commuting Pattern

4 Local Buildings 1 km 1 hr GPS, Lunch?

5 Immediate Rooms 100m 1sec-1min Dead reckoning

6 Fine Scale Body Parts 1m 1 usec Equalizer Taps

7 Internal (Radio) HW, SW .1m 1 nsec Architecture

C. Model-Matching

Detailed models of radio functions are embedded in RKRL 0.1 for each micro-world in which
competence is required.  The following, for example, is an executable model of the segmentation
of a message into packets (from the Segmentation micro-world).

Parameter Value
Message SAMPLE MESSAGE
Payload Size 40
Payload Bytes 5
Packet Number 1
Payload E MES

Figure V-3  Excel Model of A Message Being Parsed Into Packet Payloads
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 If  a cognitive radio sets the packet number to 0, the payload becomes SAMPL, the first 5 octets
of the outgoing message. To determine the impact of changing the protocol, the system first
copies the values of the model to temporary RKRL frames.  It then changes the parameters to
correspond to its hypothesized protocol (e.g. to a 7 byte payload).  Finally, it compares the values
of the model to the previously stored values to determine how the change of protocol will change
the payload.  It logs this to a new RKRL frame as a cause-and-effect relationship.

VI. THE COGNITION CYCLE

RKRL supports the cognition cycle illustrated in Figure VI-1
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Establish Priority

Plan
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World
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Evaluate Alternatives
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Register to Current Time

Prior
States

New
States
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Figure VI-1 The Cognition Cycle

The outside world provides stimuli.  Cognitive radio parses these stimuli to extract the available
contextual cues necessary to performance of its assigned tasks.  It might analyze GPS
coordinates plus light and temperature to determine whether it is inside or outside of a building.
This type of processing occurs in the Observe stage of the cognition cycle.  Incoming and
outgoing messages are parsed for content, including the content supplied to/by the user.  This
yields contextual cues necessary to infer the urgency of the communications and related internal
tasks.  This task is akin to topic spotting in natural language processing.  Even relatively high
word error rates can result in high probability of detection and low false alarm rate in detecting
ordinary events.  Thus, the radio “knows” it is going for a taxi ride (with some probability) if the
user packets at the wireless information kiosk order a taxi.  If the main battery has just been
removed, however, the Orient stage immediately Acts to save data necessary for a graceful start-
up and to shut the system down.  Loss of carrier on all available links (e.g. because of entering a
building) can result in urgent steps to restore connectivity, such as scanning for an in-building
PCS or RF LAN.  Most other normal events might not require such time-sensitive responses,
resulting in the Plan-Decide-Act cycle.  The Act step consists of allocating computational and
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radio resources to subordinate (conventional radio) software and initiating tasks for specified
amounts of time.  RKRL also includes some forms of supervised and unsupervised learning.

VII. CONCLUSION

Software radios provide a vast untapped potential to personalize services.  But the contemporary
process of modifying radio etiquettes is extremely labor-intensive.  In part, this is because there
is no generally accepted way of representing radio knowledge.  This limits the flexibility and
responsiveness of the radio to the network and to the user.  RKRL may provide some insights
into how to better automate this process.  Cognitive radio, built on RKRL, is envisioned as a
competence system over the domain of radio resources and protocols.  Its agent knowledge and
inference mechanisms are under development, as is the initial “critical-mass” definition of
RKRL.

Finally, RKRL is designed to be used by software agents that have such a high level of
competence, driven in part by a large store of a-priori knowledge, that they may accurately be
called “cognitive”.  This goal may be very far off, or it may emerge from the current research
program. Cognitive radio approaches the software radio as a micro-world.  But radio engineering
is such a large, complex world that will take a lot of effort to describe it in computationally
accessible, useful ways.  The present research is therefore offered as a mere baby-step in a
potentially interesting research direction.
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 Abstract: Wireless multimedia applications require significant bandwidth, some of which
will be provided by third-generation (3G) services.  Even with substantial investment in 3G
infrastructure, the radio spectrum allocated to 3G will be limited.  Cognitive radio offers a
mechanism for the flexible pooling of radio spectrum using a new class of protocols called
formal radio etiquettes.  This approach could expand the bandwidth available for conventional
uses (e.g. police, fire and rescue) and extend the spatial coverage of 3G in a novel way.
Cognitive radio is a particular extension of software radio that employs model-based reasoning
about users, multimedia content, and communications context.  This paper characterizes the
potential contributions of cognitive radio to spectrum pooling and outlines an initial framework
for formal radio-etiquette protocols.

Keywords: Software radio, cognitive radio, spectrum management, software agents.

I. BACKGROUND

A. Software Radio and SDR

A software radio [1] is a multi-band radio capable of supporting multiple air interfaces and
protocols through the use of wideband antennas, RF conversion, Analog to Digital Converters
(ADCs) and DACs.  In an ideal software radio, all the aspects of the radio (including the physical
air interface) are defined in software on general-purpose processors.  For some air interfaces
such as Wideband Code Division Multiple Access (W-CDMA), such an ideal implementation
may not be practical for one reason or another (e.g. power consumption).  As processor
technology advances, however, air interfaces that require Application Specific Integrated Circuits
(ASICs) today may be implemented on general-purpose processors.  The software-defined radio
(SDR) therefore compromises the software radio ideal in order to implement practical high-
performance devices and infrastructure with current technology.  SDRs are implemented using
an appropriate mix of ASICs, Field Programmable Gate Arrays (FPGAs), Digital Signal
Processors (DSPs) and general-purpose microprocessors.  The architecture and computational
aspects of the ideal software radio have been defined formally [2].   In addition, the global SDR
forum has defined an architecture framework, object models and other recommendations for
SDR [3].

B. Cognitive Radio

Cognitive radio signifies a radio that employs model-based reasoning to achieve a specified
level of competence in radio-related domains [4].  Cognitive radio architectures being

                                                
1 Best Paper of the 6th International Workshop on Mobile Multimedia Communications, Nov 99
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investigated at KTH employ the cognition cycle illustrated in Figure I-1.  The outside world
provides stimuli.  Cognitive radio parses these stimuli to recognize the context of its
communications tasks.  Incoming and outgoing multimedia content is parsed for the contextual
cues necessary to infer the communications context (e.g. urgency). Thus, for example, the radio
may infer that it is going for a taxi ride (with some probability) if the user ordered a taxi by voice
and is located in a foreign country.  The Orient-stage decides on the urgency of the
communications in part from these cues in order to reduce the burden on the user. Normally, the
Plan-stage generates and evaluates alternatives, including expressing plans to peers and/or the
network to obtain advice.  The Decide-stage allocates computational and radio resources to
subordinate (conventional radio) software.  The Act-stage initiates tasks with specified resources
for specified amounts of time.
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Act
Outside
World
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Receive a Message

Set Display

Read Buttons Save Global 
States

Allocate Resources

Initiate Process(es)
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(Program Generation)

Evaluate Alternatives
Parse

Pre-process

Infer on Context Hierarchy

Urgent
Immediate

Normal

Register to Current Time

Prior
States

New
States

Learn

Figure I-1 The Cognition Cycle

If the main battery has just been removed, however, the Orient stage would immediately
invoke the Act-stage to save data necessary for a graceful start-up after shutdown.  Unexpected
loss of carrier (e.g. because of departing a non-intelligent building) of an RF LAN that is in use
can result in an urgent Decide-stage to restore traffic flow, such as via a more expensive 3G
network.  Most other normal events might not require such time-sensitive responses, resulting in
the Plan-Decide-Act cycle of the figure. Cognitive radio also includes some forms of supervised
and unsupervised machine learning.

Cognitive radio is a goal-driven framework in which the radio autonomously observes the
radio environment, infers context, assesses alternatives, generates plans, supervises multimedia
services, and learns from its mistakes.  This observe-think-act cycle is radically different from
today’s handsets that either blast out on the frequency set by the user, or blindly take instructions
from the network.  Cognitive radio technology thus empowers radios to observe more flexible
radio etiquettes than was possible in the past.
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C. SDR-Enabled Infrastructure and Mobile Multimedia Devices

Recently Mitsubishi and AT&T announced the first “four-mode handset.”  The T250 can
operate in TDMA mode on 850 or 1900 MHz, in first generation Analog Mobile Phone System
(AMPS) mode on 850 MHz, and in Cellular Digital Packet Data (CDPD) mode.  This is just the
beginning of the multiband, multimode, multimedia (M3) wireless explosion.  In the not-too-
distant future, software-radio based Personal Digital Assistants (PDAs) could access a satellite
mobile services, cordless telephone, RF LAN, GSM, and 3G W-CDMA.  Such a device could
affordably operate in octave bands from .4 to .96 GHz, (skip the air navigation and GPS band
from .96 to 1.2 GHz),1.3 to 2.5 GHz, and from 2.5 to 5.9 GHz.  Octave bands enhance antenna
efficiency and reduce the cost of wideband RF conversion components.  Not counting satellite
mobile and radio navigation bands, such radios would have access to over 30 mobile sub-bands
in 1463 MHz of potentially sharable outdoor mobile spectrum.  The upper band provides another
1.07 GHz of sharable2 indoor and RF LAN spectrum.  This wideband 3 radio technology will be
affordable first for infrastructure, next for mobile vehicular radios and later for handsets and
PDAs.  Such software radio technology expands opportunities for the dynamic sharing of
spectrum.  But it is the well-heeled conformance to the radio etiquettes afforded by cognitive
radio that could make such sharing practical.

II. POOLED RADIO SPECTRUM

A. Pooling Strategy

Present commercial wireless architectures are network-centric and constrained by spectrum
allocations.  Nick Negroponte [5] pointed the way with his spectrum management algorithm of
the future: “If it moves, give it spectrum; if it doesn’t, give it fiber.”  A slightly more practicable
strategy accessible through SDR and cognitive radio would be to pool mobile spectrum:

“If it moves, give it spectrum pool precedence; if it doesn’t, make it pay.”

Satellites and aircraft move rapidly and/or cover large areas, so the bands dedicated to these
vehicles would not be pooled.  Broadcast television stations and 2 GHz microwave, however,
would have to pay for the privilege of using prime spectrum in the middle of the mobile bands.
The cost would be near zero in rural areas where the radio spectrum is uncrowded, so low cost
broadcast and connectivity to rural areas would not be negatively affected.  The cost would be
appropriately larger in the densest urban areas where there is simply not enough suitable
spectrum to economically meet the demand for mobile wireless.  In addition, in those areas, the
proliferation of fiber and cable makes such broadcast less necessary than in rural areas.

Conversely, however, those who currently “own” the spectrum could charge rent by the
second, minute, or hour, as dictated by the marketplace.  Federal, state, and local governments
could generate revenue streams by literally renting channels that are not currently in use, and for
which there is no need for some agreed-upon time interval (e.g. the next 10 minutes).  The radio

                                                
2 Although 5.9-2.5 = 3.4 GHz, only 1.07 GHz of this spectrum is allocated to mobile - hence sharable - subbands.

3 Radios operating at 2.5 GHz are not expensive. Efficient wideband operation from 2.5 to 5.9 GHz, however, is
expensive today.  Costs are dropping as implementation technologies continue to advance.
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etiquette would specify that the cognitive radios would change bands and modes when legacy4

radios enter the bands.  Thus, police forces would not have to procure new mobile radios. But,
every police station, fire house, military facility, and taxi company could readily become an M3

cell site.  These new base stations could pay for the SDR cell-site electronics with revenues from
renting unused channels to 3G service providers during peak hours5.  Again, the radio etiquette
can specify that emergency vehicles take precedence over commercial rental traffic.  The
cognitive radios using the bands would gracefully defer as they monitor the rented channels for
FM radios, Tetra [6] users, and any other authorized legacy emissions.  Since a variety of
subbands and modulation schemes are in use by the public service community, the reliable
identification of authorized users is sometimes not an easy task.

Jens Zander has pointed out that the shortage of spectrum can be viewed instead as a shortage
of affordable cell sites [7].  Spectrum pooling both increases the number of sites and integrates
the multi-mode spectrum so that the quantities needed for multimedia wireless applications are
more affordable.  The spectrum rentals (using e-cash or bartered spectrum channel-seconds, s-
cash) would happen so fast that they must be accomplished by computer.  Cognitive radios could
use their knowledge of the RF environment, multimedia content, and communications context
(e.g. a life-threatening emergency) to barter according to guidelines specified by the spectrum
managers and represented in the radio etiquette protocol.

Clearly, managers set the criteria and make long-term spectrum leases.  But the cognitive
radios would rent out the short-term locally available spectrum that is not instantaneously in use,
establishing spot prices as a function of time, bandwidth, interference levels, radiated power,
location, and perhaps other parameters.  Cognitive radios could rent spectrum for a second (e.g.
to upload a brief email message), a minute (e.g. for part of a voice call), an hour (e.g. for a video
teleconference) or more.  Spectrum management authorities would establish the general
etiquettes and constraints, but the market would set the price.  Cognitive radios would use their
spectrum awareness and goal-driven behavior to mutually assure conformance to etiquette, and
to identify and report offenders to human authorities.  Such a pooled spectrum strategy could
accomplish dynamically with distributed control technology what could not be contemplated
with today’s centralized allocation-based control – the cost-effective efficient pooling of
formerly scarce mobile radio spectrum for fair and equitable use when and where needed.

The resulting spectrum management process, however, would be akin to a chess game where
the board is the radio spectrum, the players are the cognitive radios and networks, and the
winners are the users.  To see how the game might be played, the next section examines the
“chess board” – the potentially pooled mobile radio spectrum.  Subsequent sections describe the
“legal moves” – specified by the radio etiquette protocol needed to maintain equity and order.

                                                
4 A legacy radio is an existing non-cognitive radio operating in an air interface mode assigned to that band.

5 The resulting relative glut of spectrum could drive costs down in the short term, enhancing profit margins to
provide the capital necessary to build out today’s hardware-constrained infrastructure to M3-capable SDR
infrastructure.
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B. Pooled Mobile Spectrum Parameters

The laws of physics impose limits on the spectrum that is useful for pooled terrestrial mobile-
multimedia applications.  The HF bands and below, for example, have limited bandwidth
(practically speaking, a few 10’s of kHz, although heroic experiments have achieved megabit per
second data rates in truly unique circumstances).  HF also propagates for thousands of miles, a
range that exacerbates cochannel interference.  Bands above 6 GHz rely on directional antennas
for reasonable data rates at reasonable ranges.  HF and upper SHF are therefore not suitable.

Table II-1 Mobile Spectrum Pools

Band RFmin (MHz) RFmax (MHz) Wc Remarks

Very Low 26.9 399.9 315.21 Long range vehicular traffic

Low 404 960 533.5 Cellular

Mid 1390 2483 930 PCS

High 2483 5900 1068.5 Indoor and RF LANs

The four spectrum pools of Table II-1, however, are ideally suited to mobile applications.
The very low band of this mobile spectrum regime penetrates buildings and propagates well in
rugged terrain.  The low band has the best propagation for high-speed terrestrial mobile traffic, in
part, because auto and rail traffic is supported with relatively low infrastructure density.  The mid

band is best for Personal Communications Services (PCS) with its higher infrastructure density.
In addition, the high band has the large coherent bandwidth for high data rate Internet and mobile
video teleconference applications.  3G waveforms could be used in any of these bands, but are
best suited for the low and mid bands.  Wc is the total spectrum that could participate in the
spectrum pool based on an analysis of US, Canadian, and UK spectrum allocations [4].  Wc does
not include satellite, aircraft, radio navigation, astronomy, or amateur bands, which are not suited
for pooling.  The pooling concept is illustrated in Figure II-1.
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Figure II-1 Fixed Allocations vs. Pooling with Cognitive Radio Etiquette
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A cognitive radio-access network could evolve the operating parameters shown in Table II-2.
For simplicity, the entire population offers load (100% penetration).  With pooling, each mobile
outdoor user would have an average of 432 kbps.  This assumes today’s infrastructure density
and 2G-equivalent bandwidth efficiency (0.2 Mbps/MHz/cell).  These rates are gross data rates
not discounted for Quality of Service (QoS), which can lower these rates substantially if low bit
error rates are required (e.g. for file transfers) [8].  They also do not include signaling overhead.
On the other hand, 3G technology is supposed to achieve 0.45 Mbps/MHz/cell, so the rates are
representative of the range of rates achievable with a mix of 2G and 3G technology.

Table II-2 Illustrative Cognitively Pooled Radio Access Network Parameters

Parameter Illustrative Range of Values Remarks

Total Spectrum 0.4 to 2.5 GHz 1.463 GHz pooled

Duplexing Frequency Domain (FDD) Evolved from cellular services

Voice Channel 8 1/3 kHz-equivalent, TDMA or CDMA Evolved from second generation

Channels per cell 25088 Usable, including 6:1 reuse and FDD

Coverage area 4000 square kilometers The size of Washington, DC

Number of cells 40 commercial (plus 40 public sites*) 5.5 km average cell radius (3.9 km)

Population 609,000 The entire population of Washington, DC

Offered demand 0.1 Erlang Multimedia level (vs. 0.02 for voice user)

Demand per cell 1522 Erlangs Drops to 761 considering public cell sites

Spectrum per user 160.7 kHz (320.4 kHz with public sites) .22 to .64 Mbps/ user (.4 to 1.28 Mbps)

* Public sites are towers of police, fire, military, and other government/ public facilities pooling spectrum

With spectrum pooling, then, multimedia bandwidths can be achieved without a major
increase in the number of cell sites.  In part, the participation of public facilities increases the
number of sites.  In addition, the pooling of spectrum is more efficient than block allocations.
Through cognitive radio etiquette, police, fire, and rescue units participating in spectrum pooling
will have precedence for spectrum.  They can also communicate seamlessly via the shared SDR
cell sites.

C. Multimedia Implications

Pooled spectrum is attractive for wireless multimedia applications for the reasons listed in
Table II-3.

Table II-3  Multimedia Implications of Pooled Spectrum

Feature Implications

Sharing of Narrowband Channels Reduces costs of new uplink channels for
Internet browsing and other multimedia services

Spectrum Block Rentals (e.g. 1-5 MHz) New spectrum for multimedia downlinks

Increased Infrastructure Density Greater availability of affordable multimedia

Short Term Spectrum Rentals Accommodate peak demand; Introduce new
services incrementally
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The benefits seem attractive.  What about guarantees and fairness of use?  In order for the
approach to work, all emergency services, government functions, private, and commercial users
will participate actively or passively a cognitive radio etiquette protocol that makes the
difference between new levels of spectrum efficiency and chaos.

III. COGNITIVE RADIO ETIQUETTE

Radio etiquette is the set of RF bands, air interfaces, protocols, spatial and temporal patterns,
and high level rules of interaction that moderate the use of the radio spectrum.  Etiquette for
spectrum pooling includes the spectrum renting process, assured backoff to authorized legacy
radios, assured conformance to precedence criteria, an order-wire network, and related topics.

A. Renting Spectrum

An initial protocol framework for renting radio spectrum is illustrated in Figure III-1.  The
time line shows the power levels in the rented channel, differentiating signals of renter and
owner.  The offeror initiates the process by posting an “Advertise” flag in the channel that is for
rent.  This in-band signaling accomplishes multiple goals.  First, it unambiguously identifies the
frequency, bandwidth (through its spectrum occupancy mask), and spatial extent of the channel
(through the propagation of the signal).  This signal should be pseudo-random, coded so that
signal-processing gain can recover the signal when it is weaker than the noise and interference.
A filtered PSK PN sequence of 100 bits duration at a 10 k chips per second rate, filtered to an 8
1/3 kHz bandwidth would advertise an 8 1/3 kHz channel in a 10 ms burst.  The offeror listens
for 10 ms and then repeats the advertise-signal twice more.  The sequence starts as close as
practicable to the tick of the offeror’s local GPS-second clock.  The three-flag series repeats on
the next second.  A legacy user (or spectrum manager) could hear these bursts and realize that the
channel is available for rent, expressing an objection by keying a transmitter.
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Peak Power
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10 ms
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Time, Locale, 
Price (TLC)

TLC Bid, 
Authenticate

Accept/Reject Bid,
Authenticate

Tender and 
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Renter
Use… No Objections

Monitor
Release
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Figure III-1  Time Line of Spectrum Rental Protocol

A renter can express interest with a coded interest-burst similar to the advertise-burst.  If the
offeror hears the interest-burst, the second burst specifies the rental time interval, operating
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locale, and price of the channel.  This data exchange would be Huffman coded using a-priori
knowledge.  The renter then submits a bid with a short authentication sequence.  The offeror may
accept the bid, authenticating itself in return.  Finally, the renter tenders the (e- or s-) cash,
completing the initial rental protocol.

Both then wait and listen for the rest of this GPS second for objections.  The 100-bit
objection-sequence would be nearly orthogonal to the advertise- and interest-sequences.  A
legacy radio that begins to use the channel in native mode (e.g. FM push to talk) automatically
negates the rental agreement if its received signal strength at the renter or offeror location
exceeds a threshold.  A 100-bit rental-cancellation sequence from either party then cancels the
deal.  The offeror cannot attempt to rent the channel again until after a specified waiting period
(e.g. seconds to minutes), or until re-advertised by the offeror.  After using the channel
successfully, the renter provides the additional e-cash validation bits required to secure payment
of the offeror’s final bill.  The initial rental protocol identifies the renter sufficient to pursue a
claim if the renter defaults after using the channel.  To avoid problems with the one-second
granularity of the rental agreements, a service provider provisions the network by renting a few
standby channels for traffic that cannot wait for the next rental period.  During the use of the
channel, both offeror and renter use a polite backoff protocol.

B. Polite Backoff Protocol: Defer to Authorized Legacy Users

If the cognitive radios using the channel employed a conventional air interface, legacy users
would be unable to break in.  Thus, for example, a police officer could not use his assigned
frequency to call for assistance.  The polite backoff protocol illustrated in Figure III-2 solves this
problem, albeit at the expense of some loss of throughput.
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Figure III-2 Polite Backoff Protocol Assures Channel Access

The renter supplies (digital) traffic to the channel for 20 ms as shown in the time line.  Both
renter and offeror listen during the subsequent 5 ms listen-window.  The high rate of listen-
windows assures that not more than 25 ms of legacy speech would be truncated, a level that
should be essentially imperceptible distortion of a push-to-talk radio signal.  If a legacy
waveform exceeds a carrier to interference ratio (CIR) threshold, for either renter or offeror, the
conflict is recognized and the channel is immediately vacated.  The truncating party issues a 10
ms termination-burst that indicates the cause is legacy interruption.  The rest of the traffic would
be sent on another channel.  Clearly, the renter can claim that the goods were not delivered, and
not send the final payment bits.  The renter and the offeror would log the time, place and other
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parameters of the legacy use of the channel so that spectrum managers could identify abusers.
Since e-mail, attachments, file transfers, audio clips, video clips, and other asynchronous
multimedia are relatively insensitive to end-to-end delay, this mode would be acceptable for low-
cost wireless access.  Of course, the offeror could make the channel available with peek-through
required in only every Nth listen-window, introducing some clipping at the onset of reclamation
of the channel.  This enhances the throughput (and price, perhaps) accordingly.  Police might be
able to offer only the high listen-window mode.  Fire departments or military users might be
willing to key the microphone for a second or more to reclaim the channel.  Once reclaimed, the
channel remains dedicated to the legacy user either until the expiration of a pre-defined time-out
or until the channel is again offered for rent.  In addition, the full protocol would contain
sequences that indicate the channel has already been rented (a “sold” sign).

C. Precedence and Priority

All users want guarantees that spectrum will be available when and where needed.  Thus, any
workable pooled spectrum approach has to have a way of providing such guarantees.  Figure
III-3 provides an example precedence of spectrum uses.  The character of the existing band
allocations defines the default spectrum-use precedence.  Designated authorities may change
precedence globally or locally.  The etiquette allows one to designate a user (e.g. by international
mobile subscriber identification), a channel, or any combination of [user x time x space x
frequency] with a specific precedence.

1.  Emergencies - Established by authorities, inferred from events

2.  Government - Attributed by band or channel modulation

4.  Commerce - Default by band and mode, inferred

3.  Public Interest - Default by band, inferred from events

5.  Other - Recreational, sports, hobbies, etc.

Figure III-3 Precedence of Spectrum Use

If these notions are subjectively acceptable, the task remains to formalize them so that the
radio control algorithms will perform as intended.  In particular, the radios have to be able to
infer many aspects of precedence from events.  This is a technical challenge that requires that the
radios become context-aware.  The formalism therefore must provide some strong evidence that
the system as a whole supports the statutory guarantees in spite of the sharing arrangements.
One mechanism that supports such guarantees is an order-wire for the coordination of needs and
plans for spectrum use and assignment.

D. An Order-Wire System and Knowledge Exchange Language

The spectrum offeror may post an order-wire channel.  An order wire is an ad-hoc signaling
and control channel.  If the offeror does not post one, the cognitive radios using the band could
create one using a peer network in which the first user becomes the network control station (e.g.
JTIDS[9]).  The details of such a network are not central to cognitive radio research, but the
language used to represent general world knowledge, plans, and needs is a key issue.
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The Radio Knowledge Representation Language (RKRL) is the language and knowledge
structure being used to develop cognitive radio at KTH.  The Knowledge Query and
Manipulation Language (KQML) [10] was explicitly designed to facilitate the exchange of such
internal knowledge.  Based on “performatives” such as “tell” and “ask”, KQML readily express
pooled-spectrum management information.  KQML’s “:content” tag, for example, delivers
unstructured content.  Although this general purpose tag would suffice, the introduction of new
tags for spectrum pooling imparts additional structure to the dialog.  The new tags include
:Rental_offer, :RF_low, :Nchannels, :allowed_formats, :Legacy, :Equivalent, and tags for
standard PCS formats such as DECT, GSM, and new 3G modes.  The tags :From and :To refer to
the time at which the rental is being offered.  Using KQML, mobile nodes and networks may
share plans about anticipated needs for spectrum so that it may be efficiently identified and
rented.  The KQML plan to offer spectrum uses the Tell performative to tell the (cognitive)
network its plan as shown in Figure III-4.  In this example, the radio also warns the network that
its legacy users employ 25 kHz push-to-talk FM radios.

{Tell :language RKRL :ontology Spectrum Rental  
:Rental_offer (:Owner Fairfax_Police  :Location  Chantilly_VA

(:RF_low 451 :Nchannels 12 :From 141118  :Until 141523)
:Allowed_formats ((:DECT 32kbps) (:GSM GPRS) (:Equivalent)) 
:Legacy 25kHzFM)}

Figure III-4 KQML Expression of a Plan

The ontology performative could invoke a special format for the “:content” part of a normal
KQML message.  The tagged format shown here is meant to suggest both a more widely
endorsed set of standard tags, and the opportunity for significant data compression on such
messages.  The network uses the ontology to look up defaults and compressed codes for the
general knowledge expressed in the packet.  The other aspects of the plan are self evident, which
is one of the strengths of KQML.

E. Related Topics

Cognitive radios need metrics for cost and value along with other high level rules of
etiquette, such as:

1. “Tell the truth about who you are and what you need,”

2. “Block calls entering a disaster area and expedite those leaving,” and

3. “Test evolving protocols in off-peak hours.”

F. The Complexity of A Society of Cognitive Radios

Given a reasonable development of the spectrum pooling framework outlined above, one
might think that performance could be projected using contemporary radio-engineering
techniques.  But cognitive radios will have complex internal structure and an ability to adapt to
local circumstances.  Since they also will be richly interconnected, they will form a complex
adaptive system [11].  Cognitive radios could behave like an ant colony [12], evolving their own
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paths through the spectrum and intervening nodes to ferry voice, data, video, and multimedia
packets through the ether.  These radio-ants might move packets from the smaller power-starved
radios through multimode vehicular radios and on to conventional cell sites.  If the etiquette is
too strict, very little additional benefit will come from spectrum pooling because the control
overhead will be too high to be workable.  If, on the other hand, the etiquette is too liberal, there
will be much interference and universally poor quality of service.  Such complex adaptive
systems operate best “at the edge of chaos” [11].  This is not a particularly comfortable place for
spectrum managers. Such complex adaptive systems are in fact difficult to understand, model
and diagnose [13].  Nevertheless, they also produce efficient answers to NP-hard problems [12].
Thus, in some sense an ant-colony of cognitive radios left to evolve spectrum use among
themselves might be the most efficient way to achieve high value from limited radio spectrum in
a reasonable time.  How can we structure the capabilities and etiquettes of cognitive radio so that
spectrum pooling is workable?  There are many important aspects to this question.  Cognitive
radio research at KTH continues to address such questions.

IV. CONCLUSION

Software radios provide a vast untapped potential to personalize services.  But the
contemporary process of spectrum allocations takes years to decades and lacks flexibility.  In
part, this is because there is no reliable technology for guaranteeing spectrum use to its primary
owners.  This limits the flexibility and responsiveness of the radio to the network and to the user.
Cognitive radio offers the opportunity to employ spectrum rental protocols in a way that is
sensitive to users and to the communications context.  The cognitive radio rental etiquette is thus
offered as an approach to more efficient use of a limited resource that is in high demand.  Its
agent knowledge and inference mechanisms are under development, as is the initial critical-mass
definition of RKRL.  The use of KQML in the exchange of plans among cognitive radios appears
promising.  The goal of the cognitive radio research is to develop software agents that have such
a high level of competence in radio domains that they may accurately be called “cognitive”.  The
present research is merely a small step in this interesting research direction.
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Abstract - Abstract:  Software radio technology expands
the capability of radio nodes to multiband multimode RF
configurations.  Software-radio based Personal Digital
Assistants (PDAs) will soon be capable of operating on
second generation (2G) cellular, GPRS, EDGE, 3G,
cordless telephone, RF LAN, Bluetooth, GPS, and/or other
radio channels.  The available bit rates, quality of service
(QoS) parameters, and costs vary by orders of magnitude
as a function of RF band, channel access mode, and
propagation conditions.  Such a bewildering array of
alternatives renders user-selection of band and mode
ineffective at best.  Instead, cognitive radio technology will
allow users to train PDAs to make context-sensitive
choices for the user.  This enhances the control
technology of software radio by integrating a-priori
knowledge, speech processing, text processing, pattern
recognition, planning, and machine learning techniques in
an extensible intelligent-agent framework.  Ultimately,
cognitive PDAs would learn the daily, weekly, monthly,
and annual patterns of user communications needs.  The
detection of user communications-states is necessary for
the autonomous selection of band, mode, format, and
timing of communications tailored to user preferences and
use-context. A Radio Knowledge Representation Language
(RKRL) provides a-priori knowledge needed to bootstrap
the learning algorithms.  The XML version of RKRL
offers a standard web-based ontology of radio context and
architecture needed for effective coordination between the
network and a wireless PDA.  The cognitive radio
prototype developed at KTH is described with initial test
results.

KEYWORDS: Software Radio, Digital Radio, Cognition,
Model-based Reasoning, Machine Learning

I. INTRODUCTION

This paper concerns the application of auto-extensible
intelligent agent technology to wireless service delivery.
Cognitive radio is described, and a rapid-prototype
cognitive radio, CR1, is discussed.  The emergence of
software-defined radio (SDR) as the platform of choice for

3G wireless motivates the functional objectives of cognitive
radio.

A. Software Radio Evolution

Multimode radios [1] generate multiple air interface
waveforms (“modes”).  A mode may be partitioned into
features of the modem, the protocol stack, and the network.
Software-defined radio (SDR) modes implemented in a layered
architecture support wireless services in a platform-
independent way [2] as illustrated in Figure 1.
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Figure 1 Layered Software Radio Architecture

Historically, wireless modem, protocol stack, and network
aspects have been loosely coupled.  High performance
modems have been hardware-intensive with decades-long
evolution of standards for channel coding.  GSM, for example,
was initially defined in 1983 [3] but not initially deployed until
1993.  The 3G evolution for Asian markets may take eight
years, in part because of the time required to reach
international consensus [4]. The implementation of air
interfaces in software and/or firmware-defined modems
removes technology barriers to rapid evolution of waveforms.
For example, GSM SDR base stations have been described [5,
6].  Recent research has shown that GSM, the Japanese PDC,
and the North American IS-54/136 modems are readily
implemented in a single parameterized software package
(versus requiring a separate software package, RAM and ROM
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per waveform) [7].  The simulation of baseband modems for
DECT, GSM, and W-CDMA demonstrates the rapid
development of waveforms customized to emerging
services, such as data rates in excess of 32 kbps [8].  A
packet-driven firmware architecture for implementing such
alternate personalities in reconfigurable FPGAs has also
been described [9].  The proliferation of air interface modes
is illustrated in Table 1.  The dimensions of the associated
control parameter space include RF band (e.g. Cellular),

mode (e.g. GSM, WCDMA), and mode parameters.  Mode
parameters include data rate, forward error control (FEC) mode,
code rate, and QoS parameters (e.g. ATM cell loss rate, delay
spread, etc. [10]).  Mode parameters depend on environment
parameters that include signal to noise ratio (SNR) or carrier to
interference ratio (CIR).  Within ten years, most wireless PDAs
will be capable of accessing all the modes shown in Table 1.

Table 1  Forty Illustrative E-Mail Modes

Bearer Mode Data Rate Other Metric(s) Remarks
GSM GPRS CS-1 9.05 kbps Code Rate ½, 40 BCS Best protection

GSM GPRS CS-2 13.4 kbps Code Rate 2/3, 16 BCS Punctured (CS-2-4)

GSM GPRS CS-3 15.6 kbps Code Rate ¾

GSM GPRS CS-4 21.4 kbps Code Rate 1 Highest throughput

IS-136 HS Class C <=384 kbps Delay <1.5s; BER<10-6 BER after ARQ

IS-136 HS PCS 6, 5, 2, 1 69.2-22.8 kbps Isochronism But expensive

WCDMA Low Rates 8, 16, 32 kbps Code rate All users

WCDMA Medium 64, 144, 384 Cell loss rate for ATM video Pedestrian

WCDMA High Rates 384, 2048 Continuity of rate Indoors

AMPS CDPD < 5 kbps FEC Protected, low SNR 40 bytes offered

VHF V-Series 0.075-9.6 kbps Hybrid ARQ Notional

UHF V-Series 1.2-28.8 kbps Hybrid ARQ Notional

LMR Proprietary 20 kbps Hybrid ARQ Notional

IEEE 802.11 2 Mbps ~0.5-1.84Mbps 300-8% overhead 40-1500 byte payload

IEEE 802.11 11 Mbps ~0.860-7.6Mbps 1179-31% overhead 40-1500 byte payload

HiperLAN/1 EY-NPMA ~1.52-15 Mbps highest priority 40-1500 byte payload

HiperLAN/2 W-ATM ~7.4-16.67 Mbps DSCx delay, FEC, ARQ/FEC 40-1500 bytes offered

DECT Notional 32-155 kbps Interleaved, FEC Peak 892.4 kbps

Since processing capacity and memory density
continue to follow Moore’s law, within the same ten years,
one may expect a battery operated commercial PDA to have
a GFLOP of processing capacity.  Memory should exceed
100 MB of RAM, with 2 GB of disk storage [11].  One theme
of cognitive radio is to use this increased processing
capacity and memory to reduce user interface complexity
while facilitating the rapid insertion of new SDR technology
(e.g. enhanced modem algorithms).

B. Environment-Aware Computing

The European Community’s Advanced Communica-
tions Technology and Services (ACTS) program included a
major thrust in location-aware computing, OnTheMove.  In
middleware called MASE, for example, a location manager
determines location parameters and accuracy through the

Global Positioning Satellite System (GPS) or through network
facilities[12].  The mobile graphical user interface employs
voice recognition for map navigation.  Field trials of a City
Guide [13] yielded high consumer interest in mobile email, a
personal news service, personal stock portfolio, and maps.
Other researchers investigated mobile video streams, clips, and
fast file downloads [14].

Beadle, Maguire, and Smith [15] took these notions a step
further.  They developed environment-aware computing-
communication systems.  These include smart badges that use
wireless technology to become aware of the immediate
environment including doors, heating, ventilation, air
conditioning, lighting, appliances, other computers,
telephones, and pagers.  Thermal, audio, and video sensors in
a cognitive PDA would yield new opportunities for human-
centric information services.  Environment awareness takes
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mobile computing, PDAs and networks beyond location-
awareness.

Cognitive radio extends environment-aware computing
to integrate machine learning to continuously tailor
services to a user’s communications context.  In cognitive
radio, communications context consists of time, place, and
user state.  Expression of context thus requires a standard
radio ontology such as RKRL.  It should mediate radio-
related information exchanges among diverse radio-aware
applications.  Applications developers will not be expert in
the myriad of bands and modes available to emerging
SDRs.  Yet each offers a different mix of QoS parameters.
Thus, there is a need for a control agent that can use a
radio ontology to manage access to radio bands and modes
as a function of the application and user context.  Cognitive
radio is envisioned as a framework for developing such
control agents.

C. Intelligent Agent Technology

Cognitive radio is an example of agent technology in
telecommunications.  The compendium, Intelligent Agents
for Telecommunications Applications [16], and the feature
topic on Mobile Software Agents for Telecommunications
of the IEEE Communications Magazine [17] summarize the
state of the art in applying automated reasoning to
telecommunications.  Mobility aspects are couched in
terms of network applications of “autonomous, interactive,
reactive” software objects.  Goal-orientation, mobility,
planning, reflection, and cooperation are described as
additional attributes of agents that distinguish them from
other types of software.  Although wireless is mentioned in
some of the papers, none of the contributions describes
anything approaching cognitive radio.  Moreover, none of
the prior work indicates plans for a radio-specific taxonomy
or radio domain language like RKRL.

Albayrak [18] defines an agent as one that exhibits the
functional attributes of autonomy, interactivity, reactivity,
goal-orientation, mobility, adaptivity; and that is capable of
planning, reflection and cooperation.  No requirement for
machine learning is expressed.  One thesis of cognitive
radio is that a range of machine learning technologies is
needed to autonomously tailor services to specific users
[19].

Agent models include Aglet, Agent Tcl, Agents for
Remote Access (ARA), Concordia, Mole, Odyssey,
TACOMA, Voyager,  and SHIP-MAI [20].  The focus has
been on Internet applications, with minimal attention paid
to the physical, data link and radio-related protocols that
are critical to wireless.  The Wireless Applications Protocol

(WAP) facilitates the integration of mobile devices into such
an agent framework [21].  Agent features of security,
portability, mobility, agent communications, resource
management, resource discovery, self-identification, control,
and data management are also generally relevant to cognitive
radio.

An open, web-based cognitive radio architecture also
needs an agent coordination language like the Knowledge
Query and Manipulation Language (KQML) [22].  High level
architectures for sharing domain knowledge using KQML have
included petro-chemical plant applications [23].  Reilly’s
comparison of intelligent agent languages is revealing [24].  He
compares KQML, Java, TeleScript, Limbo, Active X and
SafeTCL against his criteria for Intelligent Agent Managed
Objects.  These criteria include target environment, platform
independence, execution style (e.g. interpreted versus
compiled), native support for agent communications, agent
mobility, and security features.  Knowledge representation
issues were not addressed explicitly.  Most agents employ
implicit models of user services and network capabilities.
These models tend to be computationally informal, augmented
with intuitively accurate definitions, but lacking a framework in
computational linguistics or knowledge representation.

II. RKRL

Cognitive radio, on the other hand, builds on KQML as a
knowledge representation language.  Performatives from
KQML are built into RKRL.  In addition, RKRL includes model-
based semantics for the radio and network domains.  RKRL
includes 4000 frames of XML [25] organized into about 40
micro-worlds.

A. Micro-Worlds

Formal methods employ an axiomatic treatment of a domain
in order to prove theorems about that domain.  In logic
programming, for example, knowledge of the domain is
represented in Horn clauses [26].  A theorem-prover resolves
hypotheses.  In the process, the system achieves goals,
performs data base queries, and accomplishes other useful
tasks.  Alternatively, procedural knowledge may be structured
as if-then rules [27,28].  The structure of domain knowledge in
rule-based expert systems and logic programming is somewhat
ad-hoc, driven more by the formalism (e.g. Horn clauses) than
by the domain.  In addition, the knowledge representation is
tailored to the narrow task of the application, which is
appropriate for the early development of such technology.
One chronic problem of expert systems is the knowledge
engineering bottleneck, the need for a knowledge engineer to
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provide new rules for every new situation confronting the
expert system.  Cognitive radio is formulated as a machine-
learning system in part to ameliorate such bottlenecks.
Now that there are hundreds of logic programming and
rule-based applications relevant to wireless information
services, the focus of knowledge representation may shift
from the application-specific aspects to cross-application
aspects.  One useful step is to organize the radio domain
into an ontological system.

Research in naïve physics provides some useful
insights.  Davis describes a micro-world as a concept for
organizing knowledge in the common-sense domain of
cutting wood [29].  This entails the formalization of the
eight components illustrated in Figure 2.
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Figure 2 Davis’ Micro-worlds Framework

The micro-world itself is the domain about which one is
reasoning.  In wood-cutting, objects occupy time and
space; and cut each other, creating new objects.  One of his
formal models defines cutting in terms of “chunks.”  In
addition, a knowledge base represents a-priori facts and
procedures.  The domain-specific language expresses the
formal model.  In addition, a formal inference system
defines the formal subset of an identified set of informal
inferences that may be drawn about the micro-world.  The
language relies on an axiomatization, which defines “truth”
in the formal model.  This axiomatization supports proofs
induced by the formal inference system.

Radio knowledge, similarly, may be organized into
micro-worlds [19].  Radio is a large, complex domain in
which competence with bands, modes, and protocols
requires a large set of axioms.  If structured into a single
micro-world, axioms about GSM “channels” would conflict
with axioms about IS-95 “channels.”  RKRL therefore
structures wireless into a set of interacting micro-worlds
within each of which an appropriate taxonomy is defined.

B. Axiomatization of RKRL Micro-Worlds

Communications contexts lack mathematical structure.
However, one may induce topological spaces on radio
architecture (functions, components, and design rules) [30].
The analysis of these topological spaces underlies the
definition of RKRL for cognitive radio.  It specifies the sets and
subset relationships among the radio entities that establish
generalized communications context.  It also defines
conceptual and computational models applicable to subsets of
the domain.  RKRL is an incrementally structured taxonomy for
wireless services.  It does not impose the structure of a strict
hierarchical taxonomy, but it describes the set-theoretic
structure to the degree that it has been articulated for the
domain. An RKRL frame is an expression:

<frame> :=

<handle><model><body><context><resources>

For example, the fact that a user’s address includes a city is
expressed in RKRL as:  <handle> Address </handle>

<model> contains </model> <body> City </body>.  Note that
the XML dialect structure uses <tag> end tag </tag> to denote
RKRL tags.

“Contains” is the primary set-theoretic model that
structures the radio domain.  In addition, the context element
provides explicit paths from a universal root to all conceivable
entities, e.g.:

<context>Home/ User/ Person/ Concepts/ Universe/

RKRL1.0 </context>

The /Concepts/ subset defines classes of entities, while
instances have their own space-time context such as:

<context>Joe’sHome/ Fairfax/ VA/ USA/ Global Plane/

Physical world/ Universe/ RKRL1.0</context>

Extended context includes the place, time, and source of
radio-related information.  Knowledge in RKRL is organized
into the forty micro-worlds listed in Table 2.

The spatial ontology sets the earth in the universe with
earth-orbiting communications satellites.  The global plane
defines continents, oceans, and countries of the world needed
for reasoning about air travel.  This strategy iterates down to
the local level at which the GPS location of buildings is known
from a street map.

In the immediate plane, radio signals from the refrigerator
operating on a smart-kitchen RF LAN define the spatial
relationships and information resources of each local entity.

Table 2  RKRL Micro-Worlds

Constellation Micro-worlds
Meta Level Globals, Inference Engines, Meta,

Cognition, Goals, KQML, KIF, Skills,
Sets, Database, Parsers
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Ontological Universe, Self, Concepts, Models, Time,
Space, Spectrum, User

Spatial Global, Satcom, Regional, Metro, Local,
Immediate

Radio Structure Architecture, Functions, Internal,
Hardware

Software Software, CORBA, UML, ODP, MPI
Wireless
Functions

Air, Modem, Demod, Equalizer, Memory

Protocols Protocol, Physical, Data Link
Networks Network, Cellular, Segmentation,

Messages, Propagation
Other References

At KTH, this approach has been used for wireless
broadcast of location and status (e.g. of doors: open,
closed) to smart badges [15].  One aspect of the current
research is to use RKRL to structure knowledge in a
cognitive radio prototype, CR1.

III. COGNITIVE RADIO

Cognitive radio is a framework for evolving auto-
extensible intelligent agents to control radios.

A. Framework

Software radios have considerable computational
capacity, but little cognitive ability.  For example, a GSM
SDR’s equalizer taps reflect the channel impulse response.
If the network wants to ask today’s handsets “How many
distinguishable multipath components are in your
location?” two problems arise.  First, the network has no
standard language with which to pose such a question.
Second, the handset has the answer in the structure of its
time-domain equalizer taps internally, but it cannot access
this information.  It has no computationally accessible
description of its own structure.  Thus, it does not “know
that it knows.”  It cannot tell an equalizer from a vocoder.
To be termed “cognitive,” a radio must know basic facts
about radio.  It should know that an equalizer’s time domain
taps reflect the channel impulse response.  A cognitive
radio contains a computational model of itself including the
equalizer’s structure and function.  It uses RKRL to
accomplish this as suggested in Figure 3.

Back End Control

Model-Based ReasoningRKRL Frames
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Antenna RF Modem
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BasebandUser Interface

Equalizer

Equalizer
Algorithm

RAM

...

Antenna RF Modem Baseband User Interface
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Cognition

INFOSEC

Software Radio
Software Modules   …..

Figure 3  Cognitive Radio Framework

The radio hardware consists of modules: antenna, RF
section, modem, INFOSEC, baseband processor and user
interface. In the example, the baseband processor hosts the
software.  This software includes the baseband modem and
equalizer module.  In addition, however, a cognitive radio also
contains internal models of its own hardware and software
structure.  The model of the equalizer, for example, could
contain the codified knowledge about how the taps represent
the channel impulse response.  The RKRL frames plus a related
extensible model-based reasoning capability, give the radio its
“cognitive” ability.  The radio’s model of itself contains models
of its components (antenna, RF conversion, etc.).  In addition,
the interfaces among these components are modeled.  The SDR
Forum has defined these interfaces using the CORBA IDL [31].
This provides a starting point.  The Forum has not defined a
formal semantics that could mediate machine reasoning about
these interfaces, however.  RKRL 1.1 begins to fill this void.  It
extends the SDR Forum approach with formal semantics.  This
includes logical sorts and axioms for time, space, and user
identity.  It also includes the set-theoretic formulation of radio
in the RKRL micro-worlds. Cognitive radio employs RKRL via
the cognition cycle.

B. The Cognition Cycle

A cognitive radio agent interacts with its environment via
the cognition cycle of Figure 4. Stimuli enter the cognitive
radio as interrupts, dispatched to the cognition cycle for a
response.  The cognitive radio continually observes its
environment, orients itself, creates a plan (s), decides, and then
acts.  In addition, a cognitive radio employs machine learning
techniques throughout.  This includes learning its own
personality by being trained both a-priori and by its user.  This
also includes learning human and machine protocols as it is
exposed to them experientially.
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The receipt of a new message constitutes a new
stimulus, initiating a new cognition cycle.  The cognitive
radio parses all stimuli to identify the communications
context.  In the CR1 rapid prototype, stimuli are organized
into reinforced hierarchical sequences in this observation
phase.  It then orients itself by determining the priority
associated with this stimulus.  A power failure might
directly invoke an act (“Immediate” path in the figure).  A
non-recoverable loss of signal on a network might invoke
reallocation of resources (“Urgent” in the figure.)
However, an incoming network message would normally be
dealt with by generating a plan (“Normal” path).  Planning
consists of plan generation.  The "Decide" phase selects
among candidate plans.  The radio might have the choice to
alert the user to the incoming message (e.g. behaving like a
pager) or to defer the interruption until the current business
meeting is over (e.g. behaving like a secretary who is
screening calls).  “Acting” initiates processes performed by
other radio software, such as dialing a number on the GSM
network.  Learning is a function of observations and
decisions.  For example, prior and current internal states
may be compared with expectations to learn about the
effectiveness of a communications mode.

This cycle implies a large potential scope of hard
research problems.  Parsing incoming messages requires
natural language text processing technology.  Scanning the
user’s voice channels for content that defines the
communications context requires speech processing.
Orienting to user context may require conceptual clustering
[32], or an extension of document clustering [33] that works
well on small, imbalanced data sets.  Planning technology
offers alternatives in temporal calculus, constraint-based
scheduling, task planning and the like [34, 35, 36].
Resource allocation itself includes algebraic methods for
wait-free scheduling protocols, Open Distributed

Processing (ODP), and Parallel Virtual Machines (PVM), just to
name those that have obvious relevance.  Finally, machine
learning remains one of the core challenges in artificial
intelligence research.  The focus of cognitive radio research,
then, is not on the development of any one of these
technologies per se.  Rather it is on the higher-level data
structures and processes that integrate the contributions of
these diverse disciplines.  The range of potential capabilities of
such a cognitive radio is summarized in Figure 5.
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Figure 5  Cognitive Radio Representation Space

C. Control Parameter Space

Goal-driven choice of RF band, air interface, and protocol
requires reasoning in at least two dimensions.  Source
parameters define the information structure of the source
bitstream.  Mode selection parameters define the tolerance of
the source bitstreams to errors and other impairments (Table 3).
Source parameters have been studied extensively [37].  In
addition, Quality of Service (QoS) metrics for the wireline
system have been normalized for wireless networks [38].  A
simple goal-driven radio could be outfitted with tables of
service-quality parameters as a function of band and mode for
the bands and modes it can access.  When an additional air
interface is downloaded to the radio, its service parameters
could be downloaded as well.  Again, in principle, the goal-
driven radio could select the band and mode that is available
and that best meets the source requirements.

Wireless decision parameters vary temporally with location,
time of day, exact frequency subband, traffic elsewhere in the
network, weather, and other contextual parameters.  There are
daily and weekly patterns of business, sports and leisure that
shape demand and hence congestion of bands.  They also
vary cyclically with month of the year.

Table 3  Mode Selection Decision Parameters

Data Structure Parameter
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Source Bitstream Bit Rate
     Burstiness Constant (CBR) or variable (VBR)
     Isochronism None, real-time or near-real-time
     Bursts Maximum burst size
     Tolerance Parameter mismatch
Service Quality Error rates
     Bit error BER, symbol error rate
     Delay-related Transfer delay, variance, jitter
     Buffer-related Packet or Cell Loss Rate (CLR)
Reliability Grade of Service [Plink]

Assuredness Authentication, privacy
Cost Peak, off-peak, service-related

Table 4  Context Parameters

Data Structure Parameter
Traffic Structure Statistics of offered load
Temporal Cycles Diurnal, weekly, annual, other
Location Propagation, services
Bands/ Modes RF range, mode parameters
Weather Precipitation, road conditions
Immediate relative
position

In pocket, building, on the
ground

Orientation Direction of travel
Travel Mode  Auto, train, air, foot: speed
User Profile Identity, use patterns
User speech profile Topics of discourse
User data profile Topics of interest
Immediate needs Context qualifiers
Connectivity  needs Criticality of connectivity
Security profile Authentication, encryption
Intended recipient(s) Generic, class, instance

Cognitive radio adapts its use of spectrum bands and
modes by acquiring its user’s space-time patterns.  Its
parameters for context-driven planning are summarized in
Table 4.  Mode of travel, for example, may be inferred
through monitoring fade rates, which are different for
pedestrian versus vehicular travel.  Movement implies
constraints on RF band, mode, and QoS. The
transformation of radio mode and communications context
parameters into actions is accomplished using an internal
knowledge representation hierarchy of reinforced
sequences.

IV. REINFORCED HIERARCHICAL SEQUENCES

CR1 represents knowledge as reinforced hierarchical
sequences as illustrated in Figure 6.  These consist of the
sensor data partitioned into generalizations of words, phrases,
dialogs, and scenes.  The partitioning is based on both time
elapsed between elements of the sequence and on content-
derived cues such as a restart signal in a framing sequence or
the phrase “Lets start over” in a speech stream.  A context is
the sequence that results when the content of multiple sensor
streams is co-joined at some level of the hierarchy.  Each
sequence at one level becomes an element at the next level.
The time delay between successive occurrences is noted for
use in sequence binding, a form of cross-correlation.
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Figure 6  The Concept Hierarchy of Reinforced Sequences

Counting occurrences reinforces experience.  In addition,
user actions such as training, positive, and negative
reinforcement change counts as if the experience had occurred
more often or not at all. Sequence elements vary from the
atomic to the complex as a function of the level of the concept
hierarchy.  Atomic stimuli (e.g. from a microphone) are
converted to atomic symbols (e.g. phonemes) by
preprocessors such as speech-to-text phoneme recognizers.
Temperature, pressure, time, location, and radio-channel states
determined by lower level software-radio personalities are
formed into phrase and higher level contexts.  Reasoning is the
process of mapping sequences of external stimuli to internal
sequences that represent world models, plans, and actions.
Learning is the process of acquiring new sequences and
associating internal and/or external actions with these
sequences.  The internal sequences follow the RKRL schema
of <handle><model><body>, where <handle> is the stimulus
that results in the response <body> when interpreted using
<model>.  This is denoted:

srModel:  <stimulus>   >   <response>
Multiple srModels are organized into processing structures
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following RKRL.  Figure 7, for example, shows the models
that support reasoning about modem parameters.
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Figure 7  Model Structure to Set Modem Parameters

Sequences in models are bound to each other such that
elements of established strings act as variables to which
elements of new stimulus strings are bound.  In terms of
theory of languages and computing, these linked models
comprise a finite state language (similar to Post
productions), but with millions of states, which is
equivalent to a push-down automaton (context free
language) for (small) finite stack depth.  This reasoning
structure turns out to be equivalent to forward chaining,
but not to resolution theorem proving, which is as
intended.  This specifically non-Turing capable approach
meets the theoretical constraints of bounded recursion
necessitated by the isochronous nature of communications
[30].  It also substantially simplifies machine learning.  Yet it
is powerful enough to detect user communications states in
scenarios like introductions and eating out [39].

A. Learning Artificial Protocols

The use of reinforced hierarchical sequences may be
illustrated through an example of how CR1 learns and uses
an artificial protocol.  CR1’s GSM sensor delivers text
strings to a phrase-level parser.  Simulated time, location,
RF LAN, weather, (perfect) speech and text stimulus
channels provide additional context.  Suppose the
following KQML-like string is presented on the text
channel:

Plan    :Location Stadium :CIR <9dB   :GPRS-data-
Rate 8.55 kbps

This could be the body of a KQML tell-one
performative from the network telling the PDA to reduce its
data rate in mode GPRS CS1 (from the nominal 9.05 kbps) in
the cell site near the Stadium, for example.  CR1 parses the
string into:

p.l.a.n| :.L.o.c.a.t.i.o.n, S.t.a.d.i.u.m | :.C.I.R, <.9.d.B |
:.G.P.R.S.-.d.a.t.a.-.R.a.t.e, 8…:value 5.5, k.b.p.s

In this sequence, dots (.) delimit characters within words,
commas (,) delimit words within phrases, and vertical bars (|)
delimit phrases within dialogs.  CR1 knows in advance that
“plan” is the name of its internal model p.l.a.n via its word-role
srModel where p.l.a.n > m.o.d.e.l.  CR1 implements such models
as hash tables for O(1) access to the millions of sequences it
must store for reasonable performance.  The Orient phase
composes a command string for this sequence:

m.o.d.e.l @ now @here | p.l.a.n | :.L.o.c.a. … (etc)
This model-update sequence explicitly includes time,

location, and other relevant context.  The plan phase
recognizes this as a request to update an internal model here
and now.  The Decide and Act phases implement the change.
The srModel for planning now includes:

(L.o.c.a.t.i.o.n, S.t.a.d.i.u.m, :.C.I.R, <.9.d.B,  :.G.P.R.S.-
.d.a.t.a.-.R.a.t.e)  >  8…5.5, k.b.p.s

In addition, Orient phase model for new words now knows
the words location, stadium, CIR, etc. After a sleep cycle, these
words become integrated into the store of actionable
information.

B. Applying Protocol Knowledge

Consider the plan required to set modem parameters:
Plan: :setParameters GPRS  :value “Data Rate @CIR”
As before, the sequence has been installed in the p.l.a.n

model.  The planning goal is to complete the sequence of the
plan, forwarding the resulting plan to the Decision phase for
action.  To use this plan, the stimulus :Send email arrives from
the user (e.g. on the speech channel), and the GPRS mode is
selected (using a different plan sequence stored in the same
planning srModel.  The planner then sets GPRS parameters
using the plan shown above.  It applies each phrase of the plan
to its p.l.a.n model, aggregating the results into a final plan
sequence.  The sub-sequence @CIR yields <9dB because the
Demod node of Figure 7 reports CIR by installing the srModel
“@CIR > <9dB” into p.l.a.n.  The completed sequence “Here,
Now, GPRS Data Rate <9dB” yields (@GPRS Data Rate , 8.55
kbps) near the Stadium and 9.05 dB elsewhere. The tag @ in
this sequence causes the body to be placed in p.l.a.n,
essentially binding a local variable.  @,G.P.R.S D.a.t.a R.a.t.e >
<.9.d.B is available to subsequent planning steps.  This
sequence binding process continues yielding the final plan
“GPRS setParameters Data Rate 8.55 kbps ”

C. Sequence Correlation

A more natural way of expressing the plan given above is
as follows:
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“The plan to set-the parameters for GPRS is as
follows.  First, determine the CIR.  Next, determine the
mode for this CIR.  Finally, set GPRS to this mode.”

This plan reads like (tutorial-style) natural language.
The phrase “is as follows” provides linguistic structure but
no essential content.  Sequence templates are artificial
sequences that CR1 may be taught to set the structure of
knowledge to be acquired.  One of the sequence templates
for a plan is:

“The plan to set x for y is as follows.  First, bind the y.
Next, bind the z for this y.  Finally, set x to this z.

CR1 correlates each new sequence against all
previously observed sequences in parallel, using the set-
theoretic framework of RKRL.  Each element, α, in a
sequence, γ,  is stored as a member of the set consisting of
all sequences {γ}α, containing α.  Correlation first
intersects {γ}αi for αi ε γn, the new sequence.  The resulting
{γ} are then registered to γn according to a dynamic time
warping algorithm [40].  An αi in γj registers to αj in γn if i =j.
In addition, the reinforcement of γj is accrued as value.  If i
≠ j, then warping cost of the number of element delays
times a weight is accrued.  The best correlation is that
which has maximum accrued (value-cost).  Whenever αi

and αi +2 register, αi +1 is bound to one of:
(1) null, if no α in γj corresponds to αi +1,
(2) Σ(αi +1

j…αi +m
j), forming a sub-sequence

In addition, α-1 is a possibly empty prefix and αN+1 is a
possibly empty suffix, bound in the obvious way.
Sequence correlation on the above yields bindings:

x = ”the parameters”;
y = GPRS; z = mode;
bind = determine.

The bound elements act like function-variables, taking
on the roles of the symbols to which they are bound
(possibly with user confirmation).  This is accomplished by
recording the srModel for, “determine” that was previously
stored for “bind.”  This simple reasoning by analogy allows
the system to build a variety of internal models given a
minimal initial set.  With a good user interface, the system
would ask the user for permission to treat “determine” as
“bind” in the given context.  Although it does not appear
difficult to construct a generalization algorithm that
operates on collections of such contexts, CR1 implements
only the sequence correlation and binding operations for
machine learning, lacking the ability to generalize across
contexts.

  Although the plan template and the pseudo-natural
language plan are far from unconstrained natural language
[41], they are both readily readable by people and also

parsed and executed precisely by CR1.  Moreover, they are
assimilated in a way that identifies whether the system knows
how to act on each word and phrase.  Filling in missing models
is the paradigm for interactive knowledge acquisition.  Thus,
although the natural language processing approach is
relatively primitive, it serves the useful purpose of streamlining
the automatic acquisition of machine and human contexts and
protocols ..

V. CONCLUSIONS

Cognitive radio provides an interesting framework within
which to experiment with the contributions of natural language
processing and machine learning on the evolution of extensible
intelligent agents for software radio.  Such inter-disciplinary
research often raises many more questions than it answers,
particularly among experts in each sub-field.  There are many
important approaches to natural language processing and
machine learning that might have been integrated into CR1.
This present contribution suggests the potential benefits of
these technologies to software radio.  Those that have been
integrated into CR1 seem to be just the “tip of the iceberg” of
an interesting research area.
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